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Sepsis induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS)
remains a devastating complication of sepsis, marked by uncontrolled pulmonary
inflammation, alveolar—capillary barrier disruption, and high mortality. Despite
advances in supportive care, no targeted medicines are currently available.
Ferroptosis is an iron-dependent and non-apoptotic form of cell death
characterized by the iron induced accumulation of lipid reactive oxygen
species (ROS). Emerging evidence indicates that ferroptosis is involved in the
progression of sepsis induced ALI/ARDS, although the mechanism of action of
ferroptosis in sepsis induced ALI/ARDS is still poorly understood. This mini-
review summarizes the mechanism of ferroptosis action on sepsis induced ALI/
ARDS, with particular focus on immune dysregulation, endothelial/epithelial
dysfunction, and oxidative stress. We highlight key molecular pathways,
including glutathione peroxidase 4 (GPX4) inactivation, iron metabolism
disruption, and lipid peroxidation cascades, supported by both preclinical
studies and emerging clinical correlates. Furthermore, discuss the potential
therapeutic approaches currently used to treat ARDS. This review also
discusses major challenges to clinical translation and highlights further
directions for the treatment and prevention of sepsis induced ALI/ARDS.
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1 Introduction

Sepsis, a prevalent critical condition in clinics, continues to be
the leading cause of death from infections and a global healthcare
issue. Among the organs susceptible to the harmful effects of sepsis,
the lungs are notably the most frequently affected. Consequently,
patients with sepsis are predisposed to developing acute lung injury
(ALI), and in severe cases, acute respiratory distress syndrome
(ARDS) with a high mortality rate, exceeding 30% (1, 2). Despite
significant advance in the understanding and management of ALI/
ARDS, there remains a substantial lack of drugs capable of
effectively treating ALI/ARDS induced by sepsis due to limited
research on its underling mechanism.

Ferroptosis was proposed by Dixon (3) in 2012, driven by iron-
dependent phospholipid peroxidation, is regulated by multiple
cellular metabolic pathways, including redox homeostasis, iron
handling, and metabolism of amino acids, lipids and sugars, in
addition to various signaling pathways relevant to disease.
Numerous organ injuries and degenerative pathologies are driven
by ferroptosis, such as neurodegenerative diseases (4), endocrine
diseases and cancer (5, 6). In recent years, the role of ferroptosis in
sepsis induced ALI/ARDS has received more research attention (7,
8). The research on the role of ferroptosis in sepsis induced ALI/
ARDS has progressed rapidly. Studies has highlighted the
importance of immune dysfunction, oxidative stress, and barrier
disruption in its pathogenesis. This mini-review integrates the latest
(2020-2025) advances in understanding ferroptosis in sepsis-
induced ALI/ARDS, emphasizing the role of ferroptosis and the
potential therapeutic strategies by targeting ferroptosis. Moreover,
we discuss its significance in the treatment of sepsis-induced ALI/
ARDS and provide new directions for the treatment and prevention
of sepsis-induced ALI/ARDS by targeting ferroptosis.

2 Ferroptosis in sepsis-induced ALI/
ARDS

2.1 Molecular mechanism of ferroptosis

Intracellular labile iron (Fe*") is central to ferroptosis,
catalyzing the Fenton reaction to generate hydroxyl radicals
(¢OH), which initiate lipid peroxidation (9). Thus, ferroptosis
fundamentally reflects a breakdown of redox homeostasis. Iron
balance is tightly regulated by uptake, export, and storage.
Transferrin receptor 1 (TfR1) mediates iron entry, and its
upregulation in sepsis-induced ARDS correlates with ferroptosis
markers (10). Conversely, ferroportin (FPN), the only known iron
exporter, is downregulated in sepsis due to hepcidin overexpression,
trapping iron intracellularly (11). In septic lung injury, ferroptosis
amplifies tissue damage through iron-dependent lipid peroxidation
in alveolar epithelial cells. Recent studies reveal that sepsis-induced
hypoxia upregulates hypoxia-inducible factor-1o (HIF-1o), which
increases cellular iron uptake via transferrin receptor 1 (TfR1). Of
course, hepcidin expression requires synergistic activation by IL-6
(inflammatory pathway) and BMP6 (iron-sensing pathway), which
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exhibits elevated in sepsis-induced ARDS patients (12). Moreover,
Ferritin, which sequesters iron, undergoes degradation via
ferritinophagy (a selective autophagy process) in sepsis-induced
ARDS. Ferritinophagy mediated by Nuclear receptor coactivator 4
(NCOA4), which first precisely recognizes and binds to ferritin and
recruits and directs the autophagy machinery to enclose ferritin into
autophagosomes, ultimately transporting it to lysosomes for
degradation, thereby releasing the free iron for cellular use (13).
In addition, ferroptosis activators such as erastin and RSL3 increase
intracellular iron accumulation by impairing antioxidant systems
(14) (Figure 1). The glutathione (GSH)-GPX4 axis is the primary
defense against ferroptosis. GPX4 reduces LPO to non-toxic
alcohols by using GSH, but this system is compromised in sepsis-
induced ARDS. System Xc (a cystine/glutamate antiporter)
supplies cystine for GSH synthesis. In sepsis, TNF-o. and IL-1B
downregulate its subunit SLC7A11, reducing GSH levels by 40%-
60% in lung tissues (15, 16). Concurrently, sepsis depletes GSH by
downregulating the xCT transporter, impairing GPX4 activity (61).
This dual hit iron overload + antioxidant failure explains the
prominence of ferroptosis in septic lungs. While these
mechanisms are increasingly well-characterized, key questions
remain regarding cell-type specific responses and the temporal
sequence of these interactions during sepsis progression. The
above results suggest that ferroptosis is involved in the
pathogenesis of lung injury, which will provide a new theoretical
basis for the clinical treatment of ARDS. However, no clinical
studies have examined the association of these ferroptosis
indicators with severity and prognosis of ARDS.

2.2 Endothelial/epithelial cell damage

Sepsis-induced ARDS releases abundant inflammatory
mediators that disrupt the structural integrity of the alveolar-
capillary endothelial barrier, causing neutrophil infiltration (NI)
and diffuse pulmonary edema (DPE) (17, 18). Macrophage-derived
extracellular vesicles promote endothelial ferroptosis, further
compromising barrier integrity (19). Through LPO-mediated
membrane injury, ferroptosis damages tight junctions, increasing
alveolar-capillary permeability. Notably, single-cell RNA
sequencing identified endothelial ferroptosis as an early sepsis-
induced ARDS event, preceding edema formation (20).
Extracellular vesicles also play protective roles: for example,
ADSC-derived exosomal miR-125b-5p mitigates inflammation-
induced pulmonary microvascular endothelial ferroptosis in
sepsis-induced ARDS by regulating Keap1/Nrf2/GPX4 expression
(21). Type II alveolar epithelial cells (AECs), rich in
polyunsaturated fatty acids (PUFAs), are particularly vulnerable
to ferroptosis. Their loss impairs surfactant protein B production,
worsening hypoxemia (22). Activating the Nrf2/PHB2 pathway in
type IT AECs reduces mitochondrial injury caused by sepsis in mice,
thereby promoting the survival of type II AECs and preventing
progression to ALI (23). Additionally, neutrophil extracellular traps
(NETs) exacerbate sepsis-induced ARDS by inducing ferroptosis in
alveolar epithelial cells (24). (Figure 2). Above data suggests that

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1689155
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al. 10.3389/fimmu.2025.1689155
}‘ferroptosi
() A
!
Ee23)
production @
of LPO

Fenton
reaction

synergistic ‘ ferroportin

activation —
lipid peroxidation

A 4 increase in the
expression of hepcidin
FIGURE 1

Ferroptosis mainly involves the disruption of redox homeostasis. Transferrin receptor 1 (TfR 1) mediates iron entry, whereas iron transporter (FPN)
mediates iron output. Under sepsis conditions, the synergistic activation of IL-6 (inflammatory pathway) and Bmp6 (iron-sensitive pathway) triggers
an increased expression of hepcidin, which inhibits the function of the iron export protein ferroportin. As a result, iron is not properly released from
the lung cells, causing iron accumulation within the cells. The accumulated free iron generates highly reactive radicals through the Fenton reaction,
which initiate and catalyze chain reactions of lipid peroxidation, producing a large amount of lipid peroxides (LPO), which then directly damages the
cellular lipid membrane and becomes a significant factor triggering iron-induced cell death.

ferroptosis induced endothelial and epithelial cell ferroptosis
damage play an important role in sepsis induced ALI/ARDS,
protecting against its ferroptosis will supply potential therapeutic
strategy for this disease.

2.3 Immune regulation

Ferroptosis is closely intertwined with immune regulation.
Ferritin degradation promotes the release of damage-associated
molecular patterns, including HMGB1 and ATP, which in turn
activate multifunctional nanozyme systems such as MET-CMS@
FeTA (MCMSFT) and the NLRP3 inflammasome, while also
driving macrophage polarization (25). From 2021-2023, studies
have revealed that ferroptosis-derived LPO directly activates
NLRP3, triggering IL-1f and IL-18 secretion, which further
enhances ferroptosis through SLC7A11 downregulation (7, 26,
27). Also, pro-inflammatory signals (TNF-0/IL-1B) activate core
signaling pathways (mainly NF-xB/MAPK), jointly increasing
cellular sensitivity to ferroptosis at multiple levels. The main
targets include: downregulation of GSH synthesis genes,
upregulation of ACSL4/LPCAT3, and regulation of iron storage
and uptake (28).

In septic mice, dysregulated inflammation can cause widespread
damage to alveolar epithelial and microvascular endothelial cells,
resulting in pulmonary edema and excessive neutrophil infiltration.
Sepsis disrupt immune homeostasis, with pulmonary macrophages
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differentiating into distinct subtypes to regulate inflammation at
different stages. Moreover, previous research has shown that
mediating the Nrf2 pathway can inhibits ferroptosis in
macrophages, thereby exerting a protective effect against sepsis-
induced ARDS (24). Moreover, Ferrostatin-1, the inhibitor of
ferroptosis, was found to rescue the downregulation of ferroptosis
markers including cysteine/glutamate transporter (SLC7A11) and
GPX4 in sepsis induced ALI/ARDS (29). Also, STING promotes
sepsis-induced ALI/ARDS by inducing macrophage ferroptosis in a
cGAS- and interferon-independent manner. Mechanistically, Q237,
E316, and S322 in the CBD domain of STING are critical binding
sites for the interaction with the coiled-coil domain of NCOA4.
Their interaction not only triggers ferritinophagy-mediated
ferroptosis, but also maintains the stability of STING dimers
leading to enhanced inflammatory response, and reduces the
nuclear localization of NCOA4, which impairs the transcription
factor coregulator function of NCOA4 (30). Additionally,
ferroptotic cell debris skews macrophages toward an Ml
phenotype, establishing a proinflammatory feed-forward loop
(31). M2 macrophages inhibit ferroptosis in themselves and
surrounding cells by secreting substances such as cysteine and
lactoferrin, and by utilizing their inherent iron metabolism
reprogramming and antioxidant programs (32). Inflammatory
mediators generated during sepsis also increase intracellular ROS
and oxidative metabolites, further exacerbating lung injury.
Itaconate, a metabolite produced during inflammatory
macrophage activation, inhibits ferroptosis of macrophage via
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S-ALl causes endothelial and epithelial cell damage. In sepsis-induced ARDS, endothelial cells secrete inflammatory mediators that disrupt the
alveolar-capillary endothelial barrier (ACEB), triggering neutrophil infiltration (NI) and diffuse pulmonary edema (DPE). Meanwhile, macrophage-
derived extracellular vesicles induce an increase in endothelial cell ferritin, which, in turn, destroys tight connections and increases the alveolar
capillary permeability. In alveolar epithelial cells (AECs), type || AECs are prone to iron apoptosis owing to their abundance of polyunsaturated fatty
acids (PUFAs), which reduce surfactant protein B (SP-B) and aggravate hypoxemia. The activation of its Nrf2/PHB2 pathway attenuates mitochondrial
damage, promotes type Il AEC survival, and prevents progression to ALl in sepsis mice. In addition, uridine can inhibit iron apoptosis in macrophages

by activating the Nrf2-signaling pathway.

Nrf2 pathways against sepsis-induced ALI/ARDS (33). Similarly,
uridine can activate Nrf2 signaling to suppress macrophage
ferroptosis (34). Therefore, macrophage ferroptosis plays a crucial
role in sepsis-induced ALI, and the inhibition of macrophage
ferroptosis may serve as a novel potential therapeutic strategy for
ALI/ARDS. Further animal experiments and clinical studies are
needed to verify these points. The regulation of the macrophage
inflammation by inhibiting ferroptosis to thereby alleviate ARDS
may also be a new therapeutic strategy.

2.4 Clinical correlation

Emerging clinical evidence supports a link between ferroptosis
and sepsis-induced ALI/ARDS severity. Plasma LPO markers such
as malondialdehyde and 4-hydroxynonenal (4-HNE), along with
ferritin, are elevated in sepsis-induced ALI/ARDS patients and
correlate with mortality (35). Reduced GPX4 activity and
SLC7A11 expression in bronchoalveolar lavage (BAL) cells
predict poor clinical outcomes (36), and GPX4 itself has been
proposed as a biomarker of ferroptosis (37). Additionally, iNOS-
derived nitric oxide in sepsis S-nitrosylates GPX4, inhibiting its
activity. A 2025 study demonstrated that iINOS knockout preserved
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GPX4 function and reduced ferroptosis in sepsis-induced ALI/
ARDS (38). Prostaglandin-Endoperoxide Synthase 2 (PTGS2), as
an emerging comprehensive biomarker, has an increase that is a
sensitive and quantifiable readout of ferroptosis (3). A 2025 study
showed that the PRMT1/EGR1/GLS2 signaling axis drives
ferroptosis in sepsis-induced ALI/ARDS. Monitoring the
expression levels of PRMT1, EGR1, and GLS2 may provide clues
for identifying ferroptosis (39). In addition, GSH, as an important
intracellular antioxidant, significantly decreases during ferroptosis
(40). Increasingly, ferroptosis (“iron death”) is being recognized as a
therapeutic target in S-ARDS. Inhibition of ferroptosis significantly
alleviates lung tissue injury by modulating pathways such as GPX4
and FSP1. Thus, ferroptosis inhibitors are emerging as promising
therapeutic candidates for sepsis induced ALI/ARDS.

However, the current research has key limitations: most
mechanistic studies rely on mouse models, but there are differences
in iron metabolism pathways between mice and humans (for example,
human TfRI has a broader tissue expression profile), resulting in the
clinical translational value of some targets (such as ACSL4) still needing
to be validated. In addition, most studies have not directly focused on
the relationship between ferroptosis and ALI/ARDS. Therefore, the
direct relationship between them needs to be explored, together with
more treatments targeting ferroptosis.
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3 Therapeutic strategies targeting
ferroptosis in sepsis-induced ALI/
ARDS

Recent preclinical studies (2020-2025) have validated multiple
approaches to inhibit ferroptosis in sepsis-induced ALI/ARDS,
many of which exert immunomodulatory effects.

3.1 Radical-trapping antioxidants

Ferrostatin-1 (Fer-1) reduces ferroptosis by scavenging lipid-
free radicals (8). Its more stable analog liproxstatin-1 (Lip-1)
preserves ~55% of alveolar—capillary barrier integrity in LPS-
induced sepsis-induced ALI/ARDS (41). A next-generation
ferroptosis inhibitor, SRS-11-94, demonstrated 10-fold higher
potency and fewer off-target effects than Fer-1 in human alveolar
epithelial cultures (42). Nanotechnology-based approaches are also
emerging: DQB@C nanosystems alleviate oxidative stress and
inflammation in lung cells by upregulating Slc 7a 11/xCT and
downregulating Cox 2, thereby regulating ferroptosis (43).
Chalcone reduces pulmonary edema by maintaining the integrity
of pulmonary vascular endothelial cells and alveolar epithelial cells
due to its antioxidant properties and ability to scavenge oxygen-free
radicals (44). Irisin treatment also reduces sepsis-induced lung
damage and the levels of oxidative stress-related indicators such
as ROS and Fe®" (45). Multi-mechanism synergistic interventions
indicate that sepsis-induced ALI/ARDS is a complex pathological
process involving multiple mechanisms and may become a more
effective strategy. In the future, drugs may be combined with
different mechanisms to more comprehensively inhibit lung
injury through synergy.

3.2 lron chelators

Deferoxamine (DFO) binds unstable iron and reduces iron
levels in BAL fluid by 45% when delivered via nebulization in
septic rats, effectively alleviating pulmonary edema without causing
systemic iron deficiency (46). In multimicrobial sepsis, oral
deralarose lowered the levels of ferroptosis markers, such as
ACSL4 and 4-HNE, and improved the survival of model animals
(47, 48). Targeted iron chelators further improve the intervention
effect, such as liposome-encapsulated DFO can be specifically
accumulated in lung tissues and its efficacy is 3-fold higher than
that of free DFO (49). Moreover, AUF1 inhibits ferroptosis by
upregulating NRF2 and downregulating ATF3, thereby reducing
sepsis-induced ALI/ARDS (50). Therefore, local targeted iron
metabolism is better for avoiding systemic side effects. Optimizing
the dosage form of iron chelators can significantly improve the
efficacy, indicating that targeted delivery can enhance the specificity
and efficiency of intervention.
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3.3 GPX4 activation and GSH restoration

Selenium (Se), a cofactor of GPX4, restores its activity;
supplementation at 0.5 mg/kg increased GPX4 activity by 70% and
reduced LPO in sepsis-induced ALI/ARDS mice (51, 52). N-
acetylcysteine, a GSH precursor, reduced BAL fluid LPO by 50% and
improved respiratory compliance in septic pigs at medium-to-high
doses (53). Zyloxadin also boosted GSH levels in human lung
endothelial cells exposed to septic plasma, reducing ferroptosis (54, 55).

3.4 Combination therapies

The combination of ferroptosis inhibitors with classic anti-
inflammatory/antioxidant agents, such as ferroptosis inhibitors
(Fer-1/Lip-1) combined with glucocorticoids, can simultaneously
block the feedback loop of ‘inflammation promoting ferroptosis’
and ‘ferroptosis exacerbating inflammation,” achieving synergistic
protection (56). In addition, the combination of an iron chelator
(deferoxamine, DFO) with glutathione precursors can
simultaneously address the two fundamental problems of ‘iron
overload’” and ‘antioxidant system failure’ (57). Combining
ferroptosis inhibitors with pyroptosis inhibitors can
comprehensively alleviate tissue damage and inflammatory
responses driven by both ferroptosis and pyroptosis (58).

3.5 Novel drugs

Dipyridamole inhibits adenosine uptake, activates bypass signaling,
and enhances cystine uptake and glutathione synthesis, thereby
effectively suppressing ferroptosis (59). Zileuton reduced LPO by
40% in sepsis-induced ALI/ARDS, with additive effects when
combined with Fer-1 (60). Yes-associated protein 1 (YAP1), a Hippo
pathway regulator, modulates ferroptosis-related genes and mitigates
sepsis-induced ALI/ARDS (10). Srg3 knockdown promotes M2
macrophage polarization, significantly improving sepsis-induced ALI/
ARDS outcomes in rats (61). Hydroxychloroquine reduces lung iron
accumulation by disrupting the acidic environment of lysosomes,
inhibiting the degradation of ferritin and the recycling of iron, and
sequestering iron in an inert storage form (62, 63). YAP1, Srg3, and
others are involved in ferroptosis regulation, suggesting that
ferroptosis-targeted interventions extend beyond traditional iron
metabolism and antioxidant frameworks, encompassing signaling

pathway cross-talk and immune cell phenotype regulation.

4 Conclusions and prospects

Ferroptosis has emerged as a pivotal driver of sepsis-induced
ALI/ARDS, with recent studies (2020-2025) clarifying its molecular
interplay with immune dysfunction, oxidative stress, and barrier
disruption. While ferroptosis-targeted therapies have shown strong
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preclinical potential against sepsis-induced ALI/ARDS, their
clinical translation faces key challenges. The first is the issue of
biomarker recognition, which currently lacks validated sepsis-
induced ALI/ARDS-specific ferroptosis biomarkers, and GPX4
activity in plasma acylcarnitine and BAL fluid cells is a promising
candidate (64, 65). Second, the drug specificity is insufficient, and
current ferroptosis inhibitors (RTAs, iron chelators) may affect
non-ferroptotic pathways (66, 67). Furthermore, the timing of
intervention is critical, as the peak window for ferroptosis is 6-24
h after sepsis onset, and delayed treatment reduces efficacy (68). At
the same time, precise drug dosage control is required to avoid side
effects, and safer formulations are needed (69, 70). Nonetheless,
combination therapies, including those integrating
immunotherapy, hold significant promise (71, 72). Future
research should prioritize developing reliable biomarkers,
optimizing drug delivery systems, and validating combination
therapies. Targeting ferroptosis represents a transformative
strategy to improve outcomes and reduce mortality in sepsis-
induced ALI/ARDS, addressing a long-standing unmet
clinical need.
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