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Laryngeal cancer remains a formidable clinical challenge, with growing evidence

that vitamin D3 acts as a potential therapeutic modulator. However, its precise

role is complex, largely due to poor understanding of themechanisms underlying

its variable efficacy. This review synthesizes current knowledge to establish a

comprehensive framework for vitamin D3’s dichotomous role in laryngeal

carcinogenesis. First, we clarify its two distinct mechanisms of action: (i)

directly inhibiting laryngeal cancer cell proliferation and survival via the

canonical vitamin D receptor (VDR) axis—triggering G0/G1 cell cycle arrest,

inducing apoptosis, and reversing epithelial-mesenchymal transition (EMT); (ii)

indirectly exerting anti-tumor effects by reprogramming the tumor immune

microenvironment, including enhancing cytotoxicity of CD8+ T and natural

killer (NK) cells, promoting dendritic cell maturation, and suppressing key

inflammatory pathways such as the COX-2/PGE2 axis. Subsequently, we

propose that the net effect of vitamin D3 signaling is context-dependent and

double-edged, determined mainly by host-intrinsic and viral factors—most

notably estrogen receptor a (ERa66) expression. Specifically, vitamin D3-

related products promote cell growth in ERa66-positive laryngeal cancer cell

lines, but suppress growth in ERa66-negative lines, thereby aiding cancer

therapy. This integration provides a nuanced paradigm, highlighting the need

for biomarker-driven patient stratification to harness vitamin D3’s therapeutic

potential in laryngeal cancer.
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1 Introduction

Head and neck malignancies rank seventh among the most

prevalent cancers worldwide, with laryngeal carcinoma accounting

for approximately one-fifth of these cases (1). Laryngeal cancer is a

malignant neoplasm originating from laryngeal tissues and

constitutes a major global health burden (2). According to 2022

data released by the World Health Organization, there were an

estimated 188960 new cases of laryngeal cancer globally, resulting in

approximately 103216 deaths. Both incidence and mortality display

pronounced sex disparities. Epidemiological studies indicate a

male-to-female incidence ratio of roughly 4:1. In certain regions,

the incidence among men is markedly higher, with population-

based surveys reporting ratios approaching 10:1 (3). A similar trend

is observed in mortality, with more men than women succumbing

to laryngeal cancer, likely attributable to differences in lifestyle

factors and biological characteristics between sexes (3). Laryngeal

cancer can be classified according to anatomical location and

histological features. Anatomically, it is divided into three main

types: supraglottic carcinoma, glottic carcinoma, and subglottic

carcinoma (4). Histologically, most laryngeal cancers are

identified as squamous cell carcinomas originating from the

laryngeal squamous epithelium (5). Less common histological

variants include adenocarcinomas (originating from glandular

cells) and sarcomas (originating in connective tissues, including

muscle and cartilage) (5). Vitamin D encompasses several fat-

soluble compounds that are essential micronutrients required for

maintaining human health. It comprises vitamin D2 and vitamin

D3; the former is predominantly sourced from plants following

ultraviolet activation, while the latter is chiefly acquired from

animal products or produced endogenously in the skin in

response to ultraviolet radiation. The present article centers on

the function of vitamin D3 (6). Vitamin D3 itself is inactive and

requires sequential hydroxylation to generate active metabolites.

Specifically, upon entering the circulation, vitamin D3 associates

with vitamin D-binding protein (DBP), facilitating its transport to

the liver (7). Within the liver, vitamin D3 undergoes hydroxylation

by 25-hydroxylase (encoded by CYP2R1), resulting in the

formation of 25-hydroxyvitamin D3, the main storage form.

Following hepatic conversion, the 25-(OH)D3-DBP complex is

transported to renal tissue, where CYP27B1-encoded 1a-
hydroxylase catalyzes the final hydroxylation step, producing the

biologically active hormone 1,25-dihydroxyvitamin D3. While

another enzyme in the kidney, 24-hydroxylase (encoded by the

gene CYP24A1), can hydroxylate it into 24R,25-(OH)2D3(an active

native conformer of 24,25-(OH)2D3). After exerting its biological

effects in cells and tissues, 1,25-(OH)2D3 is further hydroxylated by

24-hydroxylase (encoded by CYP24A1) into inactive 1,24,25-

trihydroxyvitamin D3 (1,24,25-(OH)3D3) in liver prior to

excretion; this constitutes the classical pathway of vitamin D3

metabolism (8–10). However, accumulating evidence indicates

that vitamin D3 can also be synthesized locally via paracrine

pathways. Dendritic cells and macrophages secrete 1,25-(OH)2D3

to suppress excessive immunity or modulate cell differentiation

(11). In the cutaneous microenvironment, keratinocytes together
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with skin-resident immune populations locally synthesize 1,25-

dihydroxyvitamin D3, thereby orchestrating epidermal turnover,

lineage-specific differentiation, inflammatory tone, and tissue repair

after injury (12). Tissues including breast, prostate, pancreas, and

larynx possess local vitamin D3-converting capacity, potentially

participating in cell proliferation control and tissue homeostasis

(13–17). Moreover, whereas 24R,25-(OH)2D3 was traditionally

considered metabolically inert (18), recent studies reveal its

biological activity in laryngeal cancer cells, modulating cell-cycle

progression (19). Clinical evidence demonstrates that reduced

vitamin D3 levels correlate significantly with poor survival in

advanced laryngeal cancer patients undergoing total laryngectomy

(20, 21), suggesting an important role of vitamin D3 in laryngeal

cancer pathogenesis and therapy. “Vitamin D3 axis” in the title

refers to the entire pathway, encompassing the dietary intake and

endogenous synthesis of vitamin D3, its metabolic activation into

25-hydroxyvitamin D3 and the hormonal form 1,25-

dihydroxyvitamin D3, VDR, and the subsequent downstream

genomic and non-genomic signaling events. As an essential fat-

soluble vitamin, vitamin D3 participates in laryngeal cancer

pathophysiology via two primary mechanisms: First, direct

regulation of tumor cell biology, and second, modulation of the

host immune microenvironment (22). For the former, we focus on

cell-cycle control and other cancer-cell-intrinsic mechanisms; for

the latter, on immune-cell modulation and key immunoregulatory

molecules. We also highlight estrogenic influences, as the hormone-

sensitivity status of laryngeal cancer remains unresolved.

Additionally, whether laryngeal cancer is hormone-sensitive

remains debated. Although traditional views attribute sex

disparities in incidence mainly to differential smoking rates,

emerging evidence implicates estrogen signaling (23). Notably,

when laryngeal cancer cells express estrogen receptors, estrogen

may interfere with vitamin D3 bioactivity and modulate

the paracrine processes of vitamin D3-active metabolites within

the tumor microenvironment (24, 25). This underexplored crosstalk

is clinically significant for understanding sex-based differences

in laryngea l cancer and for deve loping sex-spec ific

therapeutic strategies.
2 Vitamin D3 regulates laryngeal
cancer cell growth and migration

2.1 Vitamin D3 influences the laryngeal
cancer cell cycle

The biologically active form of D3(1,25-(OH)2D3)binds to the

VDR and arrests cells in the G0/G1 phase, thereby inhibiting

proliferation and inducing differentiation in various malignancies,

such as cell lines of head and neck squamous cell carcinoma

(SCCHN) (26). Specifically, it markedly induces expression of the

cell-cycle inhibitors p21 and p27; p21 and p27 bind and inhibit

CDK2–cyclin E and CDK2–cyclin A complexes, preventing

pho spho r y l a t i on o f r e t i nob l a s t oma p r o t e i n (Rb ) .

Hypophosphorylated Rb sequesters the transcription factor E2F,
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suppressing expression of S-phase genes (e.g., those required for

DNA replication) and blocking G1-to-S transition, thus arresting

cells in G0/G1 (27–30). 1,25-(OH)2D3 also promotes p38

phosphorylation to its active form; activated p38 indirectly

controls the cell cycle by inducing p21 expression (31).

Furthermore, the vitamin D3 analogue EB1089 up-regulates p57

expression and synergizes with p21 and other cell-cycle inhibitors to

induce G1 arrest and inhibit cancer cell proliferation (32). Vitamin

D3 arrests the laryngeal cancer cell cycle as a cornerstone of its

antiproliferative effect, yet concurrently targets multiple signaling

axes and phenotypic plasticity to orchestrate a multi-dimensional

suppression of tumor cell behavior.
2.2 Additional regulatory mechanisms

Treatment with 1,25-(OH)2D3 exerts a significant inhibitory

effect on the IL-6–JAK–STAT3 signaling pathway in cancer cells

(33). Although direct studies in laryngeal cancer are lacking,

existing evidence suggests that: VDR is expressed in laryngeal

cancer cells and influences tumorigenesis and prognosis (21).

VDR protein binds the Jak2 promoter, transcriptionally down-

regulating Jak2 expression (34). When 1,25-(OH)2D3 binds, the

VDR–RXR heterodimer can competitively bind the dimerization

domain of STAT3, preventing formation of functional p-STAT3

dimers. The VDR–RXR dimer can also occupy NF-kB binding sites

within the IL-6 promoter to inhibit NF-kB-mediated

transcriptional activation of IL-6 (35). At appropriate

concentrations, 1,25-(OH)2D3 time- and dose-dependently

inhibits the PI3K/AKT/Bcl-2 pathway, inducing apoptosis in

Hep-2 laryngeal carcinoma cells (36). Epithelial–mesenchymal

transition (EMT) denotes a dynamic process whereby epithelial

cells lose epithelial characteristics and acquire mesenchymal

phenotypes, thereby enhancing migratory and invasive capacities.

In vitro knockdown of Snail inhibits EMT in LSCC cells via the

VDR signaling pathway (37, 38). Snail directly binds three E-boxes

within the promoter of the epithelial marker E-cadherin, repressing

its expression while up-regulating mesenchymal markers such as

matrix metalloproteinases (MMP)-2 and MMP-9, disrupting

epithelial cell–cell contacts and conferring increased motility,

thereby facilitating invasion and metastasis (37, 39). As the tumor

microenvironment concept matures, peritumoral cells gain

prominence, and vitamin D3’s modulation of these bystanders in

laryngeal cancer is equally pivotal.
3 Vitamin D3 modulates the laryngeal
cancer immune microenvironment

3.1 Vitamin D3 enhances immune cell
infiltration and differentiation

Vitamin D3 promotes infiltration of CD3+, CD8+, and NKR-

P1C+ immune cells within the tumor microenvironment, reduces

M2 macrophages and regulatory T cells (Tregs), and thus impedes
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tumor immune escape (33, 40). An elevated count of

immunosuppressive CD34+ progenitor cells is detected in both

peripheral blood and tumor tissues. Tumor-derived granulocyte-

macrophage colony-stimulating factor (GM-CSF) induces

expansion of these CD34+ cells, and tumor-secreted vascular

endothelial growth factor (VEGF) chemoattracts them to the

tumor site (41). These CD34+ cells suppress autologous T-cell

function; removal of CD34+ cells markedly enhances IFN-g
production by T cells stimulated with anti-CD3 antibody and

low-dose IL-2 (41, 42). Treatment with 1,25-(OH)2D3 decreases

intratumoral CD34+ progenitor cells in HNSCC patients, promotes

their differentiation into dendritic cells, and increases intratumoral

T-cell infiltration (43, 44), supporting further investigation of 1,25-

(OH)2D3-mediated immunomodulation within the tumor

microenvironment (42, 44, 45). 25-(OH)D3 elevates HLA-DR

expression and increases plasma IL-12 and IFN-g levels while

improving T-cell proliferative responses. 1,25-(OH)2D3 induces

expression of the pattern-recognition receptor CD14 gene in

epithelial cells (46) and drives the monocytic cell line HL60

toward monocyte or macrophage differentiation. The T1/ST2

protein (IL-1 receptor family member) gene is also strongly

induced; murine knockout studies demonstrate that T1/ST2

signaling is essential for Th2 differentiation (46). 1,25-(OH)2D3

increases CD4+ and CD8+ T-cell levels and augments intratumoral

populations expressing the early activation marker CD69.

Additionally, 1,25-(OH)2D3 reduces tumor angiogenesis, thereby

inhibiting tumor progression and metastasis (Figure 1). Next, we

dissect at the molecular level how vitamin D3 precisely reprograms

immune microenvironmental cells: (i) by modulating cyclo-

oxygenase-2 activity and (ii) by reshaping the expression and

secretion of key inflammatory mediators.
3.2 COX-2 plays a pivotal role in the
immune response modulated by vitamin D3

Cyclo-oxygenase-2 (COX-2) is an enzyme closely linked to

immune responses. Its catalytic product PGE2 drives a shift of

helper T cells from Th1 to Th2; imbalance of Th1/Th2 ratios causes

immune dysregulation. PGE2 also polarizes macrophages from M1

to M2 phenotype; M2 macrophages possess immunosuppressive

properties, secreting IL-10 and TGF-b to inhibit antitumor

immunity. Furthermore, PGE2 induces development of Tregs,

Th17 cells, and myeloid-derived suppressor cells (MDSCs) while

suppressing dendritic and NK cell functions, thereby fostering a

tumor-permissive immune milieu (40, 47, 48). 1,25-(OH)2D3 alone

down-regulates overexpressed COX-2 in both tumor and immune

cells, reducing production of inflammatory mediators such as

p r o s t a g l a nd i n E 2 (PGE 2 ) and t h e r e by a l l e v i a t i n g

immunosuppression and inflammation (1). However, when

combined with the commonly used chemotherapeutic agent

cisplatin, vitamin D3 up-regulates COX-2 expression within the

laryngeal mucosal epithelial stroma, potentially exacerbating

mucosal injury and inflammation (49) (Figure 1).
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3.3 Vitamin D3 modulates tumor
microenvironment via pro-inflammatory
cytokines

While delineating vitamin D3 mechanisms, we interrogate the

determinants of its efficacy. Beyond smoking and HPV, we focus on

sex steroids—an emerging but understudied modulator of laryngeal

cancer outcome. As stated previously, IL-6 activates the IL-6–JAK–

STAT3 pathway to promote tumor growth. 1,25-(OH)2D3

downregulates pro-inflammatory cytokines (IL-6, IL-17, TNF-a)
and the immunosuppressive cytokine IL-1, thereby mitigating

c a n c e r - a s s o c i a t e d c h r o n i c i n fl amma t i o n . A s a n

immunosuppressive cytokine, IL-10 limits T-cell activation via

suppression of dendritic cell maturation and antigen presentation

(50, 51). 1,25-(OH)2D3 increases HLA-DR expression, elevates

plasma IL-12 and IFN-g levels, and enhances T-cell proliferation

(45). Within the tumor milieu, Th17 (CD4+) cells exhibit pro-

inflammatory and pro-angiogenic properties and can differentiate

into immunosuppressive Tregs (52). Th17 cells exert their effects

primarily via IL-17 production, and 1,25-(OH)2D3 reduces IL-17

levels, thereby attenuating Th17-mediated disease progression (51).

Additionally, studies reveal discordant cytokine responses to 1,25-
Frontiers in Immunology 04
(OH)2D3 between tumor tissue and peripheral blood; plasma

cytokine profiles may not accurately reflect intratumoral immune

status (53) (Figure 1).
4 Estrogen is a critical regulator of
vitamin D3 actions on tumor and
immune cells

The vitamin D3 derivative 24R,25-dihydroxyvitamin D3 exerts

cell-type-specific effects on laryngeal carcinoma cells, which are

modulated by the status of the estrogen receptor a66 (ERa66).
24R,25-dihydroxyvitamin D3, when acting on human head and

neck squamous cell carcinoma cell line with estrogen receptor a66
negativity (UM-SCC-11A cells), suppresses proliferation,

upregulates apoptosis-related markers (TUNEL positivity, p53

expression, and BAX/BCL2 ratio), and downregulates metastasis-

associated markers, with these effects collectively reflecting its

tumor-suppressive capacity (17). Conversely, in human head and

neck squamous cell carcinoma cell line with estrogen receptor a66
positivity (UM-SCC-12 cells), 24R,25-(OH)2D3 promotes

multiplication, reduces DNA fragmentation (TUNEL-negative),
FIGURE 1

The multifaceted effects of vitamin D3 on the cells, molecules, and immune microenvironment.
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and increases total p53, reflecting tumor promotion (19). Previous

research has established that laryngeal cancer cells exhibit

individual differences in their responsiveness to vitamin D3

supplementation, with recent investigations identifying ERa66
expression as a key determinant of this variability. Laryngeal

cancer cells possess the capacity for local vitamin D3 metabolism,

a process that in turn modulates cellular fate and shapes the tumor

microenvironment. Estrogen modulates expression of vitamin D3

hydroxylases (25), and laryngeal cancer cells possess the capacity to

synthesize estrogen, exerting autocrine and paracrine effects (23).

Hydroxylases CYP27B1 and CYP24A1 are critical enzymes in

vitamin D3 metabolism: CYP27B1 converts 25-(OH)D3 to 1,25-

(OH)2D3, whereas CYP24A1 hydroxylates 25-(OH)D3 to 24R,25-

(OH)2D3 and further converts 1,25-(OH)2D3 to 1,24,25-(OH)3D3

(24). Both enzymes are expressed in laryngeal cancer cells; ERa66
exerts an inhibitory effect on these activities, resulting in decreased

biosynthesis of active 1,25-(OH)2D3 and 24R,25-(OH)2D3 in UM-

SCC-12 cells relative to UM-SCC-11A cells; this, in turn, impacts

tumor progression and immune cell functionality within the

microenvironment. Investigations have demonstrated that

24R,25-(OH)2D3 exerts its effects through the phospholipase D

(PLD), caveolae, and palmitoylation pathways. For example,

24R,25-(OH)2D3 increases PLD activity in UM-SCC-12 cells but

decreases it in UM-SCC-11A cells; inhibiting PLD activity or

palmitoylation, or silencing caveolin-1 expression, alters p53

levels. p53 is a key cell-cycle checkpoint molecule, and these

perturbations modulate tumor behavior—for instance, promoting

p21 expression and G1/G2 arrest in UM-SCC-11A cells (54). In

UM-SCC-12 cells, 24R,25-(OH)2D3 docks with a membrane

complex composed of TLCD3B2, VDR and protein disulfide-

isomerase A3 (PDIA3); this interaction is palmitoylation-

dependent and requires coordinated PLD–PI3K–LPAR activity. In

contrast, UM-SCC-11A cells utilize a VDR–PDIA3–ROR2 complex

that triggers endosomal signaling cascades, the molecular details of

which remain undefined (55). Additionally, estrogen via ERa66
modulates paracrine effects of vitamin D3 and its metabolites,

influencing immune cell infiltration and differentiation within the

tumor microenvironment. The paracrine effects of vitamin D3 and

its active metabolites on cells modulate immune cell infiltration and

differentiation within the tumor microenvironment. Specifically,

active vitamin D3 secreted into the tumor milieu downregulates

MHC class II molecules on dendritic cells (DCs), thereby

attenuating their antigen-presenting capacity. Additionally, active

vitamin D3 or its analogs suppress DC-derived cytokine production,

particularly interleukin (IL)-12—which directs helper T-cell

differentiation toward the Th1 phenotype—and IL-23, which

promotes Th17 differentiation (56). In macrophages, active

vitamin D3 primarily regulates polarization, shifting macrophages

from the M2 to the M1 phenotype, as evidenced by upregulated

M1 markers CD11c and concomitant suppression of M2 markers

CD16 (40) (Figure 2).

Research directly investigating the role of 24R,25-(OH)2D3

in laryngeal cancer is limited. Therefore, its potential molecular
Frontiers in Immunology 05
mechanisms in laryngeal cancer cells and their associated

immune cells are largely extrapolated from studies in other cell

types, such as osteoblasts. The proposed mechanism via the

canonical VDR-dependent pathway is as follows: Upon cellular

entry, 24R,25-(OH)2D3 first binds to the Vitamin D Receptor

(VDR), forming a 24R,25-(OH)2D3-VDR complex (57).

Subsequently, this complex must assemble with the Retinoid X

Receptor (RXR) to form a heterodimer, a critical structural step

for initiating downstream transcriptional regulation (57). The

24R,25-(OH)2D3-VDR-RXR heterodimer then targets and binds

to Vitamin D Response Elements (VDREs) located in the

promoter regions of target genes (58). However, due to its

relatively weak binding affinity, this process often requires the

assistance of Nuclear Auxiliary Factors (NAFs) to enhance

binding efficiency. Ultimately, the heterodimer, once bound to

the VDRE, modulates the transcriptional activity of target genes

by recruiting co-activator or co-repressor complexes. This, in

turn, influences the expression of downstream genes, thereby

regulating biological functions such as cell proliferation,

differentiation, and immune modulation (59). The mechanisms

of action for 24R,25-(OH)2D3 also encompass a VDR-

independent pathway. For instance, 24R,25-(OH)2D3 can bind

to the cell membrane of chondrocytes, leading to the activation

of Protein Kinase C (PKC). This subsequently influences the

Mitogen-Activated Protein Kinase (MAPK) pathway, ultimately

resulting in new gene expression through a process independent

of VDR (60). Furthermore, the specific molecular interplay

between VDR and the Estrogen Receptor (ER) is a key area of

investigation. Insights can be drawn from breast cancer, another

hormone-dependent malignancy analogous to laryngeal cancer.

In breast cancer cells, Estrogen-Related Receptor alpha (ERRa)
regulates gene expression and transcription through two

primary mechanisms. First, ERRa can directly bind to the

promoters of the CYP24A1, ERa, and aromatase (CYP19A1)

genes, or recruit co-activators like p300 to alter chromatin

conformation (61, 62). These actions respectively promote: the

degradation of active vitamin D by CYP24A1, thereby

interfering with calcitriol-VDR transcription, the enhancement

of estrogen signaling by ERa, and the elevation of local estrogen

levels by aromatase—all of which favor cancer cell growth.

Second, the Ligand-Binding Domain (LBD) of ERRa binds to

the LxxLL/LLxxL motifs of PGC-1a (63, 64). This complex then

recruits the CBC and Mediator complexes via the CBM and RS

domains of PGC-1a. Subsequently, it assembles with VDR to

form a larger transcriptional complex. Upon binding to the

target gene’s VDRE, this complex efficiently promotes target

gene expression by recruiting RNA Polymerase II, facilitating

transcriptional elongation, and preventing premature

termination, thereby influencing cancer cell behavior (65).

However, it is crucial to note that these molecular mechanisms

cannot be directly extrapolated from breast cancer to laryngeal

cancer, as the two malignancies exhibit distinct and sometimes

contradictory experimental and clinical manifestations.
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5 Discussion

Vitamin D3 orchestrates a complex regulatory network in

laryngeal cancer init iation, progression, and immune

microenvironmental remodeling. This study systematically

delineates its dual-pathway impact: (i) via the canonical vitamin

D receptor axis, directly modulating tumor cell biology, including

p21/p27/p57-dependent G0/G1 arrest (27–30, 32), PI3K/AKT/Bcl-2

inhibition-mediated apoptosis (36), and Snail down-regulation-

reversed EMT (37, 39); and (ii) by reshaping the immune

microenvironment, it exerts anti-tumor effects through reducing

CD34+ immunosuppressive progenitor infiltration and promoting

their differentiation into dendritic cells (42–44), enhancing CD8+ T-

cell and NK-cell activity (33, 45), and suppressing the COX-2/PGE2
pathway and pro-inflammatory cytokines IL-6/IL-17/TNF-a (33,

47, 51). Notably, these regulatory effects are constrained by a triad
Frontiers in Immunology 06
of factors, namely ERa66 status, HPV infection, and VDR/

CYP24A1 polymorphisms (17, 19, 21, 33), constituting the

molecular basis for heterogeneous therapeutic responsiveness.

ERa66, a key mediator of sexual dimorphism in laryngeal cancer,

plays a critical role in regulating vitamin D3 metabolism and its

biological functions. Specifically, in ERa66-negative cells (UM-

SCC-11A), 24R,25-(OH)2D3 inhibits cellular proliferation and

triggers apoptosis through the activation of the p53/p21 pathway

(17, 19), whereas in ERa66-positive cells (UM-SCC-12), the same

metabolite promotes tumor progression (19). This paradoxical

effect arises from ERa66-mediated suppression of local vitamin

D3 hydroxylases: ERa66 downregulates CYP27B1 and CYP24A1

activities (23–25), diminishing the generation of anti-tumoral 1,25-

(OH)2D3 and disrupting paracrine control of immune cells by

vitamin D3 metabolites (54). These findings offer a mechanistic

explanation for the higher incidence of laryngeal cancer in males
FIGURE 2

(A) Mechanisms of vitamin D3 action in laryngeal cancer cells expressing estrogen receptors. (B) Paracrine vitamin D3 shapes immune cells within the
laryngeal-cancer immune microenvironment.
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and underscore the centrality of estrogen–VDR crosstalk in

microenvironmental remodeling (3, 23). However, direct evidence

demonstrating that estrogen modulates vitamin D3 signaling in

laryngeal cancer remains scarce. Most inferences are extrapolated

from breast-cancer models. More nuanced and context-specific

investigations are therefore urgently required. Furthermore,

smoking, body weight, gender, host genetic polymorphisms, and

HPV status are also recognized as crucial factors influencing the

progression and prognosis of laryngeal cancer (66). A significant

proportion of patients with this malignancy have a history of

smoking (67). Moreover, compared with current smokers, former

smokers exhibit a substantially reduced laryngeal-cancer risk (68).

Studies have indicated that men with lower abdominal adiposity are

at a greater risk of developing laryngeal cancer than females with

higher abdominal adiposity (69). HPV status also dictates

therapeutic responsiveness: 1,25-(OH)2D3 suppresses the MYC

oncogenic program in HPV-positive cells but may activate it in

HPV-negative contexts 1 (33). Associations between VDR/

CYP24A1 polymorphisms and the recurrence risk of glottic

carcinoma further emphasize the need for genotype-guided

therapy (21). Prospective studies further indicate that the

therapeutic and prognostic impact of vitamin D3 in laryngeal

cancer exhibits substantial inter-individual heterogeneity (70).

These factors should serve as stratification criteria. Based on the

foregoing evidence, the following clinically actionable strategies for

laryngeal cancer can be advanced: patients should be pre-stratified

based on ERa66 expression detected via immunohistochemistry:

for ERa66-negative patients, 24R,25-(OH)2D3 should be

administered as adjuvant therapy; for ERa66-positive patients,

vitamin D3 analogs (e.g., EB1089) should be combined with

ERa66 inhibitors. The core goal of these treatment strategies is to

reverse the suppression of CYP27B1/CYP24A1 and thereby restore

the biosynthesis of active metabolites (71). It is possible to combine

vitamin D3 with immune checkpoint inhibitors (ICIs): in resectable

cases, use high-dose 25-(OH)D3 for 2–4 weeks pre-ICI to enhance

CD8+ T-cell infiltration and suppress COX-2/PGE2; for

unresectable patients, further stratify by HPV (prioritizing HPV-

positive cohorts, where 1,25-(OH)2D3 suppresses MYC) to optimize

benefit (72, 73). In the clinical setting, CYP27B1/CYP24A1-targeted

agents may also be considere. Test CYP24A1 inhibitors in patients

with VDR/CYP24A1 polymorphisms, monitoring intratumoral

1,25-(OH)2D3 levels and Ki-67 to validate “metabolite-guided”

dosing (74). Clinical translation of vitamin D3 faces multiple

contradictions. Although low vitamin D3 levels correlate with

poor prognosis (20, 21), several limitations exist. First, combined

use with cisplatin may exacerbate mucositis via COX-2

upregulation (49), necessitating cautious combination strategies.

Second, peripheral vitamin D3 levels and cytokine profiles poorly

mirror the intratumoral immune landscape (53), limiting the utility

of systemic biomarkers. Finally, head and neck cancer patients

frequently exhibit vitamin D3 deficiency, yet supplementation
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strategies must be tailored to ERa66 strata. To date, multiple

clinical studies have confirmed that vitamin D3 can improve the

prognostic survival rate of patients with laryngeal cancer, while

vitamin D3 deficiency is a risk factor for laryngeal cancer

development (75, 76). More targeted clinical studies are needed to

further enrich the evidence base in this field.
6 Conclusion

Vitamin D3 exerts a profound yet dichotomous influence on

laryngeal cancer, acting as a master regulator at the nexus of direct

tumor cell biology and immune microenvironment remodeling. Its

function transcends a simple anti-proliferative role; instead, it

operates as a context-dependent ‘rheostat,’ where its ultimate

anti-tumor efficacy is contingent upon the tumor’s specific

molecular landscape, notably the host’s ERa66 expression. This

understanding necessitates a paradigm shift from a ‘one-size-fits-all’

supplementation strategy towards precision-guided interventions.

Future research must prioritize clinical trials stratified by these

biomarkers to validate therapeutic efficacy. Furthermore, exploring

synergistic combinations of vitamin D3 with immune checkpoint

inhibitors, and developing novel agents targeting key metabolic

enzymes like CYP27B1/CYP24A1 to optimize local active

metabolite concentrations, represent promising avenues.

Integrating these multi-level insights will be pivotal for translating

the complex biology of vitamin D3 into tangible, personalized

therapeutic benefits for patients with laryngeal cancer.
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