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Introduction: Syngeneic mouse tumor models have shown that senescence
influences the tumor immune response in multiple ways, including the induction
of an immunosuppressive microenvironment or the promotion of immune cell
recruitment. Yet, the impact of senescence on the tumor immune response in a
humanized setting remains largely unexplored.

Methods: To address this question, we employed a combination cells co-culture
models, tumor spheroids and mice bearing tumors immunogenic to human
immune cells derived from the same donor.

Results: We found that senescent fibroblasts exert a dual effect by enhancing the
recruitment of immune cells into the tumor microenvironment while
simultaneously promoting the apoptosis of T and NK cells. Mechanistically, we
demonstrate that this apoptosis is primarily due to increased Fas ligand (FasL)
expression on the surface of senescent fibroblasts. Increased FasL expression
was observed on different human fibroblast cell lines in response to different
senescence inducers with a particular robust effect in response to RAS-induced
senescence. Deletion of FasL on fibroblasts was sufficient to prevent immune cell
death and increase tumor cell killing in mice.

Discussion: Our results identified the expression of FasL expression as a novel
component of the senescent tumor microenvironment and highlight the
importance of evaluating the impact of therapy-induced senescence in
humanized models to understand and predict the outcome of
cancer treatments.
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Introduction

Cancer treatments can induce senescence of cancer cells and
other cell types within the tumor microenvironment (TME) (1).
This phenotype is believed to have mostly detrimental
consequences, as senescent cells were shown to play a significant
role in the development and progression of cancer (2, 3). Indeed,
Krtolica and colleagues were the first to demonstrate that senescent
human fibroblasts favor tumor growth in immune-deficient mice
(2). The accumulation of senescent fibroblasts was also shown to
contribute to local and systemic inflammation, promoting adverse
effects and cancer relapse (4). These effects are believed to be
mediated mainly by the senescence-associated secretion
phenotype (SASP), which includes several factors linked to
inflammation and malignancy (5, 6).

Several studies using syngeneic tumor models in immune-
competent mice showed that the SASP can prevent tumor
rejection by inducing an immunosuppressive TME (7-10). For
example, prolonged exposure to SASP factors such as type 1
interferon and IL-6 were shown to downregulate immune cell
functions (11-13) and to interfere with the tumor immune
response mediated by T and NK cells (7-9). On the other hand,
other studies showed that the SASP can stimulate and recruit
immune cells (14-17). Hence, while the SASP can undoubtedly
promote tumor growth, its impact on immune cells is variable and
likely dependent on the tumor model.

Several immune cell populations impact tumor growth,
including cytotoxic T cells, whose intra-tumoral presence
correlates with a survival benefit (18). However, the tumor
immune response is known to be significantly diminished by
myeloid-derived suppressor cells (MDSC) and other immune-
inhibitory cells or molecules within the TME (19, 20). One of
these factors is FasL, which can trigger apoptosis of Fas-expressing
effector cells such as T cells and natural killer (NK) cells (21). FasL is
expressed by several cell types, including tumor cells, MDSC (20,
21), tumor-associated macrophages, regulatory T cells (21), and
cancer-associated fibroblasts (22). Elevated FasL levels in solid
tumors correlate with disease progression, increased metastasis,
poor overall survival (23), and decreased numbers of CD8"
infiltrating T cells (24).

Nevertheless, the impact of senescence on the tumor immune
response in a humanized setting remains undetermined. This is
because, until recently, there was no adequate tumor model where
human cancer cells could be rejected or their growth delayed in the
presence of immune cells. Such models are essential to evaluate
whether senescent cells interfere with the tumor immune response
and if so, through which mechanism. To this end, we recently
developed iPSC-derived humanized mouse models where tumors
can be rejected following the injection of autologous human immune
cells (25). In brief, iPSC-derived lung and liver progenitor cells were
transformed using a set of defined oncogenes (hTERT, HRas"'?,
SV40ER) and injected into mice along with human dermal fibroblast
(HDF) and immune cells collected from the same donor used to
generate the iPSC line. Using these autologous tumor models, we
show here that senescent HDF have a dual impact on the tumor
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immune response. On the one hand, senescent HDF attract immune
cells; on the other hand, they induce their death. Mechanistically, we
demonstrate that this is mostly the result of increased FasL expression
at the surface of senescent HDF. By providing a better understanding
of the complex interactions between senescent stromal cells and
immune cells, our results should help develop better-targeted
therapeutic interventions.

Results

Senescent fibroblasts promote tumor
growth and stimulate the infiltration of
immune cells in humanized mice

To determine the role of a senescent stroma on the tumor-
immune response, we first induced senescence of HDF by exposure
to ionizing radiation (IR) or the expression of K-RASY'?, two
proven methods that we and others routinely use (Supplementary
Figures 1A, B) (26, 27). We then injected non-senescent or
senescent HDF together with tumor cells into the flanks of NSG-
SGM3 mice (ratio of 4:1). We used two tumor cell lines (HEPA-4T
and LEC-4T derived from hepatic and lung iPSC-derived
progenitor cells respectively) which we previously showed are
immunogenic to autologous immune cells (25). The day after
tumor inoculation, mice were injected intraperitoneally with
human immune cells (PBMCs and granulocytes, 5x10° of each).
Note that tumor cells, HDF, and immune cells were all derived from
the same donor to evaluate the impact of senescence in an
autologous setting (Figure 1A). HEPA-4T and LEC-4T tumor
cells were transduced to express mPlum and HDF were stained
with the NIR790 cytoplasmic membrane dye, allowing the
visualization of both cell types, and tracking of tumor growth by
quantitative in vivo imaging (Figure 1B).

As expected, the co-injection of tumor cells with non-senescent
or senescent HDF resulted in accelerated tumor growth compared
to mice injected with tumor cells alone (Figures 1C-F). The
injection of immune cells was able to delay tumor growth in all
groups, especially in the case of the more immunogenic LEC-4T cell
line (Figures 1G, H). Surprisingly, the presence of HDF did not
seem to interfere with the tumor rejection, except for RAS-induced
HDF, which slightly hampered the rejection of LEC-4T and HEP-
4T tumors. These results were confirmed at the time of sacrifice
when residual tumors were excised and weighted (Figures 1G, H).
Surprisingly, we found that subcutaneous lung A549 tumors were
not rejected by allogenic immune cells despite being infiltrated by
immune cells at levels similar to those observed in our autologous
models (Supplementary Figure 2). In fact, in absence of HDF, the
injection of immune cells facilitated the growth of A549 presumably
by providing human growth factors as we observed before
(Supplementary Figure 2D) (28). In vivo, imaging of NIR790-
labeled HDF over four weeks following the injection of immune
cells revealed that most HDF persists over time, independently of
the tumor model, suggesting they are not the target of immune cells
(Supplementary Figures 1C, D, 2C). Overall, these results
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FIGURE 1

Senescent fibroblasts promote tumor growth without compromising the tumor immune response in humanized mice. (A) Schematic of the in vivo
experimental design. NSG-SGM3 mice were subcutaneously injected with LEC-4T or HEPA-4T tumor cells (5 x 10%) and non-senescent or senescent
HDF (2 x 10° cells) on day 0. The next day, mice were injected intraperitoneally with PBMCs (5 x 10°) and granulocytes (5 x 10°). Mice were sacrificed
on day 28 or 32 depending on tumor cells injected and tumors were collected for analysis. (B) Representative images of LEC-4T tumors on day 22
expressing mPlum and HDF stained with the NIR790 dye after their injection. (C) Growth curves for LEC-4T tumors injected alone (in black n=12) or
co-injected with non-senescent HDF (in red n=12-14), senescent HDF induced by irradiation (in blue n=12-14) or induced by RAS (in green n=14-18)
in mice without (solid line) and with autologous immune cells (dashed line). Each line represents the mean tumor growth (+ SEM) over 32 days.
Statistical analyses were performed using a mixed-effects model, followed by Tukey's multiple comparison test. *p < 0.05; **p < 0.01; ***P < 0.001;
****n < 0.0001. (D) Growth curves for HEPA-4T tumors injected alone (in black n=18-20) or co-injected with non-senescent HDF (in red n=18-20),
senescent HDF induced by irradiation (in blue n=18-20) or induced by RAS (in green n=18-20) in mice without (solid line) and with autologous
immune cells (dashed line). Each line represents the mean tumor growth (+ SEM) over 28 days. Statistical analyses were performed using a mixed-
effects model, followed by Tukey's multiple comparison test. *p < 0.05; **p < 0.01; ***P < 0.001; ****p < 0.0001. (E, F) Growth curves of LEC-4T
and HEPA-4T in the absence or presence of PBMCs for all groups in panels (C, D) Statistical analyses were performed using a mixed-effects model,
followed by Tukey's multiple comparison test. *p < 0.05 **p < 0.01; ***P < 0.001. (G, H) Graphs representing the percentage of growth inhibition in
presence of PBMCs as calculated using the formula (1 — (volume of treated tumor)/(mean volume of control tumors)) x 100% and weights of LEC-
4T or HEPA-4T tumors collected at sacrifice. Each dot represents an individual tumor. Values represent the mean + SEM. A one-way ANOVA with
Dunnett's multiple comparisons tests was used to determine statistical significance. *p < 0.05; **p < 0.01; ****p < 0.0001
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demonstrate that senescent HDF have either no effect or only a
moderate effect on the tumor immune rejection in these
humanized models.

We anticipated that senescent HDF, through a combination of
its mitogenic effect and immunosuppressive features, would
interfere with tumor rejection. Hence, to better understand the
impact of senescence, we characterized the infiltration of human

10.3389/fimmu.2025.1685269

immune cells (hCD45%) in dissociated tumors at the time of
sacrifice. Cell counts obtained by flow cytometry and normalized
to the tumor weight showed that tumors injected with HDF,
particularly senescent HDF, tended to have an increased
infiltration of hCD45" immune cells. Specifically, LEC-4T injected
with IR-induced senescent HDF showed a twofold increase in
immune cell infiltration, while LEC-4T or HEPA-4T injected with

LEC4T LECA4T HEPA-4T HEPA4T
B 1.5x106m x g 5x10° =0.1108
% " 2100 ] e bt z 100
2 3 S gad M T L.
0 v O 80 10 . © 50
X 3 q1x1054 ‘S b £ - '8
Qe hco14* 2 3x10% . - .
02 - 8 hepas* oz . 601 - :(c:g;g
o= T - " A
w £ 4 B hCDShCDsE" u O 2x105 - 8 == hCD3hCDS6"
5E_ 1 hcD1g* °g T C 40 == hcp1g*
o © s5x105 p N | © hCD4+hCD25* i & . - 9 hCD4+CD25*
a° - g hcD127 .g o110 : ! gzo- -
£ ~ hCD4* hcDa*
E o ﬁ ﬁ : | e hcDs* g o L5 E - o == hcDg"
= HDF - NS IR RAS HDF - NS IR RAS  HDF -
E F  tumorcells HDF merge
mPlum GFP
{
S a%
IR or RAS Spheres R
Day 0 Day 10 Day 16 Day 17 B 2
Induce Culture spheres Add 5X10°  Flow cytometry
senescence 5000 tumor cells PBMCs
5000 fibroblasts
LECAT
15000 —_—
=<5
+ o
LEC-4T 2 12000
PBMCs og
© 2 9000
°a
3 v 6000
83
=
3 30004
z
o-—r—T 1
LEC- 4T HDF - NS IR RAS
HDF NS
PBMCs
HEPA-AT
10000- _
4
92 8000
=
LEC- 4T © 3 o0l
w £
HDF IR °oda
PBMCs 2 5 40001
5 @
=] -
3 2000
LEC-4T
HDF RAS

PBMCs

FIGURE 2 (Continued)

Frontiers in Immunology 04

-+
-.- HDF- N

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1685269
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Cruz-Barrera et al.

10.3389/fimmu.2025.1685269

FIGURE 2 (Continued)

Senescent fibroblasts increase immune cell infiltration in spheroids and in tumors. (A) Graph showing the absolute counts of tumor-infiltrating
human CD45" cells per gram of dissociated LEC-4T tumors as determined by flow cytometry. Each dot represents the count from a single tumor.
Shown is the mean + SEM. Statistical analysis between groups was performed with one-way ANOVA followed by Dunnett’'s multiple comparisons
tests. *p < 0.05. (B) Stacked bar graph showing the proportion of immune cell subset populations in LEC-4T tumors (the same as in panel A) from
each group. Shown is the mean + SEM. (C) Graph showing the absolute counts of tumor-infiltrating human CD45" cells per gram of dissociated
HEPA-4T tumors as determined by flow cytometry. Each dot represents the count from a single tumor. Shown is the mean + SEM. Statistical
analysis between groups was performed with one-way ANOVA Dunnett's multiple comparisons tests. *p < 0.05. (D) Stacked bar graph showing the
proportion of immune subset cell populations in HEPA-4T tumors (the same as in panel C) from each group. Shown is the mean + SEM.

(E) Schematic representation of the 3D tumor spheroid invasion model. In brief, HDF were exposed or not to IR or RAS and 10 days later, an equal
number of tumor cells (LEC-4T or HEPA-4T) were mixed with non-senescent or senescent HDF (5000 cells each) to form mixed-cell spheroids.
Once the spheroid assembled and matured for 6 days, 5 x 10° human PBMCs were added and the infiltration of immune cells into the spheroid was
quantified 24 hours later by flow cytometry. (F) Representative images (at 4X) of spheroids at day 16 before adding immune cells. Tumor cells are
shown in red (mPlum), HDF in green (GFP) and in yellow the merge of the two signals. (G) Representative images of immunostained sections from
the indicated spheroids showing infiltrated human immune cells (CD45" in red) and nuclei (DAPI in blue). The scale bar represents 100 pm.

(H) Graphs showing the number of human immune cells (CD45") infiltrated in spheroids as determined by flow cytometry from each indicated
group. Each dot represents the count from a single dissociated sphere obtained in three independent experiments. Statistical analysis between
groups was performed with one-way ANOVA with Dunnett’'s multiple comparisons tests. **p < 0.01; ****p < 0.0001.

RAS-induced senescent HDF demonstrated a fourfold and twofold
increase, respectively, compared to tumors injected with non-
senescent HDF (Figures 2A, C). However, while the ratio of
tumor-infiltrating immune cell types was slightly different
between the two tumor cell lines, it was not significantly changed
between groups and was composed mainly of CD4" and CD8" T
cells (Figures 2B, D). Because residual tumors had different sizes at
the time of sacrifice, which likely impacted infiltration, we then
measured immune cell infiltration using a more controlled spheroid
model (Figure 2E). Therefore, LEC-4T and HEPA-4T cell lines
expressing mPlum were cultured in 3D spheres with or without
non-senescent or senescent HDF expressing GFP (Figure 2F).
Spheroids were co-cultured for 24 hours with PBMCs, after which
the localization of infiltrated immune cells into the spheroids was
assessed by immunofluorescence. Images showed an increase in the
number of infiltrating immune cells, particularly towards the core of
the spheroids, in the presence of senescent HDF (Figure 2G). To
better quantify the infiltrated cells, we repeated the experiment, but
this time, we dissociated the spheres with trypsin and counted cells
by flow cytometry. Increased immune cell infiltration in the
presence of senescent HDF was confirmed (Figure 2H). These
observations led us to hypothesize that senescent HDF may have
opposing effects as they can induce the recruitment of immune cells
yet without enhancing tumor rejection.

Senescent fibroblasts trigger apoptosis of
human immune cells through increased
expression of FasL

To better evaluate the effects of senescent HDF on immune
cells, we used a model where PBMCs collected from three healthy
donors were co-cultured for up to 72 hours with non-senescent or
senescent HDF. Immune cells were then counted either by flow
cytometry or alternatively, immune cell death was assessed with
propidium iodide (PI) staining and quantified using live-cell
imaging (Figure 3A). For all donors, we found a substantial
decrease in the absolute number of live CD45" in contact with
senescent HDF, mostly RAS-induced senescent HDF, as
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determined using flow cytometry (Figure 3B). Such a decrease in
cell viability was primarily due to dying CD3" T cells and to a lesser
extent CD3°CD56" NK cells although the effect was donor
dependant (Figure 3B). This ability of senescent HDF to kill
immune cells was also confirmed by counting dying (PI positive)
immune cells using live-cell imaging (Figures 3C, D).

We next wanted to investigate the mechanism leading to
immune cell death. We found that senescent HDF consistently
increased FasL expression independently of the inducer (Figure 3E).
Such an increase in the proportion of cells expressing FasL was also
accompanied by a significant two and five-fold increase in the mean
fluorescence intensity in IR/doxorubicin and RAS-induced
senescent HDF respectively (Figure 3E). Similar results were
observed using other human fibroblast cell lines (Supplementary
Figure 3). To confirm the involvement of FasL in immune cell
killing, we generated FasL knockout (KO) HDF using CRISPR-Cas9
and confirmed loss of FasL expression by flow cytometry in the
absence or presence of IFN-y which increases FasL expression in
wild-type cells (Figures 3F, G). We then performed co-culture
studies using HDF and human PBMCs, and we observed that
immune cells survival was not compromised in contact with FasL
KO HDF as determined by counting the number of PI+ cells per
image using the IncuCyte software (Figure 3H). Increased immune
cell survival in contact with FasL KO senescent HDF was also
confirmed using flow cytometry (Figure 3I). Staining for Annexin V
showed that immune cell death was induced mainly by apoptosis,
especially by RAS-induced HDF (Figure 3]). Overall, these findings
indicate that immune cells killing by senescent HDF, particularly
CD3" T cells and CD3°CD56" NK cells, is mostly mediated by
increased FasL expression.

Therapy-induced senescence increases
FasL expression and decreases immune
cell survival

We next wanted to evaluate if increased FasL expression would

occur in the context of therapy-induced senescence and if this
would negatively impact immune cell survival. Therefore, we
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generated tumor spheroids by mixing an equal number of HDFand ~ (Figures 4B, C). Immunofluorescence imaging performed on
A549 tumor cells (Figure 4A). We chose to work with the A549lung  cryosections showed an increase in FasL expression in response to
epithelial carcinoma cell line for this experiment because A549 cells ~ treatments in tumor spheroids (Figure 4D). Considering the
adopt a senescence phenotype when exposed to IR or doxorubicin.  relatively low abundance of HDF in our spheres on day 11 (day 6
Indeed, we observed that A549 spheroids, after treatment, increased ~ after treatment), and nearly no increase in FasL in treated A549
SA-B-gal activity and significantly reduced their growth  spheroids in absence of immune cells (Figure 4D, Supplementary
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FIGURE 3 (Continued)
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FIGURE 3 (Continued)

Senescent fibroblasts induce immune cell death through up-regulation of FasL. (A) Schematic representation of the experimental design. In brief,
HDF were exposed to IR or RAS, and 3 days later, 3 x 10* cells were seeded in a 48-well plate. An equal number of non-senescent HDF were
seeded only on day 7, and the day after PBMCs (3 x 10°) were added. Cell death as determined by propidium iodide (PI) incorporation tracked over
72 hours at 2-hour intervals using an IncuCyte live-cell analysis system or alternatively, absolute cell counts were determined by flow cytometry at
72 hours. (B) Graphs showing the proportion of live PBMCs (CD45"), T cells (CD3™"), and NK cells (CD3 CD56") after 72 hours of coculture with
senescent HDF normalized to counts obtained in the presence of non-senescent HDF. Data are presented as mean + SEM from three independent
experiments conducted with each donor of PBMCs, utilizing three distinct donors. Statistical analysis between groups was performed, followed by
one-way ANOVA with Dunnett's multiple comparisons tests. **p < 0.01; ****p < 0.0001. (C) Representative images captured by the IncuCyte using
a 10X objective showing PI* (in red) dying cells at 72 hours. The scale bar represents 400 pm. (D) Quantification of PI* dying immune cells from
each group. CPT was added as a positive control. Data are presented as mean + SEM from three independent experiments. Statistical analysis
between groups was performed with one-way ANOVA followed by Dunnett's multiple comparisons tests. *p < 0.05; **p < 0.01. (E) Quantification
by flow cytometry of the proportion and the mean fluorescence intensity (MFI) of non-senescent and senescent HDF expressing FasL at their
surface. The MFI was calculated by subtracting the fluorescence of the isotype control. Data are presented as mean + SEM from three independent
experiments. Statistical analysis between groups was performed with one-way ANOVA with Dunnett's multiple comparisons tests. *p < 0.05;

**p < 0.01; ***P < 0.001; ****p < 0.0001. (F) FasL expression as detected by flow cytometry on wild type (WT) and FasL KO HDF either non-
senescent (NS in red) or senescent (IR in blue or RAS in green). Also shown are non-stained cells (in gray) and cells stained with the isotype controls
(in black). Cells were stimulated or not with IFN-y (200ng/mL). Representative histograms of three independent experiments are shown. (G) Bar
graphs showing the proportion of cells expressing FasL in the different HDF populations presented in panel (F) Data are presented as mean + SEM
from three independent experiments. Statistical analysis between groups was performed with one-way ANOVA with Dunnett’'s multiple
comparisons tests. *p < 0.05; ****p < 0.0001. (H) Quantification of PI* dying immune cells after 72 hours of co-culture with the indicated HDF
populations. Data was acquired with the IncuCyte® live-cell analysis system. CPT was added as a positive control. Data are presented as mean +
SEM from three independent experiments. The p-value was calculated by multiple t-tests. *p < 0.05; **p < 0.01. (I) Quantification of live (Annexin
V7/PI") CD45" cells after 72 hours of co-culture with the indicated HDF populations as determined by flow cytometry. CPT was used as a positive
control. Data are presented as mean + SEM from three independent experiments. Statistical analysis was calculated by multiple t-tests. *p < 0.05;

10.3389/fimmu.2025.1685269

**p < 0.01. (J) Quantification of apoptotic (Annexin V*/PI*) CD45" cells after 72 hours of co-culture with the indicated HDF populations as
determined by flow cytometry. CPT was used as a positive control. Data are presented as mean + SEM from three independent experiments.

Statistical analysis was calculated by multiple t-tests. **p < 0.01.

Figure 4), the observed increase in FasL expression was higher than
expected. Such an increase may be attributed to the 3D
environment or derive from infiltrating immune cells.
Nonetheless, when we analyzed the proportion of live immune
cells (CD45", PI') in dissociated spheroids we observed significantly
less viable immune cells in the context of therapy-induced
senescence (Figure 4E). To determine whether FasL expression is
also upregulated in vivo, we injected HDF intravenously into mice
and allowed them to engraft in the lungs, the primary site of
localization following injection, before subjecting mice to
irradiation. (Figure 4F). This model allowed us to easily retrieve
the injected HDF in mice. As observed in vitro, lung tissue sections
containing HDF had increased FasL expression compared to
sections collected from non-irradiated mice (Figures 4G, H).

The SASP suppresses tumor immunity
through FasL-dependent and independent
mechanisms

The SASP allows for a crosstalk between senescent cells and
neighboring cells. Therefore, we next wanted to determine if the
SASP alone could induce immune cell death, knowing that FasL can
be found soluble (29, 30). We observed that soluble FasL was indeed
present in the conditioned media (CM) of RAS-induced senescent
HDF (63 pg/mL) but not in any other conditions, including in CM
from IR-induced senescent HDF (Figure 5A). Therefore, to
determine the impact of the SASP to induce death cell, we
incubated immune cells in the presence of CM collected from
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non-senescent and senescent HDF for 48 hours and counted the
number of viable immune cells (CD45" and CD3") by flow
cytometry. In accordance with the results of the ELISA, we found
a significant decrease in the number of viable immune cells in the
presence of CM collected from RAS-induced senescence HDF
(Figure 5B). Nonetheless, we noted a modest reduction in cell
survival when exposed to conditioned media from IR-induced
senescent HDF. This indicates that the SASP has a toxic effect on
immune cells, independent of soluble FasL, albeit to a lesser
degree (Figure 5B).

We also observed that the SASP had immunosuppressive properties
as it prevented the proliferation of CFSE-labelled immune cells in a
mixed lymphocyte reaction. For this experiment, PBMCs from two
unrelated donors were mixed in the presence or absence of CM
collected from non-senescent or senescent HDF, and the proliferation
of T cells was analyzed by flow cytometry. The results showed that the
SASP can interfere with the proliferation of T cells (Supplementary
Figure 5). Considering these observations, we reasoned that increased
immune cell killing combined with their reduced proliferation should
lead to reduced killing of tumor cells. To test this hypothesis, we
incubated PBMCs with LEC-4T tumor cells (expressing mPlum) in the
absence or presence of CM for 72 hours. Using live-cell imaging, we
tracked tumor cell growth and apoptosis (Caspase 3/7 specific dye in
green). As expected, images showed less apoptosis of tumor cells and a
consequent increase in their number in the presence of CM collected
from senescent HDF (Figures 5C-E). In agreement with soluble FasL
being present only in CM collected from RAS-induced senescent HDF,
tumor cell counts were higher in this group compared to IR-induced
senescent HDF. Counting live tumor cells by flow cytometry confirmed
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the results (Figure 5F). In line with these observations, the killing of FgaslL KO senescent fibroblasts do not

tumor cells by primary human NK cells was also found inhibited when  jnterfere with the tumor immune res ponse
placed in co-culture with wild type but not FasL KO HDF |n humahnized mice

(Supplementary Figure 6). Together, this demonstrates that senescent
HDF, partly through their SASP, can protect tumor cells either by killing
immune cells or by limiting their proliferation using both FasL-

Finally, we evaluated if tumors would be better rejected by
immune cells in the absence of FasL expression from senescent
dependent and independent mechanisms. HDF. To do so, we used LEC-4T tumor cells co-injected with RAS-

A ~ - % B Not stained Not treated Irradiated Doxorubicin
- ."
e 0% <

Day 0 Day 5 Day 9 Day 11 & 5 4 1 i b
Culture spheres  Induce  Add 5X10° Analysis A549 TR, : 1 :
5000 tumor cells senescence PBMCs ?

(mPlum) w/wo 5000 100pm 100pm 100um 100um
fibroblasts (GFP)

g AB49
—_— H 1 A549 (Doxorubicin)  A549 + 3
A549 (Iradiated) HDF f . ‘
12105 e As0+HOF
.k 1 e~ A549 + HDF (Doxorubicin) 100pm A00pm 100um 1%

o -®- A549 + HDF (lrradiated)

(@]

1x108

SRS

e i
e
53

axind D DAPI GFP (HDF) FasL merge

Largest Brightfield
Object Area (pm?)

0
0 20 40 60 80 100

E Hours
100
g
=, 80
%3 P=0.0592
go® AB49
£ % 40 " +HDF
ga Irradiated
s O 2
o
0 A549
ABAY + + + + + + FEDE
HDF - + - + - 1D
imadiated . - + + . .  Doxorubicin
Doxorubicin - - - - + +

Irradiated F (A

G Non-irradiated

g

Day0 Day 29 Day 36

QAE] Injection v Irradiation Sacrifice
Fibroblasts 12Gy

4X10° ) .
100 um 100 um H DAP' 1C1, (R )
p 100, 100 um
FasL

_ Av0pm 100 pum

100 um
FasL merge

merge

100 pm

FIGURE 4 (Continued)

Frontiers in Immunology 08 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1685269
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Cruz-Barrera et al.

10.3389/fimmu.2025.1685269

FIGURE 4 (Continued)

Therapy-induced senescence in tumor spheroids impairs the viability of infiltrated immune cells. (A) Schematic representation of the 3D tumor
spheroid model. In brief, A549 tumor cells alone or with an equal number of HDF (5000 cells for each) were mixed to form monospheroids or
mixed-cell spheroids, respectively. Five days after, spheroids were treated with doxorubicin (0.1uM) or irradiated (15 Gy) to induce senescence.
Then, four days later PBMCs (5 x 10°) were added, and their infiltration into the spheroid was quantified 48 hours later by flow cytometry.

(B) Representative images of spheroids stained for B-galactosidase activity six days after being treated with doxorubicin or irradiation. Unstained
spheroids or spheroids not exposed to therapy were used as controls. The scale bar represents 100 um. (C) Graph showing the average size of
spheroids represented by the largest brightfield object area metric (um?) over time following treatments as detected by IncuCyte imaging. Shown is
the mean + SEM of three independent experiments. Statistical differences were identified by mixed-effects modeling with Tukey's multiple
comparisons. ****p < 0.0001. (D) Representative images of immunostained spheroid sections showing CD45" immune cell infiltration (white), the
presence of HDF (GFP, green), FasL expression (red), and cell nuclei (DAPI, blue). Scale bar = 100 um. (E) Graph showing the proportion of live
(Annexin V7/PI") CD45" immune cells infiltrated in spheroids from the indicated groups. Each dot represents the average of infiltrated cells in n=6
spheroids collected from four independent experiments. Shown is the mean + SEM. Statistical analysis between groups was performed by a one-
way ANOVA with Tukey's multiple comparisons. *p < 0.05. (F) Schematic of the in vivo experimental design. NSG-SGM3 mice were injected
intravenously (i.v) with 4X10° non-senescent HDF. After 29 days mice received a single dose of whole thorax radiation (12Gy). Seven days after,
mice were sacrificed, and lungs were collected for analysis. (G) Representative immunofluorescence staining of HDF (GFP in green), FasL (in red),
and cell nuclei (DAPI in blue) from irradiated and non-irradiated lung tissues. The scale bar represents 100 um. (H) Confocal images shown at higher

magnification of a tissue section as described in (G).

induced senescent HDF, the combination with the highest impaired
tumor-immune rejection (Figure 1C). We co-injected
subcutaneously LEC-4T cells with either WT or FasL KO RAS-
induced senescent HDF in NSG-SGM3 mice (Figure 6A). First, we
confirmed that in the absence of immune cells, that WT or FasL KO
senescent HDF had a similar mitogenic effect on tumor growth
when compared to tumor cells injected alone (Figures 6B, C).
However, in the presence of immune cells, we observed that
tumors containing FasL KO senescent HDF were better rejected,
to a level similar to the one observed in tumors without HDF
(Figures 6B, C). Tumor weight at the time of sacrifice confirmed
these results (Figure 6D). However, the number and proportion of
tumor-infiltrating immune cells were surprisingly not significantly
changed in the absence of FasL expression (Figures 6E, F). We
speculate that this may be the consequence of the relatively small
size of residual tumors in the FasL KO group at the time of sacrifice,
which may not accurately represent the peak of immune cell
infiltration during the tumor immune response.

Discussion

Using immunogenic autologous tumors, we were able to uncover
a dual role of senescence on the tumor immune response in
humanized mice. Indeed, we observed that senescent HDF, aside
from their mitogenic effect on tumor cells, can recruit immune cells
and then induce their death through a mechanism that involves FasL.
Importantly, we observed increased FasL expression on various HDF
lines in response to different senescence inducers. Highlighting the
importance of the tumor model to study the impact of senescence on
the tumor immune response, we found that subcutaneous A549
tumors were not rejected despite being infiltrated by immune cells at
similar levels to those observed in HEPA-4T and LEC-4T tumors
(Supplementary Figure 2). The reasons for this are unknown.
However, numerous studies have demonstrated that tumor cell
lines derived from patients often exhibit distinct genetic mutations
and characteristics that are not representative of primary tumors (31-
33). Many cell lines are derived from late-stage tumors and might
have undergone extensive genetic and phenotypic selection subjected
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to culture conditions. This can lead to reduced immunogenicity
because of mutations that do not accurately represent the
mutational landscape found in patient tumors (34, 35)
Consequently, this limits their potential for translation and the
ability to replicate the immune responses seen in vivo.

Intriguingly, soluble FasL was only found in the CM of RAS-
induced senescent HDEF. The reason for this may be that the release
of soluble FasL requires the action of metalloproteinases (MMP)
(30) and that RAS-induced senescent HDF expresses much higher
MMP levels than IR-induced senescent HDF (3). As MMP can also
be highly expressed by cancer cells (36-38), it is possible that soluble
FasL is released from all types of senescent cells in the TME. Soluble
FasL has been reported to inhibit Fas-mediated apoptosis induced
by cytotoxic T cells, suggesting that senescent HDF can protect
tumor cells by preventing their Fas-mediated killing by T cells or by
inducing apoptosis of immune cells directly (39). Indeed, FasL has
emerged as an important factor in the TME that can limit the anti-
tumor immune response and the efficacy of immunotherapy by
inducing the apoptosis of T cells (40, 41). Consistent with these
results, we found that ablating FasL expression on senescent HDF
abrogated their ability to induce T and NK cells apoptosis and
consequently enhanced tumor cell survival in vitro and tumor
rejection in mice. Interestingly, Motz et al. reported that FasL
expression on the tumor endothelium could protect tumor cells
(42). Overall, our data support a mechanism of tumor resistance
where FasL expressed by senescent stromal cells induces apoptosis
of T and NK cells. Given the relatively limited number of immune
cells injected in mice and the fact that most NK cells do not survive
more than a few days in NSG mice in the absence of appropriate
cytokines (for example, human IL-15), it is likely that tumor cells
were mostly killed by T cells in our experimental setting. However,
we cannot rule out the implication of NK cells, given we previously
showed that the adoptive transfer of a limited number of NK cells in
NSG mice is sufficient to reject iPSC-derived teratomas (28).

Other immune resistance mechanisms have been reported to be
induced by senescence. For example, in mouse syngeneic models,
senescent stromal cells can induce an immunosuppressive
environment by favoring the formation of myeloid-derived
suppressive cells (8). In our study, it was not possible to verify if
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FIGURE 5

The SASP triggers apoptosis of immune cells and promotes tumor cell survival in vitro. (A) Concentration of soluble FasL (sFasL) as detected by ELISA
in the conditioned media (CM) of non-senescent and senescent HDF populations. Each dot represents an independent experiment (n=3), and t-tests
determined statistical significance between groups. (B) Graphs showing the absolute counts of CD45" (left panel) and CD3* (right panel) live cells as
determined by flow cytometry after 48 hours of culture in CM collected from the indicated HDF populations. Shown is the mean + SEM from three
independent experiments. Multiple t-tests determined statistical significance between groups. *p < 0.05; **p < 0.01; ***P < 0.001. (C) Representative
images of LEC-4T tumor cells (expressing mPlum in red) after 72 hours co-cultured with PBMCs in CM collected from the indicated HDF
populations. The Caspase-3/7 Green reagent was added to detect cells undergoing apoptosis. Scale bars represent 400 pm. (D) Scatter dot plot
showing the number of caspase 3/7 positive tumor cells (red and green overlap) after 72 hours of co-culture as determined using the IncuCyte®
live-cell analysis software. Shown is the mean + SEM from four independent experiments. Multiple t-tests determined statistical significance
between groups. *p < 0.05. (E) Scatter dot plot showing the number of LEC-4T tumor cells (in red) after 48 hours of co-culture as determined using
the IncuCyte® live-cell analysis software. Shown is the mean + SEM from four independent experiments. Multiple t-tests determined statistical
significance between groups. **p < 0.01; ***P < 0.001. (F) Absolute counts of live LEC-4T cells as measured by flow cytometry at the end of the 72-
hours co-culture period. Each dot represents the average of five technical replicates. Shown is the mean + SEM from four independent experiments.

Multiple t-tests determined statistical significance between groups. **p < 0.01; ***P < 0.001.

this mechanism of resistance is also induced in the tumors, given
the short half-life of human granulocytes in humanized mice.
Another limitation of our study is that it remains to be
determined if patient-derived tumors upregulate the expression of
FasL in response to therapy-induced senescence, as detected in our
xenotransplanted mice. Moreover, more experiments will be
necessary to understand the extent and in which context the
increased expression of FasL occurs. Indeed, we found that FasL
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expression is not regulated at the transcriptional level during
senescence, and its upregulation was not observed in publicly
available RNAseq datasets. The relationship between the
molecular pathways involved in senescence and the expression of
FasL also remains to be elucidated. We speculate that cytotoxic
stress and DNA-damaging agents that can trigger the activation of
the c-Jun N-terminal kinase (JNK) pathway may be involved since
this pathway was shown to regulate FasL expression (43).
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FIGURE 6

FasL KO senescent fibroblasts do not disrupt the tumor immune response in humanized mice. (A) Schematic of the in vivo experimental design
NSG-SGM3 mice were subcutaneously injected with LEC-4T tumor cells (5 x 10 and non-senescent or senescent HDF (2 x 10° cells) on day 0. The
next day, mice were injected intraperitoneally with PBMCs (5 x 10°) and granulocytes (5 x 10°). Mice were sacrificed on day 32 and tumors were
collected for analysis. (B) Representative images of mice bearing subcutaneous LEC-4T tumors (expressing mPlum) alone or co-injected with the
indicated HDF populations stained with the NIR790 dye after their injection. Images from day 1 show HDF-stained with the NIR790 dye while days
15 and 32 show mPlum tumor growth. (C) Growth curves for LEC-4T tumors in humanized mice injected with LEC-4T cells alone (n=12) or co-
injected with RAS-induced senescent HDF (n=18) or RAS-induced senescent HDF KO for Fas-L (n=16). Also shown is the growth curve of LEC-4T
tumors in NSG-SGM3 mice co-injected with RAS-induced senescent HDF (n=14) or RAS-induced senescent HDF KO for Fas-L (n=6). Each line
represents the mean tumor growth (+ SEM) over 32 days. Statistical analyses were performed using a mixed-effects model, followed by Tukey's
multiple comparison test. ****p < 0.0001. (D) Shown is the weight of LEC-4T tumors collected at sacrifice on day 32. Each dot represents the
weight of an individual tumor. Values represent the mean + SEM. Statistical analysis between groups was performed by t-test or one-way ANOVA
with Tukey's multiple comparisons. *p < 0.05; **p < 0.01. (E) Bar graph showing the number of tumor-infiltrating hCD45"™ immune cells per gram of
tumor collected from both groups, RAS-induced senescent HDF WT and FASL KO, at the time of sacrifice. Each dot represents the infiltration in an
individual residual tumor large enough to be excised and dissociated (n=6). Values represent the mean + SEM, and a t-test was performed for
statistical analysis. *p < 0.05. (F) Stacked bar graph showing the proportion of immune cell subset populations in LEC-4T tumors collected from the
indicated groups. Shown is the mean + SEM.

In summary, our results uncover a role for FasL during Methods

10.3389/fimmu.2025.1685269

senescence and suggest it plays an important role in the tumor

immune response. It will be interesting to determine the extent to  Cell culture

which FasL expression is increased in the context of therapy-

induced senescence in different types of human tumors and if Human fibroblasts cell lines (B], WI-38 and IMR-90) were a gift

targeting FasL can improve the efficiency of immunotherapy. from Dr. Judith Campisi or derived from the skin of a healthy adult
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male donor (41 years old) as previously described (25, 44). Adult
skin biopsy was collected in accordance with the ethics committee
from the Centre Hospitalier Universitaire (CHU) Sainte-Justine
(protocol 2017-1476). The biopsy was cleaned out, cut into 1-5-
mm? pieces, and digested with collagenase D (Roche) for 1 h at 37 ©
C with agitation, centrifugated at 400 x g for 5 min, and washed
with DMEM (Wisent Bio Products). HDF were maintained in
DMEM with 10% FBS and 0.2% primocin. HDF senescence was
induced by exposing cells to a 12Gy dose of ionizing radiation (1
Gy/min using a Faxitron CP-160), after their stable transduction
with lentiviral particles carrying an inducible version of K-RAS, or
after treatment with 0.1uM of Doxorubicin. Conditioned media
(CM) was prepared from non-senescent or senescent HDF cultured
in monolayer with RPMI 1640 (Wisent Bio Products) without
serum for 24 hours after which it was then collected, filtered, and
centrifuged. HDF were counted at the time of collection, and the
CM normalized to the lowest amount of cells in a particular
condition by dilution with fresh RPMIL

iPSC-derived tumor models

iPSCs reprogramming and cellular transformation were
performed as previously described (25). In brief, iPSC-derived
hepatocyte progenitors (HEPA-4T) and iPSC-derived lung
epithelial progenitors (LEC-4T) were generated and transduced
using lentiviral particles carrying the SV40 large T antigen and
the neomycin resistance gene. Three days later, 300 pug/ml G418
(Thermo Fisher Scientific) selection was applied. Surviving cells
were subsequently transduced with lentiviral particles carrying the
H-RAS"'? and puromycin-resistance genes. Cells were selected for
three days post-transduction with 2 pg/mL of puromycin (Thermo
Fisher Scientific). Surviving cells were then transduced with
lentiviral particles carrying the human telomerase gene. Finally,
transformed cells were transduced to express the mPlum gene. All
transductions were carried out using fresh culture media containing
8 ug/ml polybrene (Sigma-Aldrich).

Animals and solid tumor models

Animal experiments were performed under a protocol
approved by the institutional committee for good laboratory
practices for animal research (protocol #2022-3508). Nine-week-
old female and male NSG-SGM3 (expressing human IL3, GM-CSF,
and SCF) mice originally obtained from The Jackson Laboratory
(Bar Harbor, ME) and bred at the animal care facility at the CHU
Sainte-Justine Research Center were used. Mice were housed under
strict specific pathogen-free conditions and handled with aseptic
techniques under anesthesia (2% isoflurane) to inject tumor cells.

For the subcutaneous injections, 5 x 10* transformed cells
(HEPA-4T or LEC-4T) alone or mixed with 2 x 10° non-
senescent or senescent HDF were diluted in 100 pl of RPMI 1640
(Wisent Bio Products) and implanted in the right and left flank of
mice previously anesthetized and shaved. Anesthesia was conducted
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using isoflurane at 2% flow rate of chamber volume per minute for
CO2. Tumor growth was monitored for four to five weeks using the
Q-Lumi In Vivo imaging system (MediLumine, Montreal, QC,
Canada) by fluorescent tracking of mPlum-expressing tumor cells
(Ex. 562-40 nm and Em. 641-75 nm). Non-senescent or senescent
HDF were stained with a fluorescent dye before their injection in
mice. In brief, cells were diluted at 1 x 10° cells/ml, and CellBrite
NIR790 Cytoplasmic Membrane Dye (catalog 30079; Biotium) was
added at the concentration of 1 UM and incubated at 37 °C for
20 min. Cells were then washed twice in serum-free RPMI 1640
(Wisent Bio Products) before being resuspended in 100uL of cold
serum-free RPMI 1640 (Wisent Bio Products) for injection in mice.
HDF were tracked using near-infrared filters (excitation 769-41 nm
and emission 832-37 nm). The tumor fluorescent signal was
analyzed and normalized using Fiji macros for picture processing
and expressed in fluorescence-integrated density or radiance
(photons - s - sr™' - cm™) integrated density.

For tumor growth analysis, mice were sacrificed when one limit
point was reached according to our animal comity guidelines. Our
comity established limit points as no more than 10% weight loss, no
distress signs such as alopecia or decreasing activity and that tumor
size does not reach more than 1500 mm’ or become ulcerated.
Tumors were resected and weighed after sacrifice. Tumors were
considered eliminated when they were unpalpable or too small to be
harvested at sacrifice.

Targeted irradiation in mice

For whole-thorax irradiation treatments, 29 days after the
intravenous injection of 4x10° non-senescent HDF, mice were
anesthetized with a mixture of ketamine (100 mg/kg) and
xylazine (10 mg/kg), then placed in a lead-shielded container
exposing only the thoracic region. A single dose of 12 Gy X-rays
was administered. Seven days later, mice were euthanized and their
lungs were harvested and frozen for analysis of FasL expression on
the injected HDF. Frozen lungs were embedded in OCT compound,
and 12 pm sections were prepared using a Leica cryostat. Sections
were mounted on gelatin-coated slides and subjected to
immunofluorescence staining using a GFP polyclonal antibody
(A-11122; Thermo Fisher Scientific, USA), a FasL antibody
(NOK-1, sc-33716; Santa Cruz Biotechnology), and DAPI for
nuclear counterstaining. Tissue sections were imaged using a
Zeiss LSM710 confocal microscope with a 63x objective.

Mouse immune reconstitution and
characterization of the tumor-immune
infiltrate

For the adoptive transfer of human immune cells, peripheral
blood mononuclear cells (PBMCs) were isolated using the Ficoll-
Paque gradient (GE Healthcare) from the blood of healthy donors
after informed consent. Granulocytes were collected by lysing the
red blood cells (RBC) by resuspending the Ficoll-Paque cell pellet in

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1685269
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Cruz-Barrera et al.

19mL of sterile deionized water for 20 seconds before adding 1 ml of
sterile 20x PBS solution. PBMCs and granulocytes were counted
and mixed at a 1:1 ratio before being injected into mice; a total of 1
x 107 human immune cells (5 x 10° each) were injected i.p. with 200
pl of RPMI 1640 (Wisent Bio Products). Tumors were digested
using the human Tumor Dissociation Kit and gentleMACS Octo
Dissociation with Heaters (Miltenyi Biotec), according to the
manufacturer’s instructions. The cell suspension was filtered on
40 um MACS SmartStrainers (Miltenyi Biotec) and washed using
RPMI 1640 (Wisent Bio Products) containing 10% FBS. Finally,
resuspended cells were stained with the following antibodies to
analyze the tumor-infiltrating immune cell: mouse CD45/PE/Cy7
(dilution 1/50), human CD45/BUV395 (dilution 1/50), human
CD3/AF700 (dilution 3/100), human CD19/PE-CF594 (dilution
1/50), human CD4/BB515 (dilution 1/100), human CD8/BV421
(dilution 1/50), human CD14/APC/H7 (dilution 1.5/100), human
CD56/BV786 (dilution 1.5/100), and human CD127/BB700
(dilution 1/50), all from BD Biosciences except human CD33/
BV510 (dilution 1.5/100) and human CD25/BV711 (dilution 1/
50) who were purchased from Biolegend. All data were acquired on
LSR Fortessa (BD Biosciences) and data analysis was done on
FlowJo V10 (v10; Tree Star).

CRISPR-Cas9 knockout cell lines

FasL Knock-out (KO) HDF and A549 cells were generated by
the Gene Editing Platform of the CHU Sainte-Justine Research
Center using CRISPR-Cas-mediated genome editing. Briefly, a
guide RNA (gRNA) targeting a DNA sequence within the first
exon of the FasL gene (5-CTGGGCACAGAGGTTGGACA-3’) was
cloned into the BsmBI restriction site of the 3" generation
LentiCRISPR.V2 (Addgene, #52961) vector. Lentiviral particles
were produced by transfecting LentiCRISPR.V2 (pLC-EFla-
SpCas9-U6-gRNA1-FasL 450 ng) together with the pMDL (750
ng), pREV (300 ng), and pVSV-G (390 ng) packaging plasmids in 5
x 10° HEK293T cells with Lipofectamine 2000 (Invitrogen). The
supernatant was collected 40 hours later, centrifuged 5min at 3000
rpm on a Sorvall LegendMicrol7 (ThermoFisher) to remove debris
and then frozen at -80 °C. FasL KO HDF were produced by
transducing 5 x 10° cells with 100 pL of viral particles. After 24
hours, Puromycin (2 mg/mL) (Wisent) was added to select positive
clones expressing Cas9 and the gRNA. 72 hours later, 10 cells were
transferred into separate wells of a 96-well plate and left to establish
a positive clone mixture. PCR and sequencing were performed to
characterize knock-out populations. Finally, ICE Analysis Software
(Synthego) showed that 1 cell population no longer expressed FasL.
The latter was composed of 37% and 63% of cells with indels of +1
bp and -11 bp, respectively. The loss of expression of FasL was
confirmed by FACS analysis (LSR Fortessa) (BD Biosciences) using
a FasL/PE conjugated antibody from BioLegend.
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3D spheroids formation, invasion assay,
and image analysis

Spheroids were formed by centrifugating 5000 tumor cells/well
(LEC-4T, HEPA-4T, A549) alone or together with 5000 HDF/well
(non-senescent and senescent) for 5 min at 150g in ultra-low
attachment 96-well plates and incubated at 37 °C under 5% CO*
for 6 days. Where indicated, 5 x 10 peripheral blood mononuclear
cells (PBMCs) were added per well, and 24 or 48 hours later,
spheroids were dissociated into single cells for subsequent flow
cytometric analysis. Alternatively, spheroids were embedded in
optimal cutting temperature compound (OCT), frozen and 12 pm
sections were generated using a Leica cryostat. Sections were
transferred to gelatinized slides and immunofluorescence staining
was performed using a human CD45 antibody (Rat. YAML501.4;
Thermo Fisher Scientific, USA) (dilution 1/200), GFP Polyclonal
Antibody (A-11122; Thermo Fisher Scientific, USA) (dilution 1/
200), FAS-L Antibody (NOK-1. sc-33716; Santa Cruz
Biotechnology) (dilution 1/100), and DAPI to counterstain DNA.

3D tumor spheroids growth after therapy-
induced senescence

Spheroids (A549 mPlum cells alone or together with GFP-
expressing HDF) were allowed to form for five days after which they
were treated with 0.1uM of doxorubicin or a single dose of 15 Gy IR.
Spheroids size was monitored using the IncuCyte S3 (Essen
Bioscience) through 4X images taken every 3 hours for a total of
96 hours. Likewise, some spheroids were fixed with 4%
formaldehyde and stained for SA-B-gal activity.

Immunophenotyping of HDF by flow
cytometry

HDF were harvested, re-suspended in phosphate-buffered
saline (PBS, Wisent Bio Products), and stained with the LIVE/
DEAD"™ Fixable Far-Red Dead Cell Stain Kit (Thermo Fisher
Scientific) for 15 min on ice. Cells were then washed twice and
re-suspended in flow cytometry staining buffer (BD Biosciences)
and incubated for 30 min at 4 °C with 1 uL of PE anti-human FasL
antibody (clone NOK-1) from BioLegend. Nonspecific background
signals were measured by incubating cells with the appropriate
isotype-matched antibody. Unstained, viability dye only, and single-
stained compensation beads (Invitrogen) served as controls.
Doublets were gated out using forward-scatter width/height and
sideward-scatter width/height event characteristics. All stained cells
were analyzed using an LSR Fortessa cytometer (BD Bioscience),
and the obtained results were analyzed using FlowJo v10 (v10;
Tree Star).
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Detection of apoptosis

To detect apoptotic cells we used the IncuCyte S3 (Essen
Bioscience) live cell imaging system in combination with
propidium iodide (PI) or the caspase 3/7 specific activity dye. In
brief, PBMCs (3 x 10°) were co-culture with non-senescent or
senescent HDF (3 x 10) in a 48-well plate. Alternatively, PBMCs
were cultured in the presence of CM collected from HDF in a 48-
well plate. PI (25ug) and IL-2 (150 IU/mL) were added to the media
and cell viability was monitored for 72 hours. Cells were treated
with 7 uM of camptothecin as a positive control of cell death. Dead
cells were counted via red object counts at indicated time points,
and data was analyzed using the IncuCyte software. To measure
apoptosis of tumor cells we used the caspase 3/7 activity dye. Tumor
cells (1 x 10*) were seeded in a 24-well plate and treated with 200
ng/mL IFN-y overnight. The next day, PBMCs were added at a ratio
of 1:20 (tumor cells: PBMCs) in the presence or absence of CM
collected from non-senescent or senescent HDF and the Incucyte®
green Caspase-3/7 activity reagent (Sartorius, Ann Arbor, MI,
USA). Plates were analyzed at a two-hour interval for a total of
72 hours.

The apoptosis of PBMCs was also measured by flow cytometry
using the Apotracker(TM) Green (Biolegend) apoptosis probe in
combination with PI (Sigma Aldrich). Both floating and adherent
cells were collected after 3 days of co-culture, washed twice with
PBS, and stained with Apotracker(TM) Green following the
manufacturer’s protocol. Cells were stained with the following
antibodies: human CD45/BUV395 (dilution 1/50), human CD3/
AF700 (dilution 3/100), human CD8/BV421 (dilution 1/50), and
human CD56/BV786 (dilution 1.5/100) from BioLegend and then
immediately analyzed using the LSR Fortessa (BD Biosciences).
Cells were considered alive when not stained with PI or Apotracker,
while apoptotic cells were defined as those stained with Apotracker.
Absolute counting beads (Invitrogen) were used to normalize FACS
event acquisition and to calculate absolute cell numbers.

NK cell culture conditions and cytotoxicity
assay

NK cells were isolated from PBMCs of healthy donors by
depleting CD3" cells using an EasySep human CD3 positive
selection kit IT (StemCell Technologies). The negative cell fraction
was expanded using irradiated (100 Gy) K562 mbIL21 4-1BBL for a
minimum of 2 weeks in RPMI1640 supplemented with 10% FBS,
1% penicillin/streptomycin (Wisent Bio Products), and 100 UI/mL
IL-2 (SteriMax) until the proportion of NK cells (CD3", CD56")
reached close to 100% as determined by flow cytometry. K562
mbIL21 4-1BBL cells were a gift from Dr. Neil Sheppard (UPenn)
and obtained under a material transfer agreement. Cells were rested
for one week after their expansion prior to being used in a
cytotoxicity assay. In brief, A549 mPlum cells were co-cultured
with GFP-expressing HDF (non-senescent or senescent) at a 1:2
ratio in a 96 well plate for 72 hours. NK cells were then added at
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different effector: target ratios in the presence of 20 UI/mL IL-2. Cell
death were determined by counting cells by flow cytometry. Before
the acquisition, the supernatant was gently removed, and cells were
stained with Zombie NIR™ Fixable Viability Kit (BioLegend)
according to the manufacturer’s instructions and then detached
using trypsin. Cytotoxicity was assessed by flow cytometry and was
calculated as Lysis (%) = [1-live targets (sample)/live targets
(control)] x 100%. Cytotoxicity against A549 was performed
using NK cells isolated from the same donor in the presence of
non-senescent and senescent HDF. A total of three different donors
of NK cells were used in total.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 8.0
(GraphPad Software, Inc., San Diego, CA). Data are represented as
mean = SEM. For comparisons of three or more groups, data were
subjected to t-tests or one-way ANOVA analysis, followed by
Dunnett’s multiple comparisons test when comparing every mean
to a control mean or Tukey’s multiple comparisons test when
comparing every mean to every other mean. The tumor growth
kinetics was analyzed using mixed-effects, followed by Tukey’s
multiple comparison test. *p < 0.05, **p < 0.01, *** p < 0.001, and
Hortp < 0,0001.
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