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Background: Sepsis, a life-threatening condition with persistently high mortality,
involves dysregulated immune responses and programmed cell death (PCD).
However, the specific roles and interactions of diverse PCD pathways in sepsis
pathogenesis remain incompletely understood. This study aimed to
systematically characterize PCD patterns and their clinical relevance in sepsis.
Methods: We integrated three bulk transcriptomic datasets (81 controls, 165
sepsis patients) and one single-cell RNA sequencing (scRNA-seq) dataset
(4 controls, 4 early sepsis patients, 52,315 cells) from public databases. Gene
set variation analysis (GSVA) quantified activity of 13 PCD pathways. Immune
infiltration was assessed via single-sample gene set enrichment analysis (ssGSEA).
A cell death-associated signature (CDS) risk score was developed using least
absolute shrinkage and selection operator (LASSO) regression. scRNA-seq
analysis identified cell-type-specific PCD activation and intercellular
communication using Seurat, AUCell, and CellPhoneDB. Additionally, an
independent RNA-seq cohort generated from our own sequencing of sepsis
patients and healthy controls was used for external validation.

Results: Transcriptomic analysis identified 5,591 differentially expressed genes
enriched in immune and cell death pathways. Four PCD pathways-ferroptosis,
disulfidptosis, NETosis, and entotic cell death-were significantly upregulated in
sepsis and strongly correlated with immune cell infiltration, such as activated
dendritic cells and neutrophils. The CDS risk score, based on 18 core PCD genes,
showed excellent diagnostic accuracy across both public microarray datasets
(AUC = 0.961 and 0.844) and our independent high-throughput RNA-seq dataset
(AUC = 0.975). scRNA-seq revealed monocytes as dominant effectors, exhibiting
heightened activation of ferroptosis, entotic death, and netotic pathways
alongside metabolic reprogramming, including enhanced glutathione
metabolism and oxidative phosphorylation (OXPHOS). Furthermore,
monocyte-centric intercellular communication was dysregulated in sepsis,
featuring upregulated MIF-CXCR4, ANXA1-FPR2, and HLA-KIR signaling axes.
Conclusions: By integrating public microarray and single-cell transcriptomic
data with independent high-throughput sequencing validation, this study analysis
identifies ferroptosis, disulfidptosis, netotic death, and entotic death as key
dysregulated PCD pathways in sepsis, with monocytes serving as central hubs
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integrating PCD, metabolic reprogramming, and immune communication.
The CDS risk score provides a robust diagnostic and stratification tool.
Targeting monocyte-driven PCD-metabolism-communication networks offers
promising avenues for precision immunotherapy in sepsis.

sepsis, programmed cell death, transcriptome profiling, ScRNA-seq,

cell communication

1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection, with persistently high
morbidity and mortality rates, posing a major global public health
challenge (1). Epidemiological studies suggest an increasing global
incidence of sepsis, with mortality rates exceeding 50% once the
condition escalates to septic shock (2). The pathophysiology of
sepsis is complex and multifactorial, involving dysregulated innate
and adaptive immune responses, aberrant inflammatory signalling,
metabolic reprogramming, and endothelial dysfunction (3-6).
Despite recent advancements in therapeutic approaches,
considerable obstacles persist in the realms of early diagnosis,
disease evaluation, and targeted treatment of sepsis.

Programmed cell death (PCD) encompasses a spectrum of
genetically controlled mechanisms that maintain tissue
homeostasis, regulate immune responses, and eliminate damaged
or infected cells (7). Since the introduction of the concept of
apoptosis in 1972 (8), a growing number of distinct modalities of
PCD have been identified, including ferroptosis, pyroptosis, and
necroptosis, among others; to date, at least 13 PCD pathways have
been recognized (9). In the context of sepsis, dysregulated PCD has
been associated with immune cell dysfunction, organ damage, and
the progression of the disease. For example, excessive apoptosis
during sepsis can result in the depletion of immune cells, thereby
compromising the host’s immune defense, while necroptosis and
similar forms of cell death may intensify inflammatory responses
and contribute to additional organ injury (10, 11).

In recent years, the rapid advancement of high-throughput
sequencing technologies has established both bulk and single-cell
RNA sequencing (scRNA-seq) as powerful methodologies for
exploring the pathological mechanisms underlying sepsis (12).
Transcriptomic profiling enables a comprehensive analysis of
gene expression alterations, which aids in the identification of
critical genes and signaling pathways associated with sepsis.
Concurrently, scRNA-seq offers insights at the single-cell level,
revealing cellular heterogeneity and allowing for a detailed
examination of the roles and molecular mechanisms of specific
cell types in the context of sepsis (13). Previous investigations
utilizing these technologies on peripheral blood mononuclear cells
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(PBMCs) from sepsis patients have uncovered significant changes
in cellular composition, gene expression, and signaling pathways,
providing valuable insights into disease mechanisms and informing
clinical interventions (14). Nevertheless, a thorough understanding
of the interplay between sepsis and PCD-related pathways, as well
as the roles of these pathways across various immune cell types,
remains insufficiently explored.

This study aims to systematically investigate the associations
between sepsis and 13 known PCD pathways by integrating
transcriptomic and scRNA-seq. We seek to identify key cell death-
related genes and critical immune cell populations, elucidate their
functional roles in the pathogenesis of sepsis, and construct a robust
cell death-associated signature (CDS) risk score. These efforts aim to
provide novel insights and potential biomarkers for early diagnosis,
disease stratification, and precision therapy in sepsis.

2 Methods

2.1 Public transcritome sequencing data
and PCD-related genes collection

We conducted the primary analysis using public microarray-
based mRNA expression profiles obtained from the GEO database
(https://www.ncbinlm.nih.gov/geo/) (GSE57065, GSE54514, and
GSE28750), comprising a total of 81 samples in the control group
and 165 samples in the sepsis group, all of which were derived from
human blood. More details of the collected datasets are presented in
Supplementary Table 1. To investigate PCD, we integrated key
regulatory genes collected from the KEGG database (15),
GeneCards (16), MSigDB (17), Reactome (18), and relevant
review articles. This includes genes associated with various cell
death pathways: alkaliptosis (8 genes), apoptosis (655 genes),
autophagy (461 genes), cuproptosis (14 genes), disulfidptosis (4
genes), entotic cell death (16 genes), ferroptosis (97 genes),
lysosome-dependent cell death (447 genes), necroptosis (179
genes), NETosis (16 genes), oxeiptosis (23 genes), parthanatos (9
genes), and pyroptosis (52 genes). In total, 1,981 PCD-related genes
were compiled. The final gene lists for each PCD subtype are
provided in Supplementary Table 2.
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2.2 Microarray data preprocessing

The gene expression was detected by Affymetrix Genome U133
Plus 2.0 Array (GSE57065 and GSE28750) and Illumina
HumanHT-12 V3.0 expression beadchip (GSE54514). Gene
probes were annotated as gene symbols. Probes without matching
gene symbols and matching multiple symbols were excluded. Gene
expression value of duplicate gene symbol was calculated as the
median value. Batch effects among the three training datasets were
corrected using the ComBat function from the “sva” R package with
default parameters, specifying the batch variable as the dataset ID
(19). Then the effectiveness of batch correction was assessed with
principal component analysis (PCA) plots.

2.3 Collection of blood samples from
sepsis patients and healthy individuals

To obtain human peripheral blood monocytes for further RNA
sequencing, a total of 18 participants were enrolled in this study,
including 10 sepsis patients and 8 non-sepsis controls. Eligible
participants met the following criteria: aged between 18 and 85
years. For sepsis cases, fulfillment of the Sepsis-3 definition of sepsis.
For non-sepsis controls, volunteers were recruited without a
diagnosis of sepsis (Supplementary Table 3).

2.4 RNA-Seq library preparation and
sequencing

RNA purification, reverse transcription, library construction and
sequencing were conducted at Shanghai Majorbio Biopharm
Technology Co., Ltd.(Shanghai, China). Total RNA from PBMCs
was extracted using TRIzol reagent and quantified with a NanoDrop
spectrophotometer. Libraries were prepared using 1ug of total RNA
and sequenced on the NovaSeqX Plus platform (PE150). Briefly,
messenger RNA was isolated using polyA selection with
methodbyoligo (dT) beads and then fragmented. Double-stranded
cDNA was synthesized using a SuperScript double-stranded cDNA
synthesis kit (Invitrogen, CA) using random hexamer primers. The
synthesized cDNA was subjected to end-repair, phosphorylation, and
adapter ligation, according to the library construction protocol.
Libraries were size selected for300 bp ¢cDNA fragments using 2%
Low Range Ultra Agarose, followed by PCR amplified with Phusion
DNA polymerase (NEB) for 15 cycles. The sequencing library was
quantified with Qubit 4.0 and sequenced using the NovaSeq Reagent
Kit on NovaSeq X Plus platform (PE150).

2.5 Analysis of bulk RNA-seq data

Initial reads QC metrics (base quality distribution) were assessed
using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). NGS QC (20) toolkits were used to trim adaptors and
low-quality reads. The clean reads were mapped to the human
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(hgl9) genomes using HISAT2 version 2.2.1 (21) with default
settings. BAM files containing uniquely mapped reads were used
as inputs for the Stringtie (22), and transcripts per million reads
values were calculated to quantify gene expression levels.
Differential gene expression analysis was performed using the
DESeq2 package (23) in R.

2.6 Pathway and functional enrichment
analysis

We utilized the R package “clusterProfiler” (24) to conduct
kyoto encyclopedia of genes and genomes (KEGG) (25) and gene
ontology (GO) (26) enrichment analyses. Additionally, we
performed gene set enrichment analysis (GSEA) (27) to identify
the underlying pathways, with the threshold for significant terms
being adjusted p-value <0.05.

2.7 Pathway activity calculation

To investigate potential pathway-level changes in gene
expression from microarray-based mRNA expression profiles, we
employed a non-parametric and unsupervised gene set variation
analysis (GSVA) to assess pathway enrichment results from the
sequencing data. GSVA enables the evaluation of pathway activity
variations across individual samples. We conducted the analysis
using the GSVA package in R software and calculated the
enrichment scores of pathways in all samples to identify any
differences in pathway activity across sample (28). For pathway
activity analysis of cell clusters derived from scRNA-seq data, we
first aggregated single-cell expression profiles into pseudobulk
expression matrices by averaging gene expression within each
annotated cell type. Genes with zero expression across all cells
were excluded. Using these pseudobulk matrices, we applied GSVA
to calculate enrichment scores for 13 programmed cell death (PCD)
pathways across cell types. In parallel, we utilized the “AUCell”
package to compute cell-level activation scores for key PCD
pathways. AUCell uses a rank-based scoring method to calculate
the activity level of gene sets and computes a gene set activation
score for each cell by utilizing the area under the curve (AUC) (29).

2.8 Development and validation of the CDS
risk score

The least absolute shrinkage and selection operator (LASSO)
(30) was used to construct the optimal CDS risk score in sepsis. To
ensure the independence of training and validation, three GEO
datasets (GSE57065, GSE54514, GSE28750) were combined as the
training set (n=246; 81 healthy controls and 165 sepsis patients),
and GSE69528 (n=124; 22 healthy controls and 102 sepsis patients)
was used as an independent validation set.

Candidate genes were first obtained by intersecting PCD-related
genes with differentially expressed genes between sepsis and control
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groups. A random forest algorithm was then applied on the training
set only to narrow down the feature set, and genes with high
importance scores were retained. Subsequently, LASSO regression
with 10-fold cross-validation and a binomial family (logistic
regression), alpha=1, and set the random seed (3699) to ensure
reproducibility was performed in the training set to identify the
optimal gene set and estimate the coefficients for the risk score
model. The A value that minimized partial likelihood deviance
(A_min) was used to fit the final model.

We created a receiver operating characteristic (ROC) curve to
evaluate the predictive capacity of 13 PCD pathways, core death
genes, and CDS risk score in both the training and validation
cohorts. The AUC value was calculated using the “pROC” package
(31). The “rms” and “dcurves” R packages were used to conduct
calibration curve analysis and decision curve analysis.

2.9 Immune infiltration analysis

We utilized single-sample gene set enrichment analysis
(ssGSEA), a novel method for gene enrichment, to compare the
immune score of each sample. Feature gene panels for each immune
cell type were acquired from the published literature (32, 33). The
GSVA R package (version 1.48.2) was used to convert the gene
expression matrix into an enrichment score matrix based on
immune cell-specific gene sets. Subsequently, differences in
immune cell activity between groups (sepsis vs. control) were
compared using the Wilcoxon rank-sum test. Spearman
correlation coefficients were calculated to assess the relationships
between different immune cell types, and appropriate adjustments
were made for multiple comparisons in the statistical analyses. All
statistical analyses were performed using R software (version 4.4.1,
https://www.r-project.org), and all p-values were two-sided. A p-
value < 0.05 was considered statistically significant.

2.10 scRNA-seq analysis

The scRNA-seq dataset used in this study included four control
and four early sepsis samples, generating a total of 52,315 cells
(GSE217906). Cells were retained with expressed > 300 genes,
mitochondrial gene expression < 21%, hemoglobin gene expression
< 5%, and nCount_RNA > 200. In addition, cells with nCount_RNA
in the top 3% were excluded to avoid potential doublets or outliers.
Next, the main analysis was implemented through Seurat v5.2.1 (13).
The gene expression matrix was normalized via the “NormalizeData”
function, followed by the identification of highly variable genes using
“FindVariableFeatures”. Batch effects were addressed through
canonical correlation analysis. Dimensionality reduction was
conducted using PCA, and the top 20 principal components,
selected based on the “ElbowPlot” function, were retained for
downstream analysis. Cell clustering was carried out with the
“FindNeighbors” and “FindClusters” functions (resolution = 1),
and visualized using uniform manifold approximation and
projection (UMAP). Cluster-specific DEGs were identified via the
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“FindAllMarkers” function and annotated based on known canonical
markers. Cells expressing markers of more than one cell type were
defined as doublets and excluded from further analyses. To assess
metabolic pathway activity at the single-cell level, we applied the
“scMetabolism” package (34), which leverages the preloaded KEGG
database and the Vision algorithm for quantification. The results
were displayed using dot plots. CellChat was used to investigate
molecular-level intercellular communication with default
parameters (35).

3 Results

3.1 Transcriptomic characterization of PCD
pathways in sepsis

To investigate the transcriptomic features of PCD pathways in
sepsis, we integrated three publicly available transcriptomic datasets
of sepsis and healthy controls. Batch effects were removed using the
SVA algorithm (36), followed by dataset merging and
normalization. PCA and box plots (Supplementary Figure 1)
confirmed effective batch correction and data consistency.

Based on the preprocessed data, we identified 5,591 DEGs
between sepsis and normal samples (p < 0.05), as illustrated by the
volcano plot and heatmap (Figures 1A, B, Supplementary Table 4).
Pathway enrichment analysis showed that these DEGs were enriched
in key pathways involved in sepsis, including “Thl and Th2 cell

»

differentiation”, “T" cell receptor signaling pathway”, and “PD-L1

checkpoint pathway in cancer”, as well as cell death-related pathways

»

such as “Apoptosis”, “Cellular Senescence”, and the “p53 Signaling
Pathway”. Infection-related pathways like “Human T-cell Leukemia
Virus 1 Infection”, “Epstein-Barr Virus Infection”, and
“Tuberculosis” were also enriched (Figure 1C). GSEA further
revealed activation of immune-related pathways, including “Th17
Cell Differentiation”, “Antigen Processing”, “NET Formation” and
suppression of metabolic and effector pathways, such as “Oxidative
Phosphorylation” and “NK Cell Cytotoxicity” (Figure 1D). These
findings suggest that sepsis may involve immune dysregulation,
metabolic disturbance, and abnormal cell death.

To further characterize the involvement of PCD in sepsis, we
applied GSVA to quantify the activity of 13 PCD-related pathways.
Among these, four pathways—disulfidptosis, entotic cell death,
ferroptosis, and NETosis—were upregulated in sepsis, while
parthanatos (PARP-1-dependent cell death) showed reduced
activity (Figure 1E, Supplementary Table 5). These results
highlight the potential contribution of dysregulated PCD to the
pathogenesis and progression of sepsis.

3.2 Linking immune infiltration and PCD in
sepsis for diagnostic insight

Stimulus-induced cell death may occur in a manner that alerts

the immune system, thereby initiating immune responses against
antigens derived from dead cells (37). The initiation and
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FIGURE 1

Function and pathway enrichment analysis of DEGs in control and sepsis groups. (A, B) Volcano and the heatmap plot of the DEGs from control and
sepsis groups. (C) KEGG enrichment analyses based on the DEGs between control and sepsis groups. (D) GSEA analysis of KEGG pathways. (E) GSVA
analysis of 13 PCD pathways demonstrated by box plots in control and sepsis groups.

progression of sepsis are closely associated with extensive immune
cell infiltration. Therefore, using the ssGSEA algorithm, we
compared the immune infiltration profiles between normal and
septic groups. Immune infiltration analysis revealed significant
alterations in 19 out of 28 immune cell types. Most of the
dysregulated immune cells, such as central memory CD8 T cells,
natural killer cells, activated dendritic cells, and mast cells, were
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upregulated in sepsis (Figure 2A, Supplementary Table 6),
indicating substantial changes in the immune microenvironment
during the progression of the disease.

Subsequently, we conducted a correlation analysis between
GSVA scores of 13 PCD pathways and the infiltration levels of 28
immune cell populations. The activities of parthanatos, NETosis,
ferroptosis, entotic cell death, and disulfidptosis were found to be
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FIGURE 2

Immune cell infiltration evaluation. (A) Immune cell scores were assessed using ssGSEA in the control and sepsis groups. (B) Correlation analysis was
performed between the GSVA scores of 13 PCD-related pathways and different immune cells. (C) ROC curve of the 13 PCD pathways in sepsis. ns, not

significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

significantly positively correlated with the infiltration of several
immune cell types, including central memory CD8 T cells,
regulatory T cells, activated dendritic cells, macrophages,
eosinophils, mast cells, and neutrophils. In contrast, alkaliptosis,
lysosome-dependent cell death, and cuproptosis were significantly

Frontiers in Immunology 06

negatively associated with the majority of immune cell types
(Figure 2B, Supplementary Table 7).

In addition, we evaluated the diagnostic performance of the 13
PCD-related GSVA scores in septic patients using ROC curve analysis
(Figure 2C). Among these, the top five PCD pathways ranked by AUC
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were disulfidptosis (AUC = 0.75), NETosis (AUC = 0.73), ferroptosis
(AUC = 0.62), entotic cell death (AUC = 0.56), and alkaliptosis (AUC =
0.56). Based on these findings, we identified the activation of NETosis,
ferroptosis, entotic cell death, and disulfidptosis in the sepsis group, all
of which were strongly associated with immune cell infiltration.
Moreover, these PCD pathways demonstrated relatively high
diagnostic efficacy, suggesting that they represent key mechanisms
warranting further investigation in future studies.

3.3 Development of a cell death-
associated risk score model for sepsis

By intersecting genes involved in four PCD pathways—
NETosis, ferroptosis, entotic cell death, and disulfidptosis—with
the DEGs between septic patients and healthy controls in the
training set (GSE57065, GSE54514, GSE28750), a total of 120
candidate genes were identified. Using a random forest algorithm,

B

10.3389/fimmu.2025.1685533

20 genes were selected (Gini > 2.0) (Supplementary Figure 2).
Subsequently, a LASSO regression analysis (Figures 3A, B) was
performed on the training set, and 18 core death-related genes
(AKR1C3, BECNI1, CAMP, CYBB, FTH1, GCLM, MAP1LC3B,
MPO, NCKAP1, PADI4, PCBP1, PCBP2, PGD, POR, PTGS2,
SLC1A5, SLC38A1, VDAC2) were identified as having the
minimum partial likelihood deviance. Based on these genes, the
following CDS risk score formula was established:

CYBB * (1.6196034) + PTGS2 * (-0.9390386) + PCBP1 *
(-1.0863174) + PGD * (0.6020607) + MPO * (0.2001920) + GCLM *
(1.0476006) + POR * (1.9875715) + MAPILC3B * (1.9357273) +
PADI4 * (-0.9704860) + VDAC2 * (-1.1710069) + NCKAPI *
(22052000) + CAMP * (0.6512673) + PCBP2 * (-1.0707485) +
FTHI * (-1.1794027) + BECNI * (-2.9384124) + SLC38A1 *
(0.4903299) + AKRIC3 * (-1.7556165) + SLCIA5 * (1.2059844).

To assess the diagnostic potential of these 18 genes in sepsis,
ROC curve analysis was performed, revealing high diagnostic
accuracy (Figure 3C). Compared with healthy controls, the
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FIGURE 3

Development of CDS risk score based on core death genes. (A) Distribution of LASSO coefficients for feature genes. (B) Ten-fold cross-validation for
parameter selection in the LASSO model. (C) ROC curve analysis of the 18 core death genes in sepsis. (D, G) Box plots showing the expression of death
genes in control and sepsis patients, with (G) representing data from an external validation cohort. (E, H) Violin plot showing the distribution of CDS risk
scores between control and sepsis patients, with (H) representing data from an external validation cohort. (F, ) ROC curve analysis of the CDS risk score
in sepsis, with (1) representing data from an external validation cohort. ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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expression levels of CAMP, CYBB, GCLM, MAPILC3B, MPO,
NCKAPI, PADI4, PGD, POR, and SLC1A5 were significantly
upregulated in septic patients (Figure 3D).

The diagnostic performance of this PCD-based signature was
further validated in septic patients and demonstrated excellent
diagnostic accuracy, with a precision of 0.961 (Figures 3E, F). To
further confirm the robustness of the model, we validated its
performance using the external dataset GSE69528. The expression
levels of CAMP, CYBB, GCLM, MAP1LC3B, MPO, NCKAPI,
PADI4, PGD, and POR were significantly upregulated in sepsis
patients compared to controls (Figure 3G), which was consistent
with the findings in the discovery cohort. Moreover, the validation
cohort achieved an AUC of 0.844, highlighting the strong diagnostic
performance of the model (Figures 3H-I). To further evaluate the
calibration performance and clinical applicability of the model, we
conducted calibration curve analysis (CCA) and decision curve
analysis (DCA) on the training set and validation set, respectively.
The results showed that both sets exhibited good performance
(Supplementary Figure 3). In addition, we used another dataset
GSE185263, which includes clinical information such as sequential
organ failure assessment (SOFA) score and 28 day survival status, to
plot ROC curves to evaluate the predictive effect of risk scores on
SOFA and 28 day mortality outcomes. The results indicate that the
risk score has a decent predictive ability for SOFA (AUC = 0.706),
but its predictive effect on 28 day mortality is poor (AUC = 0.586)
(Supplementary Figure 4).

3.4 Independent validation of the CDS
model using an in-house high-throughput
RNA-seq cohort

To independently validate the transcriptomic features and
diagnostic efficacy of the CDS model, we generated and analyzed an
in-house high-throughput RNA-seq dataset. Transcriptomic profiling
of this cohort identified a total of 11,246 differentially expressed genes
(DEGs) (p < 0.05) (Figure 4A, Supplementary Table 8). KEGG
pathway enrichment analysis revealed that these DEGs were
significantly enriched in “immune- and inflammation-related
pathways”, “endocytosis”, “human T-cell leukemia virus 1 infection”,
and “TINF signaling pathway” (Figure 4B). Gene set enrichment
analysis (GSEA) further demonstrated significant enrichment of
metabolic and immune-inflammatory pathways, such as the “PPAR
fatty acid metabolism

trap formation”, and “cytokine-cytokine receptor interaction”

» o«

signaling pathway”,

» o«

, “neutrophil extracellular

(Figure 4C). Notably, the expression patterns of core PCD-related
genes in this cohort were highly consistent with those observed in the
discovery datasets, with genes such as CYBB, GCLM, MAPILC3B,
NCKAP1, and PGD markedly upregulated in sepsis patients
(Figure 4D). Furthermore, the CDS risk score achieved an AUC of
0.975 in this independent cohort (Figures 4E, F), underscoring the
model’s outstanding performance in high-throughput sequencing data
and the robustness of its diagnostic capability.
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3.5 Discovery of DEGs stratified by CDS
risk score

Based on the median value of the CDS risk score, sepsis patients
were stratified into high-risk and low-risk groups. A total of 3,350
DEGs (p < 0.05) were identified between the two groups
(Figures 5A, B, Supplementary Table 9). KEGG enrichment
analysis revealed that these DEGs were primarily enriched in viral
infection and immune differentiation pathways, including “Human

» o«

T-cell leukemia virus 1 infection”, “Epstein-Barr virus infection”,
“Human immunodeficiency virus 1 infection”, “Th1/Th2 cell
differentiation”, “and Th17 cell differentiation” (Figure 5C). GO
enrichment analysis further indicated that these DEGs were
significantly involved in biological processes such as positive
regulation of cytokine production and leukocyte cell-cell
adhesion (Figure 5D). Consistently, GSEA results demonstrated
that most hallmark gene sets were significantly activated, including
antigen processing and presentation, Th17 cell differentiation, and
cell adhesion molecules (Figure 5E).

3.6 Impact of CDS risk score on immune
infiltration in sepsis

To determine whether the CDS risk score accurately reflects the
immune status in sepsis, we applied ssGSEA to evaluate immune
cell infiltration. Distinct immune infiltration patterns were observed
between high- and low-risk patient groups stratified by the CDS risk
score. Among 22 immune cell types analyzed, 14 exhibited
significant differences between the two groups. The majority of
dysregulated immune cells were upregulated in the high-risk group,
including central memory CD8" T cells, T helper 17 cells, regulatory
T cells, activated dendritic cells, macrophages, and neutrophils
(Figure 6A, Supplementary Table 10), suggesting substantial
alterations in the immune microenvironment among high-risk
individuals. In contrast, effector memory CD8'T cells and
immature B cells were significantly downregulated in the high-
risk group.

Correlation analysis further revealed strong associations
between the core cell death-related genes and various immune
cell subsets (Figure 6B, Supplementary Table 11). Specifically,
CYBB showed the strongest positive correlations with activated
CD8'T cells, T follicular helper cells, and CD56 bright natural killer
cells; GCLM and MAPILC3B were positively associated with
effector memory CD4" T cells and immature dendritic cells;
NCKAPI1 exhibited strong positive correlations with NK cells,
macrophages, and mast cells. In contrast, PCBP2 was negatively
correlated with activated CD8'T cells, effector memory CD8'T
cells, and natural killer T cells. Additionally, PTGS2 showed
significant positive correlations with NK cells and immature
dendritic cells. The CDS risk score itself was significantly
positively correlated with myeloid-derived suppressor cells and
immature dendritic cells.
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FIGURE 4

Independent transcriptomic validation and diagnostic evaluation of the CDS model in sepsis. (A) Volcano and the heatmap plot of the DEGs from
control and sepsis groups. (B) KEGG enrichment analyses based on the DEGs between control and sepsis groups. (C) GSEA analysis of KEGG
pathways. (D) Box plots showing the expression of death genes in control and sepsis patients. (E) Violin plot showing the distribution of CDS risk
scores between control and sepsis patients. (F) ROC curve analysis of the CDS risk score in sepsis. ns, not significant, *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001.

3.7 Monocytes exhibit dominant activation
of multiple PCD pathways in sepsis

To further investigate the interplay between PCD and immune
microenvironment alterations in sepsis, we analyzed a publicly
available scRNA-seq dataset GSE217906 of PBMCs (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217906). Based
on canonical marker genes, we manually annotated and identified
the major immune cell types, including CD4"T cells, CD8"T cells,
monocytes, natural killer (NK) cells, megakaryocytes, plasma cells,
B cells, and neutrophils (Figures 7A, B).

Frontiers in Immunology

Analysis of cell proportion revealed a markedly increased
percentage of monocytes and a significantly reduced proportion
of NK cells in septic patients compared to healthy controls
(Figure 7C). We next examined the single-cell expression patterns
of 18 core cell death-related genes identified from bulk
transcriptomic analysis. Most of these genes exhibited significant
differential expression between healthy individuals and sepsis
patients and were predominantly expressed in the monocyte
population (Supplementary Figure 5).

To analyze pathway-level activity at the cell cluster level, we first
aggregated single-cell expression into pseudobulk matrices for each
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enriched in the DEGs between the low-risk and high-risk groups.

annotated immune cell type. Using these pseudobulk profiles, we
performed GSVA to calculate enrichment scores for 13 PCD
pathways. The results indicated a global activation of most PCD
pathways (Figure 7D), with distinct activation patterns across
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different immune cell types. Specifically, entotic cell death,
ferroptosis, NETosis, and lysosome-dependent cell death were
more active in monocytes; neutrophils showed elevated activity in
alkaliptosis, pyroptosis, necroptosis, apoptosis, and autophagy;
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Assessment of immune cell infiltration in low-risk and high-risk groups. (A) Immune cell scores were assessed using ssGSEA analysis in the low-risk
and high-risk groups. (B) Correlation analysis between the CDS risk score, core death genes, and various immune cell types. ns, not significant, *p <

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

while NK cells exhibited moderate activation across multiple
pathways. In contrast, most PCD pathways were negatively
enriched in CD4'T cells and B cells.

Subsequently, we calculated AUCell scores for four key cell death
pathways—ferroptosis, NETosis, entotic cell death, and disulfidptosis—
identified from transcriptomic analysis, to assess pathway activity at the
single-cell level, and visualized their activity across immune cell types
using violin plots. The results demonstrated that all four pathways were
significantly more active in monocytes compared to other immune cell
populations (Figure 7E).
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3.8 Metabolism and cell death pathway
profiling in monocytes of sepsis

Cell metabolism is fundamental to maintaining cellular
function and survival. In disease states, cellular metabolism often
undergoes reprogramming, which may be closely linked to cell
death pathways. Therefore, we performed a metabolic analysis of
monocytes. The results indicated that in four metabolic pathways:
Glutathione-metabolism, Glycolysis/Gluconeogenesis, Oxidative-
phosphorylation (OXPHOS), and Pentose phosphate pathway
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(PPP)—the sepsis group showed significantly higher scores than the
healthy group, reflecting distinct metabolic features in sepsis
compared to healthy conditions (Figures 8A, B).

Subsequently, we analyzed the correlation between the four cell
death pathways and these four metabolic pathways. The results
revealed a strong and highly significant positive correlation between
ferroptosis and entotic cell death with the involved metabolic
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pathways, while disulfidptosis showed a significant negative
correlation. NETosis exhibited minimal correlation with the
metabolic pathways (Figure 8C).

GO analysis further revealed that the DEGs in monocytes were
predominantly enriched in pathways related to the positive
regulation of cytokine production, leukocyte proliferation, and
immune cell activation, all of which are closely associated with
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immune responses. These findings underscore the pivotal role of
monocytes in immune regulation and their functional
interconnection with various immune cell types (Figure 8D).

3.9 Cell-cell interactions and signal
pathways altered in sepsis

To determine whether monocytes regulate PCD pathways
through interactions with other immune cell types, we performed
CellChat analysis. Our results revealed a decrease in the total
number and intensity of inferred interactions in sepsis patients,
indicating impaired intercellular communication (Figure 9A).
Changes in overall information flow revealed that multiple
signaling pathways were significantly up- or downregulated under
septic conditions (Figure 9B). Compared to the control group,
signaling pathways such as ANNEXIN, CCL, and CADM showed
enhanced relative information flow in sepsis samples, whereas
classical immune-related pathways such as MHC-II, APP, IL16,
and CD86 were markedly suppressed. Global signaling pattern
analysis across different immune cell types further demonstrated
that sepsis induced substantial alterations. Specifically, in
monocytes, signaling pathways including ANNEXIN, CCL, FLT3,
GRN, CADM, BAFF, APRIL, and VISFATIN were significantly
upregulated in the sepsis group (Figure 9C).

At the ligand-receptor interaction level (Figures 9D,E), the MIF
signaling axis exhibited enhanced outgoing signals from monocytes
toward several immune subsets, including CD4"T and CD8"T cells,
suggesting that this axis may serve as a central driver of
inflammatory immune dysregulation. The HLA-KIR pathway,
such as HLA-F-KIR3DL2 and HLA-F-KIR2DL3, was abnormally
activated in NK cells, altering immune recognition signals
transmitted from monocytes to NK cells and potentially
increasing the risk of autoimmune damage and impaired immune
surveillance. Similarly, the ANXA1-FPR1/2 axis and CD99-CD99
or CD99-PILRA signaling were specifically enhanced in sepsis,
all of which are closely associated with cell migration,
immunosuppression, and the regulation of adhesion molecules.
Overall, monocytes in sepsis patients exhibited markedly altered
interactions and signaling profiles, reflecting impaired intercellular
communication and highlighting critical molecular changes
involved in disease progression.

4 Discussion

This study systematically characterized the activation landscape
of programmed cell death (PCD) pathways in sepsis and revealed
their close association with immune-metabolic remodeling. We
identified four key non-apoptotic pathways—ferroptosis,
disulfidptosis, NETosis, and entotic cell death—as central
processes in sepsis. Using 18 core genes derived from these
pathways, we constructed a comprehensive CDS risk score that
effectively discriminated sepsis patients from healthy controls,
demonstrating robust diagnostic performance across both public
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datasets and an independent RNA-seq cohort. These findings
highlight the diagnostic and biological relevance of cell death
heterogeneity in sepsis.

Previous studies have confirmed that ferroptosis, disulfidptosis,
and NETosis contribute to sepsis pathophysiology (38-41). In
particular, our results are consistent with earlier reports showing
that core genes involved in these pathways—such as FTH1 and
GCLM, which are related to iron homeostasis and glutathione
metabolism—were found to be upregulated in sepsis, promoting
iron-dependent lipid peroxidation (42, 43). PADI4 and MPO
contribute to the formation of NETosis: PADI4 facilitates
chromatin decondensation by catalyzing histone arginine
deimination, thereby promoting NET formation (44), while MPO,
an enzyme produced by neutrophils and an essential component of
the innate immune system, plays a role in microbial killing and has
potential as a biomarker for distinguishing sepsis from non-
infectious systemic inflammation (45). Together, these consistent
findings validate the reliability of our transcriptomic-based
identification of PCD activation in sepsis.

Of particular interest, entotic cell death, a non-cell-autonomous
cell-in-cell death mechanism, has not been systematically
investigated in the context of sepsis (46). This study is the first to
reveal potential activation of the entotic pathway in sepsis patients
and identifies two key genes associated with this process: BECN1
and CYBB. BECNI1, a key autophagy initiator, regulates
autophagosome formation and contributes to intracellular
degradation and energy homeostasis. It also interacts with BCL-2
to modulate apoptotic pathways, and its dysfunction may disrupt
cellular metabolism and energy balance, thereby influencing cell
viability and sepsis progression (47, 48). CYBB (also known as
NOX2), a central component of the NADPH oxidase complex,
promotes ROS production and has been shown to be upregulated in
sepsis, facilitating NETosis formation via oxidative stress (49). We
further hypothesize that during entotic-like cell death, ROS
accumulation may enhance the cytotoxicity of engulfing cells,
with CYBB potentially mediating this killing effect. Future
mechanistic studies—such as CYBB or BECNI1 knockdown in
monocytes—are warranted to clarify whether inhibition of these
pathways alters metabolic remodeling or cytokine production,
thereby establishing functional causality.

Ample evidence suggests that monocytes are among the most
responsive immune cell subsets in sepsis, exhibiting increased
peripheral abundance and functional reprogramming (50). Previous
studies have mainly emphasized their immunosuppressive alterations
under immune paralysis, such as downregulation of HLA-DR,
impaired antigen presentation, and cytokine secretion dysregulation
(51, 52). Consistent with these findings, our single-cell transcriptomic
analysis also showed a significant expansion of monocytes in sepsis.
Further pathway enrichment analysis revealed that monocytes
exhibited significantly higher enrichment scores for both ferroptosis
and entotic cell death pathways compared to other cell types,
suggesting their potential as key effector cells in these two PCD
processes. Additionally, the activity of NETosis was higher in
monocytes than in most lymphoid cell populations, while the
disulfidptosis pathway was relatively inactive, indicating
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heterogeneity in their involvement across different PCD pathways. To  monocyte metabolism shifts from OXPHOS to glycolysis to
further investigate the regulatory mechanisms, we generated a  promote pro-inflammatory responses; whereas in the
metabolic profile of monocytes in sepsis and found significantly ~ immunosuppressive phase, OXPHOS dysfunction is closely
upregulated pathways, including glycolysis, OXPHOS, and the PPP.  associated with cellular functional exhaustion (53, 54). Our
Previous studies have shown that in the early stage of sepsis,  correlation analysis showed that Ferroptosis and Entotic cell death
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FIGURE 9

Altered monocyte-centric intercellular communication and signaling pathways in sepsis. (A) Bar plot showing the total number and overall strength
of ligand—receptor interactions among PBMC subsets in the control and sepsis groups. (B) Cell communication analysis reveals differences in
information flow across signaling pathways between the control and sepsis groups. (C) Heatmap shows the overall signaling patterns between the
control and sepsis groups. (D) Dot plot shows ligand-receptor pairs with enhanced or weakened signaling in sepsis. (E) Dot plot shows upregulated
ligand-receptor pairs between monocytes and other immune cell populations.

pathways were significantly positively correlated with the
aforementioned metabolic pathways, suggesting that metabolic
reprogramming may influence cell death fate via modulation of
ROS homeostasis and cellular energy status. Ferroptosis depends
on iron accumulation and lipid peroxidation; enhanced glutathione
metabolism and PPP activity may influence ferroptotic thresholds
through regulation of NADPH and GSH levels. Entotic cell death, as
a cell-in-cell death mechanism, is influenced by cellular metabolism,
viability, and ROS accumulation, with dysregulated glutathione
metabolism potentially impairing ROS clearance and promoting
entosis. These findings suggest that metabolic-death coupling
represents a central mechanism linking immune dysfunction and
cellular fate in sepsis, warranting further functional exploration.
Furthermore, cell-cell communication analysis revealed a
dramatic remodeling of monocyte signaling networks in sepsis,
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with specific activation of multiple ligand-receptor axes. Notably,
the MIF-(CD74+CXCR4), HLA-KIR, ANXA1-FPR2, and CD99-
CD99 signaling pathways were significantly upregulated in sepsis.
As observed in previous studies, the MIF axis was prominently
enhanced in signaling from monocytes to CD4"/CD8" T cells,
suggesting its central role in driving inflammatory dysregulation
(55, 56). Interactions such as HLA-C/KIR2DL3 and HLA-A/
KIR3DL1 deliver inhibitory signals that suppress NK cell
cytotoxicity, potentially facilitating immune evasion by pathogens
(57). Although the ANXAI1-FPR2 axis typically mediates anti-
inflammatory responses under homeostasis, persistent stimulation
may cause receptor desensitization, resulting in excessive neutrophil
activation. We observed abnormal strengthening of this axis in
monocyte-neutrophil interactions, implicating its role in failed
inflammation resolution. CD99-CD99, an adhesion-mediated
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signaling pathway, was also specifically activated, potentially
enhancing intercellular contact to amplify immunosuppressive
signaling (58, 59). Moreover, monocyte-specific upregulation of
pathways involving ANNEXIN, CCL, FLT3, GRN, and VISFATIN
suggests their dual roles in immune regulation and PCD pathway
activation via metabolism-death coupling mechanisms. Notably,
FLT3 and GRN may regulate Ferroptosis and Entotic cell death
through lipid peroxidation and the mTOR-lysosome axis,
respectively. VISFATIN, a rate-limiting enzyme in NAD"
biosynthesis, may exert bidirectional effects in PARP1-dependent
cell death.

Despite these promising findings, several limitations should be
acknowledged. First, the sample size of the in-house RNA-seq
cohort was relatively small, which may limit the generalizability
of the CDS model. Second, the predictive performance of the risk
score for 28-day mortality was modest, suggesting that additional
clinical variables may be needed to improve prognostic accuracy.
Future studies with larger, multicenter cohorts are warranted to
validate the robustness and clinical utility of the proposed model.

5 Conclusions

This study systematically elucidates the activation landscape of 13
PCD pathways in sepsis by integrating bulk and single-cell
transcriptomic analyses. Four non-apoptotic pathways—ferroptosis,
disulfidptosis, NETosis, and entotic cell death—were significantly
upregulated and strongly correlated with immune cell infiltration,
suggesting their prominent roles in sepsis pathophysiology. Based on
18 core cell death-related genes, we constructed a CDS risk score
model that demonstrated outstanding diagnostic performance in both
publicly available microarray datasets and our independently
generated high-throughput sequencing data. Further single-cell
analyses revealed that monocytes exhibit dominant activation of
multiple PCD pathways and serve as key effectors at the intersection
of cell death, metabolism, and intercellular communication. In
particular, metabolic reprogramming in monocytes was closely
associated with ferroptosis and entotic cell death, highlighting the
importance of metabolic-death coupling. Moreover, monocyte-specific
ligand-receptor interactions, including the MIF-CXCR4, ANXAI-
FPR2, and HLA-KIR axes, were significantly altered, indicating
potential mechanisms for immune dysregulation and impaired
resolution of inflammation. Collectively, these findings identify
critical molecular features and cellular mechanisms underlying
sepsis progression and offer a framework for future biomarker
discovery and precision immunotherapy targeting PCD-metabolism-
communication networks in sepsis.
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Batch correction. (A, B) PCA of datasets after (B) and before (A) batch
correction. (C, D) Box plots of datasets after (D) and before (C)
batch correction.
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