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Background: Sepsis, a life-threatening condition with persistently high mortality,

involves dysregulated immune responses and programmed cell death (PCD).

However, the specific roles and interactions of diverse PCD pathways in sepsis

pathogenesis remain incompletely understood. This study aimed to

systematically characterize PCD patterns and their clinical relevance in sepsis.

Methods: We integrated three bulk transcriptomic datasets (81 controls, 165

sepsis patients) and one single-cell RNA sequencing (scRNA-seq) dataset

(4 controls, 4 early sepsis patients, 52,315 cells) from public databases. Gene

set variation analysis (GSVA) quantified activity of 13 PCD pathways. Immune

infiltration was assessed via single-sample gene set enrichment analysis (ssGSEA).

A cell death-associated signature (CDS) risk score was developed using least

absolute shrinkage and selection operator (LASSO) regression. scRNA-seq

analysis identified cell-type-specific PCD activation and intercellular

communication using Seurat, AUCell, and CellPhoneDB. Additionally, an

independent RNA-seq cohort generated from our own sequencing of sepsis

patients and healthy controls was used for external validation.

Results: Transcriptomic analysis identified 5,591 differentially expressed genes

enriched in immune and cell death pathways. Four PCD pathways-ferroptosis,

disulfidptosis, NETosis, and entotic cell death-were significantly upregulated in

sepsis and strongly correlated with immune cell infiltration, such as activated

dendritic cells and neutrophils. The CDS risk score, based on 18 core PCD genes,

showed excellent diagnostic accuracy across both public microarray datasets

(AUC = 0.961 and 0.844) and our independent high-throughput RNA-seq dataset

(AUC = 0.975). scRNA-seq revealed monocytes as dominant effectors, exhibiting

heightened activation of ferroptosis, entotic death, and netotic pathways

alongside metabolic reprogramming, including enhanced glutathione

metabolism and oxidative phosphorylation (OXPHOS). Furthermore,

monocyte-centric intercellular communication was dysregulated in sepsis,

featuring upregulated MIF-CXCR4, ANXA1-FPR2, and HLA-KIR signaling axes.

Conclusions: By integrating public microarray and single-cell transcriptomic

data with independent high-throughput sequencing validation, this study analysis

identifies ferroptosis, disulfidptosis, netotic death, and entotic death as key

dysregulated PCD pathways in sepsis, with monocytes serving as central hubs
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integrating PCD, metabolic reprogramming, and immune communication.

The CDS risk score provides a robust diagnostic and stratification tool.

Targeting monocyte-driven PCD-metabolism-communication networks offers

promising avenues for precision immunotherapy in sepsis.
KEYWORDS
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1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a

dysregulated host response to infection, with persistently high

morbidity and mortality rates, posing a major global public health

challenge (1). Epidemiological studies suggest an increasing global

incidence of sepsis, with mortality rates exceeding 50% once the

condition escalates to septic shock (2). The pathophysiology of

sepsis is complex and multifactorial, involving dysregulated innate

and adaptive immune responses, aberrant inflammatory signalling,

metabolic reprogramming, and endothelial dysfunction (3–6).

Despite recent advancements in therapeutic approaches,

considerable obstacles persist in the realms of early diagnosis,

disease evaluation, and targeted treatment of sepsis.

Programmed cell death (PCD) encompasses a spectrum of

genetically controlled mechanisms that maintain tissue

homeostasis, regulate immune responses, and eliminate damaged

or infected cells (7). Since the introduction of the concept of

apoptosis in 1972 (8), a growing number of distinct modalities of

PCD have been identified, including ferroptosis, pyroptosis, and

necroptosis, among others; to date, at least 13 PCD pathways have

been recognized (9). In the context of sepsis, dysregulated PCD has

been associated with immune cell dysfunction, organ damage, and

the progression of the disease. For example, excessive apoptosis

during sepsis can result in the depletion of immune cells, thereby

compromising the host’s immune defense, while necroptosis and

similar forms of cell death may intensify inflammatory responses

and contribute to additional organ injury (10, 11).

In recent years, the rapid advancement of high-throughput

sequencing technologies has established both bulk and single-cell

RNA sequencing (scRNA-seq) as powerful methodologies for

exploring the pathological mechanisms underlying sepsis (12).

Transcriptomic profiling enables a comprehensive analysis of

gene expression alterations, which aids in the identification of

critical genes and signaling pathways associated with sepsis.

Concurrently, scRNA-seq offers insights at the single-cell level,

revealing cellular heterogeneity and allowing for a detailed

examination of the roles and molecular mechanisms of specific

cell types in the context of sepsis (13). Previous investigations

utilizing these technologies on peripheral blood mononuclear cells
02
(PBMCs) from sepsis patients have uncovered significant changes

in cellular composition, gene expression, and signaling pathways,

providing valuable insights into disease mechanisms and informing

clinical interventions (14). Nevertheless, a thorough understanding

of the interplay between sepsis and PCD-related pathways, as well

as the roles of these pathways across various immune cell types,

remains insufficiently explored.

This study aims to systematically investigate the associations

between sepsis and 13 known PCD pathways by integrating

transcriptomic and scRNA-seq. We seek to identify key cell death–

related genes and critical immune cell populations, elucidate their

functional roles in the pathogenesis of sepsis, and construct a robust

cell death–associated signature (CDS) risk score. These efforts aim to

provide novel insights and potential biomarkers for early diagnosis,

disease stratification, and precision therapy in sepsis.
2 Methods

2.1 Public transcritome sequencing data
and PCD-related genes collection

We conducted the primary analysis using public microarray-

based mRNA expression profiles obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) (GSE57065, GSE54514, and

GSE28750), comprising a total of 81 samples in the control group

and 165 samples in the sepsis group, all of which were derived from

human blood. More details of the collected datasets are presented in

Supplementary Table 1. To investigate PCD, we integrated key

regulatory genes collected from the KEGG database (15),

GeneCards (16), MSigDB (17), Reactome (18), and relevant

review articles. This includes genes associated with various cell

death pathways: alkaliptosis (8 genes), apoptosis (655 genes),

autophagy (461 genes), cuproptosis (14 genes), disulfidptosis (4

genes), entotic cell death (16 genes), ferroptosis (97 genes),

lysosome-dependent cell death (447 genes), necroptosis (179

genes), NETosis (16 genes), oxeiptosis (23 genes), parthanatos (9

genes), and pyroptosis (52 genes). In total, 1,981 PCD-related genes

were compiled. The final gene lists for each PCD subtype are

provided in Supplementary Table 2.
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2.2 Microarray data preprocessing

The gene expression was detected by Affymetrix Genome U133

Plus 2.0 Array (GSE57065 and GSE28750) and Illumina

HumanHT-12 V3.0 expression beadchip (GSE54514). Gene

probes were annotated as gene symbols. Probes without matching

gene symbols and matching multiple symbols were excluded. Gene

expression value of duplicate gene symbol was calculated as the

median value. Batch effects among the three training datasets were

corrected using the ComBat function from the “sva” R package with

default parameters, specifying the batch variable as the dataset ID

(19). Then the effectiveness of batch correction was assessed with

principal component analysis (PCA) plots.
2.3 Collection of blood samples from
sepsis patients and healthy individuals

To obtain human peripheral blood monocytes for further RNA

sequencing, a total of 18 participants were enrolled in this study,

including 10 sepsis patients and 8 non-sepsis controls. Eligible

participants met the following criteria: aged between 18 and 85

years. For sepsis cases, fulfillment of the Sepsis-3 definition of sepsis.

For non-sepsis controls, volunteers were recruited without a

diagnosis of sepsis (Supplementary Table 3).
2.4 RNA-Seq library preparation and
sequencing

RNA purification, reverse transcription, library construction and

sequencing were conducted at Shanghai Majorbio Biopharm

Technology Co., Ltd.(Shanghai, China). Total RNA from PBMCs

was extracted using TRIzol reagent and quantified with a NanoDrop

spectrophotometer. Libraries were prepared using 1ug of total RNA

and sequenced on the NovaSeqX Plus platform (PE150). Briefly,

messenger RNA was isolated using polyA selection with

methodbyoligo (dT) beads and then fragmented. Double-stranded

cDNA was synthesized using a SuperScript double-stranded cDNA

synthesis kit (Invitrogen, CA) using random hexamer primers. The

synthesized cDNA was subjected to end-repair, phosphorylation, and

adapter ligation, according to the library construction protocol.

Libraries were size selected for300 bp cDNA fragments using 2%

Low Range Ultra Agarose, followed by PCR amplified with Phusion

DNA polymerase (NEB) for 15 cycles. The sequencing library was

quantified with Qubit 4.0 and sequenced using the NovaSeq Reagent

Kit on NovaSeq X Plus platform (PE150).
2.5 Analysis of bulk RNA-seq data

Initial reads QC metrics (base quality distribution) were assessed

using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). NGS QC (20) toolkits were used to trim adaptors and

low-quality reads. The clean reads were mapped to the human
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(hg19) genomes using HISAT2 version 2.2.1 (21) with default

settings. BAM files containing uniquely mapped reads were used

as inputs for the Stringtie (22), and transcripts per million reads

values were calculated to quantify gene expression levels.

Differential gene expression analysis was performed using the

DESeq2 package (23) in R.
2.6 Pathway and functional enrichment
analysis

We utilized the R package “clusterProfiler” (24) to conduct

kyoto encyclopedia of genes and genomes (KEGG) (25) and gene

ontology (GO) (26) enrichment analyses. Additionally, we

performed gene set enrichment analysis (GSEA) (27) to identify

the underlying pathways, with the threshold for significant terms

being adjusted p-value <0.05.
2.7 Pathway activity calculation

To investigate potential pathway-level changes in gene

expression from microarray-based mRNA expression profiles, we

employed a non-parametric and unsupervised gene set variation

analysis (GSVA) to assess pathway enrichment results from the

sequencing data. GSVA enables the evaluation of pathway activity

variations across individual samples. We conducted the analysis

using the GSVA package in R software and calculated the

enrichment scores of pathways in all samples to identify any

differences in pathway activity across sample (28). For pathway

activity analysis of cell clusters derived from scRNA-seq data, we

first aggregated single-cell expression profiles into pseudobulk

expression matrices by averaging gene expression within each

annotated cell type. Genes with zero expression across all cells

were excluded. Using these pseudobulk matrices, we applied GSVA

to calculate enrichment scores for 13 programmed cell death (PCD)

pathways across cell types. In parallel, we utilized the “AUCell”

package to compute cell-level activation scores for key PCD

pathways. AUCell uses a rank-based scoring method to calculate

the activity level of gene sets and computes a gene set activation

score for each cell by utilizing the area under the curve (AUC) (29).
2.8 Development and validation of the CDS
risk score

The least absolute shrinkage and selection operator (LASSO)

(30) was used to construct the optimal CDS risk score in sepsis. To

ensure the independence of training and validation, three GEO

datasets (GSE57065, GSE54514, GSE28750) were combined as the

training set (n=246; 81 healthy controls and 165 sepsis patients),

and GSE69528 (n=124; 22 healthy controls and 102 sepsis patients)

was used as an independent validation set.

Candidate genes were first obtained by intersecting PCD-related

genes with differentially expressed genes between sepsis and control
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groups. A random forest algorithm was then applied on the training

set only to narrow down the feature set, and genes with high

importance scores were retained. Subsequently, LASSO regression

with 10-fold cross-validation and a binomial family (logistic

regression), alpha=1, and set the random seed (3699) to ensure

reproducibility was performed in the training set to identify the

optimal gene set and estimate the coefficients for the risk score

model. The l value that minimized partial likelihood deviance

(l_min) was used to fit the final model.

We created a receiver operating characteristic (ROC) curve to

evaluate the predictive capacity of 13 PCD pathways, core death

genes, and CDS risk score in both the training and validation

cohorts. The AUC value was calculated using the “pROC” package

(31). The “rms” and “dcurves” R packages were used to conduct

calibration curve analysis and decision curve analysis.
2.9 Immune infiltration analysis

We utilized single-sample gene set enrichment analysis

(ssGSEA), a novel method for gene enrichment, to compare the

immune score of each sample. Feature gene panels for each immune

cell type were acquired from the published literature (32, 33). The

GSVA R package (version 1.48.2) was used to convert the gene

expression matrix into an enrichment score matrix based on

immune cell–specific gene sets. Subsequently, differences in

immune cell activity between groups (sepsis vs. control) were

compared using the Wilcoxon rank-sum test. Spearman

correlation coefficients were calculated to assess the relationships

between different immune cell types, and appropriate adjustments

were made for multiple comparisons in the statistical analyses. All

statistical analyses were performed using R software (version 4.4.1,

https://www.r-project.org), and all p-values were two-sided. A p-

value < 0.05 was considered statistically significant.
2.10 scRNA-seq analysis

The scRNA-seq dataset used in this study included four control

and four early sepsis samples, generating a total of 52,315 cells

(GSE217906). Cells were retained with expressed > 300 genes,

mitochondrial gene expression < 21%, hemoglobin gene expression

< 5%, and nCount_RNA > 200. In addition, cells with nCount_RNA

in the top 3% were excluded to avoid potential doublets or outliers.

Next, the main analysis was implemented through Seurat v5.2.1 (13).

The gene expression matrix was normalized via the “NormalizeData”

function, followed by the identification of highly variable genes using

“FindVariableFeatures”. Batch effects were addressed through

canonical correlation analysis. Dimensionality reduction was

conducted using PCA, and the top 20 principal components,

selected based on the “ElbowPlot” function, were retained for

downstream analysis. Cell clustering was carried out with the

“FindNeighbors” and “FindClusters” functions (resolution = 1),

and visualized using uniform manifold approximation and

projection (UMAP). Cluster-specific DEGs were identified via the
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“FindAllMarkers” function and annotated based on known canonical

markers. Cells expressing markers of more than one cell type were

defined as doublets and excluded from further analyses. To assess

metabolic pathway activity at the single-cell level, we applied the

“scMetabolism” package (34), which leverages the preloaded KEGG

database and the Vision algorithm for quantification. The results

were displayed using dot plots. CellChat was used to investigate

molecular-level intercellular communication with default

parameters (35).
3 Results

3.1 Transcriptomic characterization of PCD
pathways in sepsis

To investigate the transcriptomic features of PCD pathways in

sepsis, we integrated three publicly available transcriptomic datasets

of sepsis and healthy controls. Batch effects were removed using the

SVA algorithm (36), followed by dataset merging and

normalization. PCA and box plots (Supplementary Figure 1)

confirmed effective batch correction and data consistency.

Based on the preprocessed data, we identified 5,591 DEGs

between sepsis and normal samples (p < 0.05), as illustrated by the

volcano plot and heatmap (Figures 1A, B, Supplementary Table 4).

Pathway enrichment analysis showed that these DEGs were enriched

in key pathways involved in sepsis, including “Th1 and Th2 cell

differentiation”, “T cell receptor signaling pathway”, and “PD-L1

checkpoint pathway in cancer”, as well as cell death-related pathways

such as “Apoptosis”, “Cellular Senescence”, and the “p53 Signaling

Pathway”. Infection-related pathways like “Human T-cell Leukemia

Virus 1 Infection”, “Epstein–Barr Virus Infection”, and

“Tuberculosis” were also enriched (Figure 1C). GSEA further

revealed activation of immune-related pathways, including “Th17

Cell Differentiation”, “Antigen Processing”, “NET Formation” and

suppression of metabolic and effector pathways, such as “Oxidative

Phosphorylation” and “NK Cell Cytotoxicity” (Figure 1D). These

findings suggest that sepsis may involve immune dysregulation,

metabolic disturbance, and abnormal cell death.

To further characterize the involvement of PCD in sepsis, we

applied GSVA to quantify the activity of 13 PCD-related pathways.

Among these, four pathways—disulfidptosis, entotic cell death,

ferroptosis, and NETosis—were upregulated in sepsis, while

parthanatos (PARP-1-dependent cell death) showed reduced

activity (Figure 1E, Supplementary Table 5). These results

highlight the potential contribution of dysregulated PCD to the

pathogenesis and progression of sepsis.
3.2 Linking immune infiltration and PCD in
sepsis for diagnostic insight

Stimulus-induced cell death may occur in a manner that alerts

the immune system, thereby initiating immune responses against

antigens derived from dead cells (37). The initiation and
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progression of sepsis are closely associated with extensive immune

cell infiltration. Therefore, using the ssGSEA algorithm, we

compared the immune infiltration profiles between normal and

septic groups. Immune infiltration analysis revealed significant

alterations in 19 out of 28 immune cell types. Most of the

dysregulated immune cells, such as central memory CD8 T cells,

natural killer cells, activated dendritic cells, and mast cells, were
Frontiers in Immunology 05
upregulated in sepsis (Figure 2A, Supplementary Table 6),

indicating substantial changes in the immune microenvironment

during the progression of the disease.

Subsequently, we conducted a correlation analysis between

GSVA scores of 13 PCD pathways and the infiltration levels of 28

immune cell populations. The activities of parthanatos, NETosis,

ferroptosis, entotic cell death, and disulfidptosis were found to be
FIGURE 1

Function and pathway enrichment analysis of DEGs in control and sepsis groups. (A, B) Volcano and the heatmap plot of the DEGs from control and
sepsis groups. (C) KEGG enrichment analyses based on the DEGs between control and sepsis groups. (D) GSEA analysis of KEGG pathways. (E) GSVA
analysis of 13 PCD pathways demonstrated by box plots in control and sepsis groups.
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significantly positively correlated with the infiltration of several

immune cell types, including central memory CD8 T cells,

regulatory T cells, activated dendritic cells, macrophages,

eosinophils, mast cells, and neutrophils. In contrast, alkaliptosis,

lysosome-dependent cell death, and cuproptosis were significantly
Frontiers in Immunology 06
negatively associated with the majority of immune cell types

(Figure 2B, Supplementary Table 7).

In addition, we evaluated the diagnostic performance of the 13

PCD-related GSVA scores in septic patients using ROC curve analysis

(Figure 2C). Among these, the top five PCD pathways ranked by AUC
FIGURE 2

Immune cell infiltration evaluation. (A) Immune cell scores were assessed using ssGSEA in the control and sepsis groups. (B) Correlation analysis was
performed between the GSVA scores of 13 PCD-related pathways and different immune cells. (C) ROC curve of the 13 PCD pathways in sepsis. ns, not
significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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were disulfidptosis (AUC = 0.75), NETosis (AUC = 0.73), ferroptosis

(AUC = 0.62), entotic cell death (AUC= 0.56), and alkaliptosis (AUC =

0.56). Based on these findings, we identified the activation of NETosis,

ferroptosis, entotic cell death, and disulfidptosis in the sepsis group, all

of which were strongly associated with immune cell infiltration.

Moreover, these PCD pathways demonstrated relatively high

diagnostic efficacy, suggesting that they represent key mechanisms

warranting further investigation in future studies.
3.3 Development of a cell death-
associated risk score model for sepsis

By intersecting genes involved in four PCD pathways—

NETosis, ferroptosis, entotic cell death, and disulfidptosis—with

the DEGs between septic patients and healthy controls in the

training set (GSE57065, GSE54514, GSE28750), a total of 120

candidate genes were identified. Using a random forest algorithm,
Frontiers in Immunology 07
20 genes were selected (Gini > 2.0) (Supplementary Figure 2).

Subsequently, a LASSO regression analysis (Figures 3A, B) was

performed on the training set, and 18 core death-related genes

(AKR1C3, BECN1, CAMP, CYBB, FTH1, GCLM, MAP1LC3B,

MPO, NCKAP1, PADI4, PCBP1, PCBP2, PGD, POR, PTGS2,

SLC1A5, SLC38A1, VDAC2) were identified as having the

minimum partial likelihood deviance. Based on these genes, the

following CDS risk score formula was established:

CYBB * (1.6196034) + PTGS2 * (-0.9390386) + PCBP1 *

(-1.0863174) + PGD * (0.6020607) + MPO * (0.2001920) + GCLM *

(1.0476006) + POR * (1.9875715) + MAP1LC3B * (1.9357273) +

PADI4 * (-0.9704860) + VDAC2 * (-1.1710069) + NCKAP1 *

(2.2052000) + CAMP * (0.6512673) + PCBP2 * (-1.0707485) +

FTH1 * (-1.1794027) + BECN1 * (-2.9384124) + SLC38A1 *

(0.4903299) + AKR1C3 * (-1.7556165) + SLC1A5 * (1.2059844).

To assess the diagnostic potential of these 18 genes in sepsis,

ROC curve analysis was performed, revealing high diagnostic

accuracy (Figure 3C). Compared with healthy controls, the
FIGURE 3

Development of CDS risk score based on core death genes. (A) Distribution of LASSO coefficients for feature genes. (B) Ten-fold cross-validation for
parameter selection in the LASSO model. (C) ROC curve analysis of the 18 core death genes in sepsis. (D, G) Box plots showing the expression of death
genes in control and sepsis patients, with (G) representing data from an external validation cohort. (E, H) Violin plot showing the distribution of CDS risk
scores between control and sepsis patients, with (H) representing data from an external validation cohort. (F, I) ROC curve analysis of the CDS risk score
in sepsis, with (I) representing data from an external validation cohort. ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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expression levels of CAMP, CYBB, GCLM, MAP1LC3B, MPO,

NCKAP1, PADI4, PGD, POR, and SLC1A5 were significantly

upregulated in septic patients (Figure 3D).

The diagnostic performance of this PCD-based signature was

further validated in septic patients and demonstrated excellent

diagnostic accuracy, with a precision of 0.961 (Figures 3E, F). To

further confirm the robustness of the model, we validated its

performance using the external dataset GSE69528. The expression

levels of CAMP, CYBB, GCLM, MAP1LC3B, MPO, NCKAP1,

PADI4, PGD, and POR were significantly upregulated in sepsis

patients compared to controls (Figure 3G), which was consistent

with the findings in the discovery cohort. Moreover, the validation

cohort achieved an AUC of 0.844, highlighting the strong diagnostic

performance of the model (Figures 3H–I). To further evaluate the

calibration performance and clinical applicability of the model, we

conducted calibration curve analysis (CCA) and decision curve

analysis (DCA) on the training set and validation set, respectively.

The results showed that both sets exhibited good performance

(Supplementary Figure 3). In addition, we used another dataset

GSE185263, which includes clinical information such as sequential

organ failure assessment (SOFA) score and 28 day survival status, to

plot ROC curves to evaluate the predictive effect of risk scores on

SOFA and 28 day mortality outcomes. The results indicate that the

risk score has a decent predictive ability for SOFA (AUC = 0.706),

but its predictive effect on 28 day mortality is poor (AUC = 0.586)

(Supplementary Figure 4).
3.4 Independent validation of the CDS
model using an in-house high-throughput
RNA-seq cohort

To independently validate the transcriptomic features and

diagnostic efficacy of the CDS model, we generated and analyzed an

in-house high-throughput RNA-seq dataset. Transcriptomic profiling

of this cohort identified a total of 11,246 differentially expressed genes

(DEGs) (p < 0.05) (Figure 4A, Supplementary Table 8). KEGG

pathway enrichment analysis revealed that these DEGs were

significantly enriched in “immune- and inflammation-related

pathways”, “endocytosis”, “human T-cell leukemia virus 1 infection”,

and “TNF signaling pathway” (Figure 4B). Gene set enrichment

analysis (GSEA) further demonstrated significant enrichment of

metabolic and immune-inflammatory pathways, such as the “PPAR

signaling pathway”, “fatty acid metabolism”, “neutrophil extracellular

trap formation”, and “cytokine–cytokine receptor interaction”

(Figure 4C). Notably, the expression patterns of core PCD-related

genes in this cohort were highly consistent with those observed in the

discovery datasets, with genes such as CYBB, GCLM, MAP1LC3B,

NCKAP1, and PGD markedly upregulated in sepsis patients

(Figure 4D). Furthermore, the CDS risk score achieved an AUC of

0.975 in this independent cohort (Figures 4E, F), underscoring the

model’s outstanding performance in high-throughput sequencing data

and the robustness of its diagnostic capability.
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3.5 Discovery of DEGs stratified by CDS
risk score

Based on the median value of the CDS risk score, sepsis patients

were stratified into high-risk and low-risk groups. A total of 3,350

DEGs (p < 0.05) were identified between the two groups

(Figures 5A, B, Supplementary Table 9). KEGG enrichment

analysis revealed that these DEGs were primarily enriched in viral

infection and immune differentiation pathways, including “Human

T-cell leukemia virus 1 infection”, “Epstein–Barr virus infection”,

“Human immunodeficiency virus 1 infection”, “Th1/Th2 cell

differentiation”, “and Th17 cell differentiation” (Figure 5C). GO

enrichment analysis further indicated that these DEGs were

significantly involved in biological processes such as positive

regulation of cytokine production and leukocyte cell−cell

adhesion (Figure 5D). Consistently, GSEA results demonstrated

that most hallmark gene sets were significantly activated, including

antigen processing and presentation, Th17 cell differentiation, and

cell adhesion molecules (Figure 5E).
3.6 Impact of CDS risk score on immune
infiltration in sepsis

To determine whether the CDS risk score accurately reflects the

immune status in sepsis, we applied ssGSEA to evaluate immune

cell infiltration. Distinct immune infiltration patterns were observed

between high- and low-risk patient groups stratified by the CDS risk

score. Among 22 immune cell types analyzed, 14 exhibited

significant differences between the two groups. The majority of

dysregulated immune cells were upregulated in the high-risk group,

including central memory CD8+ T cells, T helper 17 cells, regulatory

T cells, activated dendritic cells, macrophages, and neutrophils

(Figure 6A, Supplementary Table 10), suggesting substantial

alterations in the immune microenvironment among high-risk

individuals. In contrast, effector memory CD8+T cells and

immature B cells were significantly downregulated in the high-

risk group.

Correlation analysis further revealed strong associations

between the core cell death-related genes and various immune

cell subsets (Figure 6B, Supplementary Table 11). Specifically,

CYBB showed the strongest positive correlations with activated

CD8+T cells, T follicular helper cells, and CD56 bright natural killer

cells; GCLM and MAP1LC3B were positively associated with

effector memory CD4+ T cells and immature dendritic cells;

NCKAP1 exhibited strong positive correlations with NK cells,

macrophages, and mast cells. In contrast, PCBP2 was negatively

correlated with activated CD8+T cells, effector memory CD8+T

cells, and natural killer T cells. Additionally, PTGS2 showed

significant positive correlations with NK cells and immature

dendritic cells. The CDS risk score itself was significantly

positively correlated with myeloid-derived suppressor cells and

immature dendritic cells.
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3.7 Monocytes exhibit dominant activation
of multiple PCD pathways in sepsis

To further investigate the interplay between PCD and immune

microenvironment alterations in sepsis, we analyzed a publicly

available scRNA-seq dataset GSE217906 of PBMCs (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217906). Based

on canonical marker genes, we manually annotated and identified

the major immune cell types, including CD4+T cells, CD8+T cells,

monocytes, natural killer (NK) cells, megakaryocytes, plasma cells,

B cells, and neutrophils (Figures 7A, B).
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Analysis of cell proportion revealed a markedly increased

percentage of monocytes and a significantly reduced proportion

of NK cells in septic patients compared to healthy controls

(Figure 7C). We next examined the single-cell expression patterns

of 18 core cell death-related genes identified from bulk

transcriptomic analysis. Most of these genes exhibited significant

differential expression between healthy individuals and sepsis

patients and were predominantly expressed in the monocyte

population (Supplementary Figure 5).

To analyze pathway-level activity at the cell cluster level, we first

aggregated single-cell expression into pseudobulk matrices for each
FIGURE 4

Independent transcriptomic validation and diagnostic evaluation of the CDS model in sepsis. (A) Volcano and the heatmap plot of the DEGs from
control and sepsis groups. (B) KEGG enrichment analyses based on the DEGs between control and sepsis groups. (C) GSEA analysis of KEGG
pathways. (D) Box plots showing the expression of death genes in control and sepsis patients. (E) Violin plot showing the distribution of CDS risk
scores between control and sepsis patients. (F) ROC curve analysis of the CDS risk score in sepsis. ns, not significant, *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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annotated immune cell type. Using these pseudobulk profiles, we

performed GSVA to calculate enrichment scores for 13 PCD

pathways. The results indicated a global activation of most PCD

pathways (Figure 7D), with distinct activation patterns across
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different immune cell types. Specifically, entotic cell death,

ferroptosis, NETosis, and lysosome-dependent cell death were

more active in monocytes; neutrophils showed elevated activity in

alkaliptosis, pyroptosis, necroptosis, apoptosis, and autophagy;
FIGURE 5

Enrichment analysis of functions and pathways in DEGs from low-risk and high-risk groups. (A, B) Volcano and heatmap plot of the DEGs between
the low-risk and high-risk groups. (C) KEGG pathway between the low-risk and high-risk groups. (D) GSEA analysis of KEGG pathways. (E) GO terms
enriched in the DEGs between the low-risk and high-risk groups.
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while NK cells exhibited moderate activation across multiple

pathways. In contrast, most PCD pathways were negatively

enriched in CD4+T cells and B cells.

Subsequently, we calculated AUCell scores for four key cell death

pathways—ferroptosis, NETosis, entotic cell death, and disulfidptosis—

identified from transcriptomic analysis, to assess pathway activity at the

single-cell level, and visualized their activity across immune cell types

using violin plots. The results demonstrated that all four pathways were

significantly more active in monocytes compared to other immune cell

populations (Figure 7E).
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3.8 Metabolism and cell death pathway
profiling in monocytes of sepsis

Cell metabolism is fundamental to maintaining cellular

function and survival. In disease states, cellular metabolism often

undergoes reprogramming, which may be closely linked to cell

death pathways. Therefore, we performed a metabolic analysis of

monocytes. The results indicated that in four metabolic pathways:

Glutathione-metabolism, Glycolysis/Gluconeogenesis, Oxidative-

phosphorylation (OXPHOS), and Pentose phosphate pathway
FIGURE 6

Assessment of immune cell infiltration in low-risk and high-risk groups. (A) Immune cell scores were assessed using ssGSEA analysis in the low-risk
and high-risk groups. (B) Correlation analysis between the CDS risk score, core death genes, and various immune cell types. ns, not significant, *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1685533
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1685533
(PPP)—the sepsis group showed significantly higher scores than the

healthy group, reflecting distinct metabolic features in sepsis

compared to healthy conditions (Figures 8A, B).

Subsequently, we analyzed the correlation between the four cell

death pathways and these four metabolic pathways. The results

revealed a strong and highly significant positive correlation between

ferroptosis and entotic cell death with the involved metabolic
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pathways, while disulfidptosis showed a significant negative

correlation. NETosis exhibited minimal correlation with the

metabolic pathways (Figure 8C).

GO analysis further revealed that the DEGs in monocytes were

predominantly enriched in pathways related to the positive

regulation of cytokine production, leukocyte proliferation, and

immune cell activation, all of which are closely associated with
FIGURE 7

Monocytes exhibit dominant activation of multiple PCD pathways in sepsis. (A) 8 cell types were categorized using cell type-specific markers. (B) Dot
plot showing the average expression levels of selected genes in each cluster. (C) Box plot comparing the proportions of immune cell subsets
between sepsis patients and controls. (D) Heatmap of GSVA scores for 13 types of PCD in different cell types. (E) Comparison of AUCell scores of the
cell death gene set between monocytes and other cell types. ns, not significant, *p < 0.05, ****p < 0.0001.
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immune responses. These findings underscore the pivotal role of

monocytes in immune regulation and their functional

interconnection with various immune cell types (Figure 8D).
3.9 Cell-cell interactions and signal
pathways altered in sepsis

To determine whether monocytes regulate PCD pathways

through interactions with other immune cell types, we performed

CellChat analysis. Our results revealed a decrease in the total

number and intensity of inferred interactions in sepsis patients,

indicating impaired intercellular communication (Figure 9A).

Changes in overall information flow revealed that multiple

signaling pathways were significantly up- or downregulated under

septic conditions (Figure 9B). Compared to the control group,

signaling pathways such as ANNEXIN, CCL, and CADM showed

enhanced relative information flow in sepsis samples, whereas

classical immune-related pathways such as MHC-II, APP, IL16,

and CD86 were markedly suppressed. Global signaling pattern

analysis across different immune cell types further demonstrated

that sepsis induced substantial alterations. Specifically, in

monocytes, signaling pathways including ANNEXIN, CCL, FLT3,

GRN, CADM, BAFF, APRIL, and VISFATIN were significantly

upregulated in the sepsis group (Figure 9C).

At the ligand–receptor interaction level (Figures 9D,E), the MIF

signaling axis exhibited enhanced outgoing signals from monocytes

toward several immune subsets, including CD4+T and CD8+T cells,

suggesting that this axis may serve as a central driver of

inflammatory immune dysregulation. The HLA–KIR pathway,

such as HLA-F–KIR3DL2 and HLA-F–KIR2DL3, was abnormally

activated in NK cells, altering immune recognition signals

transmitted from monocytes to NK cells and potentially

increasing the risk of autoimmune damage and impaired immune

surveillance. Similarly, the ANXA1–FPR1/2 axis and CD99–CD99

or CD99–PILRA signaling were specifically enhanced in sepsis,

all of which are closely associated with cell migration,

immunosuppression, and the regulation of adhesion molecules.

Overall, monocytes in sepsis patients exhibited markedly altered

interactions and signaling profiles, reflecting impaired intercellular

communication and highlighting critical molecular changes

involved in disease progression.
4 Discussion

This study systematically characterized the activation landscape

of programmed cell death (PCD) pathways in sepsis and revealed

their close association with immune–metabolic remodeling. We

identified four key non-apoptotic pathways—ferroptosis,

disulfidptosis, NETosis, and entotic cell death—as central

processes in sepsis. Using 18 core genes derived from these

pathways, we constructed a comprehensive CDS risk score that

effectively discriminated sepsis patients from healthy controls,

demonstrating robust diagnostic performance across both public
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datasets and an independent RNA-seq cohort. These findings

highlight the diagnostic and biological relevance of cell death

heterogeneity in sepsis.

Previous studies have confirmed that ferroptosis, disulfidptosis,

and NETosis contribute to sepsis pathophysiology (38–41). In

particular, our results are consistent with earlier reports showing

that core genes involved in these pathways—such as FTH1 and

GCLM, which are related to iron homeostasis and glutathione

metabolism—were found to be upregulated in sepsis, promoting

iron-dependent lipid peroxidation (42, 43). PADI4 and MPO

contribute to the formation of NETosis: PADI4 facilitates

chromatin decondensation by catalyzing histone arginine

deimination, thereby promoting NET formation (44), while MPO,

an enzyme produced by neutrophils and an essential component of

the innate immune system, plays a role in microbial killing and has

potential as a biomarker for distinguishing sepsis from non-

infectious systemic inflammation (45). Together, these consistent

findings validate the reliability of our transcriptomic-based

identification of PCD activation in sepsis.

Of particular interest, entotic cell death, a non-cell-autonomous

cell-in-cell death mechanism, has not been systematically

investigated in the context of sepsis (46). This study is the first to

reveal potential activation of the entotic pathway in sepsis patients

and identifies two key genes associated with this process: BECN1

and CYBB. BECN1, a key autophagy initiator, regulates

autophagosome formation and contributes to intracellular

degradation and energy homeostasis. It also interacts with BCL-2

to modulate apoptotic pathways, and its dysfunction may disrupt

cellular metabolism and energy balance, thereby influencing cell

viability and sepsis progression (47, 48). CYBB (also known as

NOX2), a central component of the NADPH oxidase complex,

promotes ROS production and has been shown to be upregulated in

sepsis, facilitating NETosis formation via oxidative stress (49). We

further hypothesize that during entotic-like cell death, ROS

accumulation may enhance the cytotoxicity of engulfing cells,

with CYBB potentially mediating this killing effect. Future

mechanistic studies—such as CYBB or BECN1 knockdown in

monocytes—are warranted to clarify whether inhibition of these

pathways alters metabolic remodeling or cytokine production,

thereby establishing functional causality.

Ample evidence suggests that monocytes are among the most

responsive immune cell subsets in sepsis, exhibiting increased

peripheral abundance and functional reprogramming (50). Previous

studies have mainly emphasized their immunosuppressive alterations

under immune paralysis, such as downregulation of HLA-DR,

impaired antigen presentation, and cytokine secretion dysregulation

(51, 52). Consistent with these findings, our single-cell transcriptomic

analysis also showed a significant expansion of monocytes in sepsis.

Further pathway enrichment analysis revealed that monocytes

exhibited significantly higher enrichment scores for both ferroptosis

and entotic cell death pathways compared to other cell types,

suggesting their potential as key effector cells in these two PCD

processes. Additionally, the activity of NETosis was higher in

monocytes than in most lymphoid cell populations, while the

disulfidptosis pathway was relatively inactive, indicating
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heterogeneity in their involvement across different PCD pathways. To

further investigate the regulatory mechanisms, we generated a

metabolic profile of monocytes in sepsis and found significantly

upregulated pathways, including glycolysis, OXPHOS, and the PPP.

Previous studies have shown that in the early stage of sepsis,
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monocyte metabolism shifts from OXPHOS to glycolysis to

promote pro-inflammatory responses; whereas in the

immunosuppressive phase, OXPHOS dysfunction is closely

associated with cellular functional exhaustion (53, 54). Our

correlation analysis showed that Ferroptosis and Entotic cell death
FIGURE 8

Metabolic pathway analysis and its relationship with PCD in sepsis and control groups. (A) Bubble plot showing enrichment of metabolic pathways in
sepsis and control samples. (B) Box plot showing the comparison of four metabolic pathways between sepsis and control groups. (C) Correlation
analysis between four metabolic pathways and four PCD pathways. (D) GO enrichment analysis of monocytes. **p < 0.01, ***p < 0.001, ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1685533
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1685533
pathways were significantly positively correlated with the

aforementioned metabolic pathways, suggesting that metabolic

reprogramming may influence cell death fate via modulation of

ROS homeostasis and cellular energy status. Ferroptosis depends

on iron accumulation and lipid peroxidation; enhanced glutathione

metabolism and PPP activity may influence ferroptotic thresholds

through regulation of NADPH and GSH levels. Entotic cell death, as

a cell-in-cell death mechanism, is influenced by cellular metabolism,

viability, and ROS accumulation, with dysregulated glutathione

metabolism potentially impairing ROS clearance and promoting

entosis. These findings suggest that metabolic–death coupling

represents a central mechanism linking immune dysfunction and

cellular fate in sepsis, warranting further functional exploration.

Furthermore, cell–cell communication analysis revealed a

dramatic remodeling of monocyte signaling networks in sepsis,
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with specific activation of multiple ligand–receptor axes. Notably,

the MIF–(CD74+CXCR4), HLA–KIR, ANXA1–FPR2, and CD99–

CD99 signaling pathways were significantly upregulated in sepsis.

As observed in previous studies, the MIF axis was prominently

enhanced in signaling from monocytes to CD4+/CD8+ T cells,

suggesting its central role in driving inflammatory dysregulation

(55, 56). Interactions such as HLA-C/KIR2DL3 and HLA-A/

KIR3DL1 deliver inhibitory signals that suppress NK cell

cytotoxicity, potentially facilitating immune evasion by pathogens

(57). Although the ANXA1–FPR2 axis typically mediates anti-

inflammatory responses under homeostasis, persistent stimulation

may cause receptor desensitization, resulting in excessive neutrophil

activation. We observed abnormal strengthening of this axis in

monocyte–neutrophil interactions, implicating its role in failed

inflammation resolution. CD99–CD99, an adhesion-mediated
FIGURE 9

Altered monocyte-centric intercellular communication and signaling pathways in sepsis. (A) Bar plot showing the total number and overall strength
of ligand–receptor interactions among PBMC subsets in the control and sepsis groups. (B) Cell communication analysis reveals differences in
information flow across signaling pathways between the control and sepsis groups. (C) Heatmap shows the overall signaling patterns between the
control and sepsis groups. (D) Dot plot shows ligand-receptor pairs with enhanced or weakened signaling in sepsis. (E) Dot plot shows upregulated
ligand-receptor pairs between monocytes and other immune cell populations.
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signaling pathway, was also specifically activated, potentially

enhancing intercellular contact to amplify immunosuppressive

signaling (58, 59). Moreover, monocyte-specific upregulation of

pathways involving ANNEXIN, CCL, FLT3, GRN, and VISFATIN

suggests their dual roles in immune regulation and PCD pathway

activation via metabolism–death coupling mechanisms. Notably,

FLT3 and GRN may regulate Ferroptosis and Entotic cell death

through lipid peroxidation and the mTOR–lysosome axis,

respectively. VISFATIN, a rate-limiting enzyme in NAD+

biosynthesis, may exert bidirectional effects in PARP1-dependent

cell death.

Despite these promising findings, several limitations should be

acknowledged. First, the sample size of the in-house RNA-seq

cohort was relatively small, which may limit the generalizability

of the CDS model. Second, the predictive performance of the risk

score for 28-day mortality was modest, suggesting that additional

clinical variables may be needed to improve prognostic accuracy.

Future studies with larger, multicenter cohorts are warranted to

validate the robustness and clinical utility of the proposed model.
5 Conclusions

This study systematically elucidates the activation landscape of 13

PCD pathways in sepsis by integrating bulk and single-cell

transcriptomic analyses. Four non-apoptotic pathways—ferroptosis,

disulfidptosis, NETosis, and entotic cell death—were significantly

upregulated and strongly correlated with immune cell infiltration,

suggesting their prominent roles in sepsis pathophysiology. Based on

18 core cell death–related genes, we constructed a CDS risk score

model that demonstrated outstanding diagnostic performance in both

publicly available microarray datasets and our independently

generated high-throughput sequencing data. Further single-cell

analyses revealed that monocytes exhibit dominant activation of

multiple PCD pathways and serve as key effectors at the intersection

of cell death, metabolism, and intercellular communication. In

particular, metabolic reprogramming in monocytes was closely

associated with ferroptosis and entotic cell death, highlighting the

importance of metabolic-death coupling. Moreover, monocyte-specific

ligand–receptor interactions, including the MIF–CXCR4, ANXA1–

FPR2, and HLA–KIR axes, were significantly altered, indicating

potential mechanisms for immune dysregulation and impaired

resolution of inflammation. Collectively, these findings identify

critical molecular features and cellular mechanisms underlying

sepsis progression and offer a framework for future biomarker

discovery and precision immunotherapy targeting PCD–metabolism–

communication networks in sepsis.
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SUPPLEMENTARY FIGURE 1

Batch correction. (A, B) PCA of datasets after (B) and before (A) batch
correction. (C, D) Box plots of datasets after (D) and before (C)
batch correction.
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SUPPLEMENTARY FIGURE 2

Identification of core PCD genes. (A) Venn diagram analysis of intersection
between DEGs and entotic cell death gene set. (B) Venn diagram analysis of

intersection between DEGs and ferroptosis, (C) netotic cell death, or (D)
disulfidptosis gene set. (E) Analysis of gene importance in random forest models.

SUPPLEMENTARY FIGURE 3

Calibration curve analysis (CCA) and decision curve analysis (DCA) of the CDS

model across datasets. (A, B) Training cohort CCA and DCA. (C, D) External
validation cohort (GSE69528) CCA and DCA.

SUPPLEMENTARY FIGURE 4

Predictive performance of the CDS risk score for clinical outcomes. (A) ROC

analysis of the CDS risk score for distinguishing patients with high SOFA
scores. (B) ROC analysis of the CDS risk score for predicting 28-day mortality

in sepsis.

SUPPLEMENTARY FIGURE 5

Expression patterns of 18 core PCD related genes across major immune cell

types in the control and sepsis groups at the single-cell level.
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