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Long- and post-COVID-19 syndromes have emerged as a significant global
health challenge, with millions of individuals experiencing persistent or the
development of new symptoms after a long period of an initial SARS-CoV-2
infection. These symptoms are multisystemic and may indicate changes in the
respiratory, neurological, cardiovascular and gastrointestinal systems, in addition
to prolonged fatigue. Vaccination has played a crucial role in reducing severe
disease and mortality, but the impact of the different vaccine combinations on
the development and resolution of Long COVID remains a topic of debate. This
review synthesizes current evidence on how different vaccine platforms, dosing
strategies and booster doses influence the immunological response, protection,
incidence, severity, and persistence of Long COVID symptoms. We discuss key
immunological mechanisms by which vaccination may modulate and protect
post-COVID syndrome outcomes, including its effects on viral clearance,
immune response reprogramming, inflammation, and autoimmunity, seeking
to combat misinformation and concepts spread by fake news. The review also
highlights controversies and research gaps, such as variability in vaccine
response among different populations and the role in the selection of more
transmissible and virulent SARS-CoV-2 variants, as well as the potential
differences between vaccine-induced and infection-induced immunity, and
the role of pre-existing immune conditions in this scenario.
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1 Introduction

In late December 2019, the World Health Organization (WHO) was notified of an
outbreak of pneumonia in Wuhan, China (1), and by early January 2020 a novel
coronavirus, later named SARS-CoV-2 by the ICTV and the disease it causes designated
COVID-19 by the WHO, was identified as the causative agent (2-4). The rapid global
spread of the virus led the WHO to declare a pandemic in March 2020 (5), resulting in
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major public health measures and an unprecedented mobilization
of scientific efforts to develop vaccines. Remarkably, within one year
of the first reported cases, the first COVID-19 vaccination outside
clinical trials was administered in the UK, amid over 65.8 million
confirmed cases and 1.5 million deaths worldwide (6) (Figure 1).
Given that COVID-19 was a novel disease, the knowledge about the
nature of the protective immune response for different population
groups was limited, there was uncertainty which vaccine strategies
would have more success (8, 9). Therefore, a hallmark of the
COVID-19 pandemic was the variety of technology platforms
applied to vaccine development against SARS-CoV-2, including
inactivated vaccines, adenovirus-vectored vaccines and mRNA
vaccines (10, 11).

Since SARS-CoV-2 is an RNA virus, it naturally accumulates
mutations at a high rate, driving viral evolution that can enhance
replication, transmissibility, and immune evasion (12). Variants
with significant impacts on disease severity or reduced vaccine and
treatment efficacy are dynamically classified as variants of concern
(VOCs) (13). The emergence of VOCs has raised concerns
regarding the effectiveness of vaccine-induced immunity,
particularly for mRNA and vector-based vaccines, which were
designed to express the spike glycoprotein encoded by the
original reference strain. As a result, booster doses and updating
vaccines were globally recommended, especially for vulnerable
groups (14, 15).

10.3389/fimmu.2025.1686572

Despite overcoming the acute phase of COVID-19, a
considerable number of individuals experience the persistence of
some initial symptoms, resurgence of previously resolved
symptoms, or even the onset of novel symptoms, a condition that
has come to be known, depending on its time span, as Long COVID
(LC), or Post-Acute Sequelae of COVID-19 (PASC), 4 weeks to
three months after COVID-19; and Post-COVID Condition (PCC),
three months to years after the disease (16-18). Long COVID is
characterized by a broad spectrum of symptoms, including fatigue,
cognitive dysfunction, dyspnea, neuropsychiatric disturbances, and
multisystemic involvement affecting the respiratory, neurological,
cardiovascular, and gastrointestinal systems (19, 20). Although the
mechanisms underlying this condition remain incompletely
understood, several pathophysiological models have been
proposed. These include the persistence of infectious particles or
viral fragments (“viral ghosts”) in tissue reservoirs, tissue damage
resulting from exacerbated inflammation during a severe acute
phase of infection, autoimmunity triggered by the infection, and
even reactivation of latent viruses (21, 22).

Alterations in immune responses associated with viral
persistence and severe COVID-19 are at least partially triggered
by the infection of CD4" T helper cells by SARS-CoV-2, as
previously reported (23), leading to T cell death or dysfunctional
T cells resulting from inflammatory cytokine storm. Thus, CD4-
mediated infection of helper T cells by SARS-CoV-2 may underlie
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COVID-19 Dashboard summarizing key milestones of the pandemic. Timeline depicting the emergence of the SARS-CoV-2 ancestral lineage and
major Variants of Concern (VOCs) according to WHO designations. The figure also indicates the rollout of the first COVID-19 vaccination (December
2020, United Kingdom), the first booster campaigns (July 2021, Israel), the introduction of bivalent vaccine (Original and Omicron BA.1/2, BA4/5)
(2022) and the Updated monovalent Omicron vaccine XBB.1.5 (2023). At each highlighted time point, the cumulative numbers of global COVID-19
cases and deaths are shown, based on WHO data (7), providing a broad epidemiological perspective from the initial outbreak in December 2019 to

September 2025. Created using Biorender: https://BioRender.com/8fyi7on.
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the deficient immune responses observed in some patients with
COVID-19 (23). However, how long these alterations in T cell
function persist in vivo, and whether they exert long-term impacts
on adaptive immunity, remains to be determined, particularly
considering that, from an evolutionary perspective, the infection
of CD4" T cells represents an effective immune evasion strategy
employed by viruses (24).

Although the worldwide mass vaccination had played a pivotal
role in reducing SARS-CoV-2 infection rates, hospitalizations, and
mortality, emphasizing on vaccine effectiveness in COVID-19
prevention or reducing its severity (25), their effect on preventing
long COVID is not yet fully understood. Evidence from studies in
the general adult population indicates that vaccination confers some
degree of protection against the development of long COVID (26).
It has been hypothesized that vaccination could confer protective
effects against LC through multiple immunological mechanisms,
especially reduction of viral burden and limitation of viral reservoir
formation, attenuation of severe acute outcomes of SARS-CoV-2
infection and reprogramming of immune responses (27, 28).

Nonetheless, findings remain heterogeneous across studies,
often influenced by vaccine platform (mRNA, viral vector,
inactivated virus), number of doses, booster regimens, timing of
vaccination relative to infection, and host-related factors such as
comorbidities, socioeconomic conditions and immune status. Also,
the clinical course of SARS-CoV-2 infection and the long-term
effects of COVID-19 are also influenced by the evolution of the
virus and the emergence of new variants, highlighting ongoing
concern about the role of widespread vaccination in shaping viral
evolution, potentially contributing to the emergence of more
transmissible or immune-evasive SARS-CoV-2 variants (7).
Therefore, it is still uncertain how vaccine-induced immunity
compares to infection-induced immunity in modulating long
COVID risk. This review aims to synthesize current evidence on
the role of COVID-19 vaccination in the prevention and
modulation of long COVID/post-COVID syndromes. Here we
explore the immunological mechanisms underlying vaccine
effects, the influence of different vaccine platforms and dosing
strategies, the timing of vaccination in relation to SARS-CoV-2
infection, and responses among specific populations.

2 COVID-19
2.1 Viral biology of SARS-CoV-2

SARS-CoV-2 is a positive-sense single-stranded RNA virus
(+ssRNA) and has a size around 30 kilobases (kb). Its genomic
structure consists of six major ORFs (Open Reading Frames), which
encode non-structural proteins related to transcription and
replication (ORF1a/ORF1b) and structural proteins such as Spike
(S), Envelope (E), Membrane (M) and Nucleocapsid (N). The RNA
genome is surrounded by a helical protein coat, forming the viral
nucleocapsid. This nucleocapsid is embedded in a lipoprotein
envelope composed of phospholipid molecules and structural
proteins (M, E and S) inserted in the lipid bilayer (29).
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Spike glycoproteins, present on the entire viral surface forming
the characteristic coronavirus spikes, consist of two non-covalently
associated subunits, each one with a different role in the infection
process. While the S1 subunit is responsible for recognizing and
binding to cell receptors, the S2 subunit is responsible for the
subsequent fusion of cell and viral membranes (30). The S1 subunit
contains a portion called the receptor binding domain (RBD),
which is capable of binding to the host cell receptor, the
angiotensin-converting enzyme 2 (ACE2, Angiotensin-Converting
Enzyme 2) (31, 32) (Figure 2).

The binding of Spike to the ACE2 receptor followed by
activation promoted by a host cell protease, TMPRSS2
(transmembrane serine protease type II), allows the virus entry
into the host cell. The activity of other host proteases, such as furin,
also contributes to Spike priming and acts synergistically with
TMPRSS2 to enhance viral entry and infectivity (33). Inside the
cell, SARS-CoV-2 genome is immediately translated, and the viral
RNA-dependent RNA polymerase is used to replicate its genome
(34), installing an infectious process that triggers immune responses
in the host. Although in most cases, the recruited cells clear the
infection and the patients recover, the rapid replication of SARS-
CoV-2 can trigger a strong and unregulated immune response. This
response leads to a phenomenon known as cytokine storm, an
overproduction of pro-inflammatory cytokines that causes the
recruitment of inflammatory cells to the lungs, causing tissue
damage and consequently, the acute respiratory distress syndrome
(ARDS), considered the main cause of death in patients with
COVID-19 (35-37).

Although ACE2 is widely recognized as the canonical entry
receptor for SARS-CoV-2, several molecules have been suggested to
serve as alternative receptors or co-factors that may facilitate viral
entry. Examples include C-type lectins (such as DC-SIGN and L-
SIGN), phosphatidylserine receptors like TIM-1 and TIM-4, the
receptor tyrosine kinase AXL, and the transmembrane protein
CD147 (38-40).

Notably, Neuropilin-1 (NRP1) has emerged as a potential
facilitator of SARS-CoV-2 entry in cells with low ACE2
expression, such as respiratory and olfactory epithelial cells (41).
Furthermore, studies show that NRP1 serves as the principal
receptor mediating cell entry in astrocytes, the main site of
infection and possibly, replication, of SARS-CoV-2 in the brain of
COVID-19 patients (42, 43). As astrocytes support neuronal
functions, their infection may underlie the neurocognitive and
neuropsychiatric symptoms reported in some patients (42).

Also, evidence indicates that SARS-CoV-2 can infect and
replicate in lymphocytes, despite their low levels of ACE2
expression (44, 45), which could explain lymphocytopenia and
dysregulated inflammatory response in severe COVID-19
patients. The selective infection targeting CD4" T helper cells and
the high-affinity interaction between the viral spike RBD and the N-
terminal domain of the CD4, assessed by molecular docking and
dynamic simulations, and supported by co-immunoprecipitation
and fluorescence anisotropy assays, identifies CD4 as a critical
cofactor that facilitates viral attachment and promotes SARS-
CoV-2 internalization in these cells (23).
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Schematic representation of SARS-CoV-2 structure, genome and main host-cell entry mechanism. Schematic representation of the SARS-CoV-2
virion showing its four main structural proteins — Spike (S), Envelope (E), Membrane (M), and Nucleocapsid (N) — and the viral positive-sense single-
stranded RNA genome (~30 kb). The genomic map highlights ORFla/1b, encoding the non-structural proteins (nspl-nsp16) involved in replication

and transcription (including PLpro, 3CLpro, RdRp, and Helicase), followed by genes for structural and accessory proteins (S, E, M, N, ORF3a, 6, 7a/b,
8, 10). The figure also illustrates the Spike (S) subunits (S1-NTD, S1-CTD/RBD, S2) and its interaction with ACE2 and TMPRSS2 during host-cell entry.
Created using Biorender: https://BioRender.com/4xtisqv.

Understanding the immune responses to a pathogen’s infection =~ Damage-Associated Molecular Patterns (DAMPs) generated during
is crucial to know the pathogenesis of the disease, and as a basis for  infection (47).

therapeutic applications and vaccine development. This becomes a

major challenge in the context of an emerging disease, such as

COVID-19, where studies are underway in laboratories around the

During positive-strand RNA viral genome replication occurs the
world while new data are generated (9).

formation of double-stranded RNA (dsRNA), intermediary
structures of replication, which are recognized by PRRs, resulting
in increased production of type I interferon (IFN-I) (48-50). The
production of type I IFNs (mainly IFN-o. and IFN-B) plays a central

role in the antiviral response, inducing the activation of natural killer

2.2 Immunology of COVID-19

(NK) cells and the maturation of antigen-presenting cells (APCs),
such as dendritic cells (DCs) and macrophages (51). Upon contact
2.2.1 Innate immune response with pathogens, APCs process and associate the viral antigens with
The innate immune response is the first line of defense against ~ Major Histocompatibility Complex (MHC) molecules on the cell
infections, comprising natural barriers, immune cells
(macrophages, dendritic cells, neutrophils, NK cells), soluble
mediators (cytokines, chemokines, natural antibodies), and the

surface. Viral intracellular antigens are associated with MHC class I
complement system. While it may not always eliminate the

and presented to cytotoxic T lymphocytes (CTLs), also called CD8+ T
cells. Whereas virus-infected cells can be cross-presented to T helper
lymphocytes (Th), also called CD4+ T cells, via MHC class II. The
pathogen, it delays disease progression and supports adaptive  increased production of IFN-I and the activation of APCs provide an
immunity. Its activation depends on the recognition of Pathogen-

Associated Molecular Patterns (PAMPs) by Pattern Recognition
Receptors (PRRs), which are located on cellular or endosomal
membranes (46). The detection of PAMPs by PRRs leads to an
increase in the production of cytokines and chemokines,

responsible for signaling the infectious process. PRRs also detect

important link between innate and adaptive immune responses (52).
It has been reported that SARS-CoV-2 infection suppresses the
innate immunity, reducing the number and maturation of DCs,

inhibiting the IFN-I-mediated antiviral response, which can lead to

a latent T cell response in patients with COVID-19 (53). This ability
may explain the prolonged incubation or pre-symptomatic period of
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2-12 days for SARS-CoV-2 compared to the 1-4 days for influenza
(10). Furthermore, SARS-CoV-2 can infect monocytes, which
certainly compromises the immune response to the virus (54).

Another PRR that has gained prominence in the context of long
COVID-19 is Toll-like receptor 4 (TLR4), which plays an essential
role in the antibacterial response by detecting the lipopolysaccharide
(LPS) molecule of Gram-negative bacteria but is also involved in viral
recognition (55). The SARS-CoV-2 Spike protein interacts strongly
with TLR4, leading to the activation of this receptor and triggering
signaling that increases ACE2 expression on the cell surface,
facilitating viral entry into cells that express little ACE2, such as
lung cells, in addition to causing hyperinflammation in patients (56).
In mice, it has been shown that TLR4 activation by Spike can lead to
long-term cognitive dysfunction (57).

2.2.2 Adaptive immune response

The adaptive immune response is a combined action between
the cellular response, mediated by T cells, and the humoral
response, mediated by B cells. While the presentation of viral
antigens associated with MHC-I induces CD8+ T cells to screen
and kill all virus-infected or modified cells by secreting cytotoxic
granules containing granzymes and perforins, the presentation of
viral antigens associated with MHC-II induces the differentiation of
CD4+ T cells or T helper cells (Th) into several subpopulations.

Th1 lymphocytes subpopulation secrete interleukins 2 and 12
(IL-2 and IL-12), IFN-I, and Tumor Necrosis Factor-o¢ (TNF-o),
promoting cellular immunity, whereas Th2 lymphocytes produce
Interleukins (IL-4, IL-5, IL-6, IL-10, and IL-13), stimulating
humoral responses through B cell activation and antibody
production. The cytokine profile of T helper cells drive the
immune response toward cellular or humoral pathways, which
depends on the virus and its interaction with the immune system.
Understanding these specific mechanisms is essential for effective
vaccine development (58).

Although both cellular and humoral responses to SARS-CoV-2
appear within a week of symptom onset (9), studies found that
individuals recovering from mild cases retained cell-mediated
immunity even when antibody responses were no longer
detectable (59, 60). Also, a study with SARS-CoV demonstrated
that virus-specific memory CD8+ T cells persisted for up to 6 years
post-infection, whereas memory B cells and specific antibodies were
undetectable (61). On the other hand, we reported in a previous
study, that SARS-CoV-2 may use a CD4 molecule to infect helper T
cells, leading to increased expression of the anti-inflammatory
cytokine IL-10, which is associated with viral persistence and
disease severity. Thus, CD4-mediated infection of helper T cells
by SARS-CoV-2 may explain a deficient immune response in some
patients with COVID-19 (23).

The activation of the humoral immunity is mediated by
immunoglobulins (Igs), popularly known as antibodies. In
general, specific antibody levels in blood plasma correlate with
the stage of infection and degree of protection, and the IgM
detection indicates acute infection, while isolated IgG may reflect
chronic infection or immunity acquired during convalescence and
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after recovery. Thus, the detection of circulating antibody levels is
one of the correlates of protection and immunological memory
against determined viral infection (58). It has been demonstrated
that SARS-CoV-2- specific IgM and IgG antibodies are detectable
within 1-2 weeks of symptom onset in most infected individuals
(62) and begin to decline within 8 weeks (63).

One of the biological actions performed by IgM, IgG and IgA
antibodies in the antiviral response is neutralization, in which
antibodies bind to specific regions of the virus, preventing its
interaction with cell receptors and neutralizing its infectivity (64).
Elevated levels of neutralizing antibodies to the Wuhan lineage have
been observed in convalescent individuals (63) and appear to offer
some benefit in treatment studies with convalescent plasma,
previously used successfully in the treatment of SARS-CoV (65).
Among a wide variety of antigenic determinants capable of
inducing the production of high titers of neutralizing antibodies,
viral surface proteins seem to be the best viral antigenic targets, due
to their location, accessibility and function (66). The spike protein
S1 subunit, through receptor binding domain (RBD), is the primary
target for SARS-CoV-2 neutralizing antibodies (66). Antibodies that
bind to RBD block its interaction with ACE2, preventing the virus
from fixing to the host cell (10). Furthermore, this domain also
contains epitopes for T cell responses (67).

Other important functions in combating viral infections are
performed by the Fc portion of antibodies, including complement
system fixation, opsonization, phagocytosis, and cellular
cytotoxicity (68). Functions such as antibody-dependent cellular
phagocytosis (ADCP) and cellular cytotoxicity (ADCC) are still
being explored in the context of SARS-CoV-2. In ADCP, phagocytic
cells such as macrophages recognize the constant region of the
antibody, leading to phagocytosis and elimination of infected cells
(69). In ADCC, this process is carried out mainly by natural killer
cells that recognize infected cells coated with IgG and secrete
cytotoxic granules, leading to cell death (70). Studies have
observed that ADCC by NK cells is triggered primarily by non-
spike antigens and that hybrid immunization (vaccinated
convalescent individuals) can generate antibodies that enhance
this activity and provide higher protection to the host against
virus variants (71, 72). Regarding the protection generated by
antibodies, we can also mention neonatal immunity provided by
the transport of maternal IgG to the fetus through the placenta and
IgA through breastfeeding (73, 74).

Coronavirus-specific T cells are important in clearing the virus
and controlling disease progression and should be considered in
vaccine strategies (10, 47). It has been shown that the SARS-CoV-2-
induced T helper cells phenotype is associated with the severity of
COVID-19 cases (75). Elevated levels of specific T cells have been
observed in convalescent individuals, with a higher number of
memory CD8+ T cells in the respiratory tract of mild cases
compared to severe cases of COVID-19 (59, 63). Other studies
have shown a higher proportion of IFNy-producing Thl cells in
patients with mild and moderate disease, including children, than in
patients with severe disease, correlating with viral clearance (76-78).
In severe cases of the disease, the immunological imbalance during
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the acute phase triggers an increase in the production of the cytokines
IL-6, IL-10 and IL-8, associated with a Th2 profile, in addition to an
exhaustion of CD8+ T lymphocytes through the expression of TIM-3
and PD-1 (79, 80). Regarding SARS-CoV-2-specific T cells generated
by natural infection and vaccination, there are mostly central
memory and effector memory CD4+ T cells and effector memory
and terminally differentiated effector CD8+ cells (81, 82). In children,
it has been shown that early immune memory responses seem to be
dominated by nucleocapsid-specific CD8+ T cells and antibodies,
with a correlation between anti-N antibodies and TNF-o-producing
memory CD8+ T cells suggesting a distinctive CD8-B cell crosstalk
not typically observed in adults (78). These differences in immune
profiles highlight the need for pediatric-specific vaccination strategies
that leverage the strengths of children’s cellular immunity.

2.2.3 SARS-CoV-2 mechanisms of immune
evasion

SARS-CoV-2 evades both innate and adaptive immunity
through multiple mechanisms involving nonstructural proteins
(NSPs). NSP1 binds to the 40S ribosomal subunit, blocking host
mRNA entry and promoting its degradation, thereby inhibiting
type I IEN expression and favoring the translation of viral mRNAs
(83, 84). NSP14 and NSP16 help camouflage viral mRNA to
resemble host mRNA: NSP14 adds a 7-methylguanosine cap at
the 5" end to evade RIG-1 detection (85), while NSP16 methylates
the 2’-hydroxyl of the first ribose to escape MDA-5 recognition
(86). These modifications suppress IFN regulatory factors and
reduce type I IFN production. Additionally, NSP3 and NSP4
induce double-membrane vesicles (DMVs) from the endoplasmic
reticulum, creating protected compartments for viral replication
and protein export (87). Infected individuals with moderate to
severe COVID-19 also exhibit reduced plasmacytoid dendritic cells
(pDCs), key producers of type I IFN critical for viral clearance (88).

Severe COVID-19 cases are associated with an excessive
immune response in the lungs, particularly in susceptible
individuals, such as those carrying mutations in genes involved in
IFN-I production (89) and those with circulating autoantibodies
against IFN-I (90). In this scenario, both cellular and humoral
immunity become impaired. A reduced antiviral state promotes
intense inflammation with overproduction of cytokines such as
IL-6, TNF-0, and CXCLI10, triggering a cytokine storm. This
inflammatory response increases recruitment of myeloid cells
(macrophages and neutrophils) and reduces lymphoid cells (NK
cells and lymphocytes), leading to complement activation,
coagulation, NETosis, and tissue damage, which can be fatal (91).
Failure to control the initial infection results in lymph node
lymphopenia, CD8+ T cell exhaustion (92), germinal center
collapse, impaired high-affinity antibody production, and deficient
memory cell formation (93), also contributing to the emergence of
new viral variants.

Regarding the mechanisms of escape from the adaptive immune
response by SARS-CoV-2, we have evasion via neutralizing
antibodies through the emergence of mutations, which mainly
affect the receptor-binding domain (RBD) of the Spike surface
protein and antigenic target of most vaccines developed and
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applied to the world population. These mutations alter the
protein in such a way as to prevent recognition and binding of
antibodies, consequently allowing host cells to be infected.
Furthermore, mutations in key epitopes for binding to the MHC
compromise other processes of antigenic destruction, such as
complement fixation, phagocytosis and antibody-dependent
cellular cytotoxicity, and the generation of long-term memory
cells (94).

3 Long- and post-COVID-19
conditions

When symptomatic, SARS-CoV-2 infection is usually
associated with an acute illness, characterized by symptoms such
as dyspnea, fever, cough, accounting for about 70% of cases,
pharyngitis, nausea, anorexia, anosmia, dysgeusia, cephalgia
(34%), malaise, myalgia (36%), and diarrhea (12%) (95-97).
Severe COVID-19, involving significant respiratory distress and
cytokine storm, usually appears in between 0.3 and 3% of infected
patients and is associated with lymphopenia (98), defect in Thl
immunity (92-99) and T cell depletion in lymphoid tissues (93).
Other clinical manifestations, such as multisystemic inflammatory
syndrome (MIS) and long COVID-19, are also frequent and impact
the lives of infected people. MIS is mainly characterized by systemic
hyperinflammation, which is difficult to discern from acute biphasic
COVID-19 and post-acute sequelae of SARS-CoV-2 infection. MIS
is presented after 4 weeks of acute COVID-19 with findings similar
to Kawasaki disease (KD) such as fever (>38 °C), rash,
conjunctivitis, peripheral edema, lower extremity and abdominal
pain, vomiting, and diarrhea (100, 101). Recent advances in findings
linked MIS-C to TGFP overproduction, causing Epstein-Barr virus
(EBV) reactivation and hyperinflammation due to an impaired T
cell cytotoxicity, the same occurring in severe adult COVID-19
cases (102).

Long- and Post-COVID have been defined by World Health
Organization as chronic conditions with persistent, relapsing,
remitting, or progressive symptoms occurring three months and
years after SARS-CoV-2 infection, respectively (18-20). By the end
of 2021, the Institute for Health Metrics and Evaluation (IHME)
estimated 3.7% (144.7 million) of individuals developed LC, with
15.1% (22 million) presenting persistent symptoms at 12 months
after SARS-CoV-2 infection (103). However, these numbers are
likely underestimated, since only in October 2021 WHO introduced
a specific 10th revision of the International Classification of
Diseases (ICD-10) code, U09.9, designated as “Post COVID-19
condition, unspecified”. Based on that is a challenge specific to LC
cases mortality data, mostly because of disparities in definitions,
clinical diagnosis inaccuracies, and documentation.

Over 200 symptoms across multiple organ systems have been
reported by individuals with Long COVID, with the most common
including persistent fatigue, muscle or joint pain, shortness of
breath, headache, difficulty concentrating, memory impairment,
and alterations in taste and smell (20) (Figure 3). Although
growing research provides valuable insights, the underlying causes
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of LC remain unclear. Several pathogenic mechanisms have been
proposed, with four predominant hypotheses encompassing viral
persistence, latent viral reactivation, autoimmunity, and chronic
inflammation (21). These mechanisms are not mutually exclusive
but rather interrelated, forming a continuum in which acute-phase
immune and inflammatory disturbances evolve into chronic cellular
inflammatory states, leading to tissue injuries and other conditions
such as platelet activation, coagulation abnormalities, microclot
formation, and impaired gas exchange (104).

Persistent viral presence, antigen reservoirs, and residual spike
protein may remain active within body tissues (105), accompanied
by a delayed or dysregulated immune response to viral antigens,
contributing to the development of Long COVID symptoms. The
persistence of SARS-CoV-2 in the body, even after apparent viral
neutralization, has been consistently associated with Long COVID
manifestations (106, 107), possibly because such viral persistence
sustains continuous immune activation, leading to the ongoing
production of functional autoantibodies (fAABs) that can affect
multiple organs. However, the underlying immunological
mechanisms remain poorly understood, particularly considering
that viral persistence is not a phenomenon unique to SARS-CoV-2
but has also been described in other chronic or post-viral conditions

Potential Causes of Long COVID-19
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(108). Associated with persistent immune activation, Epstein-Barr
virus viremia and SARS-CoV-2 RNAemia were positive in
individuals at diagnosis, showing a reactivation of latent virus
anticipating LC patterns (109).

Classical autoimmunity arises from a loss of self-tolerance,
which is determined by an individual’s genetic and epigenetic
background and further modulated by external factors such as
lifestyle and environmental exposures, such as infections (110).
During the acute phase, the SARS-CoV-2 virus may trigger
autoimmune disease, elevating the levels of autoantibodies. Kreye
et al. (2020), observed that a large fraction of antibodies generated
following SARS-CoV-2 infection recognize host proteins rather
than viral targets, indicating autoimmune reactivity (111). This
could be attributed to the fact that SARS-CoV-2 encodes two viral
proteases, NSP3 (PL”™) and NSP5 (3CL"™), which may directly
contribute to autoimmunity by extensively cleaving host proteins
that share consensus cleavage sites with viral polyproteins (112).
This process generates thousands of novel peptide fragments
(neoantigens) that are presented on MHC molecules and
misrecognized as “non-self” by cytotoxic T cells, leading to
chronic activation of autoreactive CD8" and CD4" T cells,
persistent inflammation, and functional autoantibody production.
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Potential causes and multi-organ manifestations of Long COVID. Long COVID is a heterogeneous condition with proposed mechanisms including
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The resulting neoantigen-driven mechanism further disrupts key
immunoregulatory pathways, impair type I and II IFN responses,
hinder viral clearance, and promote long-term viral persistence in
tissues, ultimately sustaining immune activation and the relapsing
symptomatology characteristic of Long COVID (112).

Emerging evidence suggests that several classes of autoantibodies
are associated with the occurrence, symptomatology, and severity of
Long COVID. In particular, the persistence of antinuclear
autoantibodies (ANAs) for up to 12 months post-infection in
patients with post-COVID syndrome, overlapping with
autoimmune features of lupus (SLE), rheumatoid arthritis, or
Sjogren’s syndrome (113). Also, the presence of functional
autoantibodies (fAAbs) targeting G protein—coupled receptors
(GPCRs), has shown a significant association with symptoms such
as dizziness, lack of concentration, postural orthostatic tachycardia
syndrome, and the deterioration of pre-existing neurological
conditions (114). These autoantibodies have been identified as
potential immunological biomarkers, aiding in the diagnosis,
prognostic evaluation, and assessment of disease severity in affected
individuals, and their therapeutic removal may confer clinical
benefits, supporting their role as active contributors to the
pathophysiology of Long COVID/post-COVID syndrome (115).

Because of a wide range of symptoms and gaps in the origin of
Long COVID, likely influenced by individual differences in
neoantigen presentation via MHC molecules (112), the major
challenge is about accurate diagnosis. Besides self-reported tests
(116), most diagnostic tools for LC are still under development,
particularly imaging methods aimed at identifying organ-specific
alterations (117-119). Moreover, some studies suggesting LC
biomarkers are growing. A recent genome-wide study has proposed
an association of FOXP4 with LC. The C allele at rs9367106 was
associated with an increased risk of LC but not necessarily as a causal
variant. Otherwise, rs9381074 was identified as a causal variant
because of its association at the FOXP4 locus. Higher expression of
FOXP4 in immune and alveolar cells (type 2) also contributes to a
role in LC. Although the limitation of the study was the data collected
prior to the Omicron wave and widespread vaccination, FOXP4 can
be better investigated for possible contribution as a genetic risk factor
to LC (120). Another study focusing on finding a mRNA signature in
LC patients, Missailidis et al. (2024), through a transcriptome analysis
of peripheral blood mononuclear cells (PBMCs) showed 2 genes
downregulated from 70 genes, identified as leukocyte
immunoglobulin-like receptors, LILRBI and LILRB2, with the
potential to discriminate all of the LC from recovered patients
(121). Still examining the immune profile of PBMCs, Guerrera
et al. (2025) showed CD3+ T, CD4+ T, CD8+ T, and Treg cells
reduced levels in COVID-19 patients. However, in LC patients all
cells were recovered, but the numbers of CD8+ T cells remained low,
as well as activation markers on both CD8 T cells and yd T cells,
including the expression of CXCR5 and CCR6, identifying an
immunological signature in adaptive immune dysregulation (122).
Furthermore, healthy convalescent individuals exhibited higher titers
of SARS-CoV-2 neutralizing antibodies compared to those with long
COVID. Detailed phenotypic analyses revealed a modest

Frontiers in Immunology

10.3389/fimmu.2025.1686572

upregulation of co-inhibitory receptors, particularly PD-1 and
TIM-3, on SARS-CoV-2 non-spike-specific CD8" T cells in long
COVID patients (123). Elevated levels of inflammatory biomarkers,
such as IL-6, CRP, and TNF-a, after SARS-CoV-2 infection for one or
more months were found to be a potential core set of biomarkers for
long COVID, which can be used to manage long COVID patients in
clinical practice (124). Recently, Abbasi et al. (2025) identified SARS-
CoV-2-derived peptides from the viral replicase polyprotein lab
(Pplab) within serum extracellular vesicles of patients with persistent
long COVID symptoms, suggesting that Pplab-enriched EVs may
serve as a potential biomarker of persistent viral activity and ongoing
pathogenesis (125).

Notably, all these efforts to find biomarkers for LC diagnosis
and future targeted therapy have many unclear mechanisms.
Among promising approaches arises from an ongoing clinical
study with the DNA aptamer rovunaptabin, also known as
BCO007, which neutralizes functional autoantibodies (fAABs)
targeting G protein—coupled receptors (GPCRs) (112, 126).

Therefore, patients who developed severe illness from COVID-
19 had a greater risk of LC-associated symptoms than non-severe
illness (127), although long COVID can develop regardless of the
severity of the initial SARS-CoV-2 infection (128). Recent studies
have shown an increased risk of Long COVID after repeated
infections (129). Although vaccination helps mitigate this risk, the
emergence of immune-evasive Omicron variants led to widespread
reinfections, underscoring the need for continuous vaccine updates
to improve protection against evolving variants of concern. Overall,
a cohort study of 2025 demonstrated that less than 2% of LC
patients followed up to 3 years after initial infection had resolution
of symptoms, but that the COVID-19 vaccination was associated
with better outcomes (130). Notably, the vaccination status and
variant of SARS-CoV-2 may influence the risk of long COVID and
changes in LC symptoms (28, 131, 132).

4 COVID-19 vaccine development

To rapidly respond to the COVID-19 pandemic, several
technological platforms were employed in vaccine development,
each with specific advantages and limitations. Some aspects must
be considered in choosing the vaccine development platform:
technology, time and costs involved in large-scale production,
storage conditions, administration route, dose regimen, nature and
durability of the immune response, and the possibility of updating
vaccines in cases of emergence of variant strains with potential to
evade immunity (133, 134) (Figure 4). Among the most widely used
were inactivated virus, viral vector, and mRNA vaccines, which
together accounted for the majority of doses administered globally.

4.1 COVID-19 vaccination

Inactivated virus vaccines are based on a long-established
approach, historically used for pathogens such as influenza, polio,
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hepatitis A, rabies, and typhoid (135). They are produced by
growing large amounts of the pathogen, followed by particle
inactivation using agents such as formaldehyde or B-
propiolactone (BPL) (7, 9-136). By presenting the complete viral
surface to the immune system, they elicit a broad antibody
repertoire but generally limited T cell activation, requiring the
addition of adjuvants and administration in multidose regimens
(67). During the COVID-19 pandemic, CoronaVac (Sinovac Life
Science Co., China) was the most administered inactivated vaccine.
Delivered in a two-dose intramuscular regimen, it demonstrated the
capacity to elicit robust humoral immune responses and to reduce
hospitalizations and deaths (137-140). Regarding the cellular
response, a significant percentage of the circulating SARS-CoV-2-
specific CD4+ T cells detected after two doses of CoronaVac
exhibited a Tth phenotype, similar to those observed following
mRNA vaccination and infection (141).

Viral vector vaccines use recombinant, replication-deficient
viruses engineered to express antigens from the target pathogen,
inducing strong humoral and cellular immune responses without
adjuvants (142). Adenoviruses are most commonly used because
they are genetically stable, induce potent CD8" T cell responses, and
remain effective in resource-limited settings due to their relative
thermostability (142, 143). This innovative technology has been
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studied in the development of vaccines for various infectious
diseases such as HIV, dengue, flu, tuberculosis, malaria, Zika,
chikungunya, MERS, among others (134). For COVID-19,
ChAdOx1 nCoV-19 (AstraZeneca/University of Oxford) and
Ad26.COV2.S (Janssen/Johnson & Johnson) were two of the most
widely deployed viral vector vaccines, both of which express the
SARS-CoV-2 spike protein. ChAdOx1, based on a chimpanzee
adenovirus vector ChAd, was typically administered in a two-dose
regimen (138, 144, 145), while Ad26.COV2.S, based on human
adenovirus serotype 26, was the only COVID-19 vaccine approved
for use as a single-dose primary schedule, facilitating rapid coverage
in populations with limited healthcare access (138). Ad26.COV2.S
elicits broad humoral and cellular immune responses, which are
associated with protective effectiveness against SARS-CoV-2
infection, moderate to severe COVID-19, and COVID-19-related
hospitalization and death (146, 147). The ChAdOx1 vaccine
induces a Thl-biased response characterized by IFN-y and TNEF-
o secretion by CD4" T cells, predominant IgG1/IgG3 production,
and CD8" T cells with cytotoxic potential (148), and has
demonstrated efficacy against symptomatic infection by the
ancestral SARS-CoV-2 strain (149).

mRNA vaccines, a more recent platform, enabled
unprecedented speed in COVID-19 vaccine development thanks
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to their capacity for rapid design and large-scale production without
the need to manipulate live pathogens (150-152). These vaccines
deliver messenger RNA encoding the spike protein into host cells
via lipid nanoparticles (LNPs), enabling intracellular antigen
expression that mimics natural infection and elicits both humoral
and cellular immune responses (150-152). Modifications such as
nucleoside analog incorporation and optimized purification
increase stability and translation efficiency (153, 154). For
COVID-19, BNT162b2 (Pfizer/BioNTech) and mRNA-1273
(Moderna) were the first mRNA vaccines authorized for human
use, marking a milestone in vaccinology. Both mRNA-based
vaccines targeted the prefusion full-length spike protein and were
administered as two-dose regimens, although they differ in the
mRNA content, the LNP composition and the interval between
priming and boosting doses (155-158). Early randomized trials
demonstrated that both vaccines were highly effective in preventing
symptomatic COVID-19 (156, 158), and may offer increased
immunogenicity in immunocompromised (IC) patients,
particularly with the higher-dose mRNA-1273 vaccine, which is
associated with higher seroconversion rates, greater total anti-spike
antibody titers, and elevated neutralizing antibody titers and cellular
immune responses (159), the latter being linked to protection
against initial SARS-CoV-2 infection, viral clearance, and
potentially essential for long-lasting immunity (160).

Together, these three vaccine platforms, based on different
technological principles, formed the backbone of the global
immunization effort against COVID-19. Some were later
supplemented with booster doses to counter waning immunity
and updated to enhance protection against variants of concern,
helping to maintain vaccine effectiveness throughout the pandemic.

4.2 Variants of concern and vaccine
reformulation

4.2.1 Emergence of variants of concern
SARS-CoV-2, an RNA virus, accumulates mutations more
frequently than DNA viruses. The accumulation is largely due to
the RNA-dependent RNA polymerase (RdRp) enzyme, which is
inherently error-prone during the virus’s replication process and
lacks the ability to correct these errors. These mutations can alter
amino acid sequences and protein function, driving viral evolution,
increasing pathogenicity, and potentially compromising immune
responses. Asymptomatic transmission further facilitates viral
spread and the emergence of selective mutations that enhance
replication, transmissibility, or immune evasion tend to become
dominant (161). Of particular concern are mutations in the Spike
protein, especially in the receptor-binding domain (RBD), which
can increase ACE2 affinity or promote antibody escape. Variants
with significant impacts on disease severity or reduced vaccine and
treatment efficacy are classified as variants of concern (VOCs) (94).
Throughout the COVID-19 pandemic, several VOCs were
originated: Alpha or B.1.1.7 (UK-originated variant), Beta or
B.1.351 (South African-originated variant), Gamma or P.1 (a
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Brazilian variant), Delta or B.1.617 (an Indian variant) and
Omicron or B.1.1.529 (South Africa and Botswana- first
detection) (162-165). Among them, the Omicron and its
subvariants were highlighted, a lineage with up to 60 mutations,
38 of which are in the Spike protein and at least 12 in the RBD
domain. Most of these mutations are known to affect
transmissibility, immune evasion and a higher risk of reinfection
(166). Among the mutations found in this SARS-CoV-2 lineage,
D614G and P681H are linked to greater infectivity and stability of
the viral particle (167, 168). While N501Y, T478K, Q493R, and
H655Y increase the affinity of SARS-CoV-2 for the ACE2 receptor,
increasing its transmissibility (168). The K417N, E484A, Y505H,
N440K, and G496S mutations favor immune escape via neutralizing
antibodies generated during vaccination or natural infection, as well
as alter the sensitivity to neutralization by monoclonal antibodies or
sera from convalescent patients, compromising the effectiveness of
treatments (169). However, clinical pathogenicity in Omicron is
reduced when compared to other VOCs (170), which is believed to
be associated with TMPRSS2-independent viral fusion and
replication (171, 172).

The newly emerged variants have raised concerns about the
immunity conferred by COVID-19 vaccines, particularly in mRNA
vaccines and vector vaccines, which were designed to express the
spike glycoprotein based on the reference sequence. Studies found
neutralizing antibody evasion by Omicron sublineages using sera
from individuals vaccinated with both vaccine strategies (173, 174),
yet neutralizing capacity was partially restored by vaccine boosters
(175-177). Nevertheless, antibodies produced by a triple
homologous/heterologous vaccination regimen or by hybrid
immunity with two doses of the vaccine resulted in greater
neutralizing capacity against the Omicron variant (178, 179).
Although neutralizing antibody titers represent only one
component of the vaccine-induced response, it is crucial to assess
the effectiveness of vaccines in response to variants and, if necessary,
adapt them. However, vaccines based on disease-causing pathogens
are complex to update in cases of the emergence of viral variants
that have undergone mutations and escaped from the immune
system. A study observed that the variant of concern P.1 Gamma
can escape the neutralization of antibodies from convalescent
patients and individuals previously immunized with the
inactivated vaccine (CoronaVac) and that this neutralization
capacity is six times smaller when compared to the original
Wuhan lineage (180), highlighting the challenge of immune
escape in this platform.

Although these mutations provided greater escape from
neutralizing antibodies and reduction of B memory cells, the other
arm of the adaptive immune response generated by vaccines, memory
CD4+ and CD8+ T cells, has also been explored. It has been observed
that T-cell-mediated immunity was well maintained for long periods
after vaccination with the monovalents Wuhan vaccines and confers
cross-protection to SARS-CoV-2 variants, which would explain the
lack of severe cases and deaths in reinfected and vaccinated
individuals (181, 182). This even applies to the Omicron variant,
with preservation of the epitopes recognized by T cells with an
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average > 80% for Omicron compared to the other VOCs (183, 184).

4.2.2 Boosters and vaccine adaptation

Due to the rapid decline in neutralizing antibody levels 6
months after the second dose and the emergence of VOCs such
as Delta, which are more transmissible and cause serious diseases
than others variants of the virus (185), the application of booster
doses of the vaccine was globally recommended, mainly for
immunocompromised individuals, those with comorbidities and
healthcare professionals (186). The boosters were able to restore
neutralizing antibody titers.

To address the ongoing evolution of SARS-CoV-2, particularly
the emergence of Omicron and its subvariants, some vaccines were
reformulated and administered as boosters to broaden immune
protection. These updates mainly involved mRNA vaccines due to
their adaptability, leading to the development and authorization in
2022 of bivalent formulations, such as Comirnaty (Pfizer-
BioNTech) and Spikevax (Moderna), which combine mRNAs
encoding the original Wuhan strain with those targeting the
Omicron BA.1 and BA.4/5 variants (187, 188). Next, monovalent
vaccines targeting the Spike protein of subvariants XBB.1.5 and KP-
2 have also been approved by the same companies (15, 189).

Souza et al. (2024) reported that individuals who received a
single dose of a bivalent vaccine exhibited significantly higher
neutralizing antibody levels against various SARS-CoV-2 variants
compared to those who received three or four monovalent boosters
based on the B.1 lineage (176). Similar results were found by
Scheaffer et al. (2022) in mouse models, showing broader
neutralization of Omicron variants (177). However, repeated
mRNA vaccination against COVID-19 was associated with IgG4
class switching, which reduces Fc-dependent antibody effector
functions and diminishes NK cell activation by S1-specific
antibodies, potentially weakening the vaccine-induced immune
response (190, 191). Regarding T cell-mediated immunity, it
remained stable after two doses of the monovalent Wuhan-based
vaccine and was not significantly enhanced by further booster doses
or Omicron breakthrough infections (82), suggesting that T cell
responses are more antigenically resilient to Spike mutations and
continue to contribute to protection against severe COVID-19.
Notably, SARS-CoV-2-specific T cells induced by booster
vaccines remained active and functional for at least one year post-
immunization (82).

5 Impact of vaccination on long- and
post-COVID syndromes

5.1 Immunological and virological
mechanisms of protection

Vaccination against SARS-CoV-2 does not completely prevent
long COVID (LC) but significantly reduces its incidence and
symptom burden. Multiple studies have demonstrated lower
frequencies of fatigue, fever, cough, dyspnea, anxiety, depression,
memory dysfunction, and brain fog among vaccinated individuals
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compared with unvaccinated peers, with effects persisting for up to
18 months (192-194). Breakthrough infections among vaccinated
individuals are also associated with lower LC risk, particularly for
coagulation and pulmonary sequelae (27). Notably, protection
increases with acute disease severity, being strongest among
hospitalized and ICU-treated patients (195) (Figure 5). The
underlying mechanisms for these benefits are multifactorial and
involve both immunological and virological processes.

A primary protective mechanism of COVID-19 vaccination
involves attenuation of the severity of the disease in the acute phase,
which has been consistently associated with a higher risk of post-
acute sequelae, due to intense immune activation, extensive tissue
damage, and prolonged hospitalization. Vaccinated individuals
typically experience a milder course of acute illness, leading to
reduced tissue damage and a lower risk of long-term complications
(27, 192, 193). In a pediatric prospective cohort, reduced organ
damage following vaccination was proposed as a key physiological
explanation for the decreased incidence of long COVID (195).
Notably, a higher viral burden during the acute phase is strongly
associated with an increased risk of persistent symptoms (196-199),
indicating that early immune priming through vaccination may
help interrupt this pathological trajectory (27).

Vaccinated individuals tend to exhibit more regulated immune
responses during acute SARS-CoV-2 infection, characterized by a
lower incidence of cytokine storms and reduced prevalence of
autoantibody formation (192). Studies have consistently reported
that COVID-19 vaccination is associated with a downregulation of
pro-inflammatory cytokines such as IL-1, IL-6, and TNF-o., which
are key mediators involved in chronic inflammation and fibrotic
tissue damage (192, 200, 201). In addition, elevated plasma levels of
soluble CD40 ligand (sCD40L) have been observed in moderate to
severe COVID-19, associated with a platelet-driven prothrombotic
profile (202). Notably, sCD40L concentrations were significantly
reduced following vaccination (203). Moreover, vaccinated
individuals show fewer symptoms linked to enhanced
inflammatory responses, such as headaches, joint pain, and
dysregulated hypertension. These symptoms were significantly
more frequent in unvaccinated patients, suggesting that stronger
inflammatory reactions in the absence of vaccination may underlie
these clinical differences (192). From an immunological standpoint,
these protective effects reflect the benefits of early immune priming:
vaccinated immune systems are better equipped to control viral
replication and mount proportionate responses, thereby reducing
collateral tissue damage and systemic inflammation during acute
infection (27, 204). These findings support the immunological
theory that primed immune systems respond more efficiently and
with less dysregulation during acute SARS-CoV-2 infection, thereby
reducing downstream post-acute sequelae.

Faster viral clearance and the prevention of viral reservoir
establishment have emerged as prominent immunological
mechanism candidates by which COVID-19 vaccination may
influence the development and severity of LC (27, 28, 203, 204).
Persistent SARS-CoV-2 RNA or antigens are thought to drive
chronic immune activation and inflammation, dysbiosis, and
coagulation abnormalities, contributing to key long COVID
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symptoms, including fatigue, increased risk of thrombosis, cognitive
dysfunction, and myalgia (21, 205). Supporting this hypothesis,
SARS-CoV-2 components have been detected months after
infection in immune-privileged tissues, such as the intestine, skin,
liver, and lungs (206-208). Among viral proteins, the persistence of
spike protein in various tissues may contribute to prolonged
neurological symptoms observed in long COVID-19 (104, 105,
209, 210). Furthermore, circulating spike antigen has been
identified in approximately 60% of PCC patients up to 12 months
post-infection (104), and spike S1 protein has been detected within
monocytes as late as 15 months after acute infection (209). SARS-
CoV-2 Spike protein plays a pivotal role in COVID-19 pathogenesis
and is the main target for vaccine development. Spike protein can
also aberrantly activate the innate immune Toll-like receptor 4 (57,
211-213). Notably, S1 may persist in plasma via extracellular
vesicles (EV) (214) and has been shown to associate with LPS,
especially in Delta variant infections, contributing to inflammation
(215). SI also stimulates pro-inflammatory cytokine production,
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and its presence in monocytes and granulocytes (209) suggests these
cells may sustain chronic inflammation in post COVID syndrome
(198). These findings reinforce the role of persistent viral material in
perpetuating immune imbalance and long COVID symptoms
(16, 216).

A pre-existing immune response induced by vaccination can
prevent the establishment of viral reservoirs, thereby reducing the
risk of long COVID (205). This protection is primarily mediated by
the rapid induction of neutralizing antibodies and virus-specific T
cell responses, which limit viral replication and facilitate early viral
clearance. SARS-CoV-2 mRNA vaccines elicit transient cytokine
responses associated with robust spike-specific antibody
production, including in previously infected individuals (200).
Recent studies revealed that healthy convalescents displayed
higher neutralizing activity against SARS-CoV-2 than individuals
with long COVID despite comparable anti-Spike IgG titers,
suggesting qualitative differences in humoral immunity (123).
This observation indicates that vaccination not only enhances
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immune magnitude but also optimizes functional breadth, leading
to more efficient viral control and reduced risk of chronic
antigen persistence.

However, the emergence of Omicron and its heavily mutated
subvariants posed a major challenge, as extensive conformational
alterations increased both transmissibility and immune evasion.
Although Omicron generally causes less aggressive acute disease
compared to previous VOCs (170), these sublineages remain
globally predominant and have resulted in frequent reinfections,
even among vaccinated individuals. Despite its increased
transmissibility and number of reinfections, studies have shown
that the Omicron variant presents a low risk of developing LC
when compared to previous SARS-CoV-2 variants (217). On the
other hand, repeated exposure to Omicron variants may promote
sustained immune activation and the generation of autoantibodies,
potentially increasing the risk of developing persistent symptoms
consistent with Long COVID (129, 218). Thus, continued vaccination
efforts with updated formulations targeting currently circulating
variants remain essential to prevent reinfections and mitigate the
long-term consequences of SARS-CoV-2 infection (112, 219).

Autoimmunity has been proposed as a key mechanism
underlying long COVID, either through molecular mimicry or by
the generation of neoantigens. Antibodies recognizing SARS-CoV-2
spike protein cross-react with several human tissue antigens,
especially neurological (220), were detected in patients with
severe acute SARS-CoV-2 infection with reactivity to pro-
inflammatory factors (221), can even contribute to cardiovascular
inflammation via atherosclerotic plaque formation (222). Beyond
molecular mimicry, viral proteases (PLP™ and 3CLP™®) may
contribute to autoimmunity by aberrantly cleaving host proteins,
generating neoantigens that are presented by MHC molecules and
misrecognized as “non-self.” This process can trigger sustained
activation of autoreactive T cells, persistent inflammation, and
autoantibody production, reinforcing the autoimmune
mechanisms implicated in post COVID (112).

Vaccination may prevent the emergence of autoantibodies by
reducing the risk of reinfections, promoting faster viral clearance,
and modulating the immune response, thereby diminishing the
production of inflammatory cytokines and chemokines and/or
reprogramming pathogenic lymphocytes (200). Notarte et al.
(2022) compiled evidence supporting the notion that pre-
infection vaccination may reduce autoimmunity-related long
COVID manifestations (28). Although inflammation impairs
immunocompetence, it is possible that vaccination in individuals
with pre-existing long COVID symptoms promotes anti-Spike IgG
responses which may have helped lower a persistent viral burden
and reduce titers of autoantibodies (223).

In immunocompromised populations, the effectiveness of
vaccination against long COVID remains inconclusive. Studies in
people living with human immunodeficiency virus (HIV) infection
(PLHIV) (224) and those with common variable immunodeficiency
(CVID) (225), which consistently exhibit higher rates of long
COVID compared to community-based cohorts, reported a lower
long COVID prevalence among vaccinated individuals. However,
these associations were not statistically significant, largely due to
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limited sample sizes and methodological limitations. These findings
underscore both the benefits and the limitations of vaccination in
preventing long COVID, especially in vulnerable populations.

5.2 Vaccine platforms and dosage

Large cohort studies have consistently demonstrated the
significant efficacy of vaccination in reducing the severity,
duration of long COVID symptoms, and overall hospitalization
rates. In a multicentric analysis across the UK, Spain, and Estonia,
pre-infection vaccination was associated with a markedly lower risk
of long COVID (226). Ranucci et al. (2023) found that vaccinated
hospitalized COVID-19 patients had significantly lower rates of
major physical and neuropsychological symptoms at 12 and 18
months post-infection (MPS: 52% vs. 91.7% in unvaccinated; MNS:
24% vs. 93.8%) (193). Similarly, Babicki et al. (2023) and Ioannou
et al. (2022) reported reduced incidence of symptoms such as
headache, joint pain, and documented long COVID diagnoses
among fully vaccinated individuals (192, 227). Collectively, these
findings support the hypothesis that vaccination mitigates long
COVID primarily through accelerated viral clearance and
prevention of persistent antigenic stimulation. However, a better
understanding of the similarities and differences between vaccine
platforms and dosing regimens is needed, not only in preventing the
development of long COVID, but also in evaluating their impact on
individuals with pre-existing long COVID symptoms.

Multiple studies have reported a slightly stronger preventive
effect of mRNA vaccines compared to adenoviral vector vaccines in
reducing the risk of developing long COVID symptoms. Catala et al.
(2024) found that administration of any first dose of COVID-19
vaccine (ChAdOx1, BNT162b2, Ad26.COV2.S or mRNA-1273)
was associated with a reduced risk of long COVID, with a slightly
greater preventive effect observed for BNT162b2 compared to
ChAdOx1 (226). Similarly, other studies have shown a more
pronounced reduction in long COVID symptoms among
recipients of mRNA vaccines (BNT162b2 and mRNA-1273)
relative to those who received adenoviral vaccines (Ad26.COV2.S)
(23, 27, 131, 228). Interestingly, a greater improvement in
symptoms observed among individuals who received mRNA
vaccines compared to those who received adenoviral vector
vaccines was more pronounced in key long COVID symptoms
such as fatigue, brain fog, and myalgia (229). This difference in
vaccine efficacy has been attributed, in part, to the higher
effectiveness of mRNA vaccines (particularly BNT162b2) in
preventing SARS-CoV-2 infection compared to adenoviral
vaccines such as ChAdOx1 (149, 158), as well as the greater
protection mRNA vaccines appear to offer against severe COVID-
19 illness (28, 228).

It is important to relate that adenoviral vector vaccine
ChAdOx1, was associated with rare thrombotic events linked to
endothelial inflammation and microvascular injury, mainly
observed in young adults (22-49 years) with elevated D-dimer
and CRP levels (230-232). Although these cases are uncommon,
they have been characterized as vaccine-induced immune
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thrombotic thrombocytopenia (VITT), resulting from pathogenic
immune complexes that activate platelets and leukocytes, leading to
thrombosis and thrombocytopenia (233). These findings highlight
overlapping mechanisms of vascular inflammation, coagulation,
and immune activation in both vaccine-induced thrombosis and
long COVID.

Although some studies have shown that even a single dose may
be sufficient to reduce the prevalence and severity of long COVID
symptoms, two doses are likely more effective (131, 132). Ioannou
et al,, 2022 demonstrated that only individuals with two doses of
mRNA COVID-19 vaccine were protected from long COVID
diagnosis, while one dose was insufficient (227). Furthermore,
evidence supports a dose-dependent protective effect of COVID-
19 vaccination against long COVID, regardless of the vaccine
platform used. A study involving over 500,000 adults reported a
21% risk reduction after one dose, 59% after two doses, and 73%
after three or more doses compared to unvaccinated individuals
(234). Similarly, Marra et al. (2023) found that, among individuals
without prior SARS-CoV-2 infection, two doses conferred 37%
protection and three doses up to 69% effectiveness against the
development of long COVID (235).

However, if autoimmunity contributes to the pathophysiology
of long COVID, vaccine-induced expansion of autoreactive clones
could, in rare cases, transiently exacerbate symptoms through
heightened immune activation and antibody production, as
suggested by isolated reports (236). Pediatric registry data noted
only slight increases in autoimmune diagnoses post-vaccination,
but the absolute risk remained low (237). Korner et al. (2023)
identified significantly elevated levels of 1gG3 and IgG4 subclasses
in long COVID patients with concomitant Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS),
suggesting a role in the immunopathology of long COVID (238).
Although little is known about virus-specific 1gG4 antibody
responses in controlling viral infections, evidence has suggested a
pathogenic role of 1gG4 in autoimmune diseases (239). This class
switching toward IgG4 has raised considerable interest, as high
IgG4 levels were previously observed in the context of HIV vaccine
trials, where vaccine-induced 1gG4 responses impaired Fc-mediated
effector functions such as antibody-dependent cellular cytotoxicity
(ADCC) and phagocytosis (ADCP), thereby questioning their
functional implications (240, 241). Furthermore, It has been
reported that repeated immunization of naive individuals with the
mRNA vaccines increased the proportion of the IgG4 subclass over
time compared with individuals who received AZD1222
homologous vaccination (242, 243), showing that vaccination
with mRNA-based vaccines caused a shift in anti-spike antibody
repertoire toward IgG4 subclass.

Besides mRNA and adenovirus-based vaccines, a study
suggested that receiving three doses of the inactivated (SinoVac
CoronaVac) vaccine was associated with significantly lower odds of
reporting any LC symptoms compared to receiving two doses.
Moreover, these protective effects were similar to those observed
with three doses of an mRNA vaccine (Pfizer-BioNTech) (244).

Since it is widely known that vaccine-induced immunogenicity
declines over time, combined with the emergence of VOCs, the role
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of booster doses and updated seasonal vaccines, and their impact on
the development of LC, must be carefully assessed. It has been
reported that the prevalence of LC during the Omicron wave was
about half that of the Delta wave (131), with vaccinated individuals
having shorter symptom duration with Omicron (6.87 days) than
with Delta (8.89 days), further reduced with boosters (4.4 vs. 7.7
days) (192). Notably, booster vaccination appeared to reduce the
risk of developing long-term autoimmune complications after
SARS-CoV-2 Delta and Omicron BA.1 or BA.2 variant infection,
highlighting its potential protective effect (245). Also, the UK’s
Health Security Agency found that LC was 50% less common in
double-vaccinated individuals infected with Omicron BA.1
compared to those with Delta, although this was not observed in
triple-vaccinated individuals (246). In a study estimating the
cumulative incidence of severe post-COVID sequelae one year
after infection, a 5.23% decline was observed during the Omicron
era compared to the combined pre-Delta and Delta eras. Of this
reduction, 28.11% was attributed to changes in the virus and other
temporal factors, while 71.89% was attributed to vaccination (204).
Although vaccine effectiveness varied with emerging variants,
suggesting higher LC incidence during Delta infection wave
compared to Omicron, a study showed these differences were not
significant after adjusting for sociodemographics, clinical
characteristics, and vaccination status (130). Furthermore, the
higher transmissibility and immune escape capacity of Omicron
led to recurrent infections even among vaccinated individuals,
thereby maintaining a residual risk of developing Long COVID,
although generally associated with milder acute disease compared
with previous VOCs. This suggests that the variation in LC
symptoms between variants may be driven not solely by the
biological traits of the variants.

While the potential benefits of vaccination in preventing long
COVID have been widely evaluated, an increasing number of
studies are now assessing its impact on individuals with pre-
existing long COVID symptoms (106, 203). Grady et al. (2024)
offer preliminary indications of biomarkers that may help predict
how people with Long COVID respond to vaccines (22). Although
elevated levels of soluble IL-6 receptor (sIL-6R) were associated
with clinical improvement, individuals with persistently high levels
of IFN-B and ciliary neurotrophic factor (CNTF) did not show any
improvement following vaccination. Elevated interferon signaling
in individuals who did not improve post-vaccination may reflect
persistent immune activation due to ongoing SARS-CoV-2
infection and vaccine failure to clear viral reservoirs or that non-
SARS-CoV-2 mechanisms are driving the condition, such as
reactivation of latent viruses like EBV, or autoimmune processes.
Alternatively, the IFN signature may represent sustained immune
dysregulation rather than active infection (22).

6 Conclusions

Although we adopted a nonsystematic review strategy, the points
raised here reinforce that the current body of evidence available in the
literature indicates that COVID-19 vaccination plays a multifaceted
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role in mitigating the risk of Long and Post-COVID syndromes. By
inducing robust humoral and cellular immunity, vaccines limit viral
replication and prevent the establishment of persistent viral reservoirs,
which are hypothesized to drive chronic symptoms. Multiple studies
have found evidence that COVID-19 vaccination before SARS-CoV-2
natural infection may reduce the risk of long COVID and in
breakthrough infections, it consistently reduces the incidence of
important physical and neuropsychological symptoms (132, 193, 247).

Furthermore, given that recurrent infections driven by the
widespread circulation of immune-evasive variants can promote
persistent immune activation and increase the likelihood of
autoimmune manifestations, vaccine boosters and reformulated
vaccines are essential to reestablish and sustain humoral immune
responses against emerging SARS-CoV-2 variants, thereby
preventing reinfections and mitigating the long-term consequences
of infection (82). Other Infections with Chronic Sequelae and the
Role of Vaccination Parallels with other post-viral syndromes
reinforce the rationale for COVID-19 vaccination as a means of
reducing long-term sequelae. Infections such as EBV, influenza, Zika,
and human papillomavirus (HPV) are known to trigger persistent
symptoms or autoimmune complications. Vaccines against these
pathogens, including HPV and varicella zoster, reduce post-
infectious complications like Guillain-Barre and postherpetic
neuralgia (248-251).

Despite these consistent observations supporting the protective
role of vaccination against long COVID, several questions remain
unresolved. While the benefits of immunization are well established
in the general adult population, gaps remain regarding
immunocompromised individuals, the elderly, and children.
Continued research using harmonized definitions and
longitudinal designs is essential to refine our understanding and
to outline public health strategies for future pandemics.
Furthermore, the complexity of immune responses, the
emergence of immune-evasive variants, the heterogeneity of study
designs, and the lack of a standardized definition of long COVID
and post COVID syndromes across studies contribute to ongoing
uncertainty about the magnitude and consistency of vaccine-
mediated protection. Among the difficulties of reviewing the
effects of vaccination in the context of long COVID are the
different approaches regarding the quantity and duration of post-
infection symptoms and the subjectivity in patient classification
based on self-report rather than detection of LC biomarkers (17).

Other points to be addressed are gaps in the investigation of the
protective potential of inactivated vaccines in the long COVID
context, which challenge our immune system with a larger
repertoire of viral antigens. Some research groups argue that a
more effective vaccination strategy would be based on a
heterologous vaccination regimen rather than a homologous
regimen, in which an initial booster with an inactivated vaccine
followed by a booster with an mRNA vaccine would increase the
concentration and antibody response (245, 252). Furthermore,
global vaccination faces significant inequalities, with disparities in
access and coverage between and within countries, primarily
affecting vulnerable and low-income populations. In addition,
some studies present conflicting data regarding the benefits and
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effectiveness of vaccination, such as post-vaccine symptom
worsening (236), the generation of autoantibodies (253) and
ineffectiveness of the booster dose attributed to immunological
imprinting (254).

Therefore, more in-depth studies addressing these gaps are
essential to better understand the role of immunization in preventing
chronic COVID-19 conditions. In parallel, understanding the
underlying causes of post-vaccine symptoms, and determining
whether early intervention can prevent long-term complications,
may be essential for developing safer, more effective vaccines and for
shedding light on the biological mechanisms of Long Covid.
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