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Galectins, B-galactoside-binding proteins, function as key regulators in pathological
transitions, bridging tissue homeostasis to oncogenesis and inflammation through
intracellular and extracellular mechanisms. Notably, they play a pivotal role in the
pathogenesis of leukemia by interacting with glycoconjugates to promote tumor
progression. Among them, Galectin-1 (Gal-1), Gal-3, and Gal-9 have been
associated with multiple leukemia subtypes, such as acute myeloid leukemia
(AML), acute promyelocytic leukemia (APL), B-cell precursor acute lymphoblastic
leukemia (BCP-ALL), adult T-cell leukemia (ATL), and chronic lymphocytic leukemia
(CLL). These galectins contribute to leukemic cell survival by modulating extracellular
matrix (ECM) interactions, suppressing anti-tumor immune responses, and
promoting immune escape. Their involvement in sustaining leukemic proliferation
and immune evasion highlights their potential as therapeutic targets. Recent
advancements in the development of galectin inhibitors provide promising
avenues to disrupt these oncogenic pathways. However, distinct galectin isoform
pathologies across diseases require highly selective therapeutics, and substantial
carbohydrate recognition domain (CRD) structural homology combined with
conserved B-D-galactopyranoside-binding mechanisms complicates specific
inhibitor design. This review summarizes galectin-mediated mechanisms in
leukemia biology, evaluates the potential of galectin-targeted therapies and offers
insights for the development of specific inhibitors of Gal-1, -3, and -9 to promote
clinical management and treatment efficacy.
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1 Introduction

Galectins (Gal) are a family of soluble lectins with a conserved affinity for 3-galactoside-
containing glycans (1). Structurally, they are classified into three subtypes: proto-type
galectins (Gal-1, -2, -5, -7, -10, -11, -13, -14, -15), which function as monomers or
noncovalent homodimers containing identical carbohydrate recognition domains (CRDs);
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tandem-repeat type galectins (Gal-4, -6, -8, -9, -12), characterized
by two distinct CRDs connected via a flexible linker; and chimera-
type galectins (Gal-3), comprised a single CRD, an intermediary
proline-glycine-alanine-tyrosine repeat domain, and a short N-
terminal domain that mediates oligomerization (Figure 1) (2).
Functionally, galectins are key regulators of pathological
transitions, bridging tissue homeostasis to oncogenesis and
inflammation through intracellular and extracellular mechanisms
(3, 4). They contribute to the modulation of core cancer hallmarks
by promoting tumor progression, immune escape, and resistance to
various therapeutic modalities, including immunotherapy,
chemotherapy, radiotherapy, and targeted treatments (4, 5). They
also modulate fibrotic responses and inflammatory resolution by
engaging in cell-type-specific signaling within the tissue
microenvironment (2, 6). Acting as molecular rheostats, galectins
orchestrate self-reinforcing feedback loops that sustain disease
progression while simultaneously regulating the balance between
pathological disruption and tissue repair via spatiotemporal control
of intercellular communication networks (3, 7, 8).

Galectins exert multifaceted roles in leukemia development,
disease progression, and therapeutic resistance in hematological
malignancies. They function as prognostic biomarkers and
therapeutic targets by modulating oncogenic signaling pathways,
supporting leukemia stem cell (LSC) self-renewal, and facilitating
metabolic reprogramming to sustain malignant proliferation (9-11).
Galectins are also involved in immune evasion by inhibiting
antitumor T-cell responses and enhancing the immunosuppressive
activity of myeloid-derived suppressor cells (MDSCs) (11). Their role
in drug resistance is further underscored by their ability to upregulate
survival-related proteins such as MCL-1 and MDR-1 and to induce
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epigenetic modifications, which contribute to relapse and treatment-
refractory disease (11). By mediating crosstalk between leukemic cells
and the tumor microenvironment (TME), galectins integrate
immune suppression, stemness maintenance, and adaptive survival
mechanisms, thus exerting a systemic influence on leukemia biology
and treatment response (9). Most of the studies in this domain have
focused on Gal-1, -3, and -9. This review highlights their mechanistic
roles in the initiation, progression, and drug resistance of various
leukemia subtypes and discusses the development of galectin-targeted
inhibitors/antagonists under investigation for potential
clinical application.

2 Role of Gal-1 in leukemia

2.1 Gal-1 as a multifaceted biomarker in
leukemia

Gal-1 is a biomarker of significant clinical relevance in the
pathogenesis, progression, and prognosis of leukemia and related
myeloid malignancies. Elevated expression of Gal-1 has been
consistently associated with more aggressive disease phenotypes
and poorer clinical outcomes in various leukemia subtypes. In acute
myeloid leukemia (AML), high Gal-1 levels are associated with
shorter disease-free survival, increased blast counts in the bone
marrow (BM), and enrichment in LSCs, all of which are associated
with poor overall survival (OS) and event-free survival (EFS)
(12-15). Similarly, in B-cell acute lymphoblastic leukemia
(B-ALL), Gal-1 is a highly sensitive and specific marker for MLL-
rearranged subtypes, which are characterized by unfavorable
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Structural classification of galectins. Galectins are classified into three structural subtypes based on their domain architecture and oligomerization
patterns. Proto-type galectins (Gal-1, -2, -5, -7, -10, -11, -13, -14, and -15) contain a single CRD and exist either as monomers or non-covalent
homodimers. Chimera-type galectin (Gal-3) is a single CRD related to an N-terminal proline-rich domain that allows oligomerization via non-lectin
interactions. Tandem-repeat type galectins (Gal-4, -6, -8, -9, and -12) possess two distinct CRDs connected by a flexible polypeptide linker, allowing

for bivalent glycan binding and functional diversity.
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prognoses (16). In chronic lymphocytic leukemia (CLL), elevated
Gal-1 levels in both BM and plasma distinguish progressive from
stable disease (17). Furthermore, Gal-1 overexpression is involved
in the pathogenesis of myeloproliferative neoplasms (MPNs), where
it may contribute to disease progression and transformation into
secondary leukemia (18). Its prognostic relevance also comprises
lymphoid cancers such as classic Hodgkin lymphoma (cHL), where
higher serum and TME levels of Gal-1 are associated with high
tumor burden, poor survival outcomes, and disease progression (19,
20). These results support Gal-1 as a reliable biomarker for risk
stratification, therapeutic intervention, and disease monitoring in
leukemia and related hematopoietic malignancies.

2.2 Molecular mechanisms underlying Gal-
1-driven leukemogenesis and progression

2.2.1 Pathogenic mechanisms

Gal-1 plays distinct roles in diverse leukemia subtypes through
context-dependent mechanisms (Figure 2A). In B-cell precursor
acute lymphoblastic leukemia (BCP-ALL), Gal-1 interacts with the
A5-UR domain of the pre-B cell receptor (pre-BCR), promoting the
formation of large, immobile aggregates that accelerate pro-survival
signaling pathways (21, 22). Similarly, in B-ALL, Gal-1, derived
from the bone marrow microenvironment, promotes leukemic
progression by inducing pre-BCR clustering, activating
downstream signaling cascades, and promoting pre-B cell
proliferation (23). In AML, Gal-1 contributes to LSC maintenance
by reprogramming lipid metabolism, modulating the

10.3389/fimmu.2025.1685266

immunosuppressive microenvironment, enhancing cellular
proliferation, and inhibiting apoptosis (13). In CLL, Gal-1
functions as a molecular bridge between CD43 and CD45,
forming a ternary complex that regulates CD45 phosphatase
activity, thus driving the unchecked proliferation of malignant B
cells (24). These findings underscore Gal-1 as a multifaceted
regulator in leukemia subtypes through signaling modulation.

2.2.2 Microenvironment remodeling

Gal-1 is crucial in shaping immunosuppressive microenvironments
that support leukemic progression across various malignancies
(Figure 2B). In CLL, Gal-1 secreted by myeloid cells, such as
nurse-like cells, macrophages, and dendritic cells (DCs), enhances
leukemic cell activity by modulating B-cell receptor signaling or
regulating BAFF/APRIL secretion, and helps to establish the
appropriate microenvironmental conditions for leukemic
progression (17). Moreover, elevated Gal-1 expression promotes
the induction of IL-10-producing CD4" T cells and drives
phenotypic modulation of dendritic cells, thus establishing an
immunosuppressive microenvironment that favors leukemic cell
persistence (25). Similarly, in Hodgkin lymphoma, Gal-1 secreted
by Reed-Sternberg cells enhances a Th2/Treg-skewed immune
microenvironment, reinforcing immunosuppression and
supporting tumor immune evasion (26). In AML, Gal-1
suppresses immune surveillance by reducing activated peripheral
blood mononuclear cell proliferation and increasing CD4" T cell
prevalence, thus promoting disease progression (27). These results
highlight Gal-1 as a key mediator of microenvironmental
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Schematic illustration of the role of Gal-1 in leukemia. Gal-1 promotes leukemia progression (A), remodels the immunosuppressive
microenvironment (B), and induces resistance to therapeutic drugs (C) in various leukemia subtypes through diverse mechanisms, such as pre-BCR
clustering, modulation of CD45 phosphatase activity, Th2/Treg polarization, and IL-10 induction, as well as upregulation of MDR1 and consequent
drug resistance or suppression of CAR T-cells, thereby highlighting its potential as a crucial therapeutic target. (The diagram was created using

MedPeer).
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reprogramming in leukemia, driving immune evasion and
tumor survival.

2.2.3 Drug resistance

Gal-1 plays a pivotal role in mediating therapy resistance in
leukemia through subtype-specific mechanisms (Figure 2C). In
CML, Gal-1 overexpression activates the p38 MAPK/NF-kB
signaling cascade, resulting in the upregulation of MDR1 and
contributing to chemoresistance in BCR-ABL-positive leukemic
cells (28). In AML, elevated Gal-1 expression downregulates CAR,
impairing CAR-T cell cytotoxicity and facilitating immune escape
(29). Pharmacological inhibition of Gal-1 has been shown to
enhance chemosensitivity in both primary AML cells and
established cell lines, highlighting its therapeutic potential in
overcoming drug resistance (14). These results position Gal-1 as a
key regulator of microenvironment-mediated therapeutic evasion
in leukemia.

Overall, Gal-1 emerges as a pivotal player in leukemia,
functioning both as a biomarker and a molecular driver. Its roles
in proliferative signaling, metabolic adaptation, immune
suppression, and drug resistance highlight its potential as a
therapeutic target. Future research should focus on developing
selective Gal-1 inhibitors (e.g., small molecules or bispecific
antibodies) and investigate their potential in combination with
immunotherapeutic agents or epigenetic modulators to overcome
treatment resistance and improve patient survival.

3 Role of Gal-3 in leukemia
3.1 Gal-3 as a clinical indicator in leukemia

Gal-3 has emerged as a critical biomarker and potential
therapeutic target in various leukemia subtypes, with its elevated
expression consistently linked to adverse clinical outcomes. In APL,
elevated serum levels of Gal-3 are significantly associated with
reduced OS and relapse-free survival (RFS), representing an
independent adverse prognostic factor for RFS in patients
receiving all-trans retinoic acid (ATRA) and arsenic trioxide
(ATO)-based therapies (30). Similarly, in non-M3 AML,
increased Gal-3 expression correlates with lower complete
remission (CR) rates, higher incidence of primary refractory
disease, and inferior OS, thus establishing Gal-3 as an
independent marker of poor prognosis (31, 32). In broader AML
cohorts, elevated Gal-3 levels have been related to shorter remission
durations and unfavorable survival outcomes (33, 34). In diffuse
large B-cell lymphoma (DLBCL), upregulation of Gal-3 has been
directly associated with adverse clinical prognosis (35). These
results depict Gal-3 as a multifaceted regulator of leukemogenesis,
disease progression, and therapeutic resistance, highlighting its dual
role as a prognostic biomarker and a candidate for targeted therapy.
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3.2 Molecular mechanisms underlying
Gal-3-driven leukemogenesis

3.2.1 Leukemic pathogenesis and
microenvironment crosstalk

Gal-3 is multifaceted in modulating leukemia progression and
microenvironmental interactions (Figure 3A). In AML, MSC-
derived Gal-3 is critical for maintaining MSC homeostasis and
regulating AML cell localization and survival within the BM niche,
highlighting its importance in leukemia-stroma crosstalk (34). In
acute leukemias (AL), primarily comprising AML and ALL, Gal-3
contributes to leukemic cell survival by promoting AKT-mediated
inactivation of GSK3f, thus initiating anti-apoptotic, pro-
proliferative, and metabolic signaling pathways (36, 37). In CML,
Gal-3 overexpression induces leukemic cell proliferation,
chemotaxis, and resistance to apoptosis by activating the Akt and
Erk pathways and accumulating the anti-apoptotic protein Mcl-1.
Gal-3 also enhances BM homing and lodgment of CML cells and
bone marrow stromal cells (BMSCs), thus promoting a supportive
microenvironment that drives disease progression (38).
Furthermore, Gal-3 promotes paracrine growth of CML cells by
disrupting the inhibitory effects of the SERPINA1-albumin complex
in the TME (39). Gal-3 also contributes to apoptosis resistance by
interacting with CD45, protecting B cells from anti-Fas-induced cell
death in DLBCL (40, 41). Moreover, Gal-3 has been shown to
interact with Mer tyrosine kinase, a mechanism that may facilitate
central nervous system (CNS) relapse in ALL through feedback
regulatory pathways (42). These findings revealed Gal-3 as a pivotal
regulator of leukemia cell survival, proliferation, and
microenvironmental adaptation, positioning it as a potential
therapeutic target across leukemia subtypes.

3.2.2 Mediating drug resistance

In leukemia, Gal-3 plays a multifaceted role in modulating drug
resistance through stromal-leukemic crosstalk and intracellular
signaling pathways (Figure 3B). In CML, primary cells overexpress
Gal-3 along with activation of Akt/Erk/Mcl-1 pathways, conferring
resistance to Bcr-Abl tyrosine kinase inhibitors and genotoxic agents
by impairing apoptosis (38). AML-derived extracellular vesicles have
been shown to stimulate mesenchymal stromal cells (MSCs) to
upregulate Gal-3, which in turn protects leukemic cells against
chemotherapy-induced cytotoxicity and contributes to disease
relapse (43, 44). In AL, MSC-derived Gal-3 modulates the PI3K/
Akt/GSK-3 axis, stabilizing B-catenin and activating Wnt/(-catenin
signaling, thus promoting drug resistance (36). In pre-B ALL, stromal
cell-derived Gal-3 induces an autocrine feedback loop that enhances
its mRNA expression and sustains tonic activation of the NF-kB
signaling pathway, establishing a chemoprotective microenvironment
(45, 46). Furthermore, Gal-3 functions as a key mediator of crosstalk
between BCP-ALL cells and the bone marrow stromal cells, thus
promoting microenvironment-driven therapeutic resistance (47).
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Role of Gal-3 in leukemia progression and drug resistance. Gal-3 drives leukemia progression by enhancing the survival and proliferation of leukemia
cells as well as modulation of the microenvironment through key signaling pathways and stromal interactions (A), while also inducing
chemoresistance mediated by autocrine loops and niche remodeling (B). (This diagram was created using MedPeer).

Gal-3 emerges as a key molecular player in leukemia, critically driving
pathological progression and therapeutic resistance across
disease contexts.

Altogether, Gal-3 is a clinical biomarker and a molecular driver
in leukemia. Its overexpression signifies poor prognosis and relapse
risk, while therapeutic targeting of Gal-3 and associated pathways
may reverse drug resistance and enhance chemotherapy efficacy.
Future research should focus on the development of highly selective
Gal-3 inhibitors and evaluate their therapeutic potential in
combination with immunotherapeutic or targeted agents to
overcome microenvironment-mediated treatment resistance and
enhance long-term clinical outcomes.

4 Role of Gal-9 in leukemia

4.1 Gal-9 as a diagnostic and prognostic
indicator in leukemia

Recent evidence highlights the crucial role of Gal-9 in
leukemogenesis, disease progression, and clinical outcomes in
AML and CLL. In AML, elevated Gal-9 expression is strongly
associated with immune evasion mechanisms. It serves as a
predictor of poor prognosis, particularly in post-hematopoietic
stem cell transplantation (HSCT) relapse, where its upregulation
correlates with adverse survival outcomes (48, 49). Gal-9 has
emerged as a promising biomarker for assessing therapeutic effect,
particularly in patients receiving azacytidine and venetoclax-based
regimens (50). In CLL, serum Gal-9 levels are significantly elevated
and show strong associations with advanced clinical stages, as
defined by the Binet classification, and high-risk cytogenetic
abnormalities, such as 17p deletion. Furthermore, elevated Gal-9
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correlates with poor prognostic indicators, including shortened
progression-free survival (PFS), reduced time to treatment (TTT),
and resistance to therapy (51-55). Gal-9 shows high sensitivity and
specificity in detecting disease progression and stratifying high-risk
CLL subgroups (52). Persistent upregulation of Gal-9 after
treatment predicts therapeutic failure, whereas lower post-
treatment levels are typically observed in patients who attain
remission or maintain stable disease (54). These findings position
Gal-9 as a potent independent prognostic biomarker, with potential
applications in monitoring disease progression, predicting
therapeutic efficacy, and informing risk-adapted management
strategies in both AML and CLL.

4.2 Molecular mechanisms underlying
Gal-9-driven leukemogenesis

4.2.1 Promoting leukemogenesis and immune
evasion

Gal-9 is multidimensional in the pathobiology of leukemia,
actively contributing to leukemogenesis and promoting immune
escape mechanisms in AML and CLL. In AML, the Gal-9/TIM-3
interaction enhances leukemic cell survival by activating PI3K/Akt/
mTOR and ERK pathways and upregulating glucose-6-phosphate
dehydrogenase (G6PD) expression and glutathione levels, thus
suppressing oxidative stress and facilitating proliferation
(Figure 4A) (56, 57). Simultaneously, AML-derived Gal-9 binds
to VISTA and TIM-3 receptors on T cells, forming an
immunosuppressive complex that triggers granzyme B-mediated
apoptosis and suppresses cytotoxic T lymphocyte (CTL) activity
against leukemic cells (Figure 4B) (58). This Gal-9/TIM-3 axis
further impairs anti-cancer functions of both CTLs and natural
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Molecular mechanisms associated with Gal-9-induced leukemogenesis. Gal-9 interacts with TIM-3 to activate the PI3K/Akt/mTOR pathway and
promote proliferation (A), impairing systemic T/NK cell function to suppress host anti-tumor immunity and promote immune evasion (B), and co-
activates the NF-xB/B-catenin pathways to promote self-renewal of LSC (C). Thus, Gal-9 functions as a key mediator in multiple hematological

malignancies. (This diagram was created using MedPeer).

killer (NK) cells (Figure 4B) (49, 59). In CLL, Gal-9 contributes to
immune escape by negatively regulating CD4" T cells, suppressing
Thl effector responses, and promoting regulatory T cell (Treg)
expansion (Figure 4B) (51). Gal-9 indirectly impairs anti-tumor
immunity by depleting polyfunctional CD26™€" CD8* T cells, a
subset characterized by enhanced migration potential, stem-like
features, and proliferative potential (Figure 4B) (60). Gal-9
functions as a key mediator of leukemic cell survival, self-renewal,
and immune evasion through dual mechanisms: directly enhancing
the resilience of malignant cells and systemically suppressing host
anti-tumor immunity by impairing T/NK cell function (61). These
results highlight Gal-9 as a promising therapeutic target for
restoring immune surveillance in leukemia.

4.2.2 LSC self-renewal and therapy resistance
Gal-9 is pivotal in promoting LSC self-renewal and
chemoresistance in multiple hematologic malignancies. Gal-9, via
interaction with TIM-3, co-activates NF-kB and -catenin signaling
pathways, promoting LSC maintenance and driving disease
progression in preleukemic and leukemic conditions, including
myelodysplastic syndromes (MDSs), MPNs, CML, and AML
(Figure 4C) (62-64). In AML, the Gal-9/TIM-3 axis further
activates the hematopoietic cell kinase (HCK)/B-catenin signaling
cascade, sustaining LSC propagation and self-renewal (Figure 4C)
(65). Besides its involvement in stemness regulation, Gal-9
contributes to immunosuppression within the BM
microenvironment, wherein MSCs exploit Gal-9 to reduce the
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cytotoxic efficacy of CAR-T cells, emphasizing its potential as a
therapeutic target to prevent post-CAR-T relapse (66). Moreover, in
B-ALL, adipocyte-induced Gal-9 expression has been shown to
enhance chemoresistance, further highlighting its role in therapy
resistance (67). These findings position Gal-9 as a key mediator of
leukemic stemness, metabolic adaptation, and therapeutic
resistance, advocating for targeted strategies to disrupt Gal-9-
associated pathways in leukemia treatment.

Gal-9 is a key driver of leukemia progression and immune
evasion, correlating with advanced disease stages, poor prognosis,
and therapeutic resistance across leukemia subtypes. Its primary
role in maintaining malignant cell survival and suppressing anti-
tumor immunity underscores its potential as a therapeutic target for
disrupting disease persistence and restoring treatment efficacy
in leukemia.

5 Dual function of galectins

Growing evidence implicates Gal-1, Gal-3, and Gal-9 in the
progression of leukemia through their roles in modulating TME
interactions, preserving stemness characteristics, and facilitating the
development of chemoresistance. Interestingly, emerging data also
indicate that Gal-1 and Gal-9 may exert direct cytotoxic effects on
leukemic cells under specific experimental conditions. The Gal-1
homolog RCG1 from Rana catesbeiana exerts potent growth
inhibition in K562 (CML), HL-60 (APL), and U937 (histiocytic
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lymphoma) cells, with concurrent induction of substantial cellular
aggregation, while human Gal-1 triggers apoptosis in Jurkat T-
leukemia cells, an effect that was competitively inhibited by the
specific galectin antagonist GB1490 (68, 69). Further investigations
have elucidated the context-dependent functional duality of Gal-9
in monocytes, wherein intracellular localization promotes
proinflammatory responses, while extracellular Gal-9 induces
apoptosis, underscoring its compartment-specific activity (70). In
AML, Gal-9 selectively targets both AraC-sensitive and AraC-
resistant leukemic cell lines and primary CD34" AML stem cells
while showing synergistic cytotoxicity in combination with
azacytidine. This selective activity spares healthy hematopoietic
stem cells (71), highlighting its potential as a targeted therapeutic
agent in AML. In CML, Gal-9 induces apoptosis in TKI-resistant
Ber-Abl+ cells through ATF-Noxa pathway activation, and in
multiple myeloma, it activates the JNK/p38-H2AX axis to drive
DNA damage responses (72, 73). In T-ALL models, Gal-9
suppresses cell proliferation and clonogenicity by modulating

TABLE 1 Completed and current clinical trials of Gal-1, -3, and -9 agonists.

10.3389/fimmu.2025.1685266

Bax/Bcl-2 ratios and activating caspase-3-dependent apoptosis
(74). These results position Gal-1 and Gal-9 as multifaceted
therapeutic candidates capable of targeting leukemic cells across
various disease stages and resistance profiles, with their
mechanisms of action controlled by cellular context and specific
signaling pathway activation.

6 Gal-1, -3, and -9 targeting strategies
in leukemia

Although Gal-1, -3, and -9 play significant roles in leukemia
pathogenesis, progression, invasion, and stemness maintenance,
their functional outcomes exhibit starkly contrasting effects
contingent upon cellular states and microenvironmental contexts.
Therefore, developing highly specific inhibitors represents a critical
imperative (2). Recent advancements in understanding the
pathophysiological functions of galectins have catalyzed the

Targets Agents Diseases Trail number Phase Trial Status
Gal-1 OTX008 Advanced Solid Tumors (75, 76) NCT01724320 Phase 1 Unknown
Solid Tumors (77) NCT00054977 Phase [ Completed
Gal-1 and Gal-3 GM-CT-01 Biliary Cancer NCT00386516 Phase 2 Withdrawn
Colorectal Cancer NCT00388700 Phase 2 Withdrawn
Melanoma (78) NCT02117362 Phase 1 Completed
Non-small Cell Lung Cancer (78)
NCT02575404 Phase 1 Completed
Squamous Cell Head and Neck Cance (78)
GR-MD-02 . .
Non-Alcoholic Steatohepatitis (NASH) (79,
on-Alconotic Stea ;)O)e patitis ( ) NCT02421094 Phase 2 Completed
NASH Cirrhosis (81) NCT04365868 Phase 2b/3 Active
Psoriasis (82) NCT02407041 Phase 2 Completed
GBI1211 Non-Small Cell Lung Cancer (83, 84) NCT05240131 Phase 2 Active
GB0139/ TD139 Idiopathic Pulmonary Fibrosis (85, 86) NCT03832946 Phase 2b Completed
Gal-3
Hypertension (87, 88) NCT01960946 Mot Completed
P ’ Applicable P
MCP
Prostate Cancer (89, 90) NCT01681823 Phase 2 Completed
Osteoarthritis (91, 92) NCT02800629 Phase 3 Unknown
Multiple Myeloma (93, 94) NCT00609817 Phase 1 Terminated
GCS-100 Chronic Kidney Disease NCT02155673 Phase 2 Completed
Chronic Lymphocytic Leukemia (95) NCT00514696 Phase 2 Completed
TB006 Autism Spectrum Disorder (96, 97) NCT06500637 Phase 2 Recruiting
ProLectin M COVID-19 (98) NCT05733780 Phase 2 Active
Acute Myeloid Leukemia (99) NCT05829226 Phase 1 Recruiting
Gal-9 LYT-200
Metastatic Solid Tumors (100) NCT04666688 Phase 2 Completed

Bold values denote clinical trials for leukemia. (Data obtained from www.clinicaltrials.gov).
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development of diverse therapeutic agents targeting Gal-1, -3, and
-9, some of which have been evaluated in clinical trials (Table 1).
Available pharmacological strategies can be classified into four
categories (1): small-molecule inhibitors targeting the CRDs of
galectins; (2) modified polysaccharides and their synthetic analogs
designed to interfere with galectin-glycan interactions; (3) peptide-
based inhibitors and peptidomimetics with high binding specificity;
and (4) biologic therapeutics, including siRNA-based platforms,
high-affinity aptamers, engineered truncated galectin variants, and
monoclonal neutralizing antibodies. Despite significant advances in
targeted therapeutic development, progress in translating galectin
inhibitors into clinical applications for leukemia treatment remains
limited. To date, only a limited number of Gal-1, -3 and -9
inhibitors have advanced to preclinical or clinical evaluation
specifically focused on leukemia.

Gal-1 is a 14-kDa protein comprising 135 amino acids encoded
by the LGALSI gene. It is a non-covalently stabilized homodimer,
adopting a sandwich-like conformation formed by two antiparallel
[-sheets, each containing a galactoside-binding site in the CRD
(Figure 5A) (101). Pharmacological inhibition of Gal-1 has shown
anti-leukemic efficacy through dual targeting of both malignant
cells and the supportive TME. OTX008, a non-peptidic calixarene-
based Anginex mimetic (Figure 5B), binds to the noncanonical face
of Gal-1’'s CRD (Figure 5A), thus disrupting lactose binding and
attenuating Gal-1-mediated biological functions (102). In BCP-
ALL, OTX008 inhibits leukemic cell proliferation, migration, and
adhesion, while enhancing chemosensitivity, thus exerting
therapeutic effects on the leukemic clone and its protective niche

10.3389/fimmu.2025.1685266

(103). OTX008 has also been shown to overcome ibrutinib
resistance in CLL, underscoring its potential as a promising
therapeutic agent in drug-resistant hematologic malignancies (104).

Gal-3, a [B-galactoside-binding lectin, features three distinct
structural domains: an N-terminal domain, a collagen-like
sequence, and a C-terminal CRD (Figure 5C). The CRD contains
two functional grooves, the canonical S-face that recognizes B-
galactosides (e.g., lactose) and the non-canonical F-face that
interacts with complex glycans (e.g., GM1/MCPs) (105).
Allosteric modulation induced by ligand binding at one interface
of the CRD results in a reciprocal reduction in binding affinity at the
opposing site, thus illustrating a competitive interplay between the
two recognition domains (106, 107). This structural bifunctionality
has provided significant understanding for the rational design of
isoform-specific therapeutic agents targeting galectins. The Gal-3
inhibitor GCS-100 (Figure 5D) demonstrates anti-leukemic activity
across multiple AML cell lines (OCI-AML3, THP-1, HL60) through
dual mechanisms: cell cycle arrest via Cyclin E/D2 downregulation
and caspase-8/-9-dependent apoptosis induction (95, 108). GCS-
100 synergizes with BH3 mimetics to enhance multi-pathway
apoptotic signaling, amplifying its cytotoxic efficacy (109).
Clinical evaluation in a phase II trial for chronic lymphocytic
leukemia (NCT00514696) has validated its therapeutic potential,
with 50% patients achieving stable disease and 25% exhibiting a
partial response (including >50% shrinkage of lymph node lesions),
thereby supporting further translational development (110). In
addition to synthetic inhibitors, naturally derived compounds
have shown selective Gal-3-modulating activity in leukemia. Olive
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FIGURE 5

Structure of galectins and their inhibitors in leukemia. (A), Crystal structure of human Gal-1 CRD in complex with Lactose (PDB 1W60), and its
binding site for OTX008. (B), Structures of OTX008. (C), Crystal structure of human Gal-3 CRD in complex with Lactose (PDB 3ZSJ). Structures of
modified citrus pectin (MCP) polysaccharides GCS-100 (D), APS-2I (E), and Cpd14/17 (F). n, m, o, and p represent the number of repetitive residues

in the polysaccharide.
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pectin extracts have been shown to selectively activate Gal-3-
dependent caspase-3 signaling in AML cells (111). Similarly,
Angelica sinensis polysaccharide APS-2I (Figure 5E) antagonizes
the anti-apoptotic function of Gal-3 by reactivating caspase-3
signaling, resulting in significantly prolonged survival in murine
models (112). Complementing these macromolecular approaches,
synthetic carbohydrate-based inhibitors Cpdl4 and Cpdl7
(Figure 5F), derived from taloside scaffolds, show a synergistic
cytostatic and cytotoxic effect in BCP-ALL. These agents
impair leukemic cell adhesion and migration, thus reducing
metastatic potential, while inducing apoptotic cell death (113,
114). These findings provide multifaceted strategies for Gal-3-
targeted therapies.

Gal-9, encoded by the LGALS9 gene on chromosome 17,
features a characteristic sequence with a highly conserved CRD of
approximately 130 amino acids (115, 116). As a tandem-repeat-type
galectin, human Gal-9 exists in three isoforms—Gal-9(S), Gal-9(M),
and Gal-9(L)—which differ in the length of the interdomain linker
that separates the N- and C- CRDs (117). The structure and length
of this linker region influence the formation of multivalent lattices,
thereby modulating the protein’s capacity to bind glycan ligands.
Although all isoforms exhibit potent activity, their expression
patterns are not uniform. Differences in biological function have
been reported: Gal-9(L) inhibits endothelial adhesion of colon
cancer cells, whereas Gal-9(S) and Gal-9(M) promote it (118). In
AML models, LYT-200 (an anti-galectin-9 monoclonal antibody)
exerts direct anti-leukemic effects through inducing DNA damage
and apoptosis. When combined with venetoclax and standard
chemotherapy, LYT-200 prolongs survival and protects against
long-term relapse in vivo. A Phase I clinical trial in the USA is
currently evaluating the efficacy of LYT-200 monotherapy and
combination therapy with VEN/hypomethylating agents (HMA)

10.3389/fimmu.2025.1685266

in patients with relapsed/refractory (R/R) AML or high-risk MDSs
(NCT05829226) (99). In the LYT-200 monotherapy group (7.5 mg/
kg), the clinical benefit rate, defined as the proportion of patients
achieving stable disease (SD), partial response (PR), complete
response (CR), CR with incomplete hematologic recovery (CRi),
or morphologic leukemia-free state (MLFS), was 100%, with a
partial response rate of 25% (99).

7 Challenge of Gal-1, -3, and -9
inhibitors

The development of galectin-targeted inhibitors is impeded by
modality-specific and broadly shared challenges, necessitating
integrated, interdisciplinary strategies. Although Gal-1, Gal-3, and
Gal-9 show overlapping roles in leukemic progression, their distinct
pathological functions in diverse disease contexts necessitate
therapeutics with a high degree of isoform specificity. A basic
challenge arises from the substantial structural homology (ranging
from 20% to 50%) shared among the CRDs of galectin family
members. These domains engage [B-D-galactopyranoside-containing
glycans through highly conserved binding mechanisms, thus
complicating the selective design of inhibitors targeting individual
isoforms (119). This molecular mimicry increases risks of off-target
interactions with both non-target galectins and structurally analogous
cellular proteins, potentially negating therapeutic efficacy or inducing
paradoxical effects. Moreover, the development of galectin inhibitors is
complicated by the need to balance dual requirements of potency and
selectivity, as insufficient specificity may lead to off-target effects that
compromise the physiological roles of galectins in immune modulation

and tissue homeostasis.
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Structures and ligand-binding sites of Gal-1, -3, and -9. Crystal structures of the CRDs of human (A) Gal-1 (PDB: [2ZKN]), (B) Gal-3 (PDB: [6EYM]),
and (C) Gal-9 (PDB: [2EAK]) in complex with lactose. Conserved lactose-binding site residues are highlighted in red; residues conferring unique
structural features are shown in green. (D) Alignment of Gal-1, -3, and -9 sequences.
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The development of selective galectin inhibitors requires a
comprehensive understanding of both conserved binding motifs
and subtype-specific structural features. Gal-1, -3, and -9 share a
conserved subsite architecture mediated by key amino acids (Gal-1:
H44, N46, R48, N61, E71 (Figure 6A); Gal-3: H158, N160, R162,
N174, E184 (Figure 6B); Gal-9: H61, N63, R65, N75, E85
(Figure 6C)) that mediate hydrogen-bond interactions with
inhibitors (8, 120, 121). However, the high structural homology
among galectin family members complicates the design of subtype-
selective compounds. To overcome this challenge, rational drug
design should focus on the strategic exploitation of unique residue
features within the binding pockets of individual galectin isoforms,
namely, Ser29 and His52 in Gal-1, Argl44 in Gal-3, and Arg77 in
Gal-9 (Figure 6D, green boxes) (8, 121, 122). These structurally
divergent residues are critical pharmacophoric determinants for
engineering selective affinity. By optimizing interactions with these
isoform-specific residues while preserving affinity for conserved
carbohydrate recognition motifs, it may be possible to develop
inhibitors with improved target specificity and minimized off-
target effects.

In addition to these barriers, modality-specific challenges
further complicate galectin-targeted drug development. Small-
molecule galactoside and lactoside analogs demand complex
synthetic strategies and optimization, often surpassing the
production complexities encountered with biologic therapeutics.
To address these multifaceted challenges, the integration of
structural glycomics, CRD engineering, and pharmacokinetic
modeling is essential. This multidisciplinary approach is crucial
for the rational design and advancement of clinically effective
galectin-targeted therapeutics within this intricate and evolving
therapeutic landscape.

8 Conclusion

In conclusion, Gal-1, -3, and -9 have emerged as key regulators
of leukemia pathogenesis, exerting multifaceted effects on leukemic
cell survival, therapeutic resistance, and immune evasion. Their
overexpression is consistently associated with poor clinical
outcomes, underscoring their potential as prognostic biomarkers
and therapeutic targets. Many preclinical evidence, along with
ongoing clinical studies, supports the feasibility of galectin-
directed therapies as a novel approach to overcoming current
treatment limitations. As challenges, i.e., drug resistance and
disease relapse, continue to impede effective leukemia
management, the development of galectin inhibitors holds
promise for advancing precision medicine. Further research is
needed to elucidate the context-dependent roles of individual
galectins and optimize targeted clinical translation strategies.
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