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Introduction: The development of cancer immunotherapy has accelerated in
recent years. Understanding the specificity of T cell receptors (TCR) for peptides
presented by the major histocompatibility complex (pMHC) is a critical step
towards improving immunotherapy approaches, such as adoptive cell transfer
and peptide vaccination. Despite notable computational advances, the
unambiguous pairing of TCR with pMHC, from pools of thousands of
candidates and unseen pMHC, remains elusive.

Methods: To meet this challenge and showcase the potential of using physics-
based structure-based methods without being hindered by their computational
cost, we developed a novel approach, TCRfp. This method transforms the 3D
structure of TCRs into one-dimensional structural fingerprints (FPs) using the
electroshape 5D (ES5D) technique.

Results: We have modelled more than 15’000 3D structures of paired TCR alpha
and beta chains with known sequences and pMHC specificity and encoded them
into 1D TCRfp. Anticipating future clinical applications, we have translated the
TCR modelling process into a fast pipeline. Similarity measures between TCR FPs
correlate with their ability to recognize similar or identical epitopes within both
the training set and in the external validation sets.

Discussion: TCRfp constitutes a rapid approach for high-throughput TCR
comparison and repertoire analysis based on molecular 3D structures. When
tested on a private dataset and combined with a basic sequence-based method
via logistic regression, TCRfp surpassed existing approaches in predicting TCR
specificities. TCRfp represents a structurally informed complement to sequence-
based approaches and could enhance our ability to decode immune recognition.
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Introduction

Cancer immunotherapy development has been in the rise over
the last years. One of the most promising research topics in this field
involves the understanding and unambiguous prediction of T-cell
receptor (TCR) recognition of a specific cancer epitope (i.e.,
peptide-MHC, pMHC). Predicting the TCR-pMHC specific
interactions is essential for improving immunotherapies such as
adoptive cell therapy or peptide vaccination. Nevertheless,
understanding the mechanisms underlying the TCR-pMHC
specificity remains practically unresolved due to its complexity
(1,2).

Over the past years, TCR-pMHC specificity has been widely
explored by several authors who developed numerous
computational approaches (2, 3). Those that predict TCR-pMHC
specificity can be divided into sequence-based and structure-based
methodologies. Ongoing improvements in sequencing technology
(4-7) are yielding more numerous and reliable TCR-pMHC
sequence pairs (8-10), accelerating the development of better,
more accurate in silico approaches. As an example, biotech
companies such as Adaptive Biotechnologies in partnership
Microsoft Healthcare NEXT initiative (11) are providing extensive
TCR data and TCR mapping. Still, the number of TCR-pMHC pairs
available corresponds to a tiny fraction of the overall possibilities.
Typically, sequence-based approaches use machine learning
techniques such as logistic regressions and deep neural networks
that use sequences to train a function that attempts to correctly
predict if a TCR can bind a given epitope present in the training set
(12-15). These models can achieve high performance for TCR
classification, but they still require substantial sequence datasets
to provide sufficient predictive power for their algorithms.
Consequently, they show limited success in predicting TCR
specificities for unseen epitopes or epitopes and alleles with very
limited representation in the training data. Structure-based
approaches provide a learning set-independent alternative. They
use experimental structures or structural models of the TCR-pMHC
complexes to determine the most likely ones based on estimates of
the affinities between partners, using universal physics-based
scoring functions (16-20). Despite great successes, structure-
based approaches are time-consuming and hardly tractable for
large scale predictions. The increase of the number of TCR-
pMHC structures (230 TCR-pMHC class I and 82 TCR-pMHC
class II as of 5" of July 2023) in the Protein Data Bank (PDB) (21)
together with the appearance of more powerful tools to create 3D
models out of sequences such as TCRmodel (22), TCRmodel2 (23),
AlphaFold (24) and LYRA (25) are contributing to the development
of new structure-based approaches (19).

This paper introduces TCRfingerprint, TCRfp, a novel 3D-
based method designed to address the specificity of TCRs in
recognizing pMHC complexes. The method builds upon the
ElectroShape approach (ES5D) (26, 27), which extends traditional
3D atomic representations by incorporating two additional
physicochemical dimensions: atomic charge and lipophilicity,
resulting in a comprehensive 5D fingerprint. While previous
studies have employed Kidera factors and other physicochemical
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features to predict TCR-epitope interactions (28-30), the use of the
ES5D framework to encode de 3D shape and the spatial distribution
of charge and lipophilicity in this context is entirely new and forms
the core innovation of our method. This enables TCRfp to cluster
TCRs in a way it correlates with their specificity, particularly when
the specificity is driven by shape and physico-chemical
characteristics rather than sequence similarity. Although building
a TCR 3D model is the most time-consuming step in our pipeline, it
takes only 1.4 minutes on a 16-CPU machine, and the subsequent
conversion of the 3D structure into a fingerprint on the millisecond
scale. Our approach is thus much faster than the usual purely 3D-
based approaches which model the full putative TCR-pMHC
complexes and estimate binding free energies. Additionally,
unlike sequence-based approaches, TCRfp does not require to be
retrained for each pMHC, enabling its application to unseen
epitopes. TCRfp pioneers a new class of fast structure-based
approaches for TCR analysis, clustering and potentially
deorphanization. TCRfp demonstrates its value by offering
supplementary insights when sequence-based methods fall short.
When applied to a private test set and combined with a basic
sequence-based approach through logistic regression, TCRfp
surpassed existing approaches to predict TCR specificity.

Materials and methods
Data retrieval, cleaning and curation

Multiple datasets of TCRs with known pMHC specificity were
employed during the development of TCRfp. Initially, a baseline set,
comprising 3D TCR-pMHC structures obtained from the Protein
Data Bank (31), was used to evaluate the default method based on
domain knowledge and informed assumptions. Subsequently, two
independent training sets from 10x Genomics [CD8+ T cells from
human Healthy Donors 1, 2, 3 and 4 (v1, Single Cell Immune
Profiling Dataset by Cell Ranger 3.0.2, 10x Genomics, (2019,
November 25))] were incorporated to perform heuristic
parameter searches aimed at optimizing model performance.
Finally, two external test sets, not included in any training or
baseline sets, were used for evaluation: one derived from the
VDJdb (32) and another from a private dataset. A summary of
these datasets and their respective roles is presented in Figure 1 with
further details presented below in that section.

TCR structures with known pMHC from Protein
Data Bank

To perform a preliminary analysis of our 3D-based approach,
we used a set of 74 TCR structures with known pMHC (HLA-A2
restricted) taken from PDB as of September 2019. TCR-pMHC
complexes were downloaded and then cleaned by removing pMHC,
non-standard amino acids, water molecules and other TCR
molecules in case several TCR dimers were present. In the end,
we only retained the structure of one TCR pair (one o and one 3
chain). The PDB ID (PDBid) of the structures, the label of the
retained chains, and the peptide (pMHC = pHLA-A2) can be seen
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Datasets of TCRs with known pMHC specificity used during the development of the TCRfp: baseline set, training data and test data.

in Supplementary Table 1. To calculate the sequence recapitulation
(see definition below in this methods section), peptides’ sequences
were aligned based on their structural superposition using UCSF
Chimera (33). Kinematic closure (KIC) method (34) of the Rosetta
software version 3.11 (35) was used to create 100 different low
energy conformations of the 6 CDR loops of each HLA-A*02
restricted TCR. The lowest energy conformation per TCR
determined using Rosetta REF15 scoring function (36) was
selected as TCR model of the PDB structure for further analysis.

Development of a modelling pipeline based on
Rosetta to create TCR models from sequences

To generate TCR 3D structures models from their sequences a
fast and automated TCR homology modelling pipeline was
developed. The pipeline starts by reading the sequence
information from the TRAV, TRAJ, TRBV, TRBJ genes as well as
the CDR3 of each TCR chain. Then, the CDR3 sequences are
aligned with the TRV and TR] genes from the respective chains, and
the full o and B chain sequences are reconstructed. Subsequently,
the TCR sequences are converted into 3D structures by homology
modelling using Rosetta version 3.11 (35) and the TCR modelling
protocol described in Gowthaman et al (22).

Benchmarking of the Rosetta modelling protocol using a set of
nonredundant TCR experimental structures showed that models
are accurate and compare favorably to models from other available
modelling methods (22). Furthermore, in our own pipeline, 10
conformations per TCR were generated and ranked with the
Rosetta REF15 scoring function (36) and the lowest-energy
conformation was selected as the final TCR model. Finally, to
detect and remove problematic models, all the final model
conformations were subjected to distance-based quality controls.
Indeed, by applying Rosetta protocol to model the TCR sequences
from 10xGenomics we have observed that inaccurate TCRs models
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could be obtained (see results and discussion for further details).
For this reason, we developed filters based on the distances among
specific conserved residues within the TCR, using the distances
found among the conserved residues from 92 experimental
structures (Supplementary Table 2). To implement these filters,
the TCRs were first renumbered according to IMGT (37)
numbering using the ANARCI program (38) to keep the same
residue number for constant residues across all the TCRs (38).
Based on (39), 4 conserved residues were selected for the filters
(CYS23, LEU89, CYS104, TRP118). The distances between 9
combinations among them were calculated with UCSF Chimera
(40) using a set of 92 experimental structures of TCR class I
(Supplementary Table 2). For a model to be accepted as accurate,
the distances must lie within the range defined as the average value
in the experimental structures + 4 times their standard deviation for
each filter. The models that did not match the distance filter criteria
were discarded.

Training and validation sets

Training sets

CD8+ T cell sequences with known cognate pMHC were
retrieved from the 10xGenomics database on the 25" of
November 2019 (CD8+ T cells from human Healthy Donors 1, 2,
3 and 4 [vl, Single Cell Immune Profiling Dataset by Cell Ranger
3.0.2, 10x Genomics, (2019, November 25)]. The dataset was
carefully cleaned by removing unreliable sequences. Additionally,
all the retrieved T cell sequences lacking relevant information - i.e.,
a whole chain, a single gene, CDR3 data or the peptide specificity -
were excluded. As the data used from 10xGenomics was obtained
through Single-Cell Sequencing, we had to construct the paired
TCRs. During this process we encountered a high proportion of
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TCRs showing abnormal sequence count: TCRs with multiple o, 8
or both chains. Biologically, a fraction of T cells is known to express
multiple o and B chains: two o and one B or vice versa (41). To
remove all possible ambiguities, we kept only TCR from T cells
expressing a single o and a single B chain. After applying these
stringent filters 14’479 TCR sequences with known pMHC were
retained. TCR sequences were then converted into 3D structures by
applying the protocol previously described. Our TCR data set
consists of 11’904 TCR models from 9 MHC and covers
specificities for 33 different peptides (all the detailed data can be
found in the Supplementary Table 3). Surprisingly, the majority of
the TCRs found within our dataset are specific for the
KLGGALQAK peptide (73.7%), followed by GILGFVFTL (7.7%),
AVFDRKSDAK (5.8%) and RAKFKQLL (5.6%). The rest of the
antigens account for 2% or less of representation from the
total dataset.

Creating TCR datasets to optimize TCRfp via
heuristic search (MATCH)

To avoid over or under representation of a peptide in respect
with the others we constructed 10 training sets. Each set was
composed of groups of 9 TCRs, each group binding one of 13
different antigens, for a total of 117 TCRs per set (specified in the
Supplementary Table 3).

Optimizing TCRfp by maximizing the distance
between TCRs (MaxD)

To mitigate the overfitting that could be generated by small
training sets, we examined optimizing the parameters of TCRfp to
maximize the average distance between all TCRs considered. As this
approach does not require an equal number of TCR binding the
same peptide, we included all the TCR models data in a single
dataset. Again, TCRs binding to several peptides were discarded
beforehand to avoid biases in the scoring. However, it was possible
to include peptides recognizing a single TCR, which were discarded
in the previous MATCH training datasets, as the TCR specificity
was not required in this new approach. To avoid a bias towards the
peptide KLGGALQAK all the corresponding models were
discarded from the training. The final training set consists of
2’931 TCRs that covered specificities for 32 different peptides
(Supplementary Table 3).

External test set

To assess the performance of our FP we used a different set that
does not include any of the previous TCRs used for the training. This
external test set was retrieved from the VDJdb curated database (data
obtained in 2022). We modelled the TCR 3D structures using our
TCR modeling pipeline, obtaining a total of 10’703 TCR structures to
use as an external validation dataset for our FP scoring. To avoid a
bias towards our results, all the redundant TCRs overlapping with
the 10xGenomics database were excluded. Additionally, we
discarded the TCRs recognizing the overrepresented peptide
KLGGALQAK (53.6%) and the singleton TCRs that are impossible
to pair (and so, useless for our test exercises). The final validation set
consists of 3’213 TCRs, covering specificities for 200 different
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antigens. All the TCRs structures used in the final validation,
including their genes composition and peptide specificity, are
described in Supplementary Table 4.

Test set of 45 private TCRs

An additional test set consisted in a private collection of 45 CD8+
TCR sequences with known pMHC (Supplementary Table 5) found
in 4 melanoma cancer patients (Mel #1, Mel#2, Mel#3 and Mel#4).
These TCRs did not overlap with the TCRs used in the developmental
set and in the previously mentioned external test set.

Adaptation of the ElectroShape algorithm
for TCR models

We have applied ElectroShape 5 Dimensions (ES5D) (26, 27), to
convert experimental and modelled TCR 3D structures into 1D
vectors. The ES5D algorithm translates the 3D structure of the TCR
in a 1D numerical vector, relying on 6 centroids. The latter are
points of interest surrounding the molecule to describe (see latter
for the definition of their positioning). In this approach, all
centroids and atoms have 5D coordinates: the 3 Cartesian
coordinates, the weighted atomic partial charges (4™ dimension)
and the weighted lipophilicity (5™ dimension). The latter is defined
as the atomic contribution to logP according to the WLOGP
algorithm (42). Default weights for the atomic partial charges and
lipophilicity were established at 25 and 4, respectively. These values
found to be a good couple for small molecules were also effective for
discriminating TCRs. To obtain the final 1D vector that defines the
structural FP of a TCR, the average, standard deviation and third
moment of the distances between all atoms (including hydrogen
atoms) of the TCR’s CDR loops to each of the centroids were
calculated, leading to a final vector of 18 values.

Once a FP has been calculated for each TCR, quantifying the
similarity between two TCRs using ES5D boils down to calculating
the distance between a pair of 1D vectors with a Manhattan
distance-based score, which ranges from 0 for TCRs with totally
dissimilar shapes to 1 for TCRs with perfectly identical shapes:

-1
1
Similarity —score = (1+— > ’xiTCRl - x,—TCRZ‘
M <i<n
where 7 is the number of entries in the 1D vectors and x are the
entry values of the vectors for each TCR.

TCR similarity scoring

To assess that our FP-based Similarity-score correlates with the
likeliness of TCRs to share the same specificity we have developed
two other scoring systems based on the recognized peptide: the
sequence recapitulation and the peptide identity.

The sequence recapitulation score estimates for each TCR
within a set of TCRs with known specificity, if the closest TCRs
among this set recognize peptide sequences with high degree of
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similarity. This is calculated by aligning the peptide sequence
recognized by each TCR, taken as a reference, with the one of the
closest TCR in the set according to our approach (excluding the
TCR reference itself), and counting the number of identical residues
in the alignment. The average value across all TCRs in the set
represents the sequence recapitulation score. This score is
particularly well adapted to test the approach on TCR-pMHC
experimental structures, where several TCRs among the set are
binding peptides baring a few point mutations.

The peptide identity score measures, for each TCR in each set,
how frequently the closest TCR according to TCRfp binds the same
peptide. This score is relevant when studying datasets with TCRs
that recognize only a few unrelated peptides. Using a set of TCRs for
which the cognate pMHC are known, the process involves
identifying if they bind the same peptide (positive pair) or a
different peptide (negative pair). The fraction of positive pairs
among all pairs defines the peptide identity score expressed in %.

Centroids definition

To translate TCR 3D structures into 1D fingerprint vectors, we
initially placed each of the 6 centroids on the o carbons of the tip of
the loops of one of the 6 CDRs (CDRs 1, 2, 3 from o chain and
CDRs 1, 2, 3 from B chain). In the case of loops with an even
sequence length, the tip of the loop was selected by taking the lowest
from the two middle residues. As the tip of the loops are situated in
flexible TCR regions and contact the pMHC, these represent
strategic places to better describe the 5D shape of the TCRs. As
mentioned earlier, the 4" and 5" dimensions of the atomic
coordinates are defined as the weighted atomic partial charge and
the weighted lipophilicity, respectively. To perform our first tests,
after exploring a limited number of combinations (such as 25;4, 35;4
and 45;4), the charge and lipophilicity weighting parameters (C and
P), were initially set to 25 and 4, respectively, since this combination
was shown to perform the best. The C and P combination of values
that were tested and finally used were inspired from previous
studies with ES5D and small molecules (26) and a study
performed in the lab (data not shown). These C and P values
were later optimized by heuristic search, as described below.

Genetic algorithms with peptide identity
scoring

We used genetic algorithms (GAs) to investigate the possibility of
defining universal centroids in 5D space that could effectively
represent all TCRs. Given the huge sample space, (6 centroids each
positioned in 5 dimensions plus C and P weighting parameters to
explore), GAs were well-suited for this optimization. To enable the
identification and use of such universal centroids, we first
superimposed all the TCRs by centering them at the origin of the
3D space and aligning their main axes along the axes of the Cartesian
space using the COOR ALIGN function of the CHARMM program.

Our GA performs as follows:
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1. Initialization of the population: the optimizable solution,
which characterizes each individual of the population, was
defined as the 5D coordinates of the six centroids, together
with the C and P weighting parameters, for a total of 32
values to be optimized. The initial highly diverse
population consisted in 400 individuals with a different
solution chosen at random.

2. Fitness calculation: The fitness of each solution, was
calculated as the average peptide identity score over the 10
sets of 117 TCRs, as defined above. Briefly, each solution
was individually applied to each set, and a FP was generated
for each TCR of the set. Thus, for each solution under
consideration we obtained different TCR FPs. Solutions
improving the overall TCRfp efficacy was characterized by
increased values of the average peptide identity score.

3. Parent selection: The 50% best solutions (200), i.e., those
showing the highest peptide identity score, were selected for
the reproduction step to produce the next generation.

4. Crossover and/or mutation: The next generation offspring
was built by applying mutations and/or crossovers to the
solutions of the selected parents. For the crossover, a
random number of centroids — between 1 and 6 - were
exchanged between the selected parents (depending on the
variant of algorithm used, the centroid can be entirely
exchanged or just partly). The weighting parameters C
and P could also be exchanged individually at random.
From the two possible children generated this way, only one
was randomly selected. A random number, between 2 and 4
(other values were explored but those were kept based on
their higher performance), of solution entries were selected
and randomly incremented by a random value ranging from
-1 to 1. 200 children were generated this way before entering
the population. Finally, the peptide identity score was
estimated for each individual and the 200 ones with the
worst scores were discarded to keep a population of 200
individuals. The GA was stopped when the fitness score of
the best individual had not improved for at least 20
generations. The overview of the genetic algorithm
pipeline can be visualized in the Supplementary Figure 2.

Due to the large number of parameters to tune, finding the
global optimum via this exploration would be considerably time
consuming. We intended to perform a profound exploration of the
best combinations of parameters to speed-up the search and to find
near-optimal centroid values. This search was performed over 990
independent runs with different parameter combinations. In some
runs, the centroids in the solutions were initially placed on the tip of
the loop of each CDR (as specified for the original definition) and
optimized starting from that position. To give more freedom to the
algorithm to explore the search space, we also tested in some runs to
initiate the centroid coordinates from random positions in the 3D
space within a defined area of 30x30x30 A” (centered in the average
middle of all the superimposed TCRs) and allowing them to move
freely outside and inside that space. Summaries of the GA best
algorithms can be seen in Supporting Information Table 6 and the
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detailed GA parameters that led to best genomes can be seen in
Supporting Information Table 7.

Genetic algorithms with FP distance
(MaxD) scoring

The GA was modified by introducing another scoring system for
the selection criteria. Instead of using the peptide identity score, the
GA fitness was defined as the highest distance among all the FPs of
the TCRs of the set that do not recognize the same pMHC. The GA
objective was then to maximize this fitness. The principle of this
fitness was to separate as much as possible the TCR that do not bind
the same peptide, while others could remain close to each other.
Unlike the peptide identity score, this new fitness did not require to
match TCRs according to their specificity. As the results were not
biased by the proportion of TCRs per antigen, a different training set
was used. The latter was composed of 2’931 TCR models that account
for the specificity of 32 antigens. All the TCRs binding to the peptide
KLGGALQAK were excluded from the pool of TCRs used by the GA
to avoid an overrepresentation of this peptide in the results.
Summaries of the GA best algorithms can be seen in Supporting
Information Table 6 and the detailed GA parameters that led to best
genomes can be seen in Supporting Information Table 7.

Comparison of TCRfp with a sequence-
based approach

Most of the approaches analyzing TCR repertoires and TCR
specificities are based solely on their sequence. Contrarily to them,
our approach encodes information regarding the biophysical and
structural characteristics of the TCRs. To compare the performance
of TCRfp with those of sequence-based approaches, we applied a
sequence-based approach on the same validation set used for the
validation of the TCRfp. BLOSUM matrices are usually used in
sequence alignment algorithms to assess the similarity between
sequence alignments. For this task, we calculated the BLOSUM62
score to assess the sequence similarity among the TCR sequences
with an open gap penalty of -3 and an extension gap penalty of -1
for each TCR compared to the rest of TCRs of the validation set
(43). Of note, the scores given by this BLOSUM62 calculation can
reach negative values. Hence, we normalized the BLOSUM score
values so it would range from 0 to totally different TCR sequences to
1 for identical TCR sequences, like TCRfp. Using the BLOSUM62
score, it was possible to calculate peptide identity scores and compare
with those obtained using TCRfp.

Logistic regression that combines the
sequence-based score with TCRfp

We have implemented a logistic regression, based on the FP and
on the BLOSUMG62 score, to determine the probability of a TCR pair
to bind the same peptide. The probability, p, of a TCR pair to
recognize the same peptide was given by:
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The bias term b0 and the weights Wn were determined using a
set of 3213 TCRs (validation set, Supplementary Table 9),
maximizing the likelihood that each TCR pair shares the same
specificity. The accuracy of the logistic regression was determined
by the area under the ROC curve (AUC) and by the % of correct
pairs. The best model had a bias term b0 equals to -4.4545 while the
weights W1 and W2 were 7.3739 and 0.5752, respectively. The AUC
was only 0.697, emphasizing the difficulty to discriminate between
TCRs that share the same specificity and TCRs that do not share the
same specificity. The threshold of the classifier was set to 0.5, and we
predicted TCRs sharing the same specificity if P>0.5. The regression
trained on the 3213 TCRs was then applied to a private set of TCRs
showing that the Logistic Regression is better than sequence-based
score and or the FP alone.

Comparison of TCRfp with competing
approaches

We used the private set of 45 TCRs from 4 melanoma patients
(Supporting Information Table 5) to compare TCRfp with other
approaches. This ensured a fair comparison, as this set of TCRs with
known specificities was not used by us or by our competitors to
develop the approaches.

On top of comparing TCRfp with a purely sequence-based
approach and with a logistic regression that combines TCRfp and
the sequence-based we have also compared with the gold standard
approaches TCRpcDist (30), TCRdist3 (44) and TCRbase (web
server: https://services.healthtech.dtu.dk/services/TCRbase-1.0/).

Each single TCR in the private set of 45 TCRs was compared
with the other 44 TCRs. We analyzed how often the nearest
neighbor of a given TCR in the private set shared the
same specificity.

For TCRbase, when comparing a given TCR with the other 44
TCRs, the web service only provided the query TCR and its nearest
neighbor as output. With this, to find the two closest TCRs for a
given TCR within our private set (rank 2), we had to:

1. Input the test TCR and screen it against 44 TCRs
(reference set).

2. Wait and retrieve the nearest neighbor from the output.

3. Input the test TCR again and screen it against 43 TCRs
(excluding the previously obtained nearest neighbor) to get
the second nearest neighbor.

This iterative process complicated direct benchmarking and

extended analyses. We are providing TCRbase results for rankl
and rank2.

Receiver operating characteristic curves
and other metrics for statistical analysis

To test the predictive power of TCRfp, we defined a TCR
classifier that assigns a given TCR to the TCRs within the repertoire
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TCR sequences

TCR1 ...CAAGGSQGNLIF...
TCR2 ...CASTGRRALTF...
TCRn ...CAVHGYGQNFVF...

TCR2

Fingerprint analysis

$3=0418 M

FIGURE 2

TCR structures / models

TCR fingerprints

1D FINGERPRINT

(. 122 2 345 23 33, (3. 002 9 02 23 66, (22 999 13 245.
)

TCRn

TCR clustering

Schematic overview of the TCRfp approach. TCRfp is described in the main first three steps: 1. TCR sequences are retrieved and 2. converted into
structures using homology modelling to be further 3. translated into a 1D numerical representation known as the FPs. With this vectorial
representation, the TCR structures can be easily compared through the FPs (4) and even clustered (5) using different methods such as UPGMA

hierarchical clustering.

with the highest similarity. In other words, for a given TCR, the
closest TCR is the TCR with the highest TCRfp similarity among all
the TCRs within the dataset, excluding itself. We measured the
sensitivity and specificity of the classifier. To test the predictive
power for a given pMHC, we did 5 cross-validations by randomly
allocating for a given data set 70% - 30% as a training and test sets,
respectively. We tested how often the TCRs with the highest
similarity/similarities recognize the same peptide when compared
with the reference at different ranks and thresholds. We also tested
it by measuring sensitivity and specificity. For each given pMHC,
the average of the area under these receiver operating characteristic
curves (AUC), a standard metric of the classification success, was
calculated together with its standard deviation.

Results
TCR fingerprint approach, TCRfp

The T-Cell Receptors fingerprint approach, TCRfp, consists in 5
main steps. TCR sequences are first retrieved and secondly
converted into 3D structures using TCRmodel (22, 45). Third, the
3D structure of each TCR is converted into a simple fixed-length
numerical representation, the fingerprint (FP), using a variant of the
ES5D algorithm (26, 27) specifically adapted to TCR structures.
This modified ES5D algorithm translates the complementary
determining regions (CDRs) of the 3D structure of the TCR in a
1D numerical vector, relying on 6 centroids — spatial references to
calculate the fingerprints and described in detail below. In this
approach, all centroids and atoms have 5D coordinates: the 3
cartesian coordinates, the weighted atomic partial charges (4
dimension) and the weighted lipophilicity (5™ dimension). The

5™ dimension is derived from the atomic contribution to logP using
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the WLOGP algorithm (42). Default weighting parameters for the
atomic partial charges and lipophilicity were set to 25 and 4,
respectively. These values which are well suited for small
molecules also prove to be effective for discriminating TCRs. To
calculate the final 1D vector representing the TCR’s FP, the average,
standard deviation, and third moment of the distances between all
atoms (including hydrogen atoms) in the TCR’s CDR loops and
each centroid are computed, resulting in a vector of 18 values (3
values per centroid). Fourth, TCR comparison is performed via the
calculation of Manhattan distance between 1D-vectors, with
similarity (similarity score) ranging from 0 for TCRs with totally
dissimilar shapes to 1 for TCRs with perfectly identical shapes.
TCRfp is based on the similarity principle (46) according to which
two structurally similar TCRs - that share close FPs - are more likely
to bind to the same or to a similar pMHC. Fifth, TCR repertoires are
analyzed, for example, by clustering TCRs based on the similarities
between their FPs (Figure 2).

Development of a pipeline to obtain
accurate TCR 3D structural models from
their sequences

To model TCRs 3D structures from sequences we used the
TCRmodel approach, whose ability to predict TCR structures was
proved in its seminal paper (22). Addressing the inherent difficulty of
loop modelling, while modelling thousands of TCRs from 10X
Genomics dataset (10X), we pinpointed erroneous TCR models as
demonstrated in the example provided in Figure 3A. This example
corresponds to TCR ID 10219 (TRAV19, TRAJ24, CDR3a:
CALSEADDSWGKLQF, TRBV27, TRBJ2-2, CDR3 b:
CASSLYGNLGTGELFF). All TCRs modelled and their ID can be
found in the Supplementary Table 3. To automatically detect these
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A)

B)
Distance Minimum Maximum
Distance between distance in distance in PDB STD
PDB (in A) (in A)

D1 a chain 6.74 10.05 0.41
] Cys23 — Leu89

D1 B chain 7.15 9.08 0.24

D2 a chain 7.13 13.62 0.81
] Cys23 — Trpl18

D2 f3 chain 9.46 11.04 0.20

D3 a chain 13.54 16.42 0.40
Leu89 — Trpl118

D3 B chain 13.75 16.43 0.30

D4 a chain 5.85 7.21 0.20
] Cys23 — Cys104

D4 B chain 5.78 7.01 0.15

D5 Leu89 — Leu89 31.34 35.47 0.80

FIGURE 3

Distance-based validation filters for the TCR modeling. (A) on the left side: Superimposition of a wrong TCR model (10X ID 10219: TRAV19, TRAJ24,
CDR3o: CALSEADDSWGKLQF, TRBV27, TRBJ2-2, CDR3B: CASSLYGNLGTGELFF, binding the peptide KLGGALQAK) with a good TCR model (10X ID
1627: TRAV38-2DV8, TRAJ48, CDR3o: CAYRAPRGNEKLTF, TRBV2, TRBJ1-1, CDR3B: CASSDRMNTEAFF, binding the peptide AVFDRKSDAK), colored
in light blue and sand, respectively. A fraction of the  chain badly modelled is colored in red and for comparison, the corresponding structural
element of the correct model is displayed and colored in green. On the right side: Th model exceeded the distance thresholds for D1, D2, D3 and
D4 of the B chain. Each distance is shown in the figure with a different color. The red representation corresponds to the same one shown in the left
figure for a better visual comparison. (B) Table detailing the distance ranges (in A) and standard deviations (STD) used for the distance-based filters,

calculated based on 92 experimental TCR structures. Accepted ranges of distances used to define satisfactory models are equal to the mean + 4

standard deviations.

problematic models, we developed distance-based filters. For this, we
selected specific non-variable residues, measured distances between
their Car atoms (Figure 3B) and checked if they fall within acceptable
ranges. The distance ranges were determined using 92 experimental
TCR class I structures available in the Protein Data Bank (PDB) (47)
(Supplementary Table 2) and were calculated as the mean * four
standard deviations (STD) for each one of the five distances
considered (Figure 3B). If at least one of the distances fell outside
the acceptable ranges, the corresponding TCR model was considered
erroneous and was therefore discarded. Since TCRmodel can provide
different loop models when repeatedly applied to the same sequence,
we decided to conduct several attempts to produce 3D models falling
within the predetermined acceptable ranges.

In brief, our modelling pipeline creates TCR sequences of both o
and [ chains using the TRAV, TRAJ, TRBV and TRBJ genes, as well
as the CDR30. and CDR3f sequences as input. All the gene
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information and all the 10X TCRs successfully modeled with our
pipeline are given in the Supplementary Table 3, including the
information regarding the specificity. 10 attempts of
conformations per TCR were constructed by homology modeling
with the Rosetta TCRmodel approach and for each attempt a quality
check was performed with distance-based filters, that could be
applied thanks to the renumbering of the residues using ANARCI
and the IMGT scheme that provided the same numbers to conserved
residues. Only the attempted models that passed the quality checks
were further considered and the lowest energy one according to
Rosetta REF15 scoring function (36) was used to calculate the
TCRfp. If after 10 attempts, none of the models for a given TCR
pass the quality check, we assumed that it was not possible to obtain
a reliable model and the TCR sequence was excluded. The accuracy
of the modelling pipeline was tested within a set of 187 TCRs with
known experimental structures, targeting class I and class II pMHCs.
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Importantly, to model each TCR from the set, the experimental
structures sharing the same genes and that of this TCR itself were
removed from the list of possible templates. This intentional
exclusion to make the benchmark modelling exercise very
challenging and closer to the typical real application. Comparing
the models and the experimental structures of these TCRs shows that
our pipeline could predict TCRs structures with a satisfying
accuracy, illustrated by a global RMSD (on the heavy atoms and
all CDRs) of 2.1 A between models and experimental structures.
However, 37 TCRs out of 187 could not be modeled due to a lack of
relevant templates and 41 did not pass the stringent-based filters,
totalizing 78 structures that were discarded. We explored the
possibility of increasing TCRmodel accuracy, especially for CDR3s,
by exploring different options for loop refinement (data not shown).
However, none of the options achieved a better average accuracy,
while computation time increased substantially. Consequently, these
options were not applied to the final pipeline. Our modelling
pipeline takes on average 1.40 minutes to model a TCR and can
be distributed upon multiple cores, allowing 6’171 TCRs to be
modelled in ~9 hours on a 16-cores machine. Using our modelling
pipeline, 10’703 TCRs models were constructed for the 14’479
sequences in the 10X database.

TCRfp — FP definition and initial
assessment

The ES5D-based FP approach was adapted to TCRs from the
initial small drug-like molecules approach by changing the
definition of the so-called centroids, i.e. the spatial references
used to calculate the fingerprints. Only the fraction of the TCRs
3D structures corresponding to the complementary determining
regions (CDRs) of the TCRs, which constitute the most variable
part of the receptor and are responsible for pMHC binding, were
considered. Then, the respective FPs were calculated using 6
centroids, each one placed on the Cow of the middle residue of the
6 CDR loops (Supplementary Figure 1). The charge and
lipophilicity of the Co were used to compute the weighted charge
and the weighted lipophilicity as 4™ and 5" dimension for the
centroids. The default weighting values of 25 and 4 were applied to
the charge and lipophilicity, respectively. As a proof of concept,
TCRfp was tested on a set of 74 3D-structures of TCR-pMHC
(HLA-A*02) complexes from the PDB (Supporting Information
Table 1). For each given TCR,e (reference TCR) in this set, we
identified the TCR with the highest Manhattan-based similarity
according to their fingerprints (excluding TCR,. itself) and
compared the sequences of the peptides they recognize. We
obtained an average sequence recapitulation of 76%, suggesting
that the similarity calculated with this definition of the TCRfp
strongly correlates with the pMHC these TCRs recognize. The
sequence recapitulation score estimates for each TCR within a set
of TCRs with known specificity, if the closest TCRs among this set
recognize peptide sequences with high degree of similarity
(Materials and Methods, subsection TCR similarity scoring).
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Interestingly, when a random TCR was chosen instead of the
closest according to TCRfp, the average sequence recapitulation
dropped to 32%, showing that our approach is much better than
random (p-value< 0.0001). Of note, 28 TCRs are singletons (no
other TCR in the set binds the same epitope). Removing them led to
an average sequence recapitulation of 92%. Next, we extended the
test by adding 66 non-HLA-A*02 restricted TCRs, totalizing 140
TCRs. For this larger and more challenging set, we found that the
closest TCR to a given TCR,s according to TCRfp (excluding
TCR,s itself), was binding the same pMHC in 64% of the cases.
This is significantly more than the average sequence recapitulation
that could be obtained by random picking (12%, p-value<0.0001).
The average sequence recapitulation for this set, after removing 40
singletons, is 84%, showing once again that TCRfp strongly
correlates with the pMHC these TCRs recognize.

Given the inherent flexibility of the CDR loops in TCRs, and
recognizing that, in general applications, only TCR 3D models will be
accessible rather than X-ray structures, we reassessed the average
sequence recapitulation among TCRs post-remodeling of the CDR
loops. This exercise is important to assess if the results obtained by
TCRfp are sensitive to the imperfections inherent to structural
models. Since only CDR residues are encoded in the TCRfp, this
exercise could prove extremely challenging for our approach.
Strikingly, the sequence recapitulation was maintained at 67% on
the 74 individual HLA-A*02 restricted TCRs considered. This
showed that X-ray structures can be replaced by structural
homology models in our approach at a cost of a small reduction
(9%) in the accuracy. These results proved that the similarity between
TCR FPs calculated using this version of TCRfp strongly correlates
with the pMHC they recognize, allowing to cluster TCRs showing the
same pMHC specificity when TCR structures are not available.

Explorations of alternative definitions of FP
through heuristic searches

In the previous definition of TCRfp, TCRfp ", the centroids are
placed on the Co of the tip of the loop and are dependent on the TCR
under investigation. This idea was inspired by the fact that the CDR
loops are the regions determining the pMHC specificity and therefore
the tip of the loop may serve as an optimal strategic location for the
centroids. Defining centroids as structural elements of the molecules
under study has the advantage of making it possible to calculate the
FP for these compounds without having to first superimpose them all,
which can be challenging for various molecules. However, since all
the TCRs share the same common global 3D structure, notably for
the constant part, TCR superimposition is straightforward to perform
and we therefore decided to explore the possibility of using universal
centroid positions, where the same 6 centroids defined by constant
5D, can be used to describe all the TCRs. As there is an infinite
number of combinations of 6 centroids in 5D, we have explored them
systematically, making use of heuristic searches based on genetic
algorithms and two different objective functions, MATCH and MaxD
(see Methods and Supporting Information labeled DataSheet 2).
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Relationship between TCR similarity (calculated for an external validation set of 3213 TCRs) and the probability of binding the same peptide at rankl.

TCRfp definition using the tip of the loop
shows the best performance

When applied to an external validation set of 3213 TCRs, the
definition of TCRfp, with centroids positioned on the tips of the
loop, TCRfp™°" provided an averaged peptide identity score of 29.8%
(Rank 1; no threshold, p-value<0.0001 when compared with
random). The best solutions of the heuristic searches, MATCH
and MaxD, TCRfp™AT™ and TCRHM™® runs led to averaged
peptide identity scores of 28.2% and 29.6%, respectively (Rank 1;
no threshold, p-value<0.0001 when compared with random 4.8%
Rank 1; no threshold, p-value<0.0001). To assess the ability of our
approach to pair TCRs with the same specificity at different FP
similarity values, we calculated how frequently the TCR with closest
distance (Rank 1) the two closest TCRs (Rank 2) and the 5 closest
TCRs (Rank 5) share the same specificity (predictive ability). When
considering a similarity threshold of 0.8 and rank5, TCRfp™°"
achieves a predictive ability of 75.48%, substantially better than
TCprMATCH (54.1%) and TCprMaXD (36.5%). The extensive
tunning process of the heuristic searches were outperformed by
TCRfpTOL, whose parameters were not tuned on a training set.
TCRfpTOL showed better predictive ability on an external validation
set, produced more variable and distinguishable fingerprints, and
avoided the complexity and overfitting of the heuristic searches. See
Supporting Information labeled DataSheet 2.

TCRfp ability to predict TCR specificity

To assess if the similarity score given by TCRfp can cluster
TCRs in a way that correlates with their peptide specificity, we
calculated the relationship between the TCRfp similarity between
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pairs of TCRs and the probability of these two TCRs to bind the
same peptide (Figure 4). The similarity score ranges from 0 for
TCRs with totally dissimilar shapes to 1 for TCRs with perfectly
identical shapes. Interestingly, we find a clear sigmoid-like
relationship between the similarity calculated by our approach
and the probability of binding the same peptide. This relationship
is very similar to the one found in the context of small drug-like
molecules (48, 49), and supports the use of ES5D in the context of
TCR repertoire analysis and specificity prediction. At a similarity
threshold of 0.7, the probability of pairs of TCRs to bind the same
epitope was 5%, increasing to 78.9% at 0.9 similarity, demonstrating
TCRfp’s potential for high-precision epitope prediction.
Increasing the similarity threshold leads to a decrease in the
number of TCRs that could be analyzed (Table 1). For example, at a
similarity threshold of 0.8, only 26.0% of the TCRs could be clustered
using TCRfp. This trade-off between prediction accuracy and the
number of TCRs processed, as shown in Table 1, is also observed in
other TCR-clustering algorithms (12, 50), which achieved 94%
accuracy in predicting TCR specificity but only for 12% of the
TCRs. The TCRfp demonstrated similar efficacy at the 0.9
threshold, with 95.0% accuracy for 12.3% of the dataset (Table 1).
We focus on predictive ability based on ranks and thresholds as
this closely mirrors the approach we plan to use in real-world
applications. For instance, when assessing the specificity of an
orphan TCR, we will compare it against a list of TCRs with known
specificity, identifying the closest matches. Only the most similar
(top-ranked) TCRs with high similarity will be considered. Using
thresholds and rank-based analyses, Perez et al, employing an
alternative approach, TCRpcDist (30), successfully predicted the
specificities of orphan tumor-infiltrating lymphocytes in cancer
patients, since the higher the similarity the greater the confidence
in the predictions, as demonstrated in Figure 4. One might choose to

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1688805
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Mayol-Rullan et al. 10.3389/fimmu.2025.1688805

TABLE 1 Accuracy pairing TCRs with the same specificity using TCRfp and a purely sequence-based approach (blosum-based) developed in house
(see methods).

Approach  Threshold Rank 1 Paired Rank 2 Paired Rank 5 Paired Total TCRs
TCRs TCRs TCRs TCRs clustered
TCRfp No threshold = 29.8 956 348 1117 43.6 1382 3213 100%
>0.7 359 898 40.6 1015 40.6 1199 2502 77.9%
>0.8 75.5 631 785 656 785 683 836 26.0%
>0.9 95.0 276 97.2 385 97.2 387 396 12.3%
Sequence- No threshold = 41.4 1329 46.7 1502 544 1749 3213 100%
based
>0.7 80.4 909 83.4 943 86.9 983 1131 35.2%
>0.8 952 279 974 286 98.3 288 293 9.12%
>0.9 100 11 100 11 100 11 11 0.34%

Accuracies calculated for different ranks and different similarity thresholds using a validation set of 3213 TCRs.

analyze the full repertoire, accepting a lower overall accuracy, or  binding the peptide ELAGIGILTV. The TCRfp similarity for this pair
instead focus on a smaller subset of high-confidence TCRs, thereby ~ was 0.80, with a root mean square deviation (RMSD) of 0.76 A for all
improving accuracy at the cost of losing coverage. Stringent  heavy atoms. In contrast, the sequence-based approach scored this
thresholds can help prioritize strong candidates. Conversely, when  pair at only 0.56. It erroneously paired 10X ID 00018 at rank 1 with
such high-confidence matches are not found, relaxing the thresholds 10X ID 01495 (composed of the genes TRAV12-2, CDR3a:
may be necessary, even if it slightly reduces predictive accuracy. CAVISGGGADGLTF, TRAJ45, TRBV28, CDR3b: CASTIALG

YEQYF), which binds the NLNCCSVPV peptide, with a similarity

score of 0.70. TCRfp gave this pair a similarity score of 0.44 and did
FPs can complement sequence-based not predict shared specificity. Interestingly, the RMSD between their
approaches 3D structures is only 0.31 A. Despite the higher sequence similarity

and smaller RMSD between the last two TCRs, they did not cluster

To further evaluate the performance of our structure-based  together using TCRfp, highlighting the method’s ability to prioritize
approach, TCRfp, we compared it with a purely sequence-based  shape and biophysical properties, which the sequence-based
method by applying a BLOSUMS62 similarity score to our validation ~ approach misses. Thus, TCRfp provides valuable insights in cases
set. Briefly, we aligned the sequences of the 6 CDRs loops using  where the sequence-based approach fails.
pairwise alignment and calculated their similarity using the Figure 5B, shows TCRs taken from the validation set, scored
BLOSUMS62 matrix. We used an open gap penalty of -3 and an  according to the TCRfp and sequence-based values of the closest
extension gap penalty of -1 (43). Further details of this sequence- ~ TCRs in the dataset according to each approach used separately.
based approach are provided in the methods section. The  The color coding indicates whether the closest TCR according to
comparison between these two methods is provided in Table 1  each approach is sharing the same specificity. We observed that the
and in Figure 5. majority of the TCRs correctly matched by both approaches are

The sequence-based approach can match correctly TCRs  within the area comprised above a 0.8 TCRfp score and a 0.7
binding identical pMHC in 41.4% of the cases, while the success  sequence-based score. Interestingly, some TCR that show a relative
rate of TCRfp approach is 29.8%. When the length of the CDR3B of  low sequence-based score are correctly paired using TCRfp, as it can
the reference TCR is 13, both approaches work better altogether and ~ be seen below the 0.6 threshold of the sequence-based score. This
individually, with 59.6% of the TCRs properly matched, irrespective  highlights again that our new TCRfp approach can correctly predict
to the threshold (Figure 5A). Importantly, we observed that 26.1%  the specificity in some cases where the sequence-based approach
of the TCRs were correctly matched by both approaches, 15.2% only ~ would fail. All the data used to construct the Figure 5 can be found
by the sequence-based approach and 3.4% exclusively by TCRfp. in the Supplementary Table 8.

We analyzed the cases where TCRfp accurately identified TCRs The 30 most frequent peptides in the validation set are described
with the same specificity while the sequence-based approach did not.  and their respective frequency in the validation set is also presented in
Clearly, the sequence-based method struggles when there are  the Supplementary Table 9. We observe that GILGFVFTL is the most
sequence discrepancies. For example, consider 10X ID 00018  frequent peptide in the validation set, representing 14.6% of the
(composed of the genes TRAV12-2, TRAJ45, TRBV28, TRBJ1-5,  TCRs. This is also largely the most frequent peptide in the subset
CDR3a: CAGGGGGADGLTF, and CDR3b: CASTLTGLGQPQHF).  of TCRs correctly predicted by both approaches, with 34.6% of the
TCRfp paired it correctly at rank 1 with 10X ID 00017 (composed of ~ TCRs correctly paired by both approaches recognizing this peptide.
the genes TRAV12-2, TRAJ42, TRBV28, TRBJ2-3, CDR3a: Interestingly, we observe that TCRs recognizing RLRAEAQVK are
CAVTHYGGSQGNLI and CDR3b: CASLRSAVWADTQYF), both  never correctly paired when using the sequence-based score
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FIGURE 5

(A) Success of the sequence-based approach and TCRfp for pairing two TCRs of the same specificity at Rank 1. The % of TCRs successfully paired by
both approaches in blue, only by the sequence-based approach in green and only by TCRfp in red. The % of TCRs not paired, whatever the
approach, is in grey. (B) Relationship between the TCRfp and the sequence-based obtained for each possible TCR, used as a reference, and its
closest TCR according to each method, taken from the external validation set. The sequence-based score is normalized for an easier comparison.
Each dot represents a TCR according to the similarity of its closest TCR obtained with the TCRfp placed in the X axis and the sequence similarity of
its closest TCR according to the sequence-based score placed in the Y axis. The coloring system represents the capacity of an approach to predict if
the closest TCR according to it is sharing the same specificity. Blue: no approach could predict correctly the correct specificity, Orange: only the
sequence-based approach made the correct prediction, Red: only TCRfp made the correct prediction, Green: both approaches made the correct
prediction. (C) Receiver Operating Characteristic curves (ROC) for the validation set of 3213 TCRs computed using TCRfp, the sequence-based
approach (blosum) and a combination of both approaches via a logistic regression. All the possible TCR pairs distances considered 3213*3213.

(D) Receiver Operating Characteristic curves (ROC) for the validation set of 3213 TCRs computed using TCRfp, the sequence-based approach
(blosum) and a combination of both approaches via a logistic regression (LR). For each given TCR just the TCR with highest similarity was considered
and therefore 3213 data points.
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TABLE 2 Comparison of the success rate in paring a TCR with another one showing the same specificity, using different approaches applied to a
private set of TCRs.

Method
Seggfgge' TCRgBDiSt' TCRdist3 TCRbase
Rank 1 22.2 46.7 48.9 444 46.7 444
Rank 2 35.6 60.0 62.2 64.4 62.2 46.7
Rank 5 57.8 75.6 73.3 75.6 71.1 -

We compared the TCRfp approach with the sequence-based approach, the logistic regression (LR) that combines both of them and TCRpcDist-3D, TCRdist3 and TCRbase. This comparison was

done for the different ranks 1, 2 and 5.

indicating that shape has, more than a sequence, an effect in the
recognition of the peptide (data shown in the Supplementary
Table 9). Interesting too is the fact that TCRs recognizing
AVFDRKSDAK were never correctly paired by both approaches at
the same time and are more frequent in the subset of TCRs correctly
paired by the TCRfp (11.9% for TCRfp-uniq and 3.7% for SeqBased-
uniq). The comparisons presented in the Figure 5B allowed us to
understand peptides where shape-based approaches can be extremely
relevant to find the TCR specificity.

On this validation set, the sequence-based approach generally
outperformed TCRfp (Table 1, Figure 5). As anticipated based on the
best predictive performance across different ranks (Table 1), the
sequence-based method achieved a high Area Under the Receiver
Operating Curve (AUC) of 0.70, while TCRfp scored 0.61
(Figure 5C). This may indicate that the biophysical and structural
characteristics of the TCR contribute less to the prediction than the
sequence. Nevertheless, TCRfp performed better than the sequence-
based score in particular cases as discussed upwards and, as for
example, for pairing TCRs that recognize the RLRAEAQVK peptide
(data shown in the Supplementary Table 9). To leverage the strengths
of both methods, we combined the sequence-based score with TCRfp
via a logistic regression (LR, see methods section 3.8). This
combination resulted in an AUC of 0.70 and an example of its
application on a private test set is shown in the next section,
highlighting an increase predicting specificities. As previously
mentioned, our analysis include predictive ability based on ranks
and thresholds, as this closely mirrors the approach we plan to use in
real-world applications (Table 1). For instance, when assessing the
specificity of an orphan TCR, we will compare it against a list of TCRs
with known specificity, identifying the closest matches. Only the most
similar (top-ranked) TCRs with high similarity will be considered.
We believe that Table 1 provides a clearer description of this process
than the ROC curves. Concomitantly, if instead of using all the
3213*3213 TCR pairs we only use for each given TCR, the TCR
excluding itself with highest similarity, corresponding to rank 1 and
therefore 3213 data points, we obtain an AUC of 0.84 for TCRfp and
0.85 for blosum and 0.87 for LR (Figure 5D).

Example of TCRfp application
To assess the usefulness of TCRfp in processing clinical data, we

applied it to a private set of 45 TCRs. This ensured a fair
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comparison, as this set of TCRs with known specificities was not
used by us or by our competitors to develop the approaches. On top
of comparing TCRfp with a purely sequence-based approach and
with a logistic regression that combines TCRfp and the sequence-
based we have also compared with the gold standard approaches
TCRpcDist-3D (30), TCRdist3 (44) and TCRbase (web server:
https://services.healthtech.dtu.dk/services/TCRbase-1.0/).

The results can be seen in the Table 2.

When tested on a private dataset (not included in any of the
training of the used approaches) and integrated with a basic
sequence-based method via logistic regression, TCRfp
outperformed the competitors in predicting TCR specificity at
rank 1. TCRfp, however, alone was shown as the least performant
approach. ROC curves are also provided for all the approaches
(Figure 6) except for TCRbase as we could not calculate all the
45*45 TCR distances (see Methods). The average AUC values were
calculated after 5 cross-validations randomly taking 70% of the
private TCRs as a test set and 30% as validation set. The average
AUC values in % are for TCRfp, Blosum, LR, TCRpcDist-3D and
TCRdist3 respectively 57+/-3, 65+/-2, 65+/-2, 67+/-1, 66+/-2. The
classification reports with precision, recall and fl score in
Supporting Information.

Al-based modeling does not enhance the
TCRfp predictive ability

We compared the predictive performance of TCRfp pipeline
using TCRmodel as a structural modelling engine, with an
alternative TCRfp pipeline using an Al-based modelling
approach. For the Al-based modelling approach, we used
ImmuneBuilder (TCRBuilder2). The seminal paper on
ImmuneBuilder shows that it can produce TCR structures with
accuracy comparable to AlphaFold-Multimer, while being over a
hundred times faster and without needing large sequence databases
or multiple sequence alignments (51). We were unable to model 510
TCRs from the validation set using TCRBuilder2, which is why we
are discussing the results for a set of 2703 TCRs in Table 3. See
Supporting Information labeled DataSheet 1 for details about the
structures that were not modelled. When comparing the set of 2703
TCRs, we found that, although we cannot be certain of the exact
structure due to the absence of experimental data, the RMSD for
each loop averaged within 2A when comparing TCRmodel within
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FIGURE 6

Receiver Operating Characteristic curves (ROC) for the private set 45 TCRs computed with the TCRfp approach the sequence-based approach, the
logistic regression (LR) that combines both of them and the state-of-the art competitors TCRpcDist-3D and TCRdist3.

our pipeline and TCRBuilder2, suggesting that the models from
both are not particularly different.

When compared the predictive ability of TCRfp pipeline using
TCRmodel versus using the Al-based approach, Table 3, we observe
the following:

* For the validation set of 2’703 TCRs (out of the original
3°213), the TCRfp pipeline using TCRmodel identified a
TCR pair sharing the same specificity at rank 1 in 32.3% of
cases, while the Al-based TCRfp pipeline found such a pair
at rank 1 in 29.9% of cases.

» Looking at the top 2 ranked TCRs, the TCRfp pipeline using
TCRmodel identified a TCR sharing the same specificity in
45.7% of cases, while the Al-based pipeline yielded a slightly
lower value of 44.5%.

When it comes to TCR specificity prediction, the TCRmodel
approach appears to be more effective for this set of structures. We
note that the TCRmodel pipeline involves multiple attempts and
stringent distance filters, which were developed in-house to
improve accuracy. We believe the Electroshape method

compresses 3D information to such a degree that further
advancements in modeling may not substantially enhance the
overall predictions. Nonetheless, we will continue to monitor
developments in AI technologies and reassess their potential
integration into the TCRfp pipeline.

Discussion

This work introduced a new structural approach for TCR
pairing and clustering based on ES5D fingerprints, called TCRfp,
which involves the encoding of a 3D structure into a 1D vector.
Although this unique approach was initially developed for small
molecules, we hereby successfully applied the ES5D FPs on a
substantial set of highly diverse TCRs. This novel approach has
demonstrated the possibility of rapidly pairing TCRs in a way that
correlates with their antigen specificity, underlining the importance
of TCRs structural features for understanding their binding
properties beyond purely sequence information. Importantly,
while TCRfp proved competitive, the present study represents
only a first exploration of the potential of structure-based TCR

TABLE 3 Comparing the predictive ability of TCRfp pipeline using TCRmodel versus using TCRBuilder2. .

. Correctly Correctly Correctly %TCRs
Ve vaesne) | ek paired TCRs Rl e paired TCRs RIS paired TCRs clustered
TCRfp -

TCRmodel in FP No threshold | 32.3 872 374 1012 457 1235 2703 100%
pipeline

TCRip - Al No threshold | 29.9 809 34.9 944 445 1203 2703 100%
modeling
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fingerprinting approaches in this context. These approaches offer
many possibilities of improvement and adaptation.

Here, we applied the TCRmodel approach to model thousands
of TCR sequences obtained from 10xGenomics (52). By subjecting
the approach to a larger number of sequences and a more diverse
range of TCRs than in the original publication, we observed that
modeling certain TCRs could prove challenging. This difficulty
arises from the high flexibility of the CDR loops coupled with the
limited number of templates available for reference. To improve
modelling accuracy, we have developed a pipeline that is able to
improve the quality of the TCR models and discard the bad models.
We successfully modelled 82% of the class I TCR repertoire in
10xGenomics which is already a substantial TCR coverage for
applications like vaccination and immunotherapy, where the goal
is to pinpoint some strong candidates and not to comprehensively
study the entire repertoire.

We also explored the possibility to provide a single generalized
definition of the FP to improve the efficiency of the calculations
using genetic algorithms. Genetic algorithms were applied over
different training sets, using a similarity-based score (GA MATCH)
or a distance-based score (GA MaxD). For both methods, the
parameters were modified and tuned over different trials resulting
in a better overall score and predictive ability for TCRfp optimized
by the MATCH objective function, although it was built using a
smaller training set, which could have led to overfitting. Of note, the
approach using the original definition of the TCRfp based on
centroids positioned on the tip of the loop, performed better than
the GA-improved centroid definitions. Clearly, adapting the
position of the centroid to each TCR proved more accurate to
cluster TCRs in a way it that matches their specificity.

We also demonstrated that TCRfp is able to correctly pair TCRs
which are not correctly matched with a sequence-based approach.
The fact that our approach can predict TCR specificity when the
sequence information is not sufficient, underlines the importance of
the structure and biophyshicochemical properties of TCR loops for
the TCR-pMHC interaction and TCR specificity determination.

We additionally explored the ability of combining TCRfp with a
sequence-based score using logistic regression. We found that the
combined approach increased the accuracy of TCR specificity
prediction. The logistic regression weights give a higher
contribution to the sequence based term, in line with the fact that
the biophysical and structural characteristics of the TCRs contribute
less to the prediction than the sequence. Still, the enhanced predictive
power of the combined approach is in line with the importance of
incorporating TCR structural parameters, as well as charges and
lipophilicity information, in peptide specificity prediction. When
applying the approach to an experimental dataset not used for the
training, we observed an improvement in the performance of the
logistic regression compared over the sequence-only approach for
rankl and rank2. We thus demonstrated the ability of TCRfp to
complement a sequence-based approach and provides additional
meaningful information not encoded in sequence-based algorithms.
While a combined approach using TCRfp and a pure sequence-based
method shows potential, it is still in an early stage and requires
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further investigation. Therefore, we are providing access to TCRfp as
a standalone tool. This allows users to analyze TCR distances based
on the biophysicochemical properties of the 3D structure and to
integrate TCRfp with the sequence-based methods of their choice
as needed.

Finally, switching from TCRmodel to the AI modeling
approach TCRBuilder2 did not improve the predictive ability of
TCRfp. We believe that the Electroshape method compresses 3D
data to such an extent that further improvements in modeling may
not lead to significant gains in overall predictions. However, we will
continue to monitor advancements in AI technologies and reassess
their potential integration into the TCRfp pipeline. Additionally,
incorporating a faster approach would certainly be beneficial for the
TCRfp approach.

This work demonstrates the feasibility of rapid structure-based
approach for TCR repertoire analysis, TCR clustering and
potentially TCR specificity prediction, with possible clinical
applications. TCRfp thus introduces a new class of approaches for
TCR pairing and clustering that can shed some light on the complex
structural mechanism underlying TCR-pMHC recognition.
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