

OPEN ACCESS

EDITED BY Xinhua Li, Third Affiliated Hospital of Sun Yat-sen University, China

REVIEWED BY
He Li,
Central South University, China
Anna Pawłowska-Łachut,
Medical University of Lublin, Poland

*CORRESPONDENCE
Liang Song
Arsongliang@163.com

RECEIVED 15 August 2025 ACCEPTED 21 October 2025 PUBLISHED 03 November 2025

CITATION

Li D-M, Pei K-G, Yu X-Z, Qie M-R, Zhong L and Song L (2025) Advances in PD-1 and CTLA-4 dual-target immunotherapy for ovarian cancer.

Front. Immunol. 16:1686532. doi: 10.3389/fimmu.2025.1686532

COPYRIGHT

© 2025 Li, Pei, Yu, Qie, Zhong and Song. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Advances in PD-1 and CTLA-4 dual-target immunotherapy for ovarian cancer

Dong-Mei Li^{1,2}, Kai-Ge Pei^{1,2}, Xiu-Zhang Yu^{1,2}, Ming-Rong Qie^{1,2}, Lan Zhong^{1,2} and Liang Song^{1,2}*

¹Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China, ²Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China

Ovarian cancer(OC) remains a major threat to women's health, ranking among the top gynecologic malignancies in both incidence and mortality. Current clinical management continues to center on cytoreductive surgery combined with a multidisciplinary approach incorporating chemotherapy, targeted therapy, and immunotherapy. Notably, while single-agent immunotherapy has demonstrated limited efficacy in recurrent OC, recent breakthrough advances in dual-target immunotherapy have brought new hope for advanced-stage and recurrent patients. Clinical evidence indicates that programmed death-1/ cytotoxic T-lymphocyte-associated protein 4 (PD-1/CTLA-4) dual immune checkpoint blockade strategies (e.g., durvalumab plus tremelimumab, nivolumab plus ipilimumab) exhibit differential therapeutic effects: durable treatment responses have been observed in recurrent/platinum-resistant advanced OC, while neoadjuvant applications have significantly improved complete resection rates. However, these therapeutic benefits demonstrate marked heterogeneity across different histological subtypes. The review of current research reveals several critical issues: first, the safety profile of dual immunotherapy requires further characterization; second, data on first-line treatment for advanced OC remain scarce; and third, optimal treatment strategies have yet to be established. Nevertheless, multiple ongoing clinical trials are paving the way for future research directions, including optimization of combination regimens and exploration of predictive biomarkers. In conclusion, despite existing challenges, dual-target immunotherapy has demonstrated clinically meaningful benefits, offering new therapeutic options for advanced and recurrent OC patients and heralding a new era of combination immunotherapy in OC treatment. Future large-scale clinical studies are warranted to further validate efficacy and establish individualized precision treatment strategies.

KEYWORDS

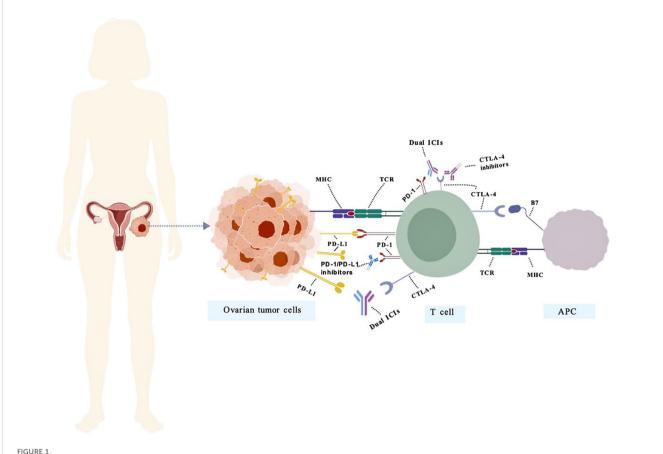
ovarian cancer, dual immune checkpoint inhibitors, PD-1, CTLA-4, neoadjuvant therapy

1 Introduction

Ovarian cancer (OC) ranks among the most common and lethal gynecologic malignancies worldwide (1). Owing to the absence of reliable early screening methods and its insidious clinical presentation, approximately 70% of patients are diagnosed at an advanced stage (2). Epidemiological studies report an overall 5-year survival rate of around 40%, with the 10-year survival plummeting to a mere 13% in advanced cases (3). The current therapeutic paradigm centers on cytoreductive surgery, supplemented by a multimodal approach integrating chemotherapy, targeted therapy, and immunotherapy (4). Immune checkpoint inhibitors (ICIs), now established as a cornerstone in treating various solid tumors (including cervical and endometrial cancers), have shown promise in OC. Preclinical evidence demonstrates that T-cell infiltration within ovarian tumor tissues correlates with anti-tumor immune activation at the molecular level, and this immune signature is positively associated with improved survival-lending a strong rationale for ICI-based interventions (5, 6). Contemporary immunotherapeutic strategies focus on enhancing cytotoxic immune responses to mitigate tumor burden. Nevertheless, response heterogeneity to ICIs persists across histological subtypes and individual patients, driven by factors such as tumor microenvironment composition, tumor mutational burden (TMB), immune checkpoint expression patterns, and genetic/epigenetic regulatory mechanisms. The intricate interplay of these elements ultimately dictates therapeutic outcomes (7-10). Amidst the rapid development of novel agents and combination regimens, the management of advanced and metastatic OC is witnessing a transformative shift, offering renewed hope for this historically recalcitrant disease.

In gynecologic oncology, ICIs targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have advanced from second-line to first-line treatment for advanced/recurrent cervical and endometrial carcinomas. However, OC remains refractory to ICI therapy due to its immunologically "cold" tumor phenotype (11). This immunotherapeutic resistance is characterized by TMB, inadequate immune cell infiltration, and a profoundly immunosuppressive tumor microenvironment (TME) dominated by regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), coupled with limited tumor antigen expression that impedes immune recognition (7, 8).

The biological significance of PD-1 was elucidated following the discovery of its ligands PD-L1/PD-L2 (12, 13). CTLA-4, an immune checkpoint molecule highly expressed on activated T cells and Tregs, was first functionally characterized by Dr. James Allison's team. It suppresses T cell proliferation and IL-2 production through competitive binding with B7 ligands (14). Although both anti-CTLA-4 and anti-PD-1/PD-L1 therapies restore T cell function by blocking inhibitory signals, their mechanisms differ fundamentally: CTLA-4 primarily modulates CD4⁺ T cell activation and migration by regulating antigen-presenting cell (APC)-mediated CD28-B7 interactions (15–17), whereas PD-1 acts downstream of T cell


receptor (TCR) signaling to reverse CD8⁺ T cell exhaustion without affecting clonal expansion (15, 18). This mechanistic complementarity provides a strong rationale for combination immunotherapy strategies. The history of therapies targeting PD-1/PD-L1 and CTLA-4 is summarized in Figure 1.

2 The evolving role of immunotherapy in OC

The efficacy of ICI monotherapy in recurrent OC remains suboptimal. ICI responses are typically associated with high tumor mutational burden (TMB-H, generally >10-20 mut/Mb), mismatch repair deficiency (dMMR), or microsatellite instability-high (MSI-H) status—features that enhance tumor antigen presentation and lymphocyte infiltration (19). However, OC is characterized by a low mutational burden (1-3.5 mut/Mb), with only 5-15% of cases exhibiting dMMR/MSI-H. Although dostarlimab and pembrolizumab have been approved in the US for dMMR/MSI-H/TMB-H tumors, this subgroup represents a small fraction of OC patients, significantly limiting the applicability of immunotherapy (20, 21).

The KEYNOTE-100 trial demonstrated that while the anti-PD-1 antibody pembrolizumab yielded an objective response rate (ORR) of <10% in advanced recurrent OC, a subset of responders exhibited durable clinical benefit lasting beyond 6 months (22). Similarly, the JAVELIN Ovarian 200 trial evaluated the anti-PD-L1 antibody avelumab in combination with pegylated liposomal doxorubicin, yet the combination achieved only a 13% response rate without significant survival improvement, with long-term benefit observed in only a minority of patients (23). Notably, certain OC histologic subtypes (e.g., clear cell carcinoma) display heightened sensitivity to immunotherapy (24), whereas the predominant high-grade serous and mucinous subtypes remain largely refractory (25).

The immunosuppressive TME of OC further complicates therapeutic efficacy. OC TME is characterized by low-to-moderate lymphocytic infiltration and abundant immunosuppressive myeloid cells (e.g., MDSCs, tumor-associated macrophages (TAMs)), which impair residual T-cell antitumor activity (26-28). Additionally, the "cold" tumor phenotype of OC-marked by low antigenicity and immune evasion mechanisms—limits ICI effectiveness (26). To overcome resistance, combinatorial strategies involving ICIs with chemotherapy, antiangiogenic agents, or PARP inhibitors have been explored, but no significant synergistic effects have been observed to date (25). Recently, dual immune checkpoint blockade (e.g., CTLA-4 plus PD-1/PD-L1 inhibitors) has gained attention due to its mechanistic complementarity, yet whether this approach can effectively overcome OC's immunosuppressive barriers requires further validation. Future research should focus on novel combination strategies targeting TME reprogramming, enhanced antigen presentation, or myeloid cell modulation to expand the population benefiting from immunotherapy. To better illustrate the current progress in dual-ICI therapy, we summarize key clinical trial data in Table 1.

The mechanism of action of bispecific antibodies targeting PD-1/PD-L1 and CTLA-4 in OC. PD-1 negatively regulates effector T-cell activity by binding to its ligand PD-L1. Inhibitors targeting PD-1 or PD-L1 disrupt this interaction, thereby restoring T-cell function and promoting anti-tumor immunity. Representative PD-1/PD-L1 inhibitors include pembrolizumab, nivolumab, atezolizumab, and durvalumab. CTLA-4 binds to B7 molecules on antigen-presenting cells (APCs), transmitting inhibitory signals to T cells. CTLA-4 inhibitors restore immune activity by blocking this interaction. Representative CTLA-4 inhibitors include Ipilimumab and Tremelimumab. Dual ICIs mitigate immunosuppression by concurrently targeting multiple inhibitory pathways, thereby overcoming immune tolerance within the tumor microenvironment. (PD-1/PD-L1&CTLA-4) Representative Dual ICIs include Cadonilimab.

3 Advances in dual immune checkpoint inhibitor therapy for recurrent or platinum-resistant OC

Recent years have witnessed significant advancements in dual ICIs therapy for recurrent or platinum-resistant ovarian cancer (PROC), with emerging clinical evidence highlighting both its therapeutic potential and associated challenges. The Korean NCT03699449 trial (33) systematically evaluated efficacy differences among various immunotherapeutic regimens in 70 platinum-resistant patients. Notably, the combination of durvalumab (anti-PD-L1, 1500mg) with tremelimumab (anti-CTLA-4, 75mg) plus chemotherapy (n=18) demonstrated a superior ORR of 33.3% (95% CI: 13.3%-59.0%) compared to single-agent immunotherapy combined with chemotherapy (n=5). However, this regimen raised safety concerns, with grade 3/4 treatment-related adverse events (TRAEs) occurring in 66.7% of patients - substantially higher than other treatment groups (20%-47.1%). The investigators proposed that weekly low-dose paclitaxel

administration might improve the safety profile. The NRG GY003 study (29, 30), involving 100 patients with recurrent OC (1–3 prior lines of chemotherapy and platinum-free interval <12 months), demonstrated that nivolumab (anti-PD-1) plus ipilimumab (anti-CTLA-4) significantly improved ORR (31.4% vs 12.2%, P=0.034) and median progression-free survival (3.9 vs 2.0 months; HR = 0.53, P=0.004) compared to nivolumab monotherapy. However, no statistically significant difference was observed in median overall survival (28.1 vs 21.8 months, P=0.43). Importantly, biomarker analysis revealed no significant correlation between PD-L1 expression and treatment efficacy. The combination therapy maintained a manageable safety profile, with grade \geq 3 TRAEs occurring in 49% of patients, consistent with previous reports.

The recently published phase Ib expansion study (39) demonstrated promising clinical outcomes with the novel dual immunotherapy combination of botensilimab (a next-generation multifunctional CTLA-4 inhibitor) plus balstilimab (PD-1 inhibitor) in 17 evaluable patients with recurrent platinum-resistant/refractory OC. Key efficacy data showed a median treatment duration of 3.2 months (range 0.9-19.6) and median

TABLE 1 Summary of key clinical trial data on bispecific antibody immunotherapy for advanced OC.

Clinical trial	Phase	N	Cohort description	Investigational drug/regimen	mPFS; months	mOS; months	ORR, %	Ovarian cancer classification	Author (year)
NCT02498600	п	100	Measurable disease, 1–3 prior regimens, and PFI < 12 months.	Intravenous nivolumab (every 2 weeks) or induction with nivolumab plus ipilimumab for 4 doses (every 3 weeks)	2.9 vs 3.9	21.8 vs 28.1	Any PD-L1 present: 2.0 vs 1.8	Persistent or recurrent EOC.	Zamarin D (2020) (29, 30),
NCT02834013	П	17	A prospective, multicenter (1,016 US sites), multi-cohort, single-arm phase II trial, had a histologically confirmed diagnosis of any subtype of NEOC	Patients were treated with ipilimumab at 1 mg/kg IV every 6 weeks and nivolumab at 240 mg intravenously every 2 weeks, with treatment administered continuously	Granulosa: 58.3; Carcinosarcomas: 50.7; Sertoli-Leydig: 30.4; yolk sac: 8.7;	42.5	25	NEOCs	Chae YK (2024) (31),
NCT03355976	П	44	Relapsed extra- renal CCC after at least one prior therapy (no prior immunotherapy)	Nivolumab (240mg IV every two weeks) vs nivolumab combination with ipilimumab (1mg/kg every six weeks)	2.2 vs 5.6	17 vs 24.6	14.3 vs 33	Ovarian CCC	Dizon DS (2024) (32),
NCT03699449	П	70	A multicenter, open-label, five- arm, uncontrolled, umbrella trial	HRD-positive: Arm 1: Olaparib 200mg bid + cediranib 30mg qd Arm 2: Olaparib 300mg bid + durvalumab 1500mg q4w HRD-negative: Arm 3 (PD-L1+): Durvalumab 1500mg q4w + chemotherapy (PLD/ topotecan/weekly paclitaxel) for 6 cycles Arm 4 (PD-L1-): Durvalumab 1500mg q4w + tremelimumab 75mg q4w (4 doses) + chemotherapy (4 cycles) Arm 5: Durvalumab 1500mg q4w + tremelimumab 300mg (single dose) + weekly paclitaxel (60mg/m² D1,8,15 q4w for 4 cycles)*	5.62, 5.36, 3.68, 3.98, and 5.13	NR	50, 42.9, 20, 33.3, and 29.4	Platinum-resistant ovarian cancer (high-grade serous or endometrioid ovarian, primary peritoneal, or fallopian tube cancers)	Lee JY (2022) (33),
NCT03899610	П	45	Multicenter, two-arm, phase II trial, patients with stage IIIC- IVB ovarian cancer	In arm 1, patients received carboplatin at an AUC of five or six and an intravenous paclitaxel at a dosage of 175 mg/m2 on day 1, every 21 days for three cycles, along with durvalumab (1,500 mg for three cycles) and tremelimumab (75 mg for three cycles). In arm 2, patients received the same standard-of-care carboplatin and paclitaxel, with the addition of durvalumab (1,500 mg for three cycles) and a single	15.8	NR	86.7	EOC with stages IIIC-IV disease	Park J (2023) (34, 35),

(Continued)

TABLE 1 Continued

Clinical trial	Phase	N	Cohort description	Investigational drug/regimen	mPFS; months	mOS; months	ORR, %	Ovarian cancer classification	Author (year)
				dose of tremelimumab (300 mg in cycle 1). Arm 2 was initiated after the completion of arm 1.					
NCT03249142	Ib	70	Ib randomized trial	NACT + durvalumab (1125mg) alone (arm A) or with tremelimumab (75mg once at C2) (arm B)	25 vs 14	NR	NR	NR	Leary A (2024) (36),
NCT03026062	П	61	Randomized phase II trial	Patients were adaptively randomized to sequential arm: tremelimumab (3mg/kg q4 weeks x 4 doses) followed by durvalumab (1.5g IV q4 weeks for up to 9 doses) upon progression, or the combination arm: tremelimumab (1mg/kg IV plus durvalumab 1.5g IV q4wk for up to 4 doses followed by durvalumab monotherapy for up to 9 doses)	1.84 vs 1.87	10.61 vs 7.26	NR	High grade serous ovarian cancer	Hinchcliff E (2021) (37),
NCT05430906	П	17	An open-label, prospective, single arm, phase II study of evaluating the efficacy and safety of cadonilimab combined with chemotherapy as neoadjuvant treatment for advanced ovarian cancer	Patients received neoadjuvant therapy of cadonilimab plus platinum- taxane chemotherapy (3 to 4 cycles) followed by surgery. The primary endpoint was the R0 rate	NR	NR	94.1	High-grade serous carcinoma (94.1%)	Tang J (2024) (38),

PFS, Progression-free survival; OS, Overall survival; ORR, Objective response rate; PFI, Platinum-free interval; NACT, Neoadjuvant chemotherapy; NR, Not reported; CCC, Extra-renal clear cell cancer; EOC, Epithelial ovarian cancer; HRD, Homologous Recombination Deficiency; AUC, Area Under the Curve;
*Arm 5 was initiated after Arm 4 completion.

follow-up of 8.8 months (range 2.0-29.2), with an ORR of 29% (5/17; 95% CI:13-53), including 4 confirmed partial responses and 1 unconfirmed complete response. The safety profile was favorable, with no reported cases of hypophysitis, myocarditis, or pneumonitis of any grade. TRAEs occurred at grade 1/2 in 94%, grade 3 in 24%, and grade 4 in 6% of patients, with no grade 5 events observed. Diarrhea/colitis was the most common grade 3/4 TRAE (18%). These findings suggest this dual checkpoint blockade combination achieves meaningful clinical activity with manageable toxicity in this heavily pretreated population, warranting further investigation in larger clinical trials to confirm its long-term efficacy and safety. A clinical study conducted by Hinchcliff et al. (37) investigated different administration strategies of CTLA-4 and PD-L1 inhibitors to evaluate their impact on progression-free survival (PFS) in platinum-resistant/refractory high-grade OC. The trial enrolled 61 platinum-resistant patients randomized to either sequential therapy (n=38; tremelimumab followed by durvalumab) or combination therapy (n=23; concurrent administration). Results demonstrated no statistically significant difference in median PFS between groups (P=0.402). The sequential arm showed no objective responses, with 31.6% (12/38) achieving stable disease (SD), while the combination arm yielded partial responses in 8.7% (2/23) plus one SD case. Current data reflect outcomes in the high-grade serous ovarian carcinoma (HGSOC) subgroup, with enrollment ongoing for clear cell carcinoma patients.

In novel immunotherapy development, the bispecific antibody ubamatamab (targeting CD3 and MUC16) has shown therapeutic potential (40, 41). The ongoing first-in-human R16-ONC-3 study (REGN4018) evaluates ubamatamab monotherapy or combined with cemiplimab in recurrent advanced epithelial ovarian, primary peritoneal, or fallopian tube cancer patients (≥18 years, ≥1 prior platinum-based regimen, CA-125≥2×ULN) using a dose-escalation design. As an innovative bispecific antibody (anti-

MUC16×CD3), ubamatamab represents a promising immunotherapeutic strategy, though efficacy data await further analysis as the trial continues recruitment. These studies not only validate the clinical potential of dual immune checkpoint inhibition in recurrent/resistant OCbut also provide critical insights for treatment optimization, safety management, and biomarker exploration. Larger phase III trials are warranted to confirm these findings and identify optimal beneficiary populations.

4 Current advances in neoadjuvant dual immune checkpoint inhibition for OC

4.1 Combination therapy strategies with single-target ICIs

Recent years have witnessed significant breakthroughs in clinical research investigating neoadjuvant immunotherapy combinations for advanced OC. The Ib phase randomized clinical trial presented at the 2024 ASCO Annual Meeting substantiated this progress (36). This study enrolled patients with unresectable stage IIIC/IV OC, demonstrating that neoadjuvant chemotherapy (NACT) combined with immunotherapy significantly improved complete cytoreduction rate (CC0), pathological complete response (pCR) rate, and PFS. Notably, while the dual immune checkpoint blockade (Group B, durvalumab + tremelimumab) showed no superior tumor immune microenvironment infiltration or survival outcomes compared to durvalumab monotherapy (Group A), the study identified pCR, CC0, and BRCA mutation status as independent predictors of long-term efficacy, rather than conventional immune-related biomarkers. These findings provide novel insights for precision medicine in OC, though the underlying mechanisms and clinical implications require further investigation.

The results suggest that NACT combined with dual ICIs (durvalumab + tremelimumab) may enhance antitumor effects through immune synergy, offering a potential therapeutic strategy for advanced epithelial ovarian cancer (EOC). The innovative KGOG 3046/TRUD study (NCT03899610) (34, 35) explored this dual immunotherapy-chemotherapy approach in the neoadjuvant setting. Initial 2023 results showed patients receiving durvalumab (1500mg) + tremelimumab (75mg) + NACT achieved 73.9% R0 resection and 17.4% pCR rates, with 12- and 24-month PFS rates of 63.6% and 45.0%, respectively. The 2025 final analysis further stratified 45 patients into multiple low-dose (n=23) and single high-dose (n=22) cohorts, revealing superior outcomes in the former for ORR (95.7% vs 77.3%, P = 0.048), chemotherapy response score (CRS) grade 3 response (39.1% vs 22.7%), and pCR rates (17.4% vs 4.6%). The entire cohort maintained 65.9% 12-month and 36.4% 30-month PFS rates. Safety analysis showed universal TRAEs occurrence, with rash being most common and neutropenia predominating grade 3-4 events. Beyond clinical validation, comprehensive biomarker analysis identified predictive potential for PD-L1 expression, mutational signature 3, and

extracellular matrix components, providing critical evidence for precision immunotherapy approaches.

4.2 Dual-specificity immune checkpoint blockade as monotherapy

Cadonilimab (AK104), a novel tetravalent bispecific antibody targeting both PD-1 and CTLA-4, has demonstrated enhanced tumor-targeting capability through its unique structural design and is currently approved in China for metastatic/recurrent cervical cancer (42). The ongoing phase II NCT05430906 trial (38) is evaluating its efficacy and safety in combination with NACT for advanced OC, with R0 resection rate as the primary endpoint. Among 17 enrolled patients (94.1% high-grade serous carcinoma, 82.4% stage IVb), the regimen achieved an R0 resection rate of 66.7%, the ORR of 94.1% (including 1 complete and 15 partial responses), a pCR rate of 11.8%, and a CRS of 3 in 17.6% of patients. TRAEs occurred in 76.5% of patients, primarily thyroid dysfunction (23.5%) and myelosuppression (17.6%), with grade ≥ 3 events observed in 17.6% of cases including one grade 3 immunerelated colitis (5.9%), all of which were manageable. These promising preliminary results support the potential clinical value of cadonilimab plus NACT in advanced OC though longer-term outcomes require further validation. In a separate case report by Zhang et al. (43), a PD-L1-positive (CPS = 10) OC patient who showed limited response to NACT plus bevacizumab subsequently achieved complete response with normalized CA-125 levels following cadonilimab maintenance therapy, suggesting that dual immune checkpoint inhibition may offer significant clinical benefit for HR-proficient/PD-L1-positive OC patients and providing important insights for optimizing treatment strategies in this population.

5 Clinical evaluation of dual immune checkpoint inhibition in OC subtypes

A phase II clinical trial (NCT03158064) (44) evaluated the efficacy of durvalumab plus tremelimumab in 29 patients with recurrent/refractory germ cell tumors, with only one ovarian primary case included according to the conference abstract. Although the overall treatment efficacy was limited (16-week PFS rate: 13.8%; median PFS: 1.4 months), one patient achieved sustained partial response (59% tumor reduction with PFS reaching 33 months), and two additional patients demonstrated tumor shrinkage exceeding 20%. Safety data showed grade 3-4 adverse events occurring in 21% of patients, suggesting potential benefit for specific patient subsets that warrants further exploration of biomarker-guided treatment strategies. These findings indicate that dual immune checkpoint inhibition may provide clinical benefit for certain germ cell tumor patients. Despite the modest overall efficacy, this study provides preliminary evidence supporting further investigation of immunotherapy in germ cell malignancies, including those of ovarian origin.

For clear cell carcinoma, updated results from the phase II trial (NCT03355976) (32) presented at ASCO 2024 demonstrated superior efficacy of nivolumab plus ipilimumab in recurrent extrarenal clear cell carcinomas (n=44). The combination arm showed significantly higher ORR (33.3% vs 14.3%) and median PFS (5.6 vs 2.2 months) compared to monotherapy, with a manageable safety profile (47% grade 3–4 AEs; no new safety signals). These data support the clinical utility of dual ICIs in ovarian clear cell carcinoma and other extrarenal variants. Collectively, these studies provide foundational evidence for immunotherapy in rare OC subtypes while underscoring the imperative for precision patient selection. Larger prospective trials are needed to validate these observations and optimize therapeutic strategies.

Clinical research on dual immune checkpoint blockade as firstline therapy for advanced OC remains limited. A pivotal phase III trial (NCT07002346) (45) registered on ClinicalTrials.gov is evaluating the efficacy of iparomlimab and tuvonralimab (QL1706) plus bevacizumab versus standard chemotherapy (paclitaxel plus carboplatin) in advanced ovarian clear cell carcinoma. Iparomlimab and tuvonralimab is an innovative bifunctional combination antibody comprising a recombinant humanized IgG4 monoclonal antibody targeting PD-1 and a recombinant humanized IgG1 monoclonal antibody targeting CTLA-4. This randomized, open-label, parallel-assignment phase III study plans to enroll 226 patients who will be randomized to receive either QL1706 plus bevacizumab or standard paclitaxel/ carboplatin chemotherapy. The primary endpoint is PFS, with investigator-assessed overall survival (OS) as a key secondary endpoint. This trial will provide crucial evidence for immunotherapy combinations in advanced ovarian clear cell carcinoma, though data remain pending. Overall, investigation of dual immune checkpoint inhibition in first-line OC treatment is still in its early stages. Future research should focus on optimizing combination strategies, assessing safety profiles, and identifying predictive biomarkers to better select potential beneficiaries.

6 Conclusions and future perspectives

6.1 Future perspectives

Despite the demonstrated potential of ICIs in oncology, their clinical efficacy in OC remains suboptimal, characterized by low to modest objective response rates in most unselected patient cohorts (46, 47). This limitation stems from a confluence of factors intrinsic to OC biology, including a profoundly immunosuppressive TME, a relatively low TMB, the absence of validated predictive biomarkers, and both primary and acquired resistance mechanisms (38, 39). Given the remarkable inter- and intra-tumoral heterogeneity of OC, a paradigm shift is urgently required. Future therapeutic advancements hinge on a dual-pronged strategy: the development of mechanistically rational combination therapies and the implementation of sophisticated, biomarker-driven patient selection.

The future of ICIs in OC lies in strategic combinations designed to reverse immunosuppression and trigger robust anti-tumor immunity. The synergy between ICIs and PARPi extends beyond simple cytotoxicity. Evidence suggests that PARPi can upregulate PD-L1 expression on tumor cells, creating a biological rationale for combined blockade (48). In homologous recombination (HR)deficient models, PARPi-induced DNA damage leads to the cytoplasmic accumulation of double-stranded DNA, which activates the cGAS-STING pathway (49, 50). This activation promotes the production of type I interferons and other inflammatory cytokines, thereby enhancing the recruitment and activation of CD8⁺ T-cells and converting immunologically "cold" tumors into "hot" ones (51-53). Clinical trials such as MEDIOLA (NCT02734004) have explored this combination, showing promising efficacy in BRCA-mutated OC (54). The combination of ICIs with antiangiogenic drugs like bevacizumab represents another rational approach. Beyond its role in inhibiting neovascularization, bevacizumab promotes vascular normalization, which alleviates tumor hypoxia and improves the perfusion and intratumoral infiltration of cytotoxic T lymphocytes (55). Concurrently, it counteracts VEGF-mediated immunosuppression by reducing the recruitment of MDSCs and Tregs within the TME (56). The phase III IMagyn050 trial, while not meeting its primary endpoint in the intent-to-treat population, provided insights into the potential of this combination and underscored the need for biomarker identification (57).

The profound heterogeneity of OC demands a paradigm shift toward precision medicine, underscored by the failure of singleagent ICIs and inconsistent combination trial outcomes that highlight the insufficiency of PD-L1 as a standalone biomarker. Therefore, developing and validating integrated, multi-parametric biomarker panels is a critical future direction. Key components should encompass: (i) immunohistochemical profiling, including quantitative and spatial analysis of tumor-infiltrating lymphocytes (TILs), particularly CD8⁺ T cells in the tumor core and invasive margin, which has been consistently associated with improved clinical outcomes (58); (ii) genomic and transcriptomic signatures, such as TMB, BRCA1/2 mutational status, and genomic scarring patterns (e.g., loss of heterozygosity), to identify tumors with elevated neoantigen burden and inherent genomic instability (59, 60), complemented by bulk and single-cell RNA sequencing to delineate the functional state of the TME and classify it into distinct phenotypes such as "immune-inflamed," "immuneexcluded," or "immune-desert" (61, 62); and (iii) advanced integrative analytics that leverage machine learning algorithms to synthesize these disparate data streams-genomics, transcriptomics, proteomics, and digital pathology-to deconvolute OC complexity and generate predictive signatures for identifying patients most likely to achieve long-term benefit from immunotherapy (63).

Therefore, the next generation of clinical trials must be prospectively designed with the dual objective of evaluating the efficacy of rational drug combinations and rigorously validating sophisticated biomarker panels. This integrated strategy, which couples mechanistically grounded regimens with precision patient

selection, is indispensable for unlocking the full therapeutic potential of ICIs in OC.

6.2 Conclusions

In summary, bispecific antibody-based immunotherapy represents a promising strategy for OC, particularly in platinum-resistant or recurrent cases. Early-phase clinical trials have demonstrated preliminary efficacy of agents simultaneously targeting dual immune checkpoints (e.g., PD-1/CTLA-4). However, challenges such as treatment-related toxicity, tumor heterogeneity, and the immunosuppressive microenvironment remain. Future success will depend on improved toxicity management, innovative combination therapies, validated biomarker development, and continued engineering of more effective and safer bispecific antibody constructs. Through collaborative and multidisciplinary efforts, the full therapeutic potential of ICP inhibition in OC may ultimately be realized.

Author contributions

D-ML: Conceptualization, Data curation, Investigation, Methodology, Writing – original draft. K-GP: Conceptualization, Investigation, Methodology, Writing – review & editing. X-ZY: Conceptualization, Investigation, Methodology, Writing – review & editing. MX: Investigation, Methodology, Writing – review & editing. LZ: Conceptualization, Methodology, Writing – review & editing. LS: Conceptualization, Data curation, Investigation, Methodology, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. China Foundation for

Youth Entrepreneurship and Employment (25H0209), China Health & Medical Development Foundation (24H1124), Sichuan Medical Science and Technology Innovation Research Society (24H0355), Sichuan Cancer Society (25H0764).

Acknowledgments

The authors acknowledge all researchers whose work contributed to the field discussed in this review.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, et al. Drug resistance in ovarian cancer: from mechanism to clinical trial. *Mol Cancer*. (2024) 23:66. doi: 10.1186/s12943-024-01967-3
- 2. Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. *Nat Cancer*. (2023) 4:1239–57. doi: 10.1038/s43018-023-00617-0
- 3. Timmermans M, Sonke GS, Van de Vijver KK, van der Aa MA, Kruitwagen R. No improvement in long-term survival for epithelial ovarian cancer patients: A population-based study between 1989 and 2014 in the Netherlands. *Eur J Cancer*. (2018) 88:31–7. doi: 10.1016/j.ejca.2017.10.030
- 4. Richardson DL, Eskander RN, O'Malley DM. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance: A narrative review. *JAMA Oncol.* (2023) 9:851–9. doi: 10.1001/jamaoncol.2023.0197
- 5. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. $N\,Engl\,J\,Med.$ (2003) 348:203–13. doi: 10.1056/NEJMoa020177

- 6. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: A meta-analysis. *Gynecol Oncol.* (2012) 124:192–8. doi: 10.1016/j.ygyno.2011.09.039
- 7. Monk BJ, Colombo N, Tewari KS, Dubot C, Caceres MV, Hasegawa K, et al. First-line pembrolizumab + Chemotherapy versus placebo + Chemotherapy for persistent, recurrent, or metastatic cervical cancer: final overall survival results of keynote-826. *J Clin Oncol.* (2023) 41:5505–11. doi: 10.1200/JCO.23.00914
- 8. Bogani G, Monk BJ, Powell MA, Westin SN, Slomovitz B, Moore KN, et al. Adding immunotherapy to first-line treatment of advanced and metastatic endometrial cancer. *Ann Oncol.* (2024) 35:414–28. doi: 10.1016/j.annonc.2024.02.006
- 9. Lakhani N, Cosman R, Banerji U, Rasco D, Tomaszewska-Kiecana M, Garralda E, et al. A first-in-human phase I study of the pd-1 inhibitor, retifanlimab (Incmga00012), in patients with advanced solid tumors (Pod1um-101). *ESMO Open.* (2024) 9:102254. doi: 10.1016/j.esmoop.2024.102254
- 10. Santoro A, Angelico G, Inzani F, Arciuolo D, d'Amati A, Addante F, et al. The emerging and challenging role of pd-L1 in patients with gynecological cancers: an

updating review with clinico-pathological considerations. *Gynecol Oncol.* (2024) 184:57–66. doi: 10.1016/j.ygyno.2024.01.032

- 11. Ghisoni E, Imbimbo M, Zimmermann S, Valabrega G. Ovarian cancer immunotherapy: turning up the heat. *Int J Mol Sci.* (2019) 20:2927. doi: 10.3390/iims20122927
- 12. Krummel MF, Allison JP. Cd28 and ctla-4 have opposing effects on the response of T cells to stimulation. *J Exp Med.* (1995) 182:459–65. doi: 10.1084/jem.182.2.459
- 13. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, costimulates T-cell proliferation and interleukin-10 secretion. *Nat Med.* (1999) 5:1365–9. doi: 10.1038/70932
- 14. Krummel MF, Allison JP. Cd28 and ctla-4 have opposing effects on the response of T-cells to stimulation. *J Exp Med.* (1995) 182:459–65. doi: 10.1084/jem.182.2.459
- 15. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, et al. Distinct cellular mechanisms underlie anti-ctla-4 and anti-pd-1 checkpoint blockade. *Cell.* (2017) 170:1120–33 e17. doi: 10.1016/j.cell.2017.07.024
- Carthon BC, Wolchok JD, Yuan J, Kamat A, Ng Tang DS, Sun J, et al. Preoperative ctla-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin Cancer Res. (2010) 16:2861–71. doi: 10.1158/1078-0432.CCR-10-0569
- 17. Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, et al. Ctla-4 blockade increases ifngamma-producing cd4+Icoshi cells to shift the ratio of effector to regulatory T cells in cancer patients. *Proc Natl Acad Sci U.S.A.* (2008) 105:14987–92. doi: 10.1073/pnas.0806075105
- 18. Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, et al. The next decade of immune checkpoint therapy. *Cancer Discov.* (2021) 11:838–57. doi: 10.1158/2159-8290.CD-20-1680
- 19. Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. *Cancer Discov.* (2020) 10:1808–25. doi: 10.1158/2159-8290.CD-20-0522
- 20. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. *Genome Med.* (2017) 9:34. doi: 10.1186/s13073-017-0424-2
- 21. Pal T, Permuth-Wey J, Kumar A, Sellers TA. Systematic review and metaanalysis of ovarian cancers: estimation of microsatellite-high frequency and characterization of mismatch repair deficient tumor histology. *Clin Cancer Res.* (2008) 14:6847–54. doi: 10.1158/1078-0432.CCR-08-1387
- 22. Matulonis UA, Shapira R, Santin A, Lisyanskaya AS, Pignata S, Vergote I, et al. Final results from the keynote-100 trial of pembrolizumab in patients with advanced recurrent ovarian cancer. *J Clin Oncol.* (2020) 38:6005. doi: 10.1200/JCO.2020.38.15_suppl.6005
- 23. Pujade-Lauraine E, Fujiwara K, Ledermann JA, Oza AM, Kristeleit R, Ray-Coquard II., et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (Javelin ovarian 200): an open-label, three-arm, randomised, phase 3 study. *Lancet Oncol.* (2021) 22:1034–46. doi: 10.1016/S1470-2045(21)00216-3
- 24. Peng Z, Li H, Gao Y, Sun L, Jiang J, Xia B, et al. Sintilimab combined with bevacizumab in relapsed or persistent ovarian clear cell carcinoma (Inova): A multicentre, single-arm, phase 2 trial. *Lancet Oncol.* (2024) 25:1288–97. doi: 10.1016/S1470-2045(24)00437-6
- 25. Colombo I, Karakasis K, Suku S, Oza AM. Chasing immune checkpoint inhibitors in ovarian cancer: novel combinations and biomarker discovery. *Cancers (Basel).* (2023) 15:3220. doi: 10.3390/cancers15123220
- 26. Pawlowska A, Rekowska A, Kurylo W, Panczyszyn A, Kotarski J, Wertel I. Current understanding on why ovarian cancer is resistant to immune checkpoint inhibitors. *Int J Mol Sci.* (2023) 24:10859. doi: 10.3390/ijms241310859
- 27. Santoiemma PP, Powell DJJr.Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol Ther. (2015) 16:807–20. doi: 10.1080/15384047.2015.1040960
- 28. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol. (2024) 21:389–400. doi: 10.1038/s41571-024-00881-3
- 29. Zamarin D. Randomized phase ii trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an nrg oncology study (Vol 56, pg 770, 2020). *J Clin Oncol.* (2020) 38:2702–. doi: 10.1200/Jco.20.01986
- 30. Zamarin D, Burger RA, Sill MW, Powell DJJr., Lankes HA, Feldman MD, et al. Randomized phase ii trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an nrg oncology study. *J Clin Oncol.* (2020) 38:1814–23. doi: 10.1200/JCO.19.02059
- 31. Chae YK, Othus M, Patel SP, Wilkinson KJ, Whitman-Purves EM, Lea J, et al. Swog/nci phase ii dual anti-ctla-4/pd-1 blockade in rare tumors: nonepithelial ovarian cancer. Clin Cancer Res. (2024) 30:5593–600. doi: 10.1158/1078-0432.CCR-24-0606
- 32. Dizon DS, Mathews CA, David SM, Machan JT, Hadfield MJ, Marks E, et al. Final results of bruog 354: A randomized phase ii trial of nivolumab alone or in combination with ipilimumab for people with ovarian and other extra-renal clear cell carcinomas. *J Clin Oncol*. (2024) 42:Lba5500–Lba. doi: 10.1200/JCO.2024.42.17_suppl.LBA5500
- 33. Lee JY, Kim BG, Kim JW, Lee JB, Park E, Joung JG, et al. Biomarker-guided targeted therapy in platinum-resistant ovarian cancer (Ambition; kgog 3045): A

multicentre, open-label, five-arm, uncontrolled, umbrella trial. *J Gynecol Oncol.* (2022) 33:e45. doi: 10.3802/jgo.2022.33.e45

- 34. Park J, Lee JB, Lim MC, Kim BG, Kim JW, Kim S, et al. Phase ii study of durvalumab and tremelimumab with front-line neoadjuvant chemotherapy in patients with advanced-stage ovarian cancer: primary analysis in the original cohort of kgog3046/tru-D. *J Immunother Cancer*. (2023) 11:e007444. doi: 10.1136/jitc-2023-007444
- 35. Park J, Joung JG, Lim MC, Lee J, Kim BG, Kim JW, et al. Neoadjuvant chemotherapy with dual immune checkpoint inhibitors for advanced-stage ovarian cancer: final analysis of tru-D phase ii nonrandomized clinical trial. *Clin Cancer Res.* (2025) 31:1865–76. doi: 10.1158/1078-0432.CCR-24-3753
- 36. Leary A, Chardin L, Lortholary A, Asselain B, Alexandre J, Lebreton C, et al. Phase ib ineov neoadjuvant trial of durvalumab plus/- tremelimumab with platinum chemotherapy for patients (Pts) with unresectab le ovarian cancer (Oc): survival outcomes and immune correlates. *J Clin Oncol.* (2024) 42:5569. doi: 10.1200/jco.2024.42.16_suppl.5569
- 37. Hinchcliff E, Patel A, Fellman B, Westin S, Sood A, Soliman P, et al. Randomized phase ii trial of durvalumab (Anti-pdl1) and tremelimumab (Anti-ctla4) administered in combination versus sequentially for the treatment of recurrent platinum-resistant non-clear cell ovarian cancer (Nct03026062). *Gynecologic Oncol.* (2021) 162:S39–S. doi: 10.1016/S0090-8258(21)00718-6
- 38. Tang J, Tian WF, Huang S, Yang J, Yang HY, Zhang JQ. An open, prospective, single arm, phase ii study of cadonilimab (Pd-1/ctla-4 bispecific antibody) with neoadjuvant chemotherapy in patients with advanced ovarian cancer: interim analysis from the ak104-iit-003 study. *J Clin Oncol.* (2024) 42:e17552. doi: 10.1200/JCO.2024.42.16_suppl.e17552
- 39. Bockorny B, Matulonis U, O'Day S, Margolin K, El-Khoueiry A, Wilky B, et al. Botensilimab, a novel innate/adaptive immune activator, plus balstilimab (Anti-pd-1) in patients with recurrent platinum refractory/resistant ovarian cancer. *Gynecologic Oncol.* (2023) 176:S35–S6. doi: 10.1016/j.ygyno.2023.06.514
- 40. Moore K, Bouberhan S, Hamilton E, Liu JY, O'Cearbhaill R, O'Malley D, et al. First-in-human phase 1/2 study of ubamatamab, a muc16xcd3 bispecific antibody, administered alone or in combination with cemiplimab in patients with recurrent ovarian cancer. *Int J Gynecological Cancer*. (2023) 33:A254–A5. doi: 10.1136/ijgc-2023-IGCS,480
- 41. Liu J, O'Malley D, Van Nieuwenhuysen E, O'Cearbhaill R, Bouberhan S, Moore K, et al. A phase I/ii study of ubamatamab (Regn4018), a muc16xcd3 bispecific antibody, administered alone or in combination with cemiplimab (Anti-pd-1) in patients with recurrent ovarian cancer or muc16+Endometrial cancer: trial in progress update. *Gynecologic Oncol.* (2024) 190:S284-S. doi: 10.1016/j.ygyno.2024.07.422
- 42. Romero D. Cadonilimab is effective and safe in recurrent cervical cancer. Nat Rev Clin Oncol. (2025) 22:2. doi: 10.1038/s41571-024-00962-3
- 43. Zhang C, Dai M, Yang J, Tian W, Huang S, Bi F, et al. Patient with hr-proficient advanced ovarian cancer achieved a complete response with cadonilimab combined chemotherapy (Pd-1/ctla-4 bispecific): A case report and literature review. *Gynecol Oncol Rep.* (2025) 60:101785. doi: 10.1016/j.gore.2025.101785
- 44. Funt SA, Knezevic A, Freeman BA, Bolos M, Martorana V, Donoghue M, et al. A single-arm, phase ii study of durvalumab (D) and tremelimumab (T) for relapsed/refractory germ cell tumors (Gct). *J Clin Oncol.* (2023) 41:5040. doi: 10.1200/JCO.2023.41.16_suppl.5040
- 45. Randomized active-controlled trial evaluating ql1706 plus bevacizumab versus platinum-based chemotherapy for advanced first-line ovarian clear cell carcinoma (2025). Available online at: https://clinicaltrials.gov/study/NCT07002346. (Accessed June 20, 2025).
- 46. Kim HS, Kim JY, Lee YJ, Kim SH, Lee JY, Nam EJ, et al. Expression of programmed cell death ligand 1 and immune checkpoint markers in residual tumors after neoadjuvant chemotherapy for advanced high-grade serous ovarian cancer. *Gynecol Oncol.* (2018) 151:414–21. doi: 10.1016/j.ygyno.2018.08.023
- 47. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and antitumor activity of anti-pd-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. *J Clin Oncol.* (2015) 33:4015–22. doi: 10.1200/JCO.2015.62.3397
- 48. Martinez A, Delord JP, Ayyoub M, Devaud C. Preclinical and clinical immunotherapeutic strategies in epithelial ovarian cancer. *Cancers (Basel).* (2020) 12:1761. doi: 10.3390/cancers12071761
- 49. Yang B, Li X, Fu Y, Guo E, Ye Y, Li F, et al. Mek inhibition remodels the immune landscape of mutant kras tumors to overcome resistance to parp and immune checkpoint inhibitors. *Cancer Res.* (2021) 81:2714–29. doi: 10.1158/0008-5472.CAN-2020
- 50. Harter P, Trillsch F, Okamoto A, Reuss A, Kim JW, Rubio-Pérez MJ, et al. Durvalumab with paclitaxel/carboplatin (Pc) and bevacizumab (Bev), followed by maintenance durvalumab, bev, and olaparib in patients (Pts) with newly diagnosed advanced ovarian cancer (Aoc) without a tumor brca1/2 mutation (Non-tbrcam): results from the randomized, placebo (Pbo)-controlled phase iii duo-O trial. *J Clin Oncol.* (2023) 41:16. doi: 10.1200/JCO.2023.41.17_suppl.LBA5506
- 51. Budczies J, Kluck K, Beck S, Ourailidis I, Allgauer M, Menzel M, et al. Homologous recombination deficiency is inversely correlated with microsatellite

instability and identifies immunologically cold tumors in most cancer types. *J Pathol Clin Res.* (2022) 8:371–82. doi: 10.1002/cjp2.271

- 52. Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, et al. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cgas-sting pathway strategies. *Front Immunol.* (2024) 15:1399926. doi: 10.3389/fimmu.2024.1399926
- 53. Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. The ranostics.~(2021)~11:5365-86.~doi:~10.7150/thno.58390
- 54. Drew Y, Kim JW, Penson RT, O'Malley DM, Parkinson C, Roxburgh P, et al. Olaparib plus durvalumab, with or without bevacizumab, as treatment in parp inhibitor-naive platinum-sensitive relapsed ovarian cancer: A phase ii multi-cohort study. Clin Cancer Res. (2024) 30:50–62. doi: 10.1158/1078-0432.CCR-23-2249
- 55. Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. *Angiogenesis*. (2024) 27:333–49. doi: 10.1007/s10456-024-09913-z
- 56. Guo Z, Jing X, Sun X, Sun S, Yang Y, Cao Y. Tumor angiogenesis and anti-angiogenic therapy. *Chin Med J (Engl)*. (2024) 137:2043–51. doi: 10.1097/CM9.0000000000003231
- 57. Moore KN, Bookman M, Sehouli J, Miller A, Anderson C, Scambia G, et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage iii or iv ovarian cancer: placebo-controlled randomized phase iii trial (Imagyn050/gog 3015/engot-ov39). *J Clin Oncol.* (2021) 39:1842–55. doi: 10.1200/JCO.21.00306

- 58. Gao P, Peng T, Cao C, Lin S, Wu P, Huang X, et al. Association of cldn6 and cldn10 with immune microenvironment in ovarian cancer: A study of the claudin family. Front Genet. (2021) 12:595436. doi: 10.3389/fgene.2021.595436
- 59. Landen CN, Molinero L, Hamidi H, Sehouli J, Miller A, Moore KN, et al. Influence of genomic landscape on cancer immunotherapy for newly diagnosed ovarian cancer: biomarker analyses from the imagyn050 randomized clinical trial. Clin Cancer Res. (2023) 29:1698–707. doi: 10.1158/1078-0432.CCR-22-2032
- 60. Cerina D, Matkovic V, Katic K, Belac Lovasic I, Separovic R, Canjko I, et al. Comprehensive genomic profiling in the management of ovarian cancer-national results from Croatia. *J Pers Med.* (2022) 12:1176. doi: 10.3390/jpm12071176
- 61. Pomponio R, Tang Q, Mei A, Caron A, Coulibaly B, Theilhaber J, et al. An integrative approach of digital image analysis and transcriptome profiling to explore potential predictive biomarkers for tgfbeta blockade therapy. *Acta Pharm Sin B.* (2022) 12:3594–601. doi: 10.1016/j.apsb.2022.03.013
- 62. Gronauer R, Madersbacher L, Monfort-Lanzas P, Floriani G, Sprung S, Zeimet AG, et al. Integrated immunogenomic analyses of high-grade serous ovarian cancer reveal vulnerability to combination immunotherapy. *Front Immunol.* (2024) 15:1489235. doi: 10.3389/fimmu.2024.1489235
- 63. Kar A, Agarwal S, Singh A, Bajaj A, Dasgupta U. Insights into molecular mechanisms of chemotherapy resistance in cancer. *Transl Oncol.* (2024) 42:101901. doi: 10.1016/j.tranon.2024.101901