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The progression of endometrial cancer (EC) is significantly affected by the
inflammatory microenvironment (IME), which is essential for facilitating
immune evasion and developing resistance to therapeutic interventions.
Components that promote immune suppression, such as regulatory T cells
(Tregs), macrophages associated with tumors (TAMs), cytokines like
interleukin-10 (IL-10) and transforming growth factors-beta (TGF-B), are
crucial in establishing a favorable microenvironment for tumor growth. TAMs
with a M2-like phenotype promote angiogenesis and inhibit antitumor immunity
through the secretion pro-tumorigenic factor. Further, metabolic shifts in the
extracellular matrix and structural modifications of the extracellular matrix (ECM)
inhibit the infiltration of cytotoxic T lymphocytes (CTLs), thereby strengthening
mechanisms of immune evasion. Inflammatory signaling pathways, such
as interleukin-6/janus kinase/signal transducer and activator of transcription 3
(IL-6/JAK/STAT3) and NF-xB/tumor necrosis factor-alpha (TNF-o/NF-xB), also
stimulate the expression immune checkpoint molecules, such as programmed
cell death protein 1 (PD-1). Novel interventions aimed at modulating immune
checkpoints, inhibiting TGF-f signaling, and altering metabolic circuits are under
investigation and offer potential to counteract immune suppression and enhance
therapeutic success. Nevertheless, significant obstacles remain, including
intratumoral heterogeneity, fluctuating immune dynamics, and the absence of
dependable biomarkers. Advancements in single-cell analysis and spatial
transcriptomics are anticipated to unveil actionable molecular patterns and
support the development of individualized strategies to interrupt immune
evasion and therapeutic resistance in EC. These advances offer promise for
personalized immunotherapy approaches that could significantly improve
outcomes in endometrial cancer patients.
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1 Introduction

Endometrial carcinoma (EC) constitutes nearly 90% of uterine
cancers and stands as the most frequently diagnosed gynecologic
malignancy in industrialized nations, posing a serious challenge to
women’s health and overall well-being (1, 2). Its global incidence is
steadily increasing and is strongly linked to various predisposing
factors, such as prolonged exposure to estrogen without sufficient
progesterone, excess body weight, insulin resistance, and elevated
blood pressure (3, 4). Among these, persistent hormonal
dysregulation—most notably sustained estrogen dominance
without progesterone counterbalance—drives endometrial tissue
proliferation and fosters malignant development (5). EC is closely
related to metabolic disturbances, such as obesity and diabetes type
2, which play a pathogenic role. Adipose tissue is an active
endocrine system in overweight individuals. It secretes
proinflammatory cytokines, such as tumor necrosis factor-alpha
(TNF-0) and interleukin-6(IL-6), that promote a chronic
inflammatory condition that facilitates the development of
endometrial cancer (6, 7). Moreover, hyperglycemia and insulin
resistance in diabetic patients further exacerbate this
proinflammatory milieu, indirectly promoting tumor
development (8).

Recent evidence highlights that inflammation and immune
dysregulation are not merely coincidental but serve as active
drivers of EC initiation and progression. This mini review
concentrates on the inflammatory microenvironment (IME),
which is the inflammatory element within the wider tumor
microenvironment (TME), including immune cells, inflammatory
agents, and their communication networks. The tumor
microenvironment (TME) encompasses every cellular and
molecular element encircling the tumor, with the tumor immune
microenvironment (TIME) specifically denoting immune cell
groups, whereas the IME symbolizes the confluence of
inflammatory and immune mechanisms propelling
tumor development.

In the context of EC, the dynamic alterations occurring within
the IME, along with the development of immune evasion tactics by
tumor cells, play a pivotal role in facilitating malignant progression.
This progression encompasses increased cellular proliferation,
invasion, and metastasis. The IME is composed of a variety
cellular and molecular elements, including tumor-associated
macrophages (TAMs), Th cells, regulatory T cells (Tregs), natural
killer (NK) cells and cytokines, including transforming growth
factor beta (TGF-B) and vascular endothelial-growth factor
(VEGF) (9). These elements interact through complex signaling
networks that collectively modulate tumor behavior and immune
escape (10).

At the molecular level, immune escape in EC involves several
mechanisms that impair antitumor immunity. Endometrial cancer
cells utilize several immune escape strategies, including enhanced
expression of checkpoint regulators such as programmed cell death
protein 1 (PD-1) and PD-L1, impaired antigen presentation due to
reduced major histocompatibility complex class I (MHC I)
expression, and enzymatic activation of immunosuppressive
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mediators like indoleamine 2,3-dioxygenase 1 (IDO1). Together,
these mechanisms suppress immune recognition and dampen the
cytotoxic function of T cells (11). The resulting immunosuppressive
state, in concert with ongoing inflammatory signaling, supports an
environment conducive to tumor progression.

This review seeks to clarify the essential cellular and molecular
mechanisms by which inflammation alters the tumor
microenvironment and promotes immune evasion in endometrial
cancer. Additionally, we investigate how these interconnected
processes contribute to tumor advancement and the development
of resistance to therapies. Ultimately, we put forth a comprehensive
conceptual framework that could shape future research trajectories
and assist in the formulation of innovative therapeutic approaches
for the tailored treatment of endometrial cancer (12). Figure 1
provides an overview of the inflammatory microenvironment
(IME) in endometrial cancer, depicting immune-cell infiltration
and ECM remodeling, macrophage polarization (M1/M2),
canonical checkpoint signaling (PD-1/PD-L1, CTLA-4/CD80),
and representative IME-targeted strategies.

2 Inflammatory microenvironment
remodeling in EC

2.1 Cellular and soluble components of the
IME

The IME in EC represents a complex and evolving network of
immune cells and secreted factors that promote malignant
progression, suppress immune surveillance, and contribute to
therapeutic resistance (13). Critical cellular players including
tumor-associated macrophages (TAMs), Tregs, Th, NK cells, and
neutrophils actively reshape the IME by releasing cytokines,
including IL-1f, TNF-o0, TGF-B, and VEGF (13, 14). In EC,
TAMs are predominantly M2-polarized, producing interleukin-10
(IL-10) and TGF-B to promote immunosuppression and
angiogenesis (14). Tregs suppress effector T cells, diminishing
antitumor immunity and correlating with poor clinical outcomes
(14). Among Th subsets, Thl cells mediate cytotoxicity
via interferon-gamma (IFN-y), while Th2 and Th17 cells, through
IL-4, IL-13, and IL-17, support tumor progression (13). Despite
their inherent cytotoxicity, NK cell function is frequently impaired
in EC (13). Neutrophils recruited to tumor sites can differentiate
into tumor-associated neutrophils (TANs), which secrete matrix
metalloproteinase-9 (MMP-9) and VEGF, promoting extracellular
matrix degradation, angiogenesis, and metastasis (15, 16). While Th
subsets are discussed broadly, the role of Th17/IL-17 in EC remains
controversial, with both pro- and anti-tumor effects reported across
studies; we revisit this debate in Section 3.1 when considering
checkpoint regulation (17, 18).

The function of Th17/IL-17 in endothelial cells is contingent on
the particular situation and remains a topic of discussion (18). In
the early phases of illness and for microsatellite unstable (MSI-H)
tumors, Th17 cells are capable of inhibiting tumor expansion by
enhancing antigen presentation and luring cytotoxic lymphocytes
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FIGURE 1

Inflammatory microenvironment of endometrial cancer: mechanisms and therapeutic targets. Schematic of the endometrial cancer (EC)
inflammatory microenvironment (IME). Immune-cell infiltration and extracellular matrix (ECM) remodeling driven by TGF-f, IL-1B, and TNF-a
facilitate collagen invasion. Immune-checkpoint signaling (PD-1/PD-L1; CTLA-4/CD80) and Th17/IL-17 sustain protumor inflammation. Tumor-
associated macrophages (TAMs) polarize from M1 (IFN-y-associated) to M2 states under IL-4/IL-10/IL-13. Activation of NF-kB and SMAD pathways
promotes epithelial-mesenchymal transition (EMT) and immune escape. Targetable nodes highlighted include the COX-2/PGE,/EP axis, TLR4—-NF-
kB, and Wnt/B-catenin, supporting combinations with checkpoint blockade and strategies that repolarize TAMs toward M1.

(19). Conversely, Th17 cells in advanced endothelial cells, marked
by increased levels of IL-6 and TGF-f, promote angiogenesis, EMT,
and immunosuppression by activating NF-xB, which is facilitated
by IL-17 (20). Collectively, these immune populations and their
cytokine milieu establish an immunosuppressive feedback loop that
facilitates EC progression and immune escape.

2.2 Pathways driving inflammatory
microenvironmental remodeling

2.2.1 Polarization of TAMs

TAMs exhibit functional heterogeneity in EC, oscillating
between antitumor M1 and protumor M2 phenotypes (21). M1-
like TAMs are induced by microbial products or IFN-v, enhancing
antigen presentation and cytotoxicity via TNF-q, IL-12, and IL-1B
secretion (22-24). Conversely, M2-like TAMs are driven by IL-4,
IL-13, and IL-10, and promote tumor progression by releasing
immunosuppressive factors (PGE2, TGF-B, IL-10), and pro-
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angiogenic mediators (FGF, PDGF, VEGF) (14). Metabolic cues
such as lactate accumulation and hypoxia stabilize HIF-1a,
reinforcing M2 polarization and sustaining immunosuppressive
functions (24, 25). These TAMs impair antitumor immunity,
remodel the extracellular matrix, and drive EC progression.
Modulating TAM plasticity may thus offer a therapeutic avenue
to reprogram the immune microenvironment (26).

2.2.2 ECM remodeling and stromal crosstalk

In the context of the tumor microenvironment, the extracellular
matrix (ECM) functions as an essential structural framework and a
signaling hub that modulates epithelial-mesenchymal transition,
thereby influencing the biological characteristics EC. Inflammatory
cues trigger the secretion of chemokines and cytokines, which
subsequently alter ECM architecture and modulate the activity of
matrix-remodeling enzymes (27). For example, TNF-a, TGF-f, and
IL-1P activate NF-xB and SMAD signaling to promote collagen
synthesis and matrix metalloproteinase (MMP) expression, thereby
altering ECM properties and facilitating invasion (28). TGF-
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facilitates the transformation of resident fibroblasts into cancer-
associated fibroblasts (CAFs). These CAFs significantly contribute
to the remodeling of the stromal environment by synthesizing
extracellular matrix components, including collagen and
fibronectin, in addition to producing MMPs that degrade the
matrix (29). Breakdown of the ECM releases embedded growth
factors, including VEGF, thereby coupling matrix remodeling with
neovascularization and tumor cell dissemination (30). At the same
time, increased matrix stiffness and crosslinking, partly mediated by
lysyl oxidase (LOX), activate integrin-FAK signaling and
mechanoresponsive transcription programs such as YAP and
TAZ, reinforcing a fibrotic and immune-excluding niche (31, 32).
This dense stroma limits cytotoxic T-cell infiltration and alters
dendritic cell trafficking, thereby promoting immune escape in EC
(29, 33). Targeting ECM crosslinking, FAK signaling, or TGF-f3-
driven fibrosis may help normalize stromal architecture and
enhance immune accessibility, though optimal combinations and
predictive biomarkers remain to be defined (34-36).

2.2.3 Estrogen signaling—immune crosstalk

The pathogenesis of endometrial cancer is strongly influenced
by estrogen, which governs transcriptional regulation and
orchestrates immune-related inflammatory responses (37).
Through its activation of peritoneal macrophages, estrogen
enhances the secretion of inflammatory mediators such as TNF-o
and IL-1P. These cytokines subsequently stimulate the NF-xB
pathway, promoting an inflammatory milieu that facilitates tumor
advancement (38, 39). In EC tissues, an inverse correlation has been
observed between TAMs infiltration and ERo expression.
Specifically, TAM-derived CXCL8 suppresses ERa. expression
through HOXBI13 induction, thereby enhancing tumor
invasiveness (40). Estrogen also contributes to tumor progression
by regulating immune-related genes such as ZNF626, SLK, and
RFWD3, which influence the immune microenvironment (41).
Collectively, the findings reveal that estrogen contributes to
tumor progression through two distinct mechanisms: directly
enhancing oncogenic gene expression and indirectly promoting
immune escape by altering inflammation-associated
immune dynamics.

2.2.4 Obesity and metabolic inflammation

EC’s risk and progression are markedly influenced by obesity,
largely due to sustained metabolic disturbances and chronic
inflammation of low intensity (42, 43). Obesity is frequently
linked with adipose tissue that exhibits hypoxic environments and
the demise of adipocytes, subsequently prompting the release of
inflammatory mediators, including TNF-o, IL-6, and MCP-1.
These cytokines initiate NF-kB pathway activation, fostering a
cellular environment that enhances proliferation, motility, and
invasive capacity of endometrial cells, while concurrently
suppressing programmed cell death (42, 43). Obesity also
increases aromatase activity in adipose depots, resulting in
elevated local estrogen production and amplification of estrogen-
mediated proliferative and immunomodulatory effects (44). In
addition, obesity-related gut dysbiosis can exacerbate systemic
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and local inflammation, partly through altered bile acid
metabolism and disruption of farnesoid X receptor (FXR)
signaling, thereby contributing to a pro-tumorigenic
microenvironment (43).

2.2.5 Endothelial activation and sterile
inflammation

During EC progression, estrogen-mediated activation of
endothelial cells is associated with elevated expression of
inflammatory chemokines such as CXCL10, CXCL13, and IGF1,
collectively contributing to a proinflammatory microenvironment
(45). In mouse models of endometrial hyperplasia, increased levels
of IL-1B and TNF-o, together with enhanced macrophage
infiltration, indicate the presence of sterile inflammation within
endometrial tissue (46). Notably, this inflammatory state may be
sustained through bidirectional interactions between activated
endothelial cells and infiltrating macrophages, independent of
continuous estrogen stimulation (45). The findings underscore
the role of endothelial activation as a significant enhancer of
immune signaling in the surrounding tissue, which perpetuates a
persistent inflammatory environment conducive to the initiation
and advancement of endometrial cancer. Thus, disrupting
endothelial-dependent inflammatory circuits could provide an
effective strategy to reshape the immunological landscape of the
tumor microenvironment.

3 Immune escape mechanisms in EC
3.1 Immune checkpoint pathways

As endometrial tumors evolve, the activation of immune
checkpoint signaling becomes a central mechanism by which
malignant cells escape immune detection and suppress cytotoxic
responses. The immunological landscape of endometrial cancer is
profoundly altered by the overexpression of multiple immune
checkpoint regulators, including PD-L1, CTLA-4, TIM-3, and
LAG-3. These molecules facilitate tumor immune evasion by
inhibiting T cell responses via the engagement of inhibitory
receptors (47). Specifically, when PD-L1 binds to PD-1 on T cells,
it suppresses their proliferation and cytolytic function. In parallel,
the association of CTLA-4 with its ligands CD80 and CD86
obstructs the initiation of T cell activation (47). Although
checkpoint blockade therapies have demonstrated notable success
in treating other cancer types, their effectiveness in endometrial
cancer has been relatively limited. Elevated levels of PD-L1
expression have been associated with more advanced stages of the
disease and poorer clinical outcomes, thereby underscoring the
significance of immune checkpoints in forming
an immunosuppressive tumor microenvironment (47). Of note,
IL-17/Th17 signaling has been implicated in both up- and down-
stream regulation of PD-L1 and antigen-presentation programs,
with conflicting findings across molecular subtypes and cytokine
milieus (48, 49). The unforeseen function of Th17/IL-17 extends to
checkpoint regulation, where IL-17 amplifies PD-L1 expression

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1689114
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tan et al.

under certain conditions and increases antigen presentation in
others, depending on the surrounding cytokine milieu and
molecular subtype.

In EC, persistent inflammation within the tumor
microenvironment significantly affects the modulation of immune
checkpoint ligands and their corresponding receptors. The
stimulation of proinflammatory signaling pathways, particularly
the NF-xB pathway, leads to an upregulation of crucial checkpoint
molecules. Notably, cytokines such as TNF-o and IL-1f3 have been
shown to increase PD-L1 expression via NF-kB-dependent
mechanisms, thereby facilitating immune escape. Moreover,
immune cells involved in inflammation, including dendritic cells
and macrophages, release cytokines that further modulate
checkpoint activity, thereby promoting tumor cell proliferation
and dissemination. This cytokine-driven amplification of
checkpoint signaling reinforces immune evasion. These findings
underscore the promising therapeutic prospects of integrating
immune checkpoint inhibitors with strategies aimed at
modulating the inflammatory microenvironment, thereby
enhancing treatment effectiveness in EC (13).

3.2 Impaired antigen presentation

Endometrial cancer cells frequently evade immune surveillance
by reducing the expression of MHC class I (HLA class I) molecules,
which play a vital role in presenting endogenous peptide antigens to
cytotoxic T lymphocytes. When MHC I is downregulated, antigen
visibility to cytotoxic T lymphocytes (CTLs) is diminished, allowing
tumor cells to avoid immune-mediated destruction (16). This
immune escape is often driven by deficient 2-microglobulin
(B2M) expression, a protein indispensable for MHC I stability
and trafficking to the cell surface (50). Interestingly, even with
reduced MHC I expression, EC cells can avoid NK cell lysis through
alternative mechanisms—such as upregulating non-classical HLA-E
and HLA-G, shedding ligands that bind NKG2D receptors, or
releasing immunosuppressive cytokines (51, 52). Clinically,
diminished MHC I or B2M levels have been strongly correlated
with later-stage disease, increased invasiveness, and a greater
likelihood of metastasis (16). These findings identify impaired
antigen presentation as both a hallmark of immune escape and a
potential therapeutic target. Strategies aimed at restoring MHC I
expression, stabilizing B2M, or integrating CTL- and NK cell-based
approaches may enhance antitumor immunity in EC (53).

3.3 Metabolic immunosuppression

EC leverages multiple metabolic pathways to promote immune
escape. Enhanced glycolysis leads to lactate accumulation,
acidifying the tumor microenvironment and impairing effector T
cells and NK cells, while also promoting M2 macrophage
polarization via HIF-lo. and MCT transporters. Overexpression
of IDO1 depletes tryptophan and accumulates kynurenine, directly
suppressing T-cell proliferation and altering immune infiltration,
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with elevated IDOL1 levels correlating with advanced EC and poor
prognosis (54-56). Systemic metabolic dysfunction, common in
obese EC patients, further supports immunosuppression via
insulin/IGF-PI3K-AKT-mTOR signaling and enhanced lipid
metabolism in regulatory immune subsets. Additionally,
metabolic byproducts such as lactate, adenosine, and PGE2 can
upregulate immune checkpoints like PD-L1 through HIF-10, NF-
KB, and STAT3 pathways. These interconnected mechanisms reveal
the therapeutic promise of integrating metabolic intervention with
immune checkpoint blockade in EC.

3.4 Innate immune escape

Innate immune dysfunction is a key feature of immune escape
in EC. NK cells often display reduced numbers, downregulated
activating receptors (e.g., NKG2D, NKp30), and diminished
cytolytic function, driven by tumor-derived cytokines, lactate,
adenosine, and inhibitory checkpoints such as NKG2A and
TIGIT (57, 58). Cytokines originating from tumors, including G-
CSF, GM-CSF, IL-6, and IL-1p, play a significant role in promoting
the proliferation of myeloid-derived suppressor cells (MDSCs),
which are crucial for attenuating antitumor immune responses.
MDSCs exert their immunosuppressive effects on T lymphocytes
and NK cells through the expression of various immunosuppressive
molecules such as ARGI, iNOS, and PD-L1. Additionally, they
secrete reactive oxygen species and other soluble factors that further
impede the activity of immune cells (59). These immunosuppressive
populations, in concert with TAMs, Tregs, and stromal
components, form a self-reinforcing inhibitory network that
undermines checkpoint blockade efficacy. Therapeutic strategies
under investigation include NK cell activation or adoptive transfer,
MDSC depletion or reprogramming (e.g., via CXCR2, CSFIR,
STAT3 inhibitors, or ATRA), and metabolic or vascular
normalization to restore innate antitumor immunity (60-62).

4 Inflammatory microenvironment
remodeling drives immune escape
and therapy resistance in EC

4.1 Interaction between inflammatory
microenvironment remodeling and
immune escape

The dynamic interplay between inflammatory
microenvironment remodeling and immune escape is critical in
the progression of EC. Elevated levels of inflammatory cytokines
have been shown to upregulate immune checkpoint molecules on
tumor cells, thereby facilitating immune escape. Simultaneously,
cytokines secreted by immunosuppressive cells such as TAMs and
Tregs suppress antitumor immune responses, further enhancing the
ability of cancer cells to evade immune surveillance (63). Previous
studies have suggested that combining immune checkpoint
inhibitors with anti-inflammatory agents may represent a

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1689114
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tan et al.

promising therapeutic strategy for EC. This dual-targeting
approach, which simultaneously addresses both the inflammatory
microenvironment and tumor immune escape mechanisms, may
yield synergistic effects and improve clinical outcomes (64).
Moreover, therapies aimed at modulating TAMs and Tregs could
reshape the tumor’s inflammatory milieu and enhance host
antitumor immunity, offering novel avenues for EC treatment
(64). Future research should elucidate the molecular crosstalk
between inflammation and immune escape, enabling the
discovery of novel targets and the advancement of precision
immunotherapies in endometrial cancer.

4.2 Molecular mechanisms of IME
remodeling drives therapy resistance in EC

Therapy resistance in EC stems from both tumor-intrinsic
changes and inflammatory immune microenvironment (IME)
remodeling. Persistent activation of pathways such as IL-6/JAK-
STAT3 and TNF-o/NF-xB promotes anti-apoptotic signaling,
immune checkpoint upregulation, and metabolic reprogramming,
driving resistance to chemo-, radio-, and immunotherapy (65).
Hypoxia-induced HIF-1o stabilization further reinforces
immunosuppression by enhancing PD-L1 expression and
glycolytic metabolism (65, 66). In parallel, stress-adaptive
processes such as autophagy contribute to treatment tolerance.
For example, kinase inhibitors have been shown to activate
cytoprotective autophagy through the MAPK/JNK signaling axis,
as demonstrated with agents like sorafenib (66, 67). Moreover,
genetic alterations such as loss of ARID1A disrupt the SWI/SNF
chromatin remodeling complex, leading to transcriptional
reprogramming, impaired antigen presentation, and reduced
therapeutic responsiveness (68). Together, these extrinsic and
intrinsic mechanisms shape a multifaceted resistance phenotype
in EC, underscoring the need for combination strategies that co-
target inflammation, immune suppression, and tumor cell plasticity.

5 Therapeutic targets and strategies
in EC

5.1 Treatment targeting IME and their
signaling pathways

Therapeutic strategies targeting the inflammatory
microenvironment aim to inhibit inflammatory mediator
secretion and to modulate immune cell infiltration and
polarization. Cyclooxygenase-2 (COX-2) inhibitors reduce
proinflammatory mediators and can ameliorate the inflammatory
milieu (69). Regulation of macrophage polarization can shift
protumorigenic M2-like TAMs toward an antitumorigenic M1-
like phenotype (21). IME-directed approaches have shown efficacy
in multiple tumors (70), but their application in EC remains
exploratory, and further studies are needed to define mechanisms
and clinical benefit in EC.
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The inflammatory microenvironment (IME) in endometrial
cancer is coordinated by converging pathways that promote
progression and immune escape. Toll-like receptor 4 (TLR4)
signaling enhances proinflammatory cytokine production through
NEF-xB activation, shaping a tumor-permissive milieu (71).
The COX-2-PGE2 axis supports carcinogenesis by driving
proliferation and suppressing antitumor immunity; combined
targeting of COX-2 and EP receptors has shown therapeutic
potential (72, 73). Wnt/B-catenin signaling intersects with
inflammatory networks, contributing to immune exclusion and
cancer stemness (74, 75). NF-kB, often activated by TNF-o in
obesity-related EC, also regulates GLUTS, linking inflammation to
metabolic reprogramming (76). Together, these pathways sustain
an immunosuppressive and therapy-resistant niche, underscoring
their value as targets for IME-directed therapies.

5.2 Treatment targeting immune escape

Surgical resection remains the primary treatment for EC, with
radiotherapy and chemotherapy frequently used as adjunctive
modalities (77). However, for patients with advanced, metastatic,
or recurrent EC, effective therapeutic options remain limited. This
highlights the need for novel strategies to improve prognosis.
Immunotherapy, a major advance in oncology, has increasingly
become a focus of research and offers promise for EC
treatment (78).

To counteract immune escape in endometrial cancer, current
treatment modalities incorporate immune checkpoint inhibitors
and CAR-T cell therapies. These agents reinvigorate impaired T cell
responses by disrupting immunosuppressive pathways, notably
those mediated by PD-1/PD-L1 and CTLA-4 interactions (2).
CAR-T cell therapy, by contrast, involves the genetic modification
of T cells to confer specificity against tumor-associated antigens,
enabling direct recognition and elimination of malignant cells.
Emerging clinical evidence supports the notion that integrating
checkpoint inhibitors with chemotherapy or radiotherapy can
significantly enhance therapeutic efficacy in EC patients (79). This
integrated strategy not only amplifies antitumor immunity by
activating multiple pathways but also overcomes some limitations
of monotherapies, providing a more comprehensive therapeutic
approach (79). Ongoing research should focus on identifying
optimal combination regimens to offer more effective treatment
options for EC patients.

5.3 Clinical landscape of IME-targeted
therapies in EC

Targeting the IME has become central to EC therapy, as
immune cells, stromal components, and cytokine networks drive
progression, immune escape, and resistance (80). Combining
immunotherapy with microenvironment modulation shows
clinical promise. The KEYNOTE-775 study, assessing participants
from both pMMR and dMMR groups, found that combining
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(EC cohort) 56]
arm)
T HER2-positi
raStLlZL.lmab * First line/ R positive Trastuzumab + Carboplatin/ ) X 12.6 vs 8.0 [HR
NCT01367002 = Chemo in HER2+ 11 61 uterine serous . Carboplatin/Paclitaxel =~ 29.6 vs 24.4 [HR 0.58] —
Recurrent i Paclitaxel 0.44]
usc carcinoma

Carbo, carboplatin; AMMR, mismatch-repair deficient; pMMR, mismatch-repair proficient; Durva, durvalumab; Olap, olaparib; EC, endometrial cancer; OS, overall survival; PFS, progression-free survival; ORR, objective response rate; NR, not reached. Notes: Data

shown reflect primary manuscripts and interim analyses where indicated. For NRG-GY018 and RUBY, hazard ratios are presented for prespecified dMMR and pMMR cohorts.
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pembrolizumab with lenvatinib markedly enhanced survival
without disease progression (7.2 vs. 3.8 months) alongside total
survival rates (18.3 vs. 11.4 months) in contrast to the physician’s
selection between doxorubicin and paclitaxel (81). In mismatch repair-
deficient (AMMR) or microsatellite instability-high (MSI-H) EC, the
GARNET trial supported FDA approval of dostarlimab monotherapy,
which achieved a 45.5% response rate with durable benefit (81, 82).
Immune profiling is emerging as a predictor of therapeutic response.
Clinical data from a multicenter trial indicate that patients receiving the
combination of pembrolizumab and lenvatinib benefit from enhanced
therapeutic outcomes, particularly in cases with substantial CD20" B-
cell infiltration and a high CD8/CD20 ratio within the tumor
microenvironment (83, 84). Likewise, endometrial tumors harboring
p53 mutations, enriched in tumor-infiltrating lymphocytes (TILs) and
expressing high levels of immune evasion molecules, appear to be
especially responsive to combined treatment strategies involving
checkpoint inhibitors and precision-targeted therapies, including those
directed at PARP or HER2 pathways (85). Stromal remodeling also
contributes to resistance. Although genetically stable, stromal cells can
be reprogrammed by tumor-derived signals to promote immune
suppression and metastasis, underscoring the therapeutic potential of
targeting tumor-stroma crosstalk (86-88). Together, these insights
support a precision framework that integrates immune and stromal
profiling with IME-targeted therapies to optimize outcomes in EC.
Together, these insights support a precision framework that integrates
immune and stromal profiling with IME-targeted therapies to optimize
outcomes in EC. Table 1 summarize pivotal randomized and
registration trials across first- and later-line settings, stratified by
dAMMR/MSI-H versus MSS/pMMR and listing key endpoints (OS,
PES, ORR).

6 Conclusion and prospect

The inflammatory microenvironment (IME) is a key driver of
EC initiation, progression, and therapy resistance. Dysregulated
inflammatory signaling and immune escape mechanisms—
mediated by immune, stromal, and metabolic components—
collectively shape an immunosuppressive niche and poor clinical
outcomes. Recent developments in single-cell and spatial
technologies have illuminated the diversity and adaptability of
IME populations, highlighting the necessity for targeted
approaches that consider their evolving nature. Therapeutic
approaches targeting cytokine networks, immunosuppressive
mediators, or metabolic checkpoints, as well as functional
reprogramming of immune and stromal cells, are under active
investigation. Combining IME-directed interventions with immune
checkpoint inhibitors or anti-angiogenic agents shows synergistic
potential, though challenges remain due to IME heterogeneity,
context-dependent functions, and the lack of predictive
biomarkers. Future research integrating multi-omics profiling and
spatial mapping will be crucial for identifying molecular signatures
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of response and resistance, enabling patient stratification and
precision immunotherapy. Ultimately, disrupting the cycle of
inflammation, immune escape, and resistance may transform the
IME from a barrier into a therapeutic opportunity in
EC management.
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