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The tumor microenvironment (TME) comprises non-cancerous cells, extracellular
matrix, and signaling molecules that interact with tumor cells. These dynamic
interactions critically influence tumor development, progression, metastasis, and
treatment response. Cancer-associated adipocytes (CAAs), as a main component of
the tumor-adipose microenvironment (TAME), have various functions, including
remodeling the extracellular matrix and interacting with tumor cells or infiltrated
leukocytes through a variety of mutual signals. Dysfunctional adipocytes can release
different metabolic substrates, adipokines and cytokines to affect the activity and
function of immune cells in TME, especially T cells, thus promoting the proliferation,
progression, invasion and migration of cancer cells. In this review, we summarize the
effects of secretions of adipocytes on the activity and function of different types of T
cells in TME, and discuss the possible targets of adipocytes in cancer therapy to
provide new ideas for anti-cancer therapy by targeting adipocytes.
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1 Introduction

The tumor microenvironment (TME), comprising cancer cells, stromal cells, and
extracellular matrix (ECM), significantly influences immune surveillance and response to
anti-cancer therapies (1, 2). Adipocytes are key stromal components within the TME.
Interactions between tumor cells and neighboring adipocytes significantly shape the local
milieu. The TME harbors various stromal cells (fibroblasts, adipocytes, preadipocytes,
endothelial cells) and immune cells (NK cells, macrophages (M1, M2), dendritic cells, T
cells, B cells) (3, 4). Emerging research highlights the complex interplay between adipocytes
and T cells. Adipocyte-derived factors-including metabolic substrates, adipokines, and
cytokines—exert profound effects on T cell activity and function, contributing to cancer
progression (5-7).
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Adipocytes, once viewed merely as energy storage depots, are
now recognized as dynamic regulators within the TME.
Understanding how adipocyte-derived signals modulate immune
cell function, especially T cells, opens avenues for novel therapeutic
strategies. Targeting adipocyte factors that suppress T-cell activity
or promote immunosuppressive phenotypes could restore immune
surveillance and enhance anti-tumor immunity (8, 9).

Within the TME, adipocytes fuel tumor progression by providing
fatty acids (FAs) as an energy source. They also promote metastasis
and invasion, processes involving epithelial-mesenchymal transition
(EMT), ECM remodeling, and colonization. Adipocytes induce EMT
markers and secrete matrix metalloproteinases (MMPs) that degrade
the ECM (10-13). Alarmingly, adipocytes can metabolize anti-cancer
drugs into less active forms, reducing efficacy (14).

T cells, especially CD8" cytotoxic T lymphocytes (CTLs), are
pivotal anti-tumor effectors. CTLs recognize tumor antigens via T-
cell receptor (TCR)-MHC binding, forming an immunological
synapse. They eliminate targets through FAS/FASL engagement and
perforin/granzyme release (15). However, TME immunosuppression,
driven by factors from cancer-associated fibroblasts (CAFs), regulatory
T cells (Tregs), and M2 macrophages, can impair CTL function and
induce exhaustion (16-20). CD4" T cells exhibit diverse functions: Th1
exerts anti-tumor effects while Th2, Th17 (context-dependent), and
Tregs contribute to immunosuppression. Tregs suppress immunity via
CTLA-4/CD80/CD86 binding, IL-2 consumption, inhibitory
cytokines, and direct cytotoxicity (21). Modulating T-cell function is
thus crucial for cancer therapy.

Over the years, significant advancements have been made in
elucidating the intricate relationship between obesity, adipocytes,
and cancer. Elevated levels of adipokines such as estrogens, along
with metabolic substrates including FAs, cholesterols, and
exosomes, are believed to drive cancer progression by impairing T
cell-mediated immune responses within TME. Additionally, related
cytokines such as CCL-2, interleukins (IL), and tumor necrosis
factor-alpha (TNF-a) further contribute to the immunosuppressive
milieu in the TME.

This review consolidates current knowledge on how adipocytes
modulate T cell function and activity, explores underlying
mechanisms, and identifies potential therapeutic targets on
adipocytes for cancer treatment.

2 Adipocytes secrete inflammatory
factors that modify the function and
activity of T cells

2.1 Via metabolic substrates

2.1.1 Via FAs

FAs secreted by adipocytes constitute a significant component
of the lipid-rich TME and play a multifaceted role in modulating T
cell function and anti-tumor immunity. When hungry, adipocytes
break down triglycerides into fatty acids and secrete them (22).
While FAs serve as essential metabolic substrates for T cells, their
abundance in the TME can profoundly influence T cell metabolism
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and effector functions. The increased availability of FAs within the
TME has been associated with alterations in T cell metabolism,
particularly affecting CTLs. Despite their reliance on glycolysis as
the primary metabolic pathway upon activation, CD8" T cells can
catabolize FAs via fatty acid oxidation (FAO). However, the
preferential engagement of FAO over glycolysis in activated CD8"
T cells diminishes their effector function, ultimately impairing their
anti-tumor activity (23, 24). Intriguingly, this metabolic shift
toward FAO prolongs the survival of memory CD8" T cells,
underscoring the intricate balance between fatty acid metabolism
and T cell fate determination (25, 26).

Recent studies have provided compelling evidence linking
dysregulated lipid metabolism in adipocyte-rich environments, such as
obesity, to the promotion of T cell dysfunction and tumor progression.
Specifically, the upregulation of carnitine palmitoyltransferase 1A
(Cptla), a pivotal enzyme involved in FAO, has been identified as a
key factor in obesity-induced T cell dysfunction and the subsequent
enhancement of tumor growth (27). Furthermore, lipid accumulation
within the TME has been shown to impair the function of CD8" T cells
through alterations in fatty acid uptake and metabolism. This
dysregulation manifests as increased uptake of long-chain FAs and
reduced activity of very-long-chain acyl-CoA dehydrogenase (VLCAD)
in CD8" T cells, resulting in intracellular lipid accumulation,
mitochondrial dysfunction, and compromised effector responses (28).
These findings underscore the critical role of lipid metabolism in
shaping the immune landscape within the TME and highlight
potential therapeutic targets for restoring T cell function and
enhancing anti-tumor immunity.

Some preclinical studies have provided valuable insights into the
potential role of omega-3 fatty acids (N-3 FAs), particularly in the
context of cancer immunotherapy (29). Specifically, supplementation
with N-3 FAs has been found to mitigate breast tumor growth by
modulating the TME (30). These studies have demonstrated that N-3
FAs promote the infiltration of CD3" T cells into the TME, thereby
enhancing the anti-tumor immune response (31). Additionally, N-3
FAs have been shown to augment the anti-inflammatory activity of
interleukin-10 (IL-10), a cytokine known for its immunosuppressive
properties. These findings highlight the complex interplay between
lipid metabolism, immune function, and cancer progression (32).
Targeting adipocyte-derived FAs, such as N-3 FAs, represents a
promising avenue for cancer immunotherapy, offering potential
therapeutic benefits in modulating the immune response against
cancer cells.

2.1.2 Via cholesterol

Cholesterol, a prominent secretion of adipocytes and a crucial
component of cell membranes, has emerged as a significant factor in
the clinical progression of breast cancer (33). Serum cholesterol
comprises various fractions, including total cholesterol, high-
density lipoprotein (HDL), low-density lipoprotein (LDL), and
very-low-density lipoprotein (VLDL). Notably, total cholesterol,
LDL, and the oxysterol metabolite 27-hydroxycholesterol (27-HC)
have been implicated in regulating T cell function within the TME.

Ma et al. has elucidated that cholesterol in the TME upregulates
the expression of immune checkpoints programmed cell death
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protein 1 (PD-1) and 2B4 by inducing endoplasmic reticulum stress
in CD8" T cells, leading to T cell exhaustion (34). Additionally,
studies have indicated that LDL can be internalized by Vy9V&2 T
cells, a subtype of effector T cells, resulting in reduced expression of
key activation markers such as IFN-y, NKG2D, and DNAM-I,
thereby dampening T cell activation and function (35).
Consequently, impaired immune surveillance may facilitate tumor
evasion and diminish patient survival rates, particularly in cases of
hypercholesterolemia. However, further prospective clinical trials
are required to validate the association between LDL levels and
cancer patient survival rates.

Furthermore, 27-HC, an oxysterol derivative of cholesterol, has
been implicated in inhibiting the activity of CD8" cytotoxic T cells
by suppressing the activation and recruitment of neutrophils and
¥8-T cells, consequently promoting breast cancer metastasis (36).
Recent investigations have shed light on the underlying mechanism,
revealing that 27-HC acts on myeloid cells in an Liver X receptor
(LXR)-dependent manner, thereby impairing T cell proliferation
and cytotoxicity. This was corroborated by myeloid-specific
knockout of the CYP27A1 gene, which resulted in reduced
metastatic breast cancer in murine models (37). These findings
underscore the multifaceted role of cholesterol and its derivatives in
modulating immune responses within the TME, highlighting
potential therapeutic avenues for disrupting cholesterol-mediated
immunosuppression in cancer.

2.1.3 Via exosomes

As potent mediators of intercellular communication, exosomes
derived from adipocytes harbor a diverse cargo of lipids, proteins,
and microRNAs (miRNAs), which play pivotal roles in various
biological processes, including immune modulation. It can regulate
the physiological functions of different tissues and organs in
autocrine, endocrine and paracrine ways (38).

Research by Fan et al. has revealed intriguing insights into the
role of miRNAs in adipocyte-derived exosomes in lung
adenocarcinoma. Specifically, they found that downregulation of
miR-27a-3p in exosomes derived from adipocytes inhibits the
proliferation of CD4" T cells and the secretion of IFN-yin vitro
(39). In addition to miRNA, IncRNA also plays a role in it.
LINCO01119 is a differentially expressed IncRNA in ovarian cancer
(OC). LINCO01119 encapsulated by CAAs-derived exosomes
promoted M2 polarization of macrophages, thereby inhibiting the
proliferation of CD3™ T cells (40). What’s more, adipose-derived

10.3389/fimmu.2025.1688342

stem cell exosomes (ASC-exos) could be taken up by CD4™ T cells,
thus inhibiting Th 1 and Th 17 differentiation and promoting Tregs
differentiation. Through these effects, ASC-exos promoted breast
cancer characterization and TME immunosuppression (41).
Moreover, extracellular vesicles (EV), similar to exosomes, could
mediate tumorigenesis. In OC, CAAs-EV delivered sirtuin 1(SIRT1)
to OC cells. SIRT1 transcriptionally activated the expression of
CD24, which up-regulated the expression of Siglec-10. Finally, the
up-regulation of Siglec-10 promoted the apoptosis of CD8" T cells,
thereby promoting tumorigenesis in mice (42). These findings
underscore the intricate interplay between adipocyte-derived
exosomes and T cell function in the TME, shedding light on
potential therapeutic targets for immune modulation in cancer
therapy. In summary, adipocytes metabolic substrates have
significant effects on T cells, and how them affect T cells through
metabolic substrates is summarized in Table 1.

2.2 Via released adipokines

2.2.1 Via leptin

As a pro-inflammatory cytokine, leptin has been implicated in
cancer progression (43, 44). The level of leptin in the circulation
fluctuates day and night, and more is secreted at night (45). In the
TME, cancer cells exert intricate control over adipocyte
differentiation, inhibiting the maturation of preadipocytes while
promoting their differentiation into adipocytes (46). Leptin, whose
mRNA is absent in preadipocytes, becomes detectable upon their
differentiation into mature adipocytes. It has been reported that
dietary fructose initiated adipocytes to produce leptin in a mTORC
1-dependent manner, and mediated leptin to enhance the anti-
tumor function of CD8" T cells, which provided a reference for
inhibiting tumors through leptin (6, 47). Upon binding to its
receptor, leptin activates downstream signaling pathways
involving JAK2/STAT3, ERK1/2, AP1, PI3K, and MAPK (44,
48-50).

STATS3, a pivotal transcription factor involved in tumor cell
survival and proliferation, also mediates tumor-promoting
inflammation (51). Its role extends to the regulation of various T
cell subsets, including Th17 cells, CD4" follicular helper cells, Tregs,
and CD8" effector or memory T cells. Interestingly, studies have
identified STAT3 binding sites in the promoter region of PD-1, a
key inhibitory receptor on T cells (52). Wang et al. elucidated the

TABLE 1 Adipocytes modify the function and activity of T cells via metabolic substrates.

Metabolic substrates Target cell Effect on target Key molecules/pathways Reference
Fatty acid CD8* T cell Decrease function VLCAD|, Cptlat, FAO? (23)
Cholesterol CD8" T cell Decrease function PD-11, 2B41 (34, 37)
Exosome (miR-27a-3p) CD4* T cell Decrease function N/A (39)
Exosome (LINCO01119) CD3* T cell Decrease function M2 polarization? (40)
ASC-exos CD4" T cell, Tregs Increase function Thi], Th17] (41)
CAAs-EV CD8"* T cell Decrease function SIRT1, Siglec-101 (42)
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mechanism underlying leptin-induced T cell dysfunction, linking
increased PD-1 expression to upregulated phosphorylated STAT3
(pSTAT3), a hallmark of STAT3 activation. Furthermore, they
demonstrated that leptin upregulates the expression of hepatitis A
virus cellular receptor 2 (HAVCR2 or Tim3) and Cptla, thereby
inhibiting the proliferation of PD-1" CD8" T cells (53).

Moreover, Zhang et al. uncovered the role of leptin in driving
STATS3 activation and FAO in CD8" T cells, resulting in suppressed
glycolysis and effector function, consequently promoting the
progression of obesity-related breast tumors (54). While leptin
has been shown to impact various T cell subsets, including Tregs,
it has also been reported to enhance the activity of naive and
memory T cells (55, 56).Interestingly, in the context of oncolytic
virus therapy for melanoma, leptin’s overexpression has been
associated with increased activation of CD8" T cells and
enhanced mitochondrial biogenesis. However, this beneficial effect
of leptin appears to be diminished in obese mice, possibly due to
leptin resistance in the setting of obesity (57).

2.2.2 Via neuregulin 4

In addition, there is another adipokine which is called NRG4.
Zhang et al. found the inhibitory effect of NRG4 on liver cancer. During
diet-induced nonalcoholic steatohepatitis (NASH), NASH-associated
macrophages induction and T cell depletion occurred before any
obvious tumor in the liver, which increased the possibility that these
immune disorders promoted the immunosuppressive liver
microenvironment prone to cancer. NRG4, as an adipose endocrine
factor, could inhibit the expansion of macrophages with tumor-
associated macrophage molecular characteristics and inhibit the
depletion of CD8" T cells caused by tumor-associated macrophages,
thereby exerting anti-hepatocellular carcinoma effects (58). Finally, the
effects of adipocytes released adipokines on T cells are summarized in
Table 2.

2.3 Via released cytokines

2.3.1 Via TNF-a

TNF-o is a crucial inflammatory mediator within the TME,
originating from both tumor cells and stromal components,
including adipocytes. This multifaceted cytokine participates in
various cellular signaling pathways upon binding to its receptors,
exerting profound effects on inflammation and cancer development
(59). Notably, TNF-o. has been implicated in augmenting the
activity of TNFR2" Tregs (60). In murine models of colon cancer,
TNFR2 has been shown to promote the expansion of Tregs, thereby
facilitating tumor metastasis (61). Similar observations have been
documented in models of colorectal and liver cancer, where the
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blockade of TNFR2 effectively abrogates tumor-induced Treg
amplification. Moreover, pre-treatment of Tregs with TNF-o
prior to adoptive transfer enhances their suppressive capacity
against anti-tumor immunity (62). These findings underscore
the intricate role of TNF-o. in shaping the immunosuppressive
milieu of the TME and its potential as a therapeutic target in
cancer immunotherapy.

2.3.2 Via interleukins

ILs, including IL-6, IL-8, and IL-10, among others, are
intimately associated with cancer progression (63, 64). Notably,
IL-6 and IL-10 have been shown to prominently induce T cell
dysfunction, with IL-6 particularly implicated in poor tumor
prognosis (65). Co-culture experiments involving adipocytes and
breast cancer cells have revealed heightened expression and
secretion of IL-6 by adipocytes, thereby fostering cancer cell
invasion and migration (66, 67). IL-6 can impede Thelperl (Th1)
differentiation, thereby impairing the activation of Thl-mediated
CTLs (68). Moreover, IL-6 has been demonstrated to modulate the
production of IL-10 and vascular endothelial growth factor (VEGF),
further inhibiting CTL function (69). The mechanism underlying
CD8" T cell exhaustion induced by IL-6 may involve the activation
of the STAT3 pathway via NF-kB and IL-6-GP130-Janus kinase
(JAK) signaling pathways, thereby exerting inhibitory effects on
tumor progression (70). These insights underscore the pivotal role
of ILs in shaping the immunosuppressive landscape of the TME and
their potential as therapeutic targets in cancer management.

2.3.3 Via chemokines

Chemokines play a pivotal role in the recruitment and
activation of leukocytes, including T cells, natural killer cells, and
monocytes, within the TME. Chemokines such as CCL2, CCLS5,
CCL4, and CXCL8 have been implicated in the initiation and
progression of cancer (71). Specifically, in the TME, various cell
types, including cancer cells, fibroblasts, tumor-infiltrating
monocytes, adipocytes, and endothelial cells, contribute to the
production and secretion of CCL2 (72). Studies by Santander
et al. have demonstrated that co-culturing breast tumor cells with
adipocytes results in increased expression of CCL2, leading to
enhanced recruitment of monocytes/macrophages to the tumor
site (73). Moreover, CCL2 has been shown to promote the
polarization of tumor-associated macrophages (TAMs), which
exert immunosuppressive effects by inhibiting T cell activation
and fostering angiogenesis (74). These findings underscore the
pivotal role of chemokines in orchestrating the immune landscape
within the TME and highlight their potential as therapeutic targets
in cancer intervention strategies.

TABLE 2 Adipocytes modify the function and activity of T cells via released hormones.

Metabolic substrates Target cell Effect on target Signal molecules involved Reference
Leptin CD8" T cell; ‘ Decrease function STAT31, HAVCR21, Tim31, Cptlat (53, 54)
Neuregulin 4 CDS8" T cell ‘ Increase function N/A (58)
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2.3.4 Via estrogen

Estrogen, a key hormone, plays a pivotal role in driving the
progression of breast cancer through its interaction with three
receptors: estrogen receptor o. (ERa), estrogen receptor 3 (ER),
and G-protein coupled estrogen receptor 1 (GPER-1), as well as
estrogen-related receptors (ERRs). ERa, a ligand-activated
transcription factor, serves as the primary driver in approximately
70% of breast cancer cases (75). Conversely, ERB, encoded by the
ESR2 gene, is the most abundantly expressed estrogen receptor in
normal mammary glands and has shown conflicting roles in breast
cancer, with some in vitro studies suggesting its inhibitory effects on
cancer cell progression and invasion (76, 77). GPER-1, a
transmembrane protein, operates independently of ERct and ERP
and has been implicated in estrogen-mediated signaling pathways
in breast cancer (78). Additionally, ERRs, constitutively active
orphan receptors, modulate estrogen responses in breast cancer
cells despite not directly binding to estrogen molecules (79).
Furthermore, both ERo and ERP are expressed in T cells. In lung
and cervical tumor samples, Ero signaling is associated with
reduced infiltration of CD4" and CD8" T cells into the tumor
microenvironment (80, 81). In the mouse breast cancer model, the
mutation of ERb reduced the infiltration of CD4" and CD8" T cells
and the concentration of IFN-y in the tumor microenvironment,
resulting in an increase in tumor volume (82).1

Estrogen promotes breast cancer proliferation through the ER-
membrane pathway, notably involving the MAPK/ERK signaling
cascade (83). Inhibition of the MAPK pathway has been shown to
alleviate local immunosuppression within the TME, consequently
enhancing the infiltration of tumor-infiltrating lymphocytes (TILs)
(84). The mechanism is related to the senescence of T cells,
induction of ataxia-telangiectasia mutated protein-associated
DNA damage is the cause for T cell senescence induced by both
mouse tumor cells and Treg cells, which is also regulated by MAPK
signaling (84). Moreover, heightened expression of estrogen
receptors (ERs) has been associated with diminished infiltration
of CD8" T cells and reduced expression of PD-1/PD-L1 in breast
cancer cells by suppressing IL-17 signaling and impeding Th17 cell
infiltration (85). These insights underscore the multifaceted eftects
of estrogen signaling on breast cancer progression and immune
modulation within the TME.

In addition, estrogen has direct immunomodulatory effects
(86), ERP signaling in CD8" T cells boosts T cell receptor
activation and antitumor immunity through a phosphotyrosine
switch (82).

It is worth noting that adipocytes are not the main source of
estrogen synthesis in the bodys, but in postmenopausal women,
adipocytes become the main estrogen synthesis cells, leading to
differences in the effects of estrogen on female cancer (87).
Meanwhile, because men and women have different sex
hormones, the differences can affect the response of male and
female cancer patients to immunotherapy (88).

1 VLCAD (very-long-chain acyl-CoA dehydrogenase); Cptla (carnitine
palmitoyltransferase 1A); FAO (fatty acid oxidation); PD-1 (programmed cell
death protein 1); SIRT1 (sirtuin 1)
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2.3.5 Via adiponectin

Adipocyte-derived circulating protein adiponectin is a
representative adipocytokine with two unique characteristics: its
circulating concentration is about 3-6 orders of magnitude higher
than that of common hormones and cytokines; although it is
specifically produced by adipocytes, its concentration is inversely
proportional to body fat mass (89). The tumor inhibitory effect of
adiponectin is related to ARG1, it can inhibit the down-regulation
of ARGI in inflammatory tissues, thereby restoring T cell viability
(89). Furthermore, adiponectin disrupted breast cancer cell
metabolism by downregulating sterol regulatory element-binding
protein 1 (SREBP-1) and fatty acid synthase (FAS), thereby
promoting lipolysis and fatty acid oxidation while impairing lipid
raft integrity. These metabolic effects, mediated through SIRT1
activation, were further confirmed in vivo (90). All in all,
adipocytes released cytokines have effects on T cells and the
specific content is summarized in Table 3.

2.4 Via other mechanisms

PD-1 is considered to be the main immune checkpoint for
regulating tumor immunity in recent years. Many inflammatory
factors and some metabolites can induce the expression of PD-1 on
T cells (93). In TME, many types of cells express PD-1 ligand PD-
L1, and adipocytes are no exception (94, 95). It is considered that
mature adipocytes express higher level of PD-L1 than
preadipocytes. Wu et al. found that highly expressed PD-L1 on
mature adipocytes can prevent anti-PD-L1 antibodies from
activating the anti-tumor function of CD8" T cells in vitro.
Treatment of adipocytes with inhibitors of adipogenic key
transcription factor PPAR v can reduce the expression of PD-L1
and restore the anti-tumor function of CD8" T cells (96). In
summary, these studies demonstrate the inhibitory effect of PD-
L1 expression in adipocytes on T cell activity.

The adipocyte niche refers to the complex local microenvironment
in which adipocytes are located (97). This microenvironment consists
of a variety of different cell types, extracellular matrices, signaling
molecules (such as hormones, cytokines), and neurovascular networks.
According to experimental verification, T cells exposed to adipocyte
niches showed impaired force transfer to TCRs-antigen complexes,
which means that adipocyte-derived factors alter the cytoskeleton and
mechanics of T cell receptor signaling (97). These results were verified
in diet-induced obese mice. All in all, adipocyte niche leads to T cell
dysfunction through cytoskeletal regulation and reduces TCR
triggering by inhibiting TCR force (97). High levels of leptin in the
obesity microenvironment increase the expression of PD1 receptors
and the depletion of T cells, which may be harmful to the
immunotherapy based on Chimeric Antigen Receptor T-cells (Car-T
cells) and bispecific T-cell engagers (BiTE) (53).

Insulin resistance (IR), commonly observed in obese
individuals, has been implicated in various diseases, including
breast cancer (98). Epidemiological studies have highlighted a
correlation between IR and breast cancer incidence. Insulin plays
a multifaceted role in the differentiation and function of CD8" T
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TABLE 3 Adipocytes modify the function and activity of T cells via released cytokines®.

Metabolic substrates Target cell Effect on target Signal molecules involved Reference
TNF-o. Treg Increase function TNFR2 (62)
1L-6, IL-10 CD8" T cell Decrease function VEGF, STAT3 (69, 70)
CCL2, CCL5 CD8" T cell Decrease function TAMs (73, 91)
Estrogen CD8" T cell Decrease function MAPK, IL-17| (85, 92)
Adiponectin CD8" T cell and CD4" T cell Increase function ARGIT (89)

TNEF-0,, tumor necrosis factor-alpha; Treg, regulatory T cells; IL-6, interleukins-6; IL-10, interleukins-10; VEGF, vascular endothelial growth factor; TAMs, tumor-associated macrophages; IL-17,

interleukins-7.

cells, while also influencing the secretion of adipocytokines (99).
Moreover, insulin-like growth factor-I receptors (IGF-IRs) are
prominently expressed in most subtypes of breast cancer and are
integral components of key pathways driving tumor growth (100).
Furthermore, insulin-like growth factor binding protein-3 (IGFBP-
3) has been implicated in promoting breast cancer growth in
immune-tolerant mouse models by inhibiting T cell infiltration
into the TME (101). These findings underscore the complex
interplay between insulin signaling, immune function, and cancer
progression, shedding light on potential therapeutic targets for
breast cancer management.

3 Targeting adipocytes in TME for
drug development

Targeting adipocytes within the TME represents a promising
avenue for cancer therapy, given their significant role in tumor
progression and immune modulation. Adipocytes contribute to
cancer progression through various mechanisms, including the
secretion of adipokines, cytokines, and lipids, which collectively create
an immunosuppressive and pro-tumorigenic microenvironment.

One approach to targeting adipocytes in cancer therapy
involves modulating the signaling pathways involved in
adipocyte-derived factors. For example, inhibiting the expression
or activity of adipokines such as leptin or adiponectin, which have
been implicated in promoting tumor growth and metastasis, could
potentially hinder tumor progression. Similarly, targeting the
secretion of pro-inflammatory cytokines like TNF-o. or IL-6 from
adipocytes may alleviate inflammation within the TME and
enhance anti-tumor immune responses.

Another strategy is to interfere with lipid metabolism in
adipocytes, as dysregulated lipid metabolism can fuel tumor
growth and impair immune function. Inhibiting key enzymes
involved in fatty acid synthesis or oxidation pathways, such as
Cptla, may disrupt the energy supply to cancer cells and restore T
cell function within the TME (27). Furthermore, targeting the
crosstalk between adipocytes and immune cells, particularly T
cells, holds promise for cancer immunotherapy. Adipocyte-
derived factors can directly modulate T cell function and promote
immune evasion by upregulating immune checkpoint molecules

2 Cptla (carnitine palmitoyltransferase 1A)
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like PD-L1 on adipocytes. Strategies aimed at blocking these
interactions, such as using antibodies against PD-L1 or targeting
downstream signaling pathways involved in immune checkpoint
regulation, could enhance T cell-mediated anti-tumor immune
responses (85, 95). Moreover, emerging evidence suggests that
adipocytes can influence the response to conventional cancer
therapies, including chemotherapy and immunotherapy (102,
103). Understanding the interplay between adipocytes and
therapeutic agents may provide insights into optimizing treatment
efficacy and overcoming resistance mechanisms. Despite these
potential therapeutic strategies, several challenges remain.
Developing selective and efficient delivery systems to target
adipocytes specifically within the TME while minimizing oft-
target effects on healthy adipose tissue is critical. Additionally,
unraveling the complex signaling networks and metabolic
pathways involved in adipocyte-cancer cell interactions requires
further investigation to identify novel therapeutic targets.

In conclusion, targeting adipocytes in the TME represents a
promising approach for cancer therapy. By disrupting adipocyte-
derived signals, modulating lipid metabolism, and interfering with
adipocyte-immune cell crosstalk, novel therapeutic interventions
may hold the potential to improve treatment outcomes and
overcome therapeutic resistance in cancer patients. Continued
research efforts in this field are essential to translate these
findings into clinical applications and ultimately benefit
cancer patients.

4 Conclusions

Indeed, adipocytes play a multifaceted role in shaping the TME
and modulating immune responses, particularly those mediated by
T cells. Through the release of various metabolic substrates,
adipokines, and cytokines, adipocytes can exert both direct and
indirect effects on the function and activity of T cells within the
tumor milieu.

FAs and cholesterol, two prominent metabolic substrates released
by adipocytes, have been shown to impair the function of CD8"
effector T cells, thus compromising their ability to mount effective
anti-tumor responses. Additionally, adipocyte-derived factors such as
exosomes, leptin, insulin, and estrogen have been implicated in
inhibiting the function and activity of CD8" T cells, further
contributing to the establishment of an immunosuppressive TME.
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Furthermore, adipocytes can promote the function of Tregs
through the action of factors like TNF-o. and leptin. By enhancing
the suppressive activity of Tregs, adipocytes facilitate immune evasion
and tumor progression, highlighting the intricate interplay between
adipocyte-derived signals and immune cell function in cancer.
However, the precise mechanisms underlying adipocyte-mediated
modulation of T cell metabolism, activation, and function remain
incompletely understood, necessitating further investigation into this
complex interplay. Additionally, the diverse array of secretions from
adipocytes and the heterogeneity of T cell populations within the
TME contribute to the complexity of this interaction, warranting
comprehensive studies to elucidate the underlying mechanisms.
Moreover, given the widespread distribution of adipocytes
throughout the body, strategies aimed at controlling weight gain
and reducing excess adiposity may hold promise in mitigating the
risk of cancer development. By targeting adipocyte biology and
metabolism, interventions aimed at modulating adipose tissue
function could potentially disrupt the pro-tumorigenic effects of
adipocytes and enhance anti-cancer immune responses.

In summary, understanding the intricate crosstalk between
adipocytes and T cells in the TME is essential for unraveling the
mechanisms driving cancer progression and developing effective
therapeutic strategies. Continued research efforts in this field will be
crucial for identifying novel targets for cancer immunotherapy and
improving clinical outcomes for cancer patients.
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