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The role of microglia in
glaucoma - trigger
and potential target
Liugui Chen †, Suyu Yang †, Di Wang*‡ and Pingping Huang*‡

Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
Glaucoma is a neurodegenerative disease characterized by the progressive loss

of retinal ganglion cell and optic nerve damage. Recent studies have highlighted

the pivotal role of microglia in the onset and progression of glaucoma. This

review aims to elucidate the key mechanisms of microglial activation in

glaucoma and assess its potential as a therapeutic target for novel treatment

strategies. Microglia activation in glaucoma is multifactorial, driven by

biomechanical, metabolic, and inflammatory signals. Activated microglia

contribute to both neuroinflammatory injury and neuroprotective responses.

Their interaction with other kinds of cell establishes a dynamic inflammatory

signaling network that exacerbates retinal ganglion cell loss. Furthermore,

emerging evidence suggests that key targets in microglial activation, such as

APOE, LGALS3, CX3CR1, etc. play critical roles in disease progression, revealing

promising targets for therapeutic intervention. Microglia act as central regulators

of the retinal immune microenvironment in glaucoma. Their dual role in

neurotoxicity and neuroprotection is shaped by complex interactions with

other kinds of cell. Targeting microglial activation state and restoring metabolic

homeostasis represent promising strategies for the development of pressure-

independent treatments for glaucoma.
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Introduction

Glaucoma is a group of chronic, progressive neurodegenerative eye diseases

characterized by optic nerve damage and visual field defects, and it remains the leading

cause of irreversible blindness worldwide (1, 2). A characteristics of glaucoma is the

progressive loss of retinal ganglion cell (RGC) and optic nerve degeneration, typically

accompanied by elevated intraocular pressure (IOP) (3, 4). It is estimated that

approximately 95 million people are affected by glaucoma globally, with at least 10

million experiencing blindness in one eye, and many more suffering from visual

impairment that compromises daily functioning (3, 5). Although current treatments
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primarily focus on lowering IOP, accumulating evidence shows that

progressive optic nerve damage still occurs in patients with well-

controlled IOP, suggesting that the pathogenesis of glaucoma

involves more complex mechanisms beyond pressure elevation

alone (6, 7). In recent years, increasing attention has been paid to

neuroimmune inflammation in the development of glaucoma,

particularly to the activation of microglia, the resident immune

cells of the central nervous system, and their close relationship with

RGC injury (8, 9).

Microglia are resident innate immune cells in the retina that play

essential roles in maintaining tissue homeostasis and responding to

injury (10, 11). During the pathogenesis of glaucoma, microglia can

be activated by various stimuli such as elevated IOP, axonal injury,

and metabolic dysregulation, leading to morphological changes,

enhanced secretion of inflammatory mediators, and altered

phagocytic activity (12, 13). Activated microglia may induce

neuronal apoptosis and axonal degeneration by releasing pro-

inflammatory cytokines, reactive oxygen species (ROS), and

complement proteins (14–16). In addition, it engage in complex

intercellular interactions with other cells, including astrocyte and

Müller cell, forming a dynamic network that collectively regulates

inflammation, metabolic homeostasis, and the balance between

neuroprotection and neurodegeneration.

Recent advances in single-cell transcriptomics, spatial

transcriptomics, and metabolomics have enabled researchers to

investigate microglia phenotypic and functional heterogeneity in

glaucoma with unprecedented resolution (17–19). These

technologies have facilitated the identification of microglia

subpopulations, signaling pathways, and potential therapeutic

targets (20, 21). This review focuses on the mechanisms underlying

microglia activation in glaucoma, its interactions with other cells, and

its roles in mechanical stress sensing, mitochondrial function, and

energy metabolism remodeling. Furthermore, we discuss emerging

intervention strategies aimed at modulating microglia function, with

the goal of providing theoretical insight for future mechanistic study

and therapeutic target discovery in glaucoma.
Glaucoma

Glaucoma is a common blinding disease characterized by

progressive optic nerve damage and visual field loss (4). Based on

the anatomical configuration of the anterior chamber angle and the

site of aqueous humor outflow obstruction, glaucoma is typically

classified into open-angle and angle-closure types (22, 23). Among

them, primary open-angle glaucoma is the most prevalent form. Its

main pathophysiological mechanism involves structural or

functional abnormalities in the aqueous humor outflow pathways,

resulting in increased outflow resistance and elevated IOP. In

contrast, angle-closure glaucoma is caused by the closure of the

anterior chamber angle, which impedes aqueous humor drainage

and leads to a rapid rise in IOP. Sustained elevation of IOP can

compress the optic nerve head (ONH), damage the axons of RGC,

and subsequently trigger progressive RGC degeneration (24).
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Although elevated IOP is a major factor causing damage for

glaucoma, a subset of patients develops glaucomatous optic

neuropathy even when IOP remains within the normal range, a

condition referred to as normal tension glaucoma (25, 26).

Conversely, some individuals with high IOP do not exhibit

detectable optic nerve damage (27, 28). Furthermore, some

patients continue to experience disease progression despite

adequate IOP control (29, 30). These findings suggest that the

pathogenesis of glaucoma involves more than IOP elevation alone

and is influenced by a complex interplay of intraocular and systemic

factors. Therefore, the development of novel therapeutic strategies

that directly protect RGC and preserve visual function through

IOP-independent mechanisms is of great clinical importance for

improving glaucoma management.
Microglia in glaucoma

Accumulating evidence suggests that immune and inflammatory

responses also play a critical role in its onset and progression (31). In

particular, activation of microglia, the resident immune cells of the

central nervous system, has emerged as a key pathological feature in

glaucoma neurodegeneration.

In the chronic ocular hypertension mouse model, IOP elevation

leads to increased microglia numbers and promotes their migration

from the inner plexiform layer toward the ganglion cell layer and

nerve fiber layer (32, 33). Microglia proliferation begins as early as

day 1 after model induction and peaks at week 2 (34, 35). In the

unilateral laser-induced ocular hypertension model, microglia

activation and migration toward the injury site can be detected

within 24 hours of IOP elevation, even in the absence of a significant

change in total microglia number (36). Morphologically, activated

microglia are characterized by an enlarged soma, retracted

processes, and an amoeboid appearance, along with upregulated

expression of major histocompatibility complex class II (MHC II), a

marker of phagocytic activation (37). In the ONH, such changes are

evident as early as day 3 following IOP elevation. By day 7,

microglia are widely distributed across the ganglion cell layer and

retinal nerve fiber layer, and this activated state persists for at least 2

weeks (35). This finding was further validated in human samples,

which showed a significant increase in IBA1 intensity in the retina,

although the number of IBA1+ microglias did not significantly

increase (38). In another human study, numerous amoeboid IBA1+

microglias or infiltrating monocytes were observed predominantly

along the inner edge of the ILM, where rod-shaped or bipolar IBA1+

cells also accumulated (39). This microglial activation was

accompanied by a marked upregulation of inflammatory markers

and pro-inflammatory cytokines (40). Meanwhile, as a result of

RGC degeneration in glaucoma, changes in microglia morphology

and gene expression have also been reported in the brain, especially

in the dorsolateral geniculate nucleus. These findings suggest that

the alteration of these microglia may be a secondary and major

adaptive immune response to vision-related neurodegeneration

(41). However, the mechanisms underlying glial cell activation in
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the retina of glaucoma patients and their association with neuronal

death remain to be further elucidated. Although single-cell

transcriptomic studies have advanced our understanding of the

normal human retina, obtaining the retina of glaucoma patients still

pose major challenges (17, 42).

As the innate immune cells of the CNS, microglia possess a

range of functions, including environmental sensing, phagocytosis

of cell debris, and immune regulation (43, 44). Under physiological

conditions, microglia exhibit a ramified morphology and

continuously monitor their microenvironment via dynamic

extension and retraction of their processes. Upon exposure to

external stimuli such as elevated IOP or neuronal injury,

microglia rapidly transition into an activated state, adopting an

amoeboid morphology and exhibiting functional polarization into

either pro-inflammatory M1 or anti-inflammatory and M2

phenotypes (45, 46). M1 microglia secrete pro-inflammatory

mediators such as tumor necrosis factor-a (TNF-a), interleukin-
1b (IL-1b), and inducible nitric oxide synthase (iNOS), thereby

amplifying the inflammatory cascade. In contrast, M2 microglia

express molecules such as CD206 and IL-10, which contribute to

neuroprotection and tissue repair (47). M2 microglia is composed

of three distinct subpopulations. It mainly includes the M2a subtype

involved in anti-inflammation and tissue repair, the M2b subtype

involved in regulating immune responses, and the M2c subtype

involved in phagocytosis and immunosuppression (8, 48). In

addition, there is a type of microglia that is activated by CSF-1 or

IL-34 and is different from the M1 or M2a polarization state, which

is defined as M3 type (49). This type of cell may be closely related to

the division and prolife. However, there are currently no studies on

type M3 glaucoma. Other microglial phenotypes have also

been described, including rod-like microglia with elongated

somata, limited cytoplasm, and reduced branching, which

have been observed in mouse models of glaucoma and are

implicated in retinal neurodegeneration (50). Although the

M1/M2 classification represents a simplified framework, it

remains useful for enhancing our understanding of microglial

functional states.

In recent years, advancements in single-cell sequencing have

deepened our understanding of the pathological states of microglia in

glaucoma. By performing large-scale RNA sequencing on microglia

isolated from two distinct models of glaucomatous neurodegeneration,

researchers identified a disease-associated microglia (DAM) state,

whose transcriptional profile closely resembles that observed in

multiple models of neurodegeneration in the brain (51, 52). This

state is characterized by the upregulation of secretory molecules such

as apolipoprotein E (APOE) and lectin, galactoside binding soluble 3

(LGALS3), pro-inflammatory cytokines including TNF-a and

chemokines including C-C motif chemokine ligand 2 (CCL2) (53).

In the future, with the application of higher-resolution technologies,

our understanding of the spatial and temporal heterogeneity of

microglia in glaucoma, as well as their disease-specific features, is

expected to deepen (54). Such advances will facilitate the identification

of key regulatory factors influencing microglial states and may

contribute to the development of targeted therapeutic strategies for

glaucoma and other neurodegenerative diseases.
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Neuroprotective microglia in glaucoma

Microglia activation is considered one of the earliest events in

glaucomatous neurodegeneration, often preceding detectable RGC

loss (55, 56). In experimental glaucoma models, CD206+ M2

microglia transiently increase during the early stage, whereas

CD86+ M1 microglia become predominant at later stage (33, 57).

This seems to suggest that microglial activation in the early stage of

glaucoma may have a neuroprotective effect, while prolonged or

chronic activation can exacerbate neurodegeneration. At this point,

the early clearance of microglia in DBA/2J mice with age-related

intraocular pressure elevation and glaucomatous neurodegeneration,

which shows exacerbated glaucomatous neurodegeneration, also

seems to demonstrate the early protective effect against glaucoma

(58). Studies have shown that early administration of exogenous IL-4

can prolong the duration of M2 microglial polarization after RIR and

effectively improve the loss of RGC in the late stage (57). This

suggests that, in addition to inhibiting the pro-inflammatory M1

microglia at later stage, prolonging the presence or activity of M2

microglia may also exert neuroprotective effects.

Following RGC apoptosis, the externalization of phosphatidylserine

on the cell membrane acts as a classical “eat-me” signal that activates

microglia, thereby inducing their activation and phagocytic response

(59). Study has shown that intravitreal injection of apoptotic neurons can

trigger microglia activation in vivo, suggesting that apoptotic neurons

may serve as key stimuli for microglia phenotypic shifts (60). In the early

stage of glaucoma, activatedM2microglia clear apoptotic or degenerated

RGCs through phagocytosis, thereby maintaining a non-toxic retinal

environment and preventing the further spread of inflammation. In

addition,M2microglia can secrete brain-derived neurotrophic factor and

other anti-inflammatory cytokines to exert anti-apoptotic effects on

RGCs (48).
Neurotoxic microglia in glaucoma

In later stage of experimental glaucoma, the number of activated

M1 microglia gradually increases (33). The activation of microglia in

this context primarily exhibits pro-inflammatory and neurotoxic

effects. Research has shown that in an experimental mouse model

of glaucoma with transient elevation of IOP, pharmacological

suppression of microglial activation by minocycline significantly

increased RGC survival (61). The protective effect observed with

the inhibition of microglial activity, in contrast to the aggravated

damage caused by microglial depletion, suggests that the outcomes of

modulating microglial activation may vary depending on the timing

and the specific intervention strategies applied. At this stage,

microglia phagocytose neuronal debris or fragmented DNA,

activating intracellular pathways such as NF-kB and cGAS–STING

and promoting the release of pro-inflammatory cytokines and

exosomes (62). These microglia-derived cytokines and exosomes

further amplify inflammation by enhancing microglial migration,

phagocytosis, and proliferation, as well as inducing neuronal

ROS production and cell death, thereby exacerbating retinal

neurodegeneration under elevated IOP conditions (63). It is worth
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noting that such damage is not limited to RGCs. In animal models of

acute or chronic glaucoma, electroretinogram assessments have

demonstrated functional impairments in multiple types of

retinal cells, including amacrine and bipolar cells (64, 65).

Immunohistochemical analyses further corroborate these finding

(66). Moreover, although photoreceptor loss is typically not

associated with primary open-angle glaucoma, it has been reported

in cases of secondary angle-closure glaucoma and in experimental

animal models (67–70). Highly activated microglia may therefore

contribute to the degeneration and loss of retinal cells beyond RGCs.

Beyond biochemical stimuli, physical factors such as mechanical

stretch may also contribute to microglia activation (71). The

mechanosensitive ion channel PIEZO1 is highly expressed in

microglia cell lines and brain endothelial cells and has been shown

to regulate microglia motility and immune responsiveness (72). In

monocyte, PIEZO1 mediates calcium influx in response to

mechanical stimulation, thereby activating hypoxia inducible

factor-1a (HIF-1a)-dependent inflammatory pathways (73). In

both in vitro and in vivo settings, Piezo1 knockout in microglia

suppresses LPS-induced expression of inflammatory cytokines, while

treatment with the PIEZO1 agonist YODA1 enhances their

production (74). Another mechanosensitive and osmotically

sensitive ion channel, transient receptor potential vanilloid 4, may

also sense extracellular matrix stiffness and regulate microglia

inflammatory responses (75, 76). These findings indicate that

microglia can sense mechanical stress resulting from elevated IOP

and respond with inflammatory activation. ONH is the primary site

of early glaucomatous damage. Because RGC axons converge at this

region, microglia in the ONH exhibit heightened sensitivity to

mechanical deformation and extracellular matrix remodeling

compared with Müller cells. Moreover, due to the close crosstalk

betweenmicroglia and astrocytes, mechanotransduction within ONH

astrocytes can trigger their activation and the release of inflammatory

mediators, which in turn modulate microglial behavior through

intercellular signaling (77). It is important to note that for normal

pressure glaucoma, mechanical stress may not play a major role in the

triggering of inflammatory damage.RGC loss, progressive axonal

degeneration and reactive gliosis were observed in OPTN-E50K

knock-in mice, a commonly used animal model of normal stress

glaucoma. One possible mechanism is that retinal microglia regulate

high levels of apolipoprotein A1 to lead to apoptosis of vascular

endothelial cells and reduction in retinal peripapillary vascular

density, thereby further augments RGCs damage (78).

The integrity of mitochondrial function plays an important role

in regulating microglia polarization under inflammatory conditions.

Mitochondrial dysfunction is recognized as a key driver of pro-

inflammatory microglia phenotypes in various neurodegenerative

diseases (79, 80). In DBA/2J mice, microglia exhibit transcriptional

signs of metabolic dysregulation prior to axonal degeneration at the

ONH, including upregulation of mitochondrial genes involved in

oxidative phosphorylation and abnormal expression of genes related

to glycolysis, gluconeogenesis, and lipid metabolism (81). Similarly,

RNA sequencing of microglia in glaucoma animal models reveals
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increased expression of Slc16a1, a bidirectional transporter of lactate,

pyruvate, and ketone bodies, suggesting heightened metabolic

demands and functional plasticity of microglia in early stage of

glaucoma (81). This metabolic shift may be associated with the

upregulation of HIF-1a, the key glycolytic transcription factor

under oxidative stress and inflammatory conditions, as further

supported by studies using microbead-induced ocular hypertension

mouse models (82). Moreover, mitochondrial fragmentation is

enhanced in activated microglia and released extracellularly (83).

These extracellular mitochondria may trigger innate immune

responses in neighboring astrocyte or serve as signaling molecules

in glia-neuron interactions (84). Mitochondrial dysfunction may also

contribute to retinal hypoxia and reduced glucose availability,

resulting in excessive ROS generation, oxidative stress, and

exacerbated RGC damage (85, 86). (Figure 1)
Microglia crosstalk with retinal cells in
glaucoma

Astrocyte

Astrocyte play a vital supportive role for RGC within the retina.

They are primarily localized in the nerve fiber layer and ganglion

cell layer, where they envelop blood vessels extensively in the ONH

region (11). Similar to their functions in the brain, retinal astrocyte

contribute to the maintenance of the blood-retinal barrier (BRB)

and immune privilege through close interactions with the

vasculature (12, 87). They regulate vascular tone and facilitate the

transport of metabolic substrates from the bloodstream, thereby

supporting the energy demands of RGC axons.

In glaucoma, pro-inflammatory activation of microglia may

disrupt astrocyte function through the release of cytokines and

other mediators. M1-polarized microglia can secrete inflammatory

factors such as complement component C1q, IL-1b, and TNF-a,
which collectively drive the transformation of astrocyte into a

neurotoxic A1 phenotype, further amplifying neuroinflammation

(88). Studies in mouse models of glaucoma have shown that the

glucagon-like peptide-1 receptor agonist NLY01 can inhibit the

production of these cytokines by microglia and prevent the

induction of A1 astrocyte, ultimately protect the RGC. Under

homeostatic conditions, both astrocyte and microglia express

matrix metalloproteinase-2 primarily at their perivascular endfeet

(89). However, upon activation, the expression of matrix

metalloproteinase-2 is markedly upregulated, contributing to

increased BRB permeability, pathological neovascularization, and

glial scar formation, all of which exacerbate retinal injury (90, 91).
Müller cell

Müller cells are the principal radial glial cells in the retina and

play a pivotal role in maintaining retinal homeostasis. Müller cells
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provide necessary metabolic support and ionic homeostasis for

RGCs. In the early stage of glaucoma, muller cells can sense retinal

hypoxia earlier, but the activation at this time may still be mainly

protective, providing necessary metabolic support for the hypoxic

nerve cells (82). In addition, upon activation, Müller cells can release

ATP through connexin 43 hemichannels (92, 93). Studies have shown

that ATP released by activated Müller cells can trigger microglia

activation by stimulating P2X7R on the microglia surface (33). On the

day4 after chronic ocular hypertension (COH), activated microglia in

branched and amoeba-like shapes were observed. In addition,

microglia transfer from the inner/outer plexiform layer of the

retina to the GCL of the COH retina (94, 95). Intravitreal injection

of the P2X7R agonist BzATP or in vitro stimulation with DHPG can

increase the migration and proliferation of microglia. In particular,

the P2X7R, which is closely associated with inflammatory responses,

can be activated by ATP to initiate NOD-like receptor thermal

protein domain associated protein 3 (NLRP3) inflammasome

assembly and induce the release of multiple pro-inflammatory

mediators, such as IL-1b (96–98). It has been demonstrated that

pharmacological blocking or knockout of P2X7R delays activation of

microglia and RGC death following COH in mice (35). Further

evidence supports the involvement of microglial activity in RGC

degeneration, as P2X7R knockout has been shown to delay RGC

death following optic nerve crush in mice (99).
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In normal mice, intravitreal injection of the group I metabotropic

glutamate receptor agonist DHPG has been shown to induce Müller

cell activation. Following DHPG administration, the expression of

translocator protein (TSPO), the markers of microglia activation,

gradually increases and becomes significantly elevated after one week.

In contrast, inhibition of Müller cell activation using the

metabotropic glutamate receptor 5 antagonist MPEP leads to a

reduction in TSPO level, along with decreased GFAP expression,

suggesting that Müller cell activation may serve as an important

upstream event in microglia activation (33).

In addition to inflammatory crosstalk, Müller cells and microglia

engage in neuroprotective interactions mediated by neurotrophic

factors. Microglia can secrete nerve growth factor and brain-derived

neurotrophic factor, which not only exert direct protective effects on

RGC but also promote the expression of basic fibroblast growth factor

and glial cell line-derived neurotrophic factor in Müller cells, thereby

exerting synergistic neuroprotective effects (100–102).
Monocyte

Both active extravasation and passive leakage of monocyte have

been observed in experimental models of glaucoma, closely

associated with the breakdown of the BRB (103, 104). Notably,
FIGURE 1

Microglial phenotypic transformation during glaucoma. In the early stage of glaucoma, resting microglia shift toward an anti-inflammatory
phenotype, characterized by the expression of surface markers CD206, CD163, and ARG1, and the release of neuroprotective factors such as BDNF,
CX3CR1 and TREM2 signaling maintain microglial homeostasis through the PI3K/AKT and NF-kB pathways. In the late stage, microglia adopt a pro-
inflammatory phenotype expressing CD86, MHC II, and TLR4, accompanied by increased production of ROS and pro-inflammatory cytokines.
External stimulus further triggers the cGAS–STING and HIF-1a–NF-kB pathways, amplifying neuroinflammation and contributing to RGC
degeneration. (The figure is created by https://www.biorender.com/).
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monocyte infiltration has been detected in the ONH region of

glaucoma eyes, suggesting that monocyte recruitment may be an

early pathological feature of the disease, as documented in several

animal models (39, 105–107).

The CCL2 signaling axis plays a critical role in regulating

monocyte migration. CCL2 binding to its receptor CCR2 directs

monocyte to sites of injury, promoting their infiltration. Elevated

levels of CCL2 have been shown to reduce neuronal survival in

animal models of glaucoma (108). Conversely, genetic deletion of

Ccl2 significantly preserves RGC and reduces the density of retinal

myeloid cells, without altering the expression levels of pro-

inflammatory cytokines. These findings suggest that monocyte

recruitment itself may exert pathogenic effects independent of

subsequent inflammatory signaling (109).
Therapeutic strategies targeting
microglia in glaucoma

Currently, regardless of the subtype of glaucoma, clinical treatment

primarily focuses on lowering IOP by either reducing aqueous humor

production or enhancing its outflow. However, extensive clinical and

experimental evidence indicates that IOP-lowering therapy alone is

insufficient to halt the progressive visual deterioration of themajority of

patients (110). Consequently, there is an urgent need to develop IOP-

independent therapeutic strategies for glaucoma.

While mice express a single APOE isoform, humans possess three

major alleles (APOE2, APOE3, and APOE4). APOE4 is a well-

established genetic risk factor for Alzheimer’s disease, but

paradoxically, it has been associated with reduced glaucoma risk in

several human studies (111–113). Even under elevated IOP

conditions, ApoE4-expressing microglia exhibit robust suppression

of pro-inflammatory genes such as Lgals3, Tnf-a, and Ccl2, while

maintaining the expression of homeostatic genes like C-X3-C motif

chemokine receptor 1 (Cx3cr1) and colony-stimulating factor 1

receptor (Csf1r) (114, 115). Moreover, ApoE is markedly

upregulated in phagocytic retinal microglia, and this finding has

been validated at the protein level. In wild-type microglia, phagocytic

activation induces the upregulation of DAM genes such as Lgals3,

Gpnmb, Spp1. In contrast, this phenotype is significantly attenuated

in APOE-deficient retinal microglia (60).

LGALS3 is considered a key regulator of microglia activation. It has

been shown to directly activate microglia, act as a chemoattractant for

monocyte, and serve as a marker of phagocytic states (116, 117). In

both the microbead-induced model and DBA/2J mice, Lgals3

expression is upregulated at both the mRNA and protein levels, and

is modulated by APOE signaling. In the microbeadmodel of glaucoma,

Lgals3 is one of the genes most strongly affected by APOE deficiency

(60). Genetic deletion of Lgals3 or pharmacological inhibition using

agents such as TD139 significantly protects RGC, even under elevated

IOP (60, 118). Although the precise mechanisms underlying the

neurotoxicity of LGALS3 remain unclear, it is known to function as

an endogenous ligand for toll-like receptor 4, potentially acting
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upstream of inflammasome activation (119, 120). Furthermore,

LGALS3 can bind the receptor, and may serve as a critical molecular

bridge for its activation in microglia (121, 122). Collectively, these

findings support the involvement of LGALS3 inmediating pathological

inflammation and phagocytic responses of microglia in

glaucoma neurodegeneration.

Under physiological conditions, the homeostasis of microglia is

tightly regulated by a repertoire of signaling molecules that suppress

aberrant activation through interactions with microglia surface

receptors. Among these, the CX3CL1-CX3CR1 axis is a critical

inhibitory pathway. CX3CR1, the receptor for CX3CL1, is

predominantly expressed in microglia within ocular tissues (123).

Studies have shown that CX3CR1 can suppress the expression of pro-

inflammatory cytokines such as IL-1b and CCL2 under homeostatic

conditions (124, 125). In animal models of glaucoma, CX3CR1

deficiency lowers the activation threshold of microglia, enhances

their pro-inflammatory phenotype, and exacerbates RGC loss in

response to transient IOP elevation (61, 126, 127). In the rd10

mouse model of retinal degeneration, CX3CR1 knockout results in

increased microglia phagocytic activity and elevated secretion of pro-

inflammatory mediators, accelerating photoreceptor degeneration.

Conversely, intravitreal administration of recombinant CX3CL1

effectively suppresses abnormal microglia activation, suggesting a

potential neuroprotective role of this signaling axis (128, 129).

Moreover, the loss of CX3CL1- CX3CR1 signaling can also

exacerbates disease pathology in other ocular disease models. For

example, in laser-induced choroidal neovascularization model,

CX3CR1-deficient mice exhibit more severe phenotypes, including

thinning of the outer retina and drusen-like subretinal deposits (125).

Similarly, in experimental autoimmune uveitis, CX3CR1 deficiency

correlates with increased disease severity (130).

The precise physiological roles of microglia in the retina remain

under investigation. Genetic tools targeting CX3CR1 have been used

to selectively deplete microglia, revealing that retinal neurons can

maintain gross structural integrity and viability in the absence of

microglia (131). However, functional assessments showed a gradual

reduction in electroretinography amplitudes in response to light

stimuli, despite retained visual function. Transmission electron

microscopy further revealed dystrophic and morphologically

abnormal presynaptic terminals, suggesting that microglia may play

a crucial role in maintaining mature retinal synaptic integrity.

Additional studies using the CSF1R inhibitor PLX5622 to deplete

microglia showed that PLX5622 treatment alone does not impair RGC

function. However, in ischemia reperfusion injury models, microglia

depletion significantly attenuated IR-induced neuroinflammation and

inner BRB disruption (132). In diabetic retinopathy models,

approximately two months of PLX5622 treatment also mitigated

neurodegenerative and vascular changes (133). In contrast, in models

of acute optic nerve crush injury, microglia depletion via PLX5622 had

no significant impact on RGC degeneration (134). It suggests that

microglia may play a more prominent role in responding to extrinsic

stressors (e.g., ischemia, elevated IOP, or metabolic dysregulation) than

in direct RGC injury.
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At the molecular level, genome-wide association studies have

identified common variants near the ABCA1 gene as being associated

with increased glaucoma susceptibility (135, 136). ABCA1, a

cholesterol efflux pump, plays a vital role in maintaining lipid

homeostasis and modulating inflammatory responses. Deficiency of

ABCA1 has been linked to retinal neurodegeneration (137). In a

mouse model of acute IOP elevation-induced ischemia reperfusion

injury, elevated IOP promotes ubiquitin-mediated degradation of

ABCA1. This in turn impairs membrane translocation of annexin

A1, facilitates microglia activation, and contributes to RGC

apoptosis (138).
Conclusion

Glaucoma is a multifactorial neurodegenerative disorder, the

progression of which involves a complex interplay of cellular and

molecular mechanisms. Among these, microglia activation play a

central role in shaping the retinal inflammatory microenvironment

and mediating RGC damage. Accumulating evidence indicates that

microglia contribute not only through the release of pro-

inflammatory and neurotoxic mediators, but also via intricate

crosstalk with other kinds of cells, collectively forming a dynamic

network of metabolism and homeostasis regulation.

This network is modulated by multiple pathological cues,

including cell death, mechanical stress and mitochondrial

dysfunction. These findings underscore the importance of shifting

from a reductionist that approach focused on individual cell types or

signaling pathways to a systems-level perspective that emphasizes the

coordinated interactions among different cell populations.

Advances in single cell transcriptomics, spatial omics, and

metabolomics offer powerful tools to unravel the spatiotemporal

dynamics of cell networks in glaucoma. Integrating these

technologies holds great promise for deciphering the molecular

logic underlying glial reprogramming and for identifying novel

therapeutic strategies aimed at microglia functional modulation,

inflammation resolution, and metabolic intervention in glaucoma.
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