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The inflammatory microenvironment formed by chronic inflammation is not only a

major risk factor for cancer but also a well-recognized precursor to bladder cancer.

However, the immunological transitions that occur along the inflammation-to-

cancer continuum remain incompletely understood. This mini-review synthesizes

recent advances in understanding how the immune microenvironment evolves

from an inflamed yet non-malignant urothelium to invasive carcinoma. First, we

discuss how persistent stimuli—such as chronic infection or exposure to

carcinogens—disrupt immune homeostasis, leading to sustained interferon

signaling, cytokine secretion, and immune cell infiltration. Second, during

preneoplastic and dysplastic stages, the immune landscape gradually shifts

toward an environment enriched in regulatory T cells and characterized by

dysfunctional cytotoxic T cells. Furthermore, in established tumors, immune

evasion is primarily driven by T cell exhaustion, myeloid cell–mediated

immunosuppression, and fibroblast-associated immune exclusion. Finally,

advances in spatial transcriptomics, single-cell technologies, and urinary

exosomal profiling have enabled precise “immune snapshots” of these transitions,

providing new avenues for biomarker development and therapeutic strategy

selection. Mapping these dynamic immune states holds great promise for

improving risk stratification, facilitating early detection, and enabling personalized

immunotherapy, ultimately translating immune snapshots into actionable strategies

for bladder cancer prevention and treatment.
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1 Introduction

Bladder cancer remains one of the most prevalent and recurrent

malignancies worldwide, with urothelial carcinoma accounting for

over 90% of cases (1). Its development is frequently preceded by

chronic inflammation, which may arise from recurrent urinary tract

infections, exposure to carcinogens such as tobacco smoke and

aromatic amines, or intravesical instillation therapies like Bacillus

Calmette-Guérin (BCG) (2). Bladder cancer (BC) is a highly

immunogenic tumor, and immunotherapy plays a central role in

its management, particularly in non–muscle-invasive disease

(NMIBC) (3). Among these approaches, Bacillus Calmette–

Guérin (BCG)—a live attenuated Mycobacterium bovis strain

introduced in 1976—remains a cornerstone treatment (4).

Delivered intravesically, BCG activates both innate and adaptive

immune responses: it recruits macrophages, dendritic cells, and T

lymphocytes to the bladder mucosa and induces the release of pro-

inflammatory cytokines such as IFN-g, TNF-a, and interleukins,

which together enhance cytotoxic T cell activation (5). BCG may

also upregulate immune checkpoints, boosting immune recognition

of tumor cells. These coordinated responses enable effective

elimination of primary tumors and potential metastases,

underscoring BCG’s pivotal role in NMIBC therapy (6).

Mounting evidence supports the paradigm that inflammation not

only accompanies tumorigenesis but can serve as a driver of malignant

transformation by reshaping the tissue microenvironment and

inducing genetic instability (7). In the bladder urothelium, persistent

inflammation triggers a cascade of immunological events—recruitment

of innate immune cells, cytokine secretion, epithelial stress responses—

that collectively disturb homeostasis and promote oncogenic

reprogramming (8). These events form the early stages of a

continuum known as the “inflammation-to-cancer transition,”

wherein immunological cues evolve in parallel with histopathological

changes from normal epithelium to dysplasia, carcinoma in situ (CIS),

and invasive cancer (9). However, while histological staging is well

defined, the immunological landscape across this progression remains

incompletely mapped (10).

Understanding the immune contexture at discrete phases of

bladder tumorigenesis is essential for both early detection and

rational therapy design (11). Immune cell composition, cytokine

profiles, and checkpoint molecule expression can differ vastly

between inflamed but non-malignant urothelium and established

tumors (12). Capturing these differences—through what we term

“immune snapshots”—can provide insights into the immunological

tipping points that govern the transition from defense to tolerance,

and ultimately, to escape (13). Emerging technologies such as

spatial transcriptomics, single-cell RNA sequencing, and exosomal

profiling have enabled unprecedented resolution in delineating

these immune states (14). Gene signatures reflective of interferon

signaling, myeloid skewing, or T cell dysfunction have already

demonstrated prognostic and predictive value in bladder cancer

cohorts (15). Likewise, animal models of chemically induced cystitis

or urothelial carcinoma offer valuable platforms for temporal

tracking of immune evolution (16).
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In this mini-review, we synthesize current knowledge on the

immune microenvironment along the inflammation-to-cancer

spectrum in the bladder. We highlight key immune shifts,

introduce the concept of phase-specific immune signatures, and

discuss how such snapshots may inform biomarker development,

risk stratification, and immunotherapy strategies.
2 Chronic inflammation and the
urothelial immune landscape

The urothelium, a highly specialized transitional epithelium

lining the bladder, is normally characterized by a quiescent immune

environment (15). Baseline immune surveillance is maintained by

tissue-resident macrophages, dendritic cells, and innate lymphoid

cells, while adaptive immune activity remains limited under

homeostatic conditions (16). However, upon exposure to chronic

inflammatory stimuli—such as bacterial infection, chemical

carcinogens (e.g., N-butyl-N-(4-hydroxybutyl)nitrosamine

[BBN]), or repeated trauma—this balance is disrupted, leading to

a profound remodeling of the local immune milieu (17) (Figure 1).
2.1 Triggers of chronic inflammation in the
bladder

Recurrent urinary tract infections (UTIs), especially those

caused by uropathogenic Escherichia coli (UPEC), are among the

most common triggers of chronic bladder inflammation (18). Upon

infection, bacterial components are recognized by Toll-like

receptors (TLRs) on urothelial cells, activating downstream

signaling cascades that stimulate the release of proinflammatory

cytokines such as IL-6, IL-1b, TNF-a, and IFN-g (19, 20). These

cytokines, in turn, recruit neutrophils and monocytes to the bladder

wall, initiating cycles of tissue injury and repair which, if sustained,

can become maladaptive and promote pathological changes.

Experimental evidence from rodent models further supports

this progression. Chronic exposure to N-butyl-N-(4-hydroxybutyl)

nitrosamine (BBN) in drinking water recapitulates the stepwise

transition from persistent inflammation to malignancy observed in

human bladder carcinogenesis (21). Early disease stages are

characterized by the infiltration of myeloid cells—particularly

Ly6C+ monocytes and F4/80+ macrophages—accompanied by

fibroblast activation and increased production of reactive oxygen

species (ROS) (22). Together, these changes establish a “pre-tumor

niche” that fosters genomic instability, epithelial hyperplasia, and

ultimately, neoplastic transformation (23).
2.2 Immune cell dynamics in chronically
inflamed urothelium

Chronically inflamed bladder mucosa demonstrates enhanced

infiltration of both innate and adaptive immune cells (24).
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Neutrophils dominate the early response, releasing elastase and

neutrophil extracellular traps (NETs), which can cause DNA

damage in epithelial cells (25).

Over time, monocyte-derived macrophages and dendritic cells

accumulate, shaping antigen presentation and polarization of T

helper responses (26). Several studies have documented increased

CD4+ T cell and regulatory T cell (Treg) populations in inflamed

urothelium, suggesting an attempt to regulate excessive

inflammation (27). As inflammation persists, monocyte-derived

macrophages and dendritic cells accumulate and shape antigen

presentation, leading to increased numbers of CD4+ T cells and

regulatory T cells, while sustained interferon signaling upregulates

antigen processing machinery and immune checkpoint

molecules (28).
2.3 Cytokine and chemokine signatures

Transcriptomic analyses of chronically inflamed bladder tissue

identify a conserved cytokine milieu characterized by IL-6, CXCL1,

CXCL8, and IFN-g (25). These mediators not only amplify immune

cell recruitment but also modulate epithelial plasticity and promote

epithelial–mesenchymal transition (EMT), a key step toward

dysplasia and invasion (26). Chemokines such as CXCL9/10/11,
Frontiers in Immunology 03
typically associated with T cell attraction, are paradoxically

expressed in regions where cytotoxic T cells are scarce, indicating

the presence of immune exclusion mechanisms (27).

The role of IL-6/STAT3 signaling is particularly well

documented in both human samples and BBN-treated mice (28).

STAT3 activation in urothelial cells promotes proliferation and

survival, while also skewing immune responses toward an

immunosuppressive myeloid phenotype. This dual effect

reinforces the chronic inflammatory loop and sets the stage for

immune escape (23). The mechanism of chronic inflammation

mediated by immune cells and their secreted cytokines is detailed

in Table 1.
2.4 Lessons from BCG and cystitis models

Controlled inflammatory responses induced by Bacillus

Calmette-Guérin (BCG) therapy present a contrasting model (21).

BCG-induced cystitis triggers robust IFN-g-mediated responses and

recruits effector T cells, generating an immunogenic environment

that differs from the tolerogenic, carcinogen-induced setting (29,

30). Recurrent UTIs and chemical exposures like BBN initiate

chronic bladder inflammation by activating innate immune

pathways and shaping a complex cytokine milieu. This
FIGURE 1

Imunune transition from inflammation to cancer.
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inflammatory environment influences immune cell dynamics and

ultimately determines the balance between tumor surveillance and

immune escape.
3 Immune rewiring in preneoplastic
and dysplastic states

Immune Rewiring in Preneoplastic and Dysplastic States.

As inflammation persists, the bladder urothelium undergoes

progressive architectural and molecular changes that precede overt

malignancy (31). These intermediate stages—ranging from reactive

atypia and hyperplasia to dysplasia and carcinoma in situ (CIS)—

are not merely passive histological transitions but are accompanied

by active immune rewiring (32). The immune microenvironment in

these phases is distinct from both homeostatic and tumor states,

marked by paradoxical features of activation and suppression (33).
3.1 IFN-g–driven epithelial responses and
checkpoint induction

Sustained IFN-g signaling in preneoplastic urothelium,

triggered by activated T cells or BCG‐induced inflammation,

leads to a robust transcriptional upregulation of antigen

presentation machinery, including MHC class I and II molecules

(e.g., HLA-A, HLA-DRB) and proteasomal components like TAP1

and PSMB9 (34–36). In vitro exposure of normal urothelial cells to

IFN-g similarly induces key immune checkpoint molecules, notably

PD-L1 and VISTA, suggesting that immune editing is initiated well

before overt neoplastic transformation and may function to limit

tissue damage, but under chronic antigenic stimulation, this process

can promote a tolerogenic, tumor-permissive microenvironment

(28, 37–39).
3.2 Spatial and single-cell insights:
heterogeneity emerges early

Recent advances in spatial transcriptomics and single-cell RNA

sequencing have revealed striking heterogeneity within dysplastic

urothel ium (40). A subset of epithel ial cel ls acquire

proinflammatory transcriptional programs (e.g., IRF1, STAT1),

while others upregulate immune evasive signatures (e.g., TGF-b,
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CTLA-4 ligands) (41). This co-existence suggests an early

divergence in epithelial-immune cross-talk, possibly influenced by

local cytokine gradients or stromal interactions (42).

Immune cell populations in dysplastic lesions also become

more diverse. While CD4+ T cells and macrophages persist,

an influx of regulatory T cells, exhausted CD8+ T cells

(expressing PD-1, LAG-3), and immature dendritic cells has been

observed in both human CIS biopsies and BBN-induced lesions in

mice (36). These cells exhibit low cytotoxic activity but high

expression of immunoregulatory genes, suggesting a shift toward

immune tolerance (38).
3.3 IFN-g gene signature and early
prognostic value

A 33-gene IFN-g response signature derived from in vitro

stimulated urothelial cells has been shown to stratify patient

outcomes in non-muscle invasive bladder cancer (NMIBC) (39).

High expression of this signature is associated with longer

recurrence-free survival, suggesting that robust early immune

activation may predict better immunosurveillance (40).

However, this benefit appears context-dependent. In muscle-

invasive bladder cancer (MIBC), high IFN-g signatures are

paradoxically linked to immune checkpoint upregulation and

therapeutic resistance (41). Thus, the timing, duration, and

localization of interferon signaling must be interpreted within the

evolving immune landscape (42).
3.4 Chemokine-checkpoint paradox and
immune exclusion

Another hallmark of dysplastic immune rewiring is the

“chemokine-checkpoint paradox”: high levels of T cell–attracting

chemokines (CXCL9, CXCL10, CXCL11) are present, but effective

cytotoxic T cell infiltration is limited (31). This may result from

stromal or epithelial expression of checkpoint molecules (PD-L1,

TIM-3 ligands), aberrant vasculature, or fibroblast-mediated

immune exclusion (32).

In BBN models, lesions exhibiting strong CXCL9 expression

paradoxically display sparse CD8+ T cell infiltration, despite the

chemotactic gradient (33). These findings imply that chemokine

production alone is insufficient for immune recruitment unless
TABLE 1 Immune components and cytokines in chronically inflamed bladder urothelium.

Immune component Function in chronic inflammation Key molecules

Neutrophils Early recruitment; ROS and NETs production MPO, ELANE, CXCL1

Monocytes/Macrophages Antigen presentation, cytokine secretion, M2-like immunosuppression IL-10, TNF-a, CD163, ARG1

Dendritic Cells Maturation impaired under chronic inflammation CD11c, CD86, CCR7

CD4+ T Cells Promote inflammation or regulatory feedback IFN-g, IL-17, FOXP3 (Tregs)

Urothelial cells Cytokine release, checkpoint induction IL-6, CXCL8, PD-L1, VISTA, MHC-I/II
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checkpoint-mediated barriers are removed (34). IFN-g signaling

exerts a dual role in early immunosurveillance and later immune

evasion, underscoring the need for therapeutic strategies that

overcome checkpoint barriers while harnessing early

inflammatory signals. Addressing this balance is crucial for

improving outcomes in bladder cancer.
4 Immune microenvironment in
established bladder cancer

As urothelial dysplasia progresses to carcinoma in situ and

ultimately invasive bladder cancer, the immune landscape

undergoes profound transformation (Figure 1) (43). The shift

from a chronically inflamed but immunologically active

microenvironment to one characterized by dysfunction and

tolerance is a hallmark of tumor immune escape (44). In

established bladder tumors, the immune contexture reflects a

dynamic balance between residual anti-tumor immunity and

dominant immunosuppressive mechanisms that enable tumor

growth and therapeutic resistance (44).

Figure 1. Immune rewiring in preneoplastic and dysplastic

states of bladder urothelium.
4.1 Spatial distribution and composition of
tumor-infiltrating immune cells

Recent investigations underscore that the immune

microenvironment in established bladder cancer is highly

heterogeneous, with spatial transcriptomics revealing distinct

niches. Tumor-infiltrating lymphocytes (TILs) are frequently

present in bladder tumors, but their density, composition, and

spatial arrangement vary significantly across patients and tumor

regions (45). “Immune hot” tumors exhibit dense infiltration of

CD8+ T cells, natural killer (NK) cells, and antigen-presenting

dendritic cells (DCs), often localized at the invasive margin or

within tumor nests (46). In contrast, “immune cold” tumors lack

significant immune cell presence and may be associated with

stromal barriers, hypoxia, or poor antigenicity (47). Spatial

transcriptomic studies have revealed that even within the same

tumor, immune cells may segregate into peritumoral, stromal, or

intratumoral niches, each governed by distinct cytokine and

chemokine networks (48). For instance, intratumoral regions may

express high levels of IFN-g–responsive genes and checkpoint

molecules (e.g., PD-L1, VISTA), while stromal zones are enriched

with suppressive myeloid populations and fibroblast-derived TGF-

b (49).
4.2 T cell dysfunction and checkpoint
expression

Although CD8+ cytotoxic T cells are present in many bladder

tumors, their functional capacity is often impaired (50). These cells
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exhibit features of exhaustion, characterized by sustained

expression of PD-1, LAG-3, and TIM-3, diminished production

of granzyme B and IFN-g, and altered metabolic profiles (e.g.,

mitochondrial dysfunction, lipid accumulation) (51), which

together result in diminished effector functions and cytotoxic

capacity. The co-expression of multiple immune checkpoints,

including PD-L1, VISTA, and TIGIT, suggests a highly regulated

suppressive environment (52).

Based on the quantity and activity of T cells, further

classification can be carried out. Molecular profiling has revealed

at least two major immune-related subtypes of bladder cancer: 1) T-

cell inflamed subtype: Enriched with IFN-g signature, high TIL

density, increased expression of PD-L1 and other checkpoints;

typically more responsive to immune checkpoint blockade (ICB).

2) Immune desert or myeloid-dominant subtype: Characterized by

poor T cell infiltration, high MDSC/TAM burden, and dominant

TGF-b/IL-10 signaling; often resistant to ICB. These immune

phenotypes correlate with molecular subtypes of bladder cancer

(e.g., luminal, basal, neuroendocrine) and have implications for

therapy selection (47, 53, 54).
4.3 Immunosuppressive myeloid cells and
fibroblasts

Tumor-associated macrophages (TAMs), particularly the M2-

like subtype (CD163+, ARG1+), dominate the myeloid

compartment in advanced bladder cancer (49). These cells

produce IL-10, TGF-b, and prostaglandin E2 (PGE2), suppressing

T cell activation and promoting tumor cell proliferation (50).

Similarly, myeloid-derived suppressor cells (MDSCs) inhibit both

innate and adaptive immunity through arginase activity, reactive

oxygen species (ROS), and nitric oxide production (51).

Cancer-associated fibroblasts (CAFs) contribute to immune

exclusion by remodeling the extracellular matrix and secreting

CXCL12, which forms a physical and chemokine-mediated

barrier to T cell infiltration (51). In some bladder tumors, CAF-

rich regions are virtually devoid of effector T cells, despite high

chemokine expression, a phenomenon also observed in pancreatic

and prostate cancers (48).
4.4 Predictors of response to
immunotherapy

Checkpoint inhibitors targeting PD-1 or PD-L1 (e.g.,

atezolizumab, nivolumab) have demonstrated clinical benefit in a

subset of bladder cancer patients, particularly those with high tumor

mutational burden (TMB), pre-existing TILs, and elevated IFN-g
signatures (46). The IMvigor210 trial stratified patients by immune

phenotype and found that responders tended to have T cell–

inflamed tumors with high expression of PD-L1 on immune cells

(IC2/3) (49). Conversely, non-responders often exhibited high

myeloid signatures and TGF-b–driven exclusion patterns (50).

Efforts to improve response rates now focus on rational
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combinations: ICB plus chemotherapy, anti-TGF-b agents, CSF1R

inhibitors (targeting TAMs), or intravesical agents that modulate

the tumor immune microenvironment (51).

Checkpoint inhibitors targeting PD-1 or PD-L1, such as

atezolizumab and nivolumab, have shown significant clinical

efficacy in a subset of bladder cancer patients, particularly those

characterized by a high tumor mutational burden (TMB), pre-

existing tumor-infiltrating lymphocytes (TILs), and elevated IFN-g–
associated gene signatures (46). Evidence from the IMvigor210

clinical trial further supports this observation: patients who

responded to therapy typically exhibited T cell–inflamed tumor

phenotypes, marked by high PD-L1 expression on immune cells

(IC2/3) (49). In contrast, non-responders frequently displayed

immunosuppressive microenvironments, characterized by

dominant myeloid gene signatures and TGF-b–mediated immune

exclusion, which hinder effective T cell infiltration and limit

therapeutic efficacy (50). To overcome these resistance

mechanisms and improve response rates, current strategies focus

on rational combination therapies. These include combining

immune checkpoint blockade (ICB) with chemotherapy, anti–

TGF-b agents, CSF1R inhibitors that target tumor-associated

macrophages (TAMs), or intravesical immunomodulatory agents

designed to remodel the tumor immune microenvironment and

enhance antitumor immunity (51).
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5 Clinical and translational outlook:
snapshots as biomarkers

The concept of immune “snapshots” along the inflammation-

to-cancer continuum offers a framework not only for understanding

tumorigenesis, but also for identifying actionable biomarkers,

therapeutic windows, and strategies for patient stratification. As

technologies for immune profiling evolve, there is growing potential

to incorporate temporal and spatial immune signatures into clinical

decision-making (55)(Figure 2).
5.1 Early detection and risk stratification

Phase-specific immune signatures—such as IFN-g–responsive
gene panels, checkpoint expression patterns, or T cell infiltration

profiles—may serve as early indicators of neoplastic transformation

(56). For instance, a high IFN-g signature in non-malignant but

inflamed urothelium could predict effective immune surveillance

and a lower risk of progression (57) in Table 2. Conversely, the

emergence of suppressive myeloid markers or checkpoint co-

expression may signal immune escape and imminent

tumorigenesis (58).
FIGURE 2

Imumune snapshot molecular characteristics.
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These insights open the door for longitudinal immune

monitoring in patients with chronic bladder inflammation,

recurrent cystitis, or prior cancer history (59). In the future,

patients could be risk-stratified not only by histopathology but by

dynamic immunological states, enabling more personalized

surveillance intervals or early interventions (60).
5.2 Liquid biopsy and non-invasive immune
profiling

Urine-based assays represent an attractive and non-invasive

approach to capturing immune snapshots in bladder cancer (60).

Urinary exosomes, shed by urothelial cells and infiltrating immune

cells, contain mRNA, miRNA, and protein cargo reflective of the

tumor microenvironment (61). Several studies have demonstrated

that urinary exosomal PD-L1, IFN-g–inducible genes, or TCR/BCR
repertoire fragments can mirror intratumoral immune activity (62).

Beyond exosomes, circulating immune cells, cytokines, and

tumor-derived DNA (ctDNA) in plasma may also reflect bladder

tumor immunity, especially in advanced disease (59). High-

throughput immune repertoire sequencing, combined with AI-

assisted pattern recognition, is being explored to identify immune

“fingerprints” predictive of recurrence or therapeutic response (63).
5.3 Predicting and enhancing response to
immunotherapy

As checkpoint inhibitors become standard in both non-muscle

invasive and advanced bladder cancer, the need for robust

predictive biomarkers becomes critical (61). Immune snapshots

offer a more nuanced alternative to single-parameter markers such

as PD-L1 immunohistochemistry or TMB (62). For example: 1) T

cell–inflamed snapshots (high CXCL9–11, granzyme B, IFNG,

CD8A) are predictive of response to PD-1/PD-L1 inhibitors (64).

2) Myeloid-dominant or TGF-b–rich snapshots are associated with

resistance and may benefit from ICB plus stromal-targeting

therapies (62). 3) Mixed phenotypes may require combination

approaches involving chemotherapy, BCG, or targeted agents.

Importantly, the spatial context matters: immune cells excluded

from the tumor core but present in the periphery (“immune-

excluded” phenotype) may require normalization of vasculature,
Frontiers in Immunology 07
ECM, or fibroblast networks before immunotherapy becomes

effective (63).
5.4 From bench to bedside: clinical
implementation challenges

The implementation of immune snapshot–based biomarkers is

hindered by a lack of uniformity in immune cell phenotyping,

spatial analysis, and gene expression quantification protocols, which

vary significantly across platforms and studies (65). Current spatial

transcriptomics (ST) technologies remain at a relatively early stage

of development and are evolving rapidly, yet they still require trade-

offs between spatial resolution, transcriptome coverage, and

detection sensitivity. Spatial proteomics currently provides

coverage far below that of the full proteome, although new

approaches may eventually enable direct protein sequencing

within tissues (66). To obtain a complete molecular landscape,

additional modalities are required. Spatial genomics (67),

epigenomics (68), and metabolomics (69) methodologies are

under active development, but their integration with ST or

proteomic data remains a major challenge. For example, spatial

genomics may offer valuable insights into the role of somatic

mutations in aging and age-associated immune senescence.

Notably, the recently developed Slide-tags technique enables in

situ labeling of individual cells with 10 mm spatial barcodes,

followed by nuclei isolation for single-nucleus RNA sequencing

(70). This innovation allows the direct transfer of single-cell

sequencing design principles to spatially resolved multimodal data

acquisition, thereby achieving true single-cell resolution. These

inconsistencies contribute to challenges in data comparability and

reproducibility, underscoring the need for harmonized protocols

and centralized standard operating procedures. Moreover, sampling

bias driven by tumor heterogeneity can underrepresent key immune

populations in small or spatially restricted biopsies, limiting the

precision of snapshot-based diagnostics (71, 72). In terms of clinical

translation, current immune landscapes and molecular phenotypes

can be integrated into prospective clinical trials and risk models by

applying advanced methodologies such as multiplex imaging,

single-cell sequencing, and automated data analysis platforms,

which enable the construction of detailed immunological profiles

that correlate with clinical outcomes (73, 74). These approaches can

inform patient stratification and therapeutic decision-making by
frontiersin.or
TABLE 2 Immune snapshots as predictive biomarkers in bladder cancer.

Immune snapshot Predictive implication Example applications

IFN-g signature high Better prognosis in NMIBC; possible ICB responsiveness 33-gene IFN-g score, IMvigor210 responder subset

PD-L1/VISTA co-expression Immune suppression; candidate for dual checkpoint blockade IHC or RNAseq-based stratification

TGF-b–rich stroma Immune exclusion; resistance to ICB Use of anti-TGF-b in combination trials

CXCL9–11 high, T cell exclusion Chemokine-checkpoint paradox; need for ECM targeting Predicts failure of monotherapy ICB

Urinary exosomal PD-L1/IFNG Liquid biopsy biomarker for immune activation Potential surveillance marker post-BCG
g
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capturing dynamic shifts in the immune microenvironment,

particularly when coupled with longitudinal sampling strategies.

However, limitations such as variability in urine biomarker

detection and spatial sampling constraints must be systematically

addressed through multicenter collaborative efforts that standardize

preanalytical and analytic processes (75). Immune snapshot–based

biomarkers hold promise for personalized treatment strategies.

Their successful clinical integration depends on rigorous

harmonization and the development of robust methodologies to

overcome sampling bias and inherent tumor heterogeneity.
5.5 Future directions

Cancer-associated fibroblasts (CAFs) are central mediators of

tumor progression and immune evasion, acting through secretion

of cytokines (e.g., IL-6) and modulation of the extracellular matrix

to impair immune cell infiltration (76, 77). Emerging

methodologies to overcome CAF-mediated immune exclusion

include targeted immunotherapies such as FAP-specific adoptive

T cell treatments and CAR T cell strategies, as well as vaccine

approaches aimed at enhancing T-cell responses and reducing

immune tolerance. Advanced techniques, including single-cell

transcriptomics and spatial transcriptomics, are being deployed to

resolve CAF heterogeneity and identify precise molecular markers

(78). Additional strategies focus on reprogramming CAFs toward a

quiescent phenotype using inhibitors like those targeting NADPH

oxidase-4 or TGF-b, which in turn can enhance the efficacy of

immune checkpoint inhibitors (79, 80). Imaging modalities like

[68Ga]Ga-FAPI-46 PET/CT also contribute to assessing

desmoplasia and predicting metastatic risk (81). Further research

must define specific CAF subpopulations and their molecular

signatures to enable precise targeting while minimizing systemic

toxicity (82). Establishing standardized detection methods that

preserve in vivo CAF phenotypes and integrating multi-omic

analyses will be critical. Additionally, combinatorial treatment

approaches that concurrently modulate CAF functionality and

augment antitumor immunity are imperative for advancing

cancer therapy (77). Targeted immunotherapies and advanced

molecular profiling are essential next steps in overcoming CAF-

mediated immune exclusion. Optimizing combinational

approaches will be key to enhancing overall treatment efficacy.
6 Conclusion

The transition from inflammation to cancer in the bladder

urothelium is a dynamic, immune-driven continuum in which

evolving immune signals mirror histological and molecular

changes. Each stage—from innate immune cell infiltration during

chronic inflammation to the formation of immunosuppressive

niches in invasive cancer—offers a distinct “immune snapshot”

that reveals mechanisms of immune control, adaptation, and
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eventual tumor promotion. Advances in spatial transcriptomics,

single-cell sequencing, and liquid biopsy now allow these states to

be profiled with high resolution, guiding early biomarker discovery,

risk stratification, and personalized immunotherapy. Integrating

multi-omics data with AI and conducting longitudinal studies will

further refine immune classification systems, enabling tailored

interventions and improved outcomes.
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