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Introduction: The development of cancer immunotherapy has accelerated in

recent years. Understanding the specificity of T cell receptors (TCR) for peptides

presented by the major histocompatibility complex (pMHC) is a critical step

towards improving immunotherapy approaches, such as adoptive cell transfer

and peptide vaccination. Despite notable computational advances, the

unambiguous pairing of TCR with pMHC, from pools of thousands of

candidates and unseen pMHC, remains elusive.

Methods: To meet this challenge and showcase the potential of using physics-

based structure-based methods without being hindered by their computational

cost, we developed a novel approach, TCRfp. This method transforms the 3D

structure of TCRs into one-dimensional structural fingerprints (FPs) using the

electroshape 5D (ES5D) technique.

Results: We have modelled more than 15’000 3D structures of paired TCR alpha

and beta chains with known sequences and pMHC specificity and encoded them

into 1D TCRfp. Anticipating future clinical applications, we have translated the

TCR modelling process into a fast pipeline. Similarity measures between TCR FPs

correlate with their ability to recognize similar or identical epitopes within both

the training set and in the external validation sets.

Discussion: TCRfp constitutes a rapid approach for high-throughput TCR

comparison and repertoire analysis based on molecular 3D structures. When

tested on a private dataset and combined with a basic sequence-based method

via logistic regression, TCRfp surpassed existing approaches in predicting TCR

specificities. TCRfp represents a structurally informed complement to sequence-

based approaches and could enhance our ability to decode immune recognition.
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Introduction

Cancer immunotherapy development has been in the rise over

the last years. One of the most promising research topics in this field

involves the understanding and unambiguous prediction of T-cell

receptor (TCR) recognition of a specific cancer epitope (i.e.,

peptide-MHC, pMHC). Predicting the TCR-pMHC specific

interactions is essential for improving immunotherapies such as

adoptive cell therapy or peptide vaccination. Nevertheless,

understanding the mechanisms underlying the TCR-pMHC

specificity remains practically unresolved due to its complexity

(1, 2).

Over the past years, TCR-pMHC specificity has been widely

explored by several authors who developed numerous

computational approaches (2, 3). Those that predict TCR-pMHC

specificity can be divided into sequence-based and structure-based

methodologies. Ongoing improvements in sequencing technology

(4–7) are yielding more numerous and reliable TCR-pMHC

sequence pairs (8–10), accelerating the development of better,

more accurate in silico approaches. As an example, biotech

companies such as Adaptive Biotechnologies in partnership

Microsoft Healthcare NExT initiative (11) are providing extensive

TCR data and TCRmapping. Still, the number of TCR-pMHC pairs

available corresponds to a tiny fraction of the overall possibilities.

Typically, sequence-based approaches use machine learning

techniques such as logistic regressions and deep neural networks

that use sequences to train a function that attempts to correctly

predict if a TCR can bind a given epitope present in the training set

(12–15). These models can achieve high performance for TCR

classification, but they still require substantial sequence datasets

to provide sufficient predictive power for their algorithms.

Consequently, they show limited success in predicting TCR

specificities for unseen epitopes or epitopes and alleles with very

limited representation in the training data. Structure-based

approaches provide a learning set-independent alternative. They

use experimental structures or structural models of the TCR-pMHC

complexes to determine the most likely ones based on estimates of

the affinities between partners, using universal physics-based

scoring functions (16–20). Despite great successes, structure-

based approaches are time-consuming and hardly tractable for

large scale predictions. The increase of the number of TCR-

pMHC structures (230 TCR-pMHC class I and 82 TCR-pMHC

class II as of 5th of July 2023) in the Protein Data Bank (PDB) (21)

together with the appearance of more powerful tools to create 3D

models out of sequences such as TCRmodel (22), TCRmodel2 (23),

AlphaFold (24) and LYRA (25) are contributing to the development

of new structure-based approaches (19).

This paper introduces TCRfingerprint, TCRfp, a novel 3D-

based method designed to address the specificity of TCRs in

recognizing pMHC complexes. The method builds upon the

ElectroShape approach (ES5D) (26, 27), which extends traditional

3D atomic representations by incorporating two additional

physicochemical dimensions: atomic charge and lipophilicity,

resulting in a comprehensive 5D fingerprint. While previous

studies have employed Kidera factors and other physicochemical
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features to predict TCR–epitope interactions (28–30), the use of the

ES5D framework to encode de 3D shape and the spatial distribution

of charge and lipophilicity in this context is entirely new and forms

the core innovation of our method. This enables TCRfp to cluster

TCRs in a way it correlates with their specificity, particularly when

the specificity is driven by shape and physico-chemical

characteristics rather than sequence similarity. Although building

a TCR 3Dmodel is the most time-consuming step in our pipeline, it

takes only 1.4 minutes on a 16-CPU machine, and the subsequent

conversion of the 3D structure into a fingerprint on the millisecond

scale. Our approach is thus much faster than the usual purely 3D-

based approaches which model the full putative TCR-pMHC

complexes and estimate binding free energies. Additionally,

unlike sequence-based approaches, TCRfp does not require to be

retrained for each pMHC, enabling its application to unseen

epitopes. TCRfp pioneers a new class of fast structure-based

approaches for TCR analysis, clustering and potentially

deorphanization. TCRfp demonstrates its value by offering

supplementary insights when sequence-based methods fall short.

When applied to a private test set and combined with a basic

sequence-based approach through logistic regression, TCRfp

surpassed existing approaches to predict TCR specificity.
Materials and methods

Data retrieval, cleaning and curation

Multiple datasets of TCRs with known pMHC specificity were

employed during the development of TCRfp. Initially, a baseline set,

comprising 3D TCR-pMHC structures obtained from the Protein

Data Bank (31), was used to evaluate the default method based on

domain knowledge and informed assumptions. Subsequently, two

independent training sets from 10x Genomics [CD8+ T cells from

human Healthy Donors 1, 2, 3 and 4 (v1, Single Cell Immune

Profiling Dataset by Cell Ranger 3.0.2, 10x Genomics, (2019,

November 25))] were incorporated to perform heuristic

parameter searches aimed at optimizing model performance.

Finally, two external test sets, not included in any training or

baseline sets, were used for evaluation: one derived from the

VDJdb (32) and another from a private dataset. A summary of

these datasets and their respective roles is presented in Figure 1 with

further details presented below in that section.

TCR structures with known pMHC from Protein
Data Bank

To perform a preliminary analysis of our 3D-based approach,

we used a set of 74 TCR structures with known pMHC (HLA-A2

restricted) taken from PDB as of September 2019. TCR-pMHC

complexes were downloaded and then cleaned by removing pMHC,

non-standard amino acids, water molecules and other TCR

molecules in case several TCR dimers were present. In the end,

we only retained the structure of one TCR pair (one a and one b
chain). The PDB ID (PDBid) of the structures, the label of the

retained chains, and the peptide (pMHC = pHLA-A2) can be seen
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in Supplementary Table 1. To calculate the sequence recapitulation

(see definition below in this methods section), peptides’ sequences

were aligned based on their structural superposition using UCSF

Chimera (33). Kinematic closure (KIC) method (34) of the Rosetta

software version 3.11 (35) was used to create 100 different low

energy conformations of the 6 CDR loops of each HLA-A*02

restricted TCR. The lowest energy conformation per TCR

determined using Rosetta REF15 scoring function (36) was

selected as TCR model of the PDB structure for further analysis.

Development of a modelling pipeline based on
Rosetta to create TCR models from sequences

To generate TCR 3D structures models from their sequences a

fast and automated TCR homology modelling pipeline was

developed. The pipeline starts by reading the sequence

information from the TRAV, TRAJ, TRBV, TRBJ genes as well as

the CDR3 of each TCR chain. Then, the CDR3 sequences are

aligned with the TRV and TRJ genes from the respective chains, and

the full a and b chain sequences are reconstructed. Subsequently,

the TCR sequences are converted into 3D structures by homology

modelling using Rosetta version 3.11 (35) and the TCR modelling

protocol described in Gowthaman et al (22).

Benchmarking of the Rosetta modelling protocol using a set of

nonredundant TCR experimental structures showed that models

are accurate and compare favorably to models from other available

modelling methods (22). Furthermore, in our own pipeline, 10

conformations per TCR were generated and ranked with the

Rosetta REF15 scoring function (36) and the lowest-energy

conformation was selected as the final TCR model. Finally, to

detect and remove problematic models, all the final model

conformations were subjected to distance-based quality controls.

Indeed, by applying Rosetta protocol to model the TCR sequences

from 10xGenomics we have observed that inaccurate TCRs models
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could be obtained (see results and discussion for further details).

For this reason, we developed filters based on the distances among

specific conserved residues within the TCR, using the distances

found among the conserved residues from 92 experimental

structures (Supplementary Table 2). To implement these filters,

the TCRs were first renumbered according to IMGT (37)

numbering using the ANARCI program (38) to keep the same

residue number for constant residues across all the TCRs (38).

Based on (39), 4 conserved residues were selected for the filters

(CYS23, LEU89, CYS104, TRP118). The distances between 9

combinations among them were calculated with UCSF Chimera

(40) using a set of 92 experimental structures of TCR class I

(Supplementary Table 2). For a model to be accepted as accurate,

the distances must lie within the range defined as the average value

in the experimental structures ± 4 times their standard deviation for

each filter. The models that did not match the distance filter criteria

were discarded.
Training and validation sets

Training sets
CD8+ T cell sequences with known cognate pMHC were

retrieved from the 10xGenomics database on the 25th of

November 2019 (CD8+ T cells from human Healthy Donors 1, 2,

3 and 4 [v1, Single Cell Immune Profiling Dataset by Cell Ranger

3.0.2, 10x Genomics, (2019, November 25)]. The dataset was

carefully cleaned by removing unreliable sequences. Additionally,

all the retrieved T cell sequences lacking relevant information – i.e.,

a whole chain, a single gene, CDR3 data or the peptide specificity -

were excluded. As the data used from 10xGenomics was obtained

through Single-Cell Sequencing, we had to construct the paired

TCRs. During this process we encountered a high proportion of
FIGURE 1

Datasets of TCRs with known pMHC specificity used during the development of the TCRfp: baseline set, training data and test data.
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TCRs showing abnormal sequence count: TCRs with multiple a, b
or both chains. Biologically, a fraction of T cells is known to express

multiple a and b chains: two a and one b or vice versa (41). To

remove all possible ambiguities, we kept only TCR from T cells

expressing a single a and a single b chain. After applying these

stringent filters 14’479 TCR sequences with known pMHC were

retained. TCR sequences were then converted into 3D structures by

applying the protocol previously described. Our TCR data set

consists of 11’904 TCR models from 9 MHC and covers

specificities for 33 different peptides (all the detailed data can be

found in the Supplementary Table 3). Surprisingly, the majority of

the TCRs found within our dataset are specific for the

KLGGALQAK peptide (73.7%), followed by GILGFVFTL (7.7%),

AVFDRKSDAK (5.8%) and RAKFKQLL (5.6%). The rest of the

antigens account for 2% or less of representation from the

total dataset.

Creating TCR datasets to optimize TCRfp via
heuristic search (MATCH)

To avoid over or under representation of a peptide in respect

with the others we constructed 10 training sets. Each set was

composed of groups of 9 TCRs, each group binding one of 13

different antigens, for a total of 117 TCRs per set (specified in the

Supplementary Table 3).

Optimizing TCRfp by maximizing the distance
between TCRs (MaxD)

To mitigate the overfitting that could be generated by small

training sets, we examined optimizing the parameters of TCRfp to

maximize the average distance between all TCRs considered. As this

approach does not require an equal number of TCR binding the

same peptide, we included all the TCR models data in a single

dataset. Again, TCRs binding to several peptides were discarded

beforehand to avoid biases in the scoring. However, it was possible

to include peptides recognizing a single TCR, which were discarded

in the previous MATCH training datasets, as the TCR specificity

was not required in this new approach. To avoid a bias towards the

peptide KLGGALQAK all the corresponding models were

discarded from the training. The final training set consists of

2’931 TCRs that covered specificities for 32 different peptides

(Supplementary Table 3).

External test set
To assess the performance of our FP we used a different set that

does not include any of the previous TCRs used for the training. This

external test set was retrieved from the VDJdb curated database (data

obtained in 2022). We modelled the TCR 3D structures using our

TCRmodeling pipeline, obtaining a total of 10’703 TCR structures to

use as an external validation dataset for our FP scoring. To avoid a

bias towards our results, all the redundant TCRs overlapping with

the 10xGenomics database were excluded. Additionally, we

discarded the TCRs recognizing the overrepresented peptide

KLGGALQAK (53.6%) and the singleton TCRs that are impossible

to pair (and so, useless for our test exercises). The final validation set

consists of 3’213 TCRs, covering specificities for 200 different
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antigens. All the TCRs structures used in the final validation,

including their genes composition and peptide specificity, are

described in Supplementary Table 4.
Test set of 45 private TCRs
An additional test set consisted in a private collection of 45 CD8+

TCR sequences with known pMHC (Supplementary Table 5) found

in 4 melanoma cancer patients (Mel #1, Mel#2, Mel#3 and Mel#4).

These TCRs did not overlap with the TCRs used in the developmental

set and in the previously mentioned external test set.
Adaptation of the ElectroShape algorithm
for TCR models

We have applied ElectroShape 5 Dimensions (ES5D) (26, 27), to

convert experimental and modelled TCR 3D structures into 1D

vectors. The ES5D algorithm translates the 3D structure of the TCR

in a 1D numerical vector, relying on 6 centroids. The latter are

points of interest surrounding the molecule to describe (see latter

for the definition of their positioning). In this approach, all

centroids and atoms have 5D coordinates: the 3 Cartesian

coordinates, the weighted atomic partial charges (4th dimension)

and the weighted lipophilicity (5th dimension). The latter is defined

as the atomic contribution to logP according to the WLOGP

algorithm (42). Default weights for the atomic partial charges and

lipophilicity were established at 25 and 4, respectively. These values

found to be a good couple for small molecules were also effective for

discriminating TCRs. To obtain the final 1D vector that defines the

structural FP of a TCR, the average, standard deviation and third

moment of the distances between all atoms (including hydrogen

atoms) of the TCR’s CDR loops to each of the centroids were

calculated, leading to a final vector of 18 values.

Once a FP has been calculated for each TCR, quantifying the

similarity between two TCRs using ES5D boils down to calculating

the distance between a pair of 1D vectors with a Manhattan

distance-based score, which ranges from 0 for TCRs with totally

dissimilar shapes to 1 for TCRs with perfectly identical shapes:

Similarity � score  = 1 +
1
n o

1≤i≤n
xTCR1i − xTCR2i

�� �� !−1

where n is the number of entries in the 1D vectors and x are the

entry values of the vectors for each TCR.
TCR similarity scoring

To assess that our FP-based Similarity-score correlates with the

likeliness of TCRs to share the same specificity we have developed

two other scoring systems based on the recognized peptide: the

sequence recapitulation and the peptide identity.

The sequence recapitulation score estimates for each TCR

within a set of TCRs with known specificity, if the closest TCRs

among this set recognize peptide sequences with high degree of
frontiersin.org
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similarity. This is calculated by aligning the peptide sequence

recognized by each TCR, taken as a reference, with the one of the

closest TCR in the set according to our approach (excluding the

TCR reference itself), and counting the number of identical residues

in the alignment. The average value across all TCRs in the set

represents the sequence recapitulation score. This score is

particularly well adapted to test the approach on TCR-pMHC

experimental structures, where several TCRs among the set are

binding peptides baring a few point mutations.

The peptide identity score measures, for each TCR in each set,

how frequently the closest TCR according to TCRfp binds the same

peptide. This score is relevant when studying datasets with TCRs

that recognize only a few unrelated peptides. Using a set of TCRs for

which the cognate pMHC are known, the process involves

identifying if they bind the same peptide (positive pair) or a

different peptide (negative pair). The fraction of positive pairs

among all pairs defines the peptide identity score expressed in %.
Centroids definition

To translate TCR 3D structures into 1D fingerprint vectors, we

initially placed each of the 6 centroids on the a carbons of the tip of

the loops of one of the 6 CDRs (CDRs 1, 2, 3 from a chain and

CDRs 1, 2, 3 from b chain). In the case of loops with an even

sequence length, the tip of the loop was selected by taking the lowest

from the two middle residues. As the tip of the loops are situated in

flexible TCR regions and contact the pMHC, these represent

strategic places to better describe the 5D shape of the TCRs. As

mentioned earlier, the 4th and 5th dimensions of the atomic

coordinates are defined as the weighted atomic partial charge and

the weighted lipophilicity, respectively. To perform our first tests,

after exploring a limited number of combinations (such as 25;4, 35;4

and 45;4), the charge and lipophilicity weighting parameters (C and

P), were initially set to 25 and 4, respectively, since this combination

was shown to perform the best. The C and P combination of values

that were tested and finally used were inspired from previous

studies with ES5D and small molecules (26) and a study

performed in the lab (data not shown). These C and P values

were later optimized by heuristic search, as described below.
Genetic algorithms with peptide identity
scoring

We used genetic algorithms (GAs) to investigate the possibility of

defining universal centroids in 5D space that could effectively

represent all TCRs. Given the huge sample space, (6 centroids each

positioned in 5 dimensions plus C and P weighting parameters to

explore), GAs were well-suited for this optimization. To enable the

identification and use of such universal centroids, we first

superimposed all the TCRs by centering them at the origin of the

3D space and aligning their main axes along the axes of the Cartesian

space using the COOR ALIGN function of the CHARMM program.

Our GA performs as follows:
Frontiers in Immunology 05
1. Initialization of the population: the optimizable solution,

which characterizes each individual of the population, was

defined as the 5D coordinates of the six centroids, together

with the C and P weighting parameters, for a total of 32

values to be optimized. The initial highly diverse

population consisted in 400 individuals with a different

solution chosen at random.

2. Fitness calculation: The fitness of each solution, was

calculated as the average peptide identity score over the 10

sets of 117 TCRs, as defined above. Briefly, each solution

was individually applied to each set, and a FP was generated

for each TCR of the set. Thus, for each solution under

consideration we obtained different TCR FPs. Solutions

improving the overall TCRfp efficacy was characterized by

increased values of the average peptide identity score.

3. Parent selection: The 50% best solutions (200), i.e., those

showing the highest peptide identity score, were selected for

the reproduction step to produce the next generation.

4. Crossover and/or mutation: The next generation offspring

was built by applying mutations and/or crossovers to the

solutions of the selected parents. For the crossover, a

random number of centroids – between 1 and 6 - were

exchanged between the selected parents (depending on the

variant of algorithm used, the centroid can be entirely

exchanged or just partly). The weighting parameters C

and P could also be exchanged individually at random.

From the two possible children generated this way, only one

was randomly selected. A random number, between 2 and 4

(other values were explored but those were kept based on

their higher performance), of solution entries were selected

and randomly incremented by a random value ranging from

-1 to 1. 200 children were generated this way before entering

the population. Finally, the peptide identity score was

estimated for each individual and the 200 ones with the

worst scores were discarded to keep a population of 200

individuals. The GA was stopped when the fitness score of

the best individual had not improved for at least 20

generations. The overview of the genetic algorithm

pipeline can be visualized in the Supplementary Figure 2.
Due to the large number of parameters to tune, finding the

global optimum via this exploration would be considerably time

consuming. We intended to perform a profound exploration of the

best combinations of parameters to speed-up the search and to find

near-optimal centroid values. This search was performed over 990

independent runs with different parameter combinations. In some

runs, the centroids in the solutions were initially placed on the tip of

the loop of each CDR (as specified for the original definition) and

optimized starting from that position. To give more freedom to the

algorithm to explore the search space, we also tested in some runs to

initiate the centroid coordinates from random positions in the 3D

space within a defined area of 30x30x30 Å3 (centered in the average

middle of all the superimposed TCRs) and allowing them to move

freely outside and inside that space. Summaries of the GA best

algorithms can be seen in Supporting Information Table 6 and the
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detailed GA parameters that led to best genomes can be seen in

Supporting Information Table 7.
Genetic algorithms with FP distance
(MaxD) scoring

The GA was modified by introducing another scoring system for

the selection criteria. Instead of using the peptide identity score, the

GA fitness was defined as the highest distance among all the FPs of

the TCRs of the set that do not recognize the same pMHC. The GA

objective was then to maximize this fitness. The principle of this

fitness was to separate as much as possible the TCR that do not bind

the same peptide, while others could remain close to each other.

Unlike the peptide identity score, this new fitness did not require to

match TCRs according to their specificity. As the results were not

biased by the proportion of TCRs per antigen, a different training set

was used. The latter was composed of 2’931 TCRmodels that account

for the specificity of 32 antigens. All the TCRs binding to the peptide

KLGGALQAK were excluded from the pool of TCRs used by the GA

to avoid an overrepresentation of this peptide in the results.

Summaries of the GA best algorithms can be seen in Supporting

Information Table 6 and the detailed GA parameters that led to best

genomes can be seen in Supporting Information Table 7.
Comparison of TCRfp with a sequence-
based approach

Most of the approaches analyzing TCR repertoires and TCR

specificities are based solely on their sequence. Contrarily to them,

our approach encodes information regarding the biophysical and

structural characteristics of the TCRs. To compare the performance

of TCRfp with those of sequence-based approaches, we applied a

sequence-based approach on the same validation set used for the

validation of the TCRfp. BLOSUM matrices are usually used in

sequence alignment algorithms to assess the similarity between

sequence alignments. For this task, we calculated the BLOSUM62

score to assess the sequence similarity among the TCR sequences

with an open gap penalty of -3 and an extension gap penalty of -1

for each TCR compared to the rest of TCRs of the validation set

(43). Of note, the scores given by this BLOSUM62 calculation can

reach negative values. Hence, we normalized the BLOSUM score

values so it would range from 0 to totally different TCR sequences to

1 for identical TCR sequences, like TCRfp. Using the BLOSUM62

score, it was possible to calculate peptide identity scores and compare

with those obtained using TCRfp.
Logistic regression that combines the
sequence-based score with TCRfp

We have implemented a logistic regression, based on the FP and

on the BLOSUM62 score, to determine the probability of a TCR pair

to bind the same peptide. The probability, p, of a TCR pair to

recognize the same peptide was given by:
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The bias term b0 and the weights Wn were determined using a

set of 3213 TCRs (validation set, Supplementary Table 9),

maximizing the likelihood that each TCR pair shares the same

specificity. The accuracy of the logistic regression was determined

by the area under the ROC curve (AUC) and by the % of correct

pairs. The best model had a bias term b0 equals to -4.4545 while the

weights W1 andW2 were 7.3739 and 0.5752, respectively. The AUC

was only 0.697, emphasizing the difficulty to discriminate between

TCRs that share the same specificity and TCRs that do not share the

same specificity. The threshold of the classifier was set to 0.5, and we

predicted TCRs sharing the same specificity if P>0.5. The regression

trained on the 3213 TCRs was then applied to a private set of TCRs

showing that the Logistic Regression is better than sequence-based

score and or the FP alone.
Comparison of TCRfp with competing
approaches

We used the private set of 45 TCRs from 4 melanoma patients

(Supporting Information Table 5) to compare TCRfp with other

approaches. This ensured a fair comparison, as this set of TCRs with

known specificities was not used by us or by our competitors to

develop the approaches.

On top of comparing TCRfp with a purely sequence-based

approach and with a logistic regression that combines TCRfp and

the sequence-based we have also compared with the gold standard

approaches TCRpcDist (30), TCRdist3 (44) and TCRbase (web

server: https://services.healthtech.dtu.dk/services/TCRbase-1.0/).

Each single TCR in the private set of 45 TCRs was compared

with the other 44 TCRs. We analyzed how often the nearest

neighbor of a given TCR in the private set shared the

same specificity.

For TCRbase, when comparing a given TCR with the other 44

TCRs, the web service only provided the query TCR and its nearest

neighbor as output. With this, to find the two closest TCRs for a

given TCR within our private set (rank 2), we had to:
1. Input the test TCR and screen it against 44 TCRs

(reference set).

2. Wait and retrieve the nearest neighbor from the output.

3. Input the test TCR again and screen it against 43 TCRs

(excluding the previously obtained nearest neighbor) to get

the second nearest neighbor.
This iterative process complicated direct benchmarking and

extended analyses. We are providing TCRbase results for rank1

and rank2.
Receiver operating characteristic curves
and other metrics for statistical analysis

To test the predictive power of TCRfp, we defined a TCR

classifier that assigns a given TCR to the TCRs within the repertoire
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with the highest similarity. In other words, for a given TCR, the

closest TCR is the TCR with the highest TCRfp similarity among all

the TCRs within the dataset, excluding itself. We measured the

sensitivity and specificity of the classifier. To test the predictive

power for a given pMHC, we did 5 cross-validations by randomly

allocating for a given data set 70% - 30% as a training and test sets,

respectively. We tested how often the TCRs with the highest

similarity/similarities recognize the same peptide when compared

with the reference at different ranks and thresholds. We also tested

it by measuring sensitivity and specificity. For each given pMHC,

the average of the area under these receiver operating characteristic

curves (AUC), a standard metric of the classification success, was

calculated together with its standard deviation.
Results

TCR fingerprint approach, TCRfp

The T-Cell Receptors fingerprint approach, TCRfp, consists in 5

main steps. TCR sequences are first retrieved and secondly

converted into 3D structures using TCRmodel (22, 45). Third, the

3D structure of each TCR is converted into a simple fixed-length

numerical representation, the fingerprint (FP), using a variant of the

ES5D algorithm (26, 27) specifically adapted to TCR structures.

This modified ES5D algorithm translates the complementary

determining regions (CDRs) of the 3D structure of the TCR in a

1D numerical vector, relying on 6 centroids – spatial references to

calculate the fingerprints and described in detail below. In this

approach, all centroids and atoms have 5D coordinates: the 3

cartesian coordinates, the weighted atomic partial charges (4th

dimension) and the weighted lipophilicity (5th dimension). The

5th dimension is derived from the atomic contribution to logP using
Frontiers in Immunology 07
the WLOGP algorithm (42). Default weighting parameters for the

atomic partial charges and lipophilicity were set to 25 and 4,

respectively. These values which are well suited for small

molecules also prove to be effective for discriminating TCRs. To

calculate the final 1D vector representing the TCR’s FP, the average,

standard deviation, and third moment of the distances between all

atoms (including hydrogen atoms) in the TCR’s CDR loops and

each centroid are computed, resulting in a vector of 18 values (3

values per centroid). Fourth, TCR comparison is performed via the

calculation of Manhattan distance between 1D-vectors, with

similarity (similarity score) ranging from 0 for TCRs with totally

dissimilar shapes to 1 for TCRs with perfectly identical shapes.

TCRfp is based on the similarity principle (46) according to which

two structurally similar TCRs - that share close FPs - are more likely

to bind to the same or to a similar pMHC. Fifth, TCR repertoires are

analyzed, for example, by clustering TCRs based on the similarities

between their FPs (Figure 2).
Development of a pipeline to obtain
accurate TCR 3D structural models from
their sequences

To model TCRs 3D structures from sequences we used the

TCRmodel approach, whose ability to predict TCR structures was

proved in its seminal paper (22). Addressing the inherent difficulty of

loop modelling, while modelling thousands of TCRs from 10X

Genomics dataset (10X), we pinpointed erroneous TCR models as

demonstrated in the example provided in Figure 3A. This example

corresponds to TCR ID 10219 (TRAV19, TRAJ24, CDR3a:
CALSEADDSWGKLQF, TRBV27, TRBJ2-2 , CDR3 b:

CASSLYGNLGTGELFF). All TCRs modelled and their ID can be

found in the Supplementary Table 3. To automatically detect these
FIGURE 2

Schematic overview of the TCRfp approach. TCRfp is described in the main first three steps: 1. TCR sequences are retrieved and 2. converted into
structures using homology modelling to be further 3. translated into a 1D numerical representation known as the FPs. With this vectorial
representation, the TCR structures can be easily compared through the FPs (4) and even clustered (5) using different methods such as UPGMA
hierarchical clustering.
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problematic models, we developed distance-based filters. For this, we

selected specific non-variable residues, measured distances between

their Ca atoms (Figure 3B) and checked if they fall within acceptable

ranges. The distance ranges were determined using 92 experimental

TCR class I structures available in the Protein Data Bank (PDB) (47)

(Supplementary Table 2) and were calculated as the mean ± four

standard deviations (STD) for each one of the five distances

considered (Figure 3B). If at least one of the distances fell outside

the acceptable ranges, the corresponding TCR model was considered

erroneous and was therefore discarded. Since TCRmodel can provide

different loop models when repeatedly applied to the same sequence,

we decided to conduct several attempts to produce 3D models falling

within the predetermined acceptable ranges.

In brief, our modelling pipeline creates TCR sequences of both a
and b chains using the TRAV, TRAJ, TRBV and TRBJ genes, as well

as the CDR3a and CDR3b sequences as input. All the gene
Frontiers in Immunology 08
information and all the 10X TCRs successfully modeled with our

pipeline are given in the Supplementary Table 3, including the

information regarding the specificity. 10 attempts of

conformations per TCR were constructed by homology modeling

with the Rosetta TCRmodel approach and for each attempt a quality

check was performed with distance-based filters, that could be

applied thanks to the renumbering of the residues using ANARCI

and the IMGT scheme that provided the same numbers to conserved

residues. Only the attempted models that passed the quality checks

were further considered and the lowest energy one according to

Rosetta REF15 scoring function (36) was used to calculate the

TCRfp. If after 10 attempts, none of the models for a given TCR

pass the quality check, we assumed that it was not possible to obtain

a reliable model and the TCR sequence was excluded. The accuracy

of the modelling pipeline was tested within a set of 187 TCRs with

known experimental structures, targeting class I and class II pMHCs.
FIGURE 3

Distance-based validation filters for the TCR modeling. (A) on the left side: Superimposition of a wrong TCR model (10X ID 10219: TRAV19, TRAJ24,
CDR3a: CALSEADDSWGKLQF, TRBV27, TRBJ2-2, CDR3b: CASSLYGNLGTGELFF, binding the peptide KLGGALQAK) with a good TCR model (10X ID
1627: TRAV38-2DV8, TRAJ48, CDR3a: CAYRAPRGNEKLTF, TRBV2, TRBJ1-1, CDR3b: CASSDRMNTEAFF, binding the peptide AVFDRKSDAK), colored
in light blue and sand, respectively. A fraction of the b chain badly modelled is colored in red and for comparison, the corresponding structural
element of the correct model is displayed and colored in green. On the right side: Th model exceeded the distance thresholds for D1, D2, D3 and
D4 of the b chain. Each distance is shown in the figure with a different color. The red representation corresponds to the same one shown in the left
figure for a better visual comparison. (B) Table detailing the distance ranges (in Å) and standard deviations (STD) used for the distance-based filters,
calculated based on 92 experimental TCR structures. Accepted ranges of distances used to define satisfactory models are equal to the mean ± 4
standard deviations.
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Importantly, to model each TCR from the set, the experimental

structures sharing the same genes and that of this TCR itself were

removed from the list of possible templates. This intentional

exclusion to make the benchmark modelling exercise very

challenging and closer to the typical real application. Comparing

the models and the experimental structures of these TCRs shows that

our pipeline could predict TCRs structures with a satisfying

accuracy, illustrated by a global RMSD (on the heavy atoms and

all CDRs) of 2.1 Å between models and experimental structures.

However, 37 TCRs out of 187 could not be modeled due to a lack of

relevant templates and 41 did not pass the stringent-based filters,

totalizing 78 structures that were discarded. We explored the

possibility of increasing TCRmodel accuracy, especially for CDR3s,

by exploring different options for loop refinement (data not shown).

However, none of the options achieved a better average accuracy,

while computation time increased substantially. Consequently, these

options were not applied to the final pipeline. Our modelling

pipeline takes on average 1.40 minutes to model a TCR and can

be distributed upon multiple cores, allowing 6’171 TCRs to be

modelled in ~9 hours on a 16-cores machine. Using our modelling

pipeline, 10’703 TCRs models were constructed for the 14’479

sequences in the 10X database.
TCRfp – FP definition and initial
assessment

The ES5D-based FP approach was adapted to TCRs from the

initial small drug-like molecules approach by changing the

definition of the so-called centroids, i.e. the spatial references

used to calculate the fingerprints. Only the fraction of the TCRs

3D structures corresponding to the complementary determining

regions (CDRs) of the TCRs, which constitute the most variable

part of the receptor and are responsible for pMHC binding, were

considered. Then, the respective FPs were calculated using 6

centroids, each one placed on the Ca of the middle residue of the

6 CDR loops (Supplementary Figure 1). The charge and

lipophilicity of the Ca were used to compute the weighted charge

and the weighted lipophilicity as 4th and 5th dimension for the

centroids. The default weighting values of 25 and 4 were applied to

the charge and lipophilicity, respectively. As a proof of concept,

TCRfp was tested on a set of 74 3D-structures of TCR-pMHC

(HLA-A*02) complexes from the PDB (Supporting Information

Table 1). For each given TCRref (reference TCR) in this set, we

identified the TCR with the highest Manhattan-based similarity

according to their fingerprints (excluding TCRref itself) and

compared the sequences of the peptides they recognize. We

obtained an average sequence recapitulation of 76%, suggesting

that the similarity calculated with this definition of the TCRfp

strongly correlates with the pMHC these TCRs recognize. The

sequence recapitulation score estimates for each TCR within a set

of TCRs with known specificity, if the closest TCRs among this set

recognize peptide sequences with high degree of similarity

(Materials and Methods, subsection TCR similarity scoring).
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Interestingly, when a random TCR was chosen instead of the

closest according to TCRfp, the average sequence recapitulation

dropped to 32%, showing that our approach is much better than

random (p-value< 0.0001). Of note, 28 TCRs are singletons (no

other TCR in the set binds the same epitope). Removing them led to

an average sequence recapitulation of 92%. Next, we extended the

test by adding 66 non-HLA-A*02 restricted TCRs, totalizing 140

TCRs. For this larger and more challenging set, we found that the

closest TCR to a given TCRref according to TCRfp (excluding

TCRref itself), was binding the same pMHC in 64% of the cases.

This is significantly more than the average sequence recapitulation

that could be obtained by random picking (12%, p-value<0.0001).

The average sequence recapitulation for this set, after removing 40

singletons, is 84%, showing once again that TCRfp strongly

correlates with the pMHC these TCRs recognize.

Given the inherent flexibility of the CDR loops in TCRs, and

recognizing that, in general applications, only TCR 3Dmodels will be

accessible rather than X-ray structures, we reassessed the average

sequence recapitulation among TCRs post-remodeling of the CDR

loops. This exercise is important to assess if the results obtained by

TCRfp are sensitive to the imperfections inherent to structural

models. Since only CDR residues are encoded in the TCRfp, this

exercise could prove extremely challenging for our approach.

Strikingly, the sequence recapitulation was maintained at 67% on

the 74 individual HLA-A*02 restricted TCRs considered. This

showed that X-ray structures can be replaced by structural

homology models in our approach at a cost of a small reduction

(9%) in the accuracy. These results proved that the similarity between

TCR FPs calculated using this version of TCRfp strongly correlates

with the pMHC they recognize, allowing to cluster TCRs showing the

same pMHC specificity when TCR structures are not available.
Explorations of alternative definitions of FP
through heuristic searches

In the previous definition of TCRfp, TCRfpTOL, the centroids are

placed on the Ca of the tip of the loop and are dependent on the TCR

under investigation. This idea was inspired by the fact that the CDR

loops are the regions determining the pMHC specificity and therefore

the tip of the loop may serve as an optimal strategic location for the

centroids. Defining centroids as structural elements of the molecules

under study has the advantage of making it possible to calculate the

FP for these compounds without having to first superimpose them all,

which can be challenging for various molecules. However, since all

the TCRs share the same common global 3D structure, notably for

the constant part, TCR superimposition is straightforward to perform

and we therefore decided to explore the possibility of using universal

centroid positions, where the same 6 centroids defined by constant

5D, can be used to describe all the TCRs. As there is an infinite

number of combinations of 6 centroids in 5D, we have explored them

systematically, making use of heuristic searches based on genetic

algorithms and two different objective functions, MATCH andMaxD

(see Methods and Supporting Information labeled DataSheet 2).
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TCRfp definition using the tip of the loop
shows the best performance

When applied to an external validation set of 3’213 TCRs, the

definition of TCRfp, with centroids positioned on the tips of the

loop, TCRfpTOL provided an averaged peptide identity score of 29.8%

(Rank 1; no threshold, p-value<0.0001 when compared with

random). The best solutions of the heuristic searches, MATCH

and MaxD, TCRfpMATCH and TCRfpMaxD runs led to averaged

peptide identity scores of 28.2% and 29.6%, respectively (Rank 1;

no threshold, p-value<0.0001 when compared with random 4.8%

Rank 1; no threshold, p-value<0.0001). To assess the ability of our

approach to pair TCRs with the same specificity at different FP

similarity values, we calculated how frequently the TCR with closest

distance (Rank 1) the two closest TCRs (Rank 2) and the 5 closest

TCRs (Rank 5) share the same specificity (predictive ability). When

considering a similarity threshold of 0.8 and rank5, TCRfpTOL

achieves a predictive ability of 75.48%, substantially better than

TCRfpMATCH (54.1%) and TCRfpMaxD (36.5%). The extensive

tunning process of the heuristic searches were outperformed by

TCRfpTOL, whose parameters were not tuned on a training set.

TCRfpTOL showed better predictive ability on an external validation

set, produced more variable and distinguishable fingerprints, and

avoided the complexity and overfitting of the heuristic searches. See

Supporting Information labeled DataSheet 2.
TCRfp ability to predict TCR specificity

To assess if the similarity score given by TCRfp can cluster

TCRs in a way that correlates with their peptide specificity, we

calculated the relationship between the TCRfp similarity between
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pairs of TCRs and the probability of these two TCRs to bind the

same peptide (Figure 4). The similarity score ranges from 0 for

TCRs with totally dissimilar shapes to 1 for TCRs with perfectly

identical shapes. Interestingly, we find a clear sigmoid-like

relationship between the similarity calculated by our approach

and the probability of binding the same peptide. This relationship

is very similar to the one found in the context of small drug-like

molecules (48, 49), and supports the use of ES5D in the context of

TCR repertoire analysis and specificity prediction. At a similarity

threshold of 0.7, the probability of pairs of TCRs to bind the same

epitope was 5%, increasing to 78.9% at 0.9 similarity, demonstrating

TCRfp’s potential for high-precision epitope prediction.

Increasing the similarity threshold leads to a decrease in the

number of TCRs that could be analyzed (Table 1). For example, at a

similarity threshold of 0.8, only 26.0% of the TCRs could be clustered

using TCRfp. This trade-off between prediction accuracy and the

number of TCRs processed, as shown in Table 1, is also observed in

other TCR-clustering algorithms (12, 50), which achieved 94%

accuracy in predicting TCR specificity but only for 12% of the

TCRs. The TCRfp demonstrated similar efficacy at the 0.9

threshold, with 95.0% accuracy for 12.3% of the dataset (Table 1).

We focus on predictive ability based on ranks and thresholds as

this closely mirrors the approach we plan to use in real-world

applications. For instance, when assessing the specificity of an

orphan TCR, we will compare it against a list of TCRs with known

specificity, identifying the closest matches. Only the most similar

(top-ranked) TCRs with high similarity will be considered. Using

thresholds and rank-based analyses, Perez et al., employing an

alternative approach, TCRpcDist (30), successfully predicted the

specificities of orphan tumor-infiltrating lymphocytes in cancer

patients, since the higher the similarity the greater the confidence

in the predictions, as demonstrated in Figure 4. One might choose to
FIGURE 4

Relationship between TCR similarity (calculated for an external validation set of 3213 TCRs) and the probability of binding the same peptide at rank1.
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analyze the full repertoire, accepting a lower overall accuracy, or

instead focus on a smaller subset of high-confidence TCRs, thereby

improving accuracy at the cost of losing coverage. Stringent

thresholds can help prioritize strong candidates. Conversely, when

such high-confidence matches are not found, relaxing the thresholds

may be necessary, even if it slightly reduces predictive accuracy.
FPs can complement sequence-based
approaches

To further evaluate the performance of our structure-based

approach, TCRfp, we compared it with a purely sequence-based

method by applying a BLOSUM62 similarity score to our validation

set. Briefly, we aligned the sequences of the 6 CDRs loops using

pairwise alignment and calculated their similarity using the

BLOSUM62 matrix. We used an open gap penalty of -3 and an

extension gap penalty of -1 (43). Further details of this sequence-

based approach are provided in the methods section. The

comparison between these two methods is provided in Table 1

and in Figure 5.

The sequence-based approach can match correctly TCRs

binding identical pMHC in 41.4% of the cases, while the success

rate of TCRfp approach is 29.8%. When the length of the CDR3b of

the reference TCR is 13, both approaches work better altogether and

individually, with 59.6% of the TCRs properly matched, irrespective

to the threshold (Figure 5A). Importantly, we observed that 26.1%

of the TCRs were correctly matched by both approaches, 15.2% only

by the sequence-based approach and 3.4% exclusively by TCRfp.

We analyzed the cases where TCRfp accurately identified TCRs

with the same specificity while the sequence-based approach did not.

Clearly, the sequence-based method struggles when there are

sequence discrepancies. For example, consider 10X ID 00018

(composed of the genes TRAV12-2, TRAJ45, TRBV28, TRBJ1-5,

CDR3a: CAGGGGGADGLTF, and CDR3b: CASTLTGLGQPQHF).

TCRfp paired it correctly at rank 1 with 10X ID 00017 (composed of

the genes TRAV12-2, TRAJ42, TRBV28, TRBJ2-3, CDR3a:

CAVTHYGGSQGNLI, and CDR3b: CASLRSAVWADTQYF), both
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binding the peptide ELAGIGILTV. The TCRfp similarity for this pair

was 0.80, with a root mean square deviation (RMSD) of 0.76 Å for all

heavy atoms. In contrast, the sequence-based approach scored this

pair at only 0.56. It erroneously paired 10X ID 00018 at rank 1 with

10X ID 01495 (composed of the genes TRAV12-2, CDR3a:

CAVISGGGADGLTF, TRAJ45, TRBV28, CDR3b: CASTIALG

YEQYF), which binds the NLNCCSVPV peptide, with a similarity

score of 0.70. TCRfp gave this pair a similarity score of 0.44 and did

not predict shared specificity. Interestingly, the RMSD between their

3D structures is only 0.31 Å. Despite the higher sequence similarity

and smaller RMSD between the last two TCRs, they did not cluster

together using TCRfp, highlighting the method’s ability to prioritize

shape and biophysical properties, which the sequence-based

approach misses. Thus, TCRfp provides valuable insights in cases

where the sequence-based approach fails.

Figure 5B, shows TCRs taken from the validation set, scored

according to the TCRfp and sequence-based values of the closest

TCRs in the dataset according to each approach used separately.

The color coding indicates whether the closest TCR according to

each approach is sharing the same specificity. We observed that the

majority of the TCRs correctly matched by both approaches are

within the area comprised above a 0.8 TCRfp score and a 0.7

sequence-based score. Interestingly, some TCR that show a relative

low sequence-based score are correctly paired using TCRfp, as it can

be seen below the 0.6 threshold of the sequence-based score. This

highlights again that our new TCRfp approach can correctly predict

the specificity in some cases where the sequence-based approach

would fail. All the data used to construct the Figure 5 can be found

in the Supplementary Table 8.

The 30 most frequent peptides in the validation set are described

and their respective frequency in the validation set is also presented in

the Supplementary Table 9. We observe that GILGFVFTL is the most

frequent peptide in the validation set, representing 14.6% of the

TCRs. This is also largely the most frequent peptide in the subset

of TCRs correctly predicted by both approaches, with 34.6% of the

TCRs correctly paired by both approaches recognizing this peptide.

Interestingly, we observe that TCRs recognizing RLRAEAQVK are

never correctly paired when using the sequence-based score
TABLE 1 Accuracy pairing TCRs with the same specificity using TCRfp and a purely sequence-based approach (blosum-based) developed in house
(see methods).

Approach Threshold Rank 1 Paired
TCRs

Rank 2 Paired
TCRs

Rank 5 Paired
TCRs

Total
TCRs

TCRs
clustered

TCRfp No threshold 29.8 956 34.8 1117 43.6 1382 3213 100%

>0.7 35.9 898 40.6 1015 40.6 1199 2502 77.9%

>0.8 75.5 631 78.5 656 78.5 683 836 26.0%

>0.9 95.0 276 97.2 385 97.2 387 396 12.3%

Sequence-
based

No threshold 41.4 1329 46.7 1502 54.4 1749 3213 100%

>0.7 80.4 909 83.4 943 86.9 983 1131 35.2%

>0.8 95.2 279 97.4 286 98.3 288 293 9.12%

>0.9 100 11 100 11 100 11 11 0.34%
Accuracies calculated for different ranks and different similarity thresholds using a validation set of 3213 TCRs.
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FIGURE 5

(A) Success of the sequence-based approach and TCRfp for pairing two TCRs of the same specificity at Rank 1. The % of TCRs successfully paired by
both approaches in blue, only by the sequence-based approach in green and only by TCRfp in red. The % of TCRs not paired, whatever the
approach, is in grey. (B) Relationship between the TCRfp and the sequence-based obtained for each possible TCR, used as a reference, and its
closest TCR according to each method, taken from the external validation set. The sequence-based score is normalized for an easier comparison.
Each dot represents a TCR according to the similarity of its closest TCR obtained with the TCRfp placed in the X axis and the sequence similarity of
its closest TCR according to the sequence-based score placed in the Y axis. The coloring system represents the capacity of an approach to predict if
the closest TCR according to it is sharing the same specificity. Blue: no approach could predict correctly the correct specificity, Orange: only the
sequence-based approach made the correct prediction, Red: only TCRfp made the correct prediction, Green: both approaches made the correct
prediction. (C) Receiver Operating Characteristic curves (ROC) for the validation set of 3213 TCRs computed using TCRfp, the sequence-based
approach (blosum) and a combination of both approaches via a logistic regression. All the possible TCR pairs distances considered 3213*3213.
(D) Receiver Operating Characteristic curves (ROC) for the validation set of 3213 TCRs computed using TCRfp, the sequence-based approach
(blosum) and a combination of both approaches via a logistic regression (LR). For each given TCR just the TCR with highest similarity was considered
and therefore 3213 data points.
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indicating that shape has, more than a sequence, an effect in the

recognition of the peptide (data shown in the Supplementary

Table 9). Interesting too is the fact that TCRs recognizing

AVFDRKSDAK were never correctly paired by both approaches at

the same time and are more frequent in the subset of TCRs correctly

paired by the TCRfp (11.9% for TCRfp-uniq and 3.7% for SeqBased-

uniq). The comparisons presented in the Figure 5B allowed us to

understand peptides where shape-based approaches can be extremely

relevant to find the TCR specificity.

On this validation set, the sequence-based approach generally

outperformed TCRfp (Table 1, Figure 5). As anticipated based on the

best predictive performance across different ranks (Table 1), the

sequence-based method achieved a high Area Under the Receiver

Operating Curve (AUC) of 0.70, while TCRfp scored 0.61

(Figure 5C). This may indicate that the biophysical and structural

characteristics of the TCR contribute less to the prediction than the

sequence. Nevertheless, TCRfp performed better than the sequence-

based score in particular cases as discussed upwards and, as for

example, for pairing TCRs that recognize the RLRAEAQVK peptide

(data shown in the Supplementary Table 9). To leverage the strengths

of both methods, we combined the sequence-based score with TCRfp

via a logistic regression (LR, see methods section 3.8). This

combination resulted in an AUC of 0.70 and an example of its

application on a private test set is shown in the next section,

highlighting an increase predicting specificities. As previously

mentioned, our analysis include predictive ability based on ranks

and thresholds, as this closely mirrors the approach we plan to use in

real-world applications (Table 1). For instance, when assessing the

specificity of an orphan TCR, we will compare it against a list of TCRs

with known specificity, identifying the closest matches. Only the most

similar (top-ranked) TCRs with high similarity will be considered.

We believe that Table 1 provides a clearer description of this process

than the ROC curves. Concomitantly, if instead of using all the

3213*3213 TCR pairs we only use for each given TCR, the TCR

excluding itself with highest similarity, corresponding to rank 1 and

therefore 3213 data points, we obtain an AUC of 0.84 for TCRfp and

0.85 for blosum and 0.87 for LR (Figure 5D).
Example of TCRfp application

To assess the usefulness of TCRfp in processing clinical data, we

applied it to a private set of 45 TCRs. This ensured a fair
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comparison, as this set of TCRs with known specificities was not

used by us or by our competitors to develop the approaches. On top

of comparing TCRfp with a purely sequence-based approach and

with a logistic regression that combines TCRfp and the sequence-

based we have also compared with the gold standard approaches

TCRpcDist-3D (30), TCRdist3 (44) and TCRbase (web server:

https://services.healthtech.dtu.dk/services/TCRbase-1.0/).

The results can be seen in the Table 2.

When tested on a private dataset (not included in any of the

training of the used approaches) and integrated with a basic

sequence-based method via logistic regression, TCRfp

outperformed the competitors in predicting TCR specificity at

rank 1. TCRfp, however, alone was shown as the least performant

approach. ROC curves are also provided for all the approaches

(Figure 6) except for TCRbase as we could not calculate all the

45*45 TCR distances (see Methods). The average AUC values were

calculated after 5 cross-validations randomly taking 70% of the

private TCRs as a test set and 30% as validation set. The average

AUC values in % are for TCRfp, Blosum, LR, TCRpcDist-3D and

TCRdist3 respectively 57+/-3, 65+/-2, 65+/-2, 67+/-1, 66+/-2. The

classification reports with precision, recall and f1 score in

Supporting Information.
AI-based modeling does not enhance the
TCRfp predictive ability

We compared the predictive performance of TCRfp pipeline

using TCRmodel as a structural modelling engine, with an

alternative TCRfp pipeline using an AI-based modelling

approach. For the AI-based modelling approach, we used

ImmuneBuilder (TCRBuilder2). The seminal paper on

ImmuneBuilder shows that it can produce TCR structures with

accuracy comparable to AlphaFold-Multimer, while being over a

hundred times faster and without needing large sequence databases

or multiple sequence alignments (51). We were unable to model 510

TCRs from the validation set using TCRBuilder2, which is why we

are discussing the results for a set of 2703 TCRs in Table 3. See

Supporting Information labeled DataSheet 1 for details about the

structures that were not modelled. When comparing the set of 2703

TCRs, we found that, although we cannot be certain of the exact

structure due to the absence of experimental data, the RMSD for

each loop averaged within 2Å when comparing TCRmodel within
TABLE 2 Comparison of the success rate in paring a TCR with another one showing the same specificity, using different approaches applied to a
private set of TCRs.

Rank Method

TCRfp
Sequence-

based
LR

TCRpcDist-
3D

TCRdist3 TCRbase

Rank 1 22.2 46.7 48.9 44.4 46.7 44.4

Rank 2 35.6 60.0 62.2 64.4 62.2 46.7

Rank 5 57.8 75.6 73.3 75.6 71.1 –
We compared the TCRfp approach with the sequence-based approach, the logistic regression (LR) that combines both of them and TCRpcDist-3D, TCRdist3 and TCRbase. This comparison was
done for the different ranks 1, 2 and 5.
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our pipeline and TCRBuilder2, suggesting that the models from

both are not particularly different.

When compared the predictive ability of TCRfp pipeline using

TCRmodel versus using the AI-based approach, Table 3, we observe

the following:
Fron
• For the validation set of 2’703 TCRs (out of the original

3’213), the TCRfp pipeline using TCRmodel identified a

TCR pair sharing the same specificity at rank 1 in 32.3% of

cases, while the AI-based TCRfp pipeline found such a pair

at rank 1 in 29.9% of cases.

• Looking at the top 2 ranked TCRs, the TCRfp pipeline using

TCRmodel identified a TCR sharing the same specificity in

45.7% of cases, while the AI-based pipeline yielded a slightly

lower value of 44.5%.
When it comes to TCR specificity prediction, the TCRmodel

approach appears to be more effective for this set of structures. We

note that the TCRmodel pipeline involves multiple attempts and

stringent distance filters, which were developed in-house to

improve accuracy. We believe the Electroshape method
tiers in Immunology 14
compresses 3D information to such a degree that further

advancements in modeling may not substantially enhance the

overall predictions. Nonetheless, we will continue to monitor

developments in AI technologies and reassess their potential

integration into the TCRfp pipeline.
Discussion

This work introduced a new structural approach for TCR

pairing and clustering based on ES5D fingerprints, called TCRfp,

which involves the encoding of a 3D structure into a 1D vector.

Although this unique approach was initially developed for small

molecules, we hereby successfully applied the ES5D FPs on a

substantial set of highly diverse TCRs. This novel approach has

demonstrated the possibility of rapidly pairing TCRs in a way that

correlates with their antigen specificity, underlining the importance

of TCRs structural features for understanding their binding

properties beyond purely sequence information. Importantly,

while TCRfp proved competitive, the present study represents

only a first exploration of the potential of structure-based TCR
TABLE 3 Comparing the predictive ability of TCRfp pipeline using TCRmodel versus using TCRBuilder2. .

TCRfp variant Threshold Rank 1
Correctly
paired TCRs

Rank 2
Correctly
paired TCRs

Rank 5
Correctly
paired TCRs

Total
TCRs

%TCRs
clustered

TCRfp –

TCRmodel in FP
pipeline

No threshold 32.3 872 37.4 1012 45.7 1235 2703 100%

TCRfp – AI
modeling

No threshold 29.9 809 34.9 944 44.5 1203 2703 100%
FIGURE 6

Receiver Operating Characteristic curves (ROC) for the private set 45 TCRs computed with the TCRfp approach the sequence-based approach, the
logistic regression (LR) that combines both of them and the state-of-the art competitors TCRpcDist-3D and TCRdist3.
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fingerprinting approaches in this context. These approaches offer

many possibilities of improvement and adaptation.

Here, we applied the TCRmodel approach to model thousands

of TCR sequences obtained from 10xGenomics (52). By subjecting

the approach to a larger number of sequences and a more diverse

range of TCRs than in the original publication, we observed that

modeling certain TCRs could prove challenging. This difficulty

arises from the high flexibility of the CDR loops coupled with the

limited number of templates available for reference. To improve

modelling accuracy, we have developed a pipeline that is able to

improve the quality of the TCR models and discard the bad models.

We successfully modelled 82% of the class I TCR repertoire in

10xGenomics which is already a substantial TCR coverage for

applications like vaccination and immunotherapy, where the goal

is to pinpoint some strong candidates and not to comprehensively

study the entire repertoire.

We also explored the possibility to provide a single generalized

definition of the FP to improve the efficiency of the calculations

using genetic algorithms. Genetic algorithms were applied over

different training sets, using a similarity-based score (GA MATCH)

or a distance-based score (GA MaxD). For both methods, the

parameters were modified and tuned over different trials resulting

in a better overall score and predictive ability for TCRfp optimized

by the MATCH objective function, although it was built using a

smaller training set, which could have led to overfitting. Of note, the

approach using the original definition of the TCRfp based on

centroids positioned on the tip of the loop, performed better than

the GA-improved centroid definitions. Clearly, adapting the

position of the centroid to each TCR proved more accurate to

cluster TCRs in a way it that matches their specificity.

We also demonstrated that TCRfp is able to correctly pair TCRs

which are not correctly matched with a sequence-based approach.

The fact that our approach can predict TCR specificity when the

sequence information is not sufficient, underlines the importance of

the structure and biophyshicochemical properties of TCR loops for

the TCR-pMHC interaction and TCR specificity determination.

We additionally explored the ability of combining TCRfp with a

sequence-based score using logistic regression. We found that the

combined approach increased the accuracy of TCR specificity

prediction. The logistic regression weights give a higher

contribution to the sequence based term, in line with the fact that

the biophysical and structural characteristics of the TCRs contribute

less to the prediction than the sequence. Still, the enhanced predictive

power of the combined approach is in line with the importance of

incorporating TCR structural parameters, as well as charges and

lipophilicity information, in peptide specificity prediction. When

applying the approach to an experimental dataset not used for the

training, we observed an improvement in the performance of the

logistic regression compared over the sequence-only approach for

rank1 and rank2. We thus demonstrated the ability of TCRfp to

complement a sequence-based approach and provides additional

meaningful information not encoded in sequence-based algorithms.

While a combined approach using TCRfp and a pure sequence-based

method shows potential, it is still in an early stage and requires
Frontiers in Immunology
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further investigation. Therefore, we are providing access to TCRfp as

a standalone tool. This allows users to analyze TCR distances based

on the biophysicochemical properties of the 3D structure and to

integrate TCRfp with the sequence-based methods of their choice

as needed.

Finally, switching from TCRmodel to the AI modeling

approach TCRBuilder2 did not improve the predictive ability of

TCRfp. We believe that the Electroshape method compresses 3D

data to such an extent that further improvements in modeling may

not lead to significant gains in overall predictions. However, we will

continue to monitor advancements in AI technologies and reassess

their potential integration into the TCRfp pipeline. Additionally,

incorporating a faster approach would certainly be beneficial for the

TCRfp approach.

This work demonstrates the feasibility of rapid structure-based

approach for TCR repertoire analysis, TCR clustering and

potentially TCR specificity prediction, with possible clinical

applications. TCRfp thus introduces a new class of approaches for

TCR pairing and clustering that can shed some light on the complex

structural mechanism underlying TCR-pMHC recognition.
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