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Immune snapshots along the
inflammation-to-cancer road
in bladder urothelium

Lingxiang Lu", Fei Wang?!, Zhenfan Wang®, Shuai Guo,
Minjun Jiang™ and Zheng Ma™

‘Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou,
Jiangsu, China, ?Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University,
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The inflammatory microenvironment formed by chronic inflammation is not only a
major risk factor for cancer but also a well-recognized precursor to bladder cancer.
However, the immunological transitions that occur along the inflammation-to-
cancer continuum remain incompletely understood. This mini-review synthesizes
recent advances in understanding how the immune microenvironment evolves
from an inflamed yet non-malignant urothelium to invasive carcinoma. First, we
discuss how persistent stimuli—such as chronic infection or exposure to
carcinogens—disrupt immune homeostasis, leading to sustained interferon
signaling, cytokine secretion, and immune cell infiltration. Second, during
preneoplastic and dysplastic stages, the immune landscape gradually shifts
toward an environment enriched in regulatory T cells and characterized by
dysfunctional cytotoxic T cells. Furthermore, in established tumors, immune
evasion is primarily driven by T cell exhaustion, myeloid cell-mediated
immunosuppression, and fibroblast-associated immune exclusion. Finally,
advances in spatial transcriptomics, single-cell technologies, and urinary
exosomal profiling have enabled precise “immune snapshots” of these transitions,
providing new avenues for biomarker development and therapeutic strategy
selection. Mapping these dynamic immune states holds great promise for
improving risk stratification, facilitating early detection, and enabling personalized
immunotherapy, ultimately translating immune snapshots into actionable strategies
for bladder cancer prevention and treatment.
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1 Introduction

Bladder cancer remains one of the most prevalent and recurrent
malignancies worldwide, with urothelial carcinoma accounting for
over 90% of cases (1). Its development is frequently preceded by
chronic inflammation, which may arise from recurrent urinary tract
infections, exposure to carcinogens such as tobacco smoke and
aromatic amines, or intravesical instillation therapies like Bacillus
Calmette-Gueérin (BCG) (2). Bladder cancer (BC) is a highly
immunogenic tumor, and immunotherapy plays a central role in
its management, particularly in non-muscle-invasive disease
(NMIBC) (3). Among these approaches, Bacillus Calmette-
Guérin (BCG)—a live attenuated Mycobacterium bovis strain
introduced in 1976—remains a cornerstone treatment (4).
Delivered intravesically, BCG activates both innate and adaptive
immune responses: it recruits macrophages, dendritic cells, and T
lymphocytes to the bladder mucosa and induces the release of pro-
inflammatory cytokines such as IFN-y, TNF-o, and interleukins,
which together enhance cytotoxic T cell activation (5). BCG may
also upregulate immune checkpoints, boosting immune recognition
of tumor cells. These coordinated responses enable effective
elimination of primary tumors and potential metastases,
underscoring BCG’s pivotal role in NMIBC therapy (6).

Mounting evidence supports the paradigm that inflammation not
only accompanies tumorigenesis but can serve as a driver of malignant
transformation by reshaping the tissue microenvironment and
inducing genetic instability (7). In the bladder urothelium, persistent
inflammation triggers a cascade of immunological events—recruitment
of innate immune cells, cytokine secretion, epithelial stress responses—
that collectively disturb homeostasis and promote oncogenic
reprogramming (8). These events form the early stages of a

<

continuum known as the “inflammation-to-cancer transition,”
wherein immunological cues evolve in parallel with histopathological
changes from normal epithelium to dysplasia, carcinoma in situ (CIS),
and invasive cancer (9). However, while histological staging is well
defined, the immunological landscape across this progression remains
incompletely mapped (10).

Understanding the immune contexture at discrete phases of
bladder tumorigenesis is essential for both early detection and
rational therapy design (11). Immune cell composition, cytokine
profiles, and checkpoint molecule expression can differ vastly
between inflamed but non-malignant urothelium and established
tumors (12). Capturing these differences—through what we term
“immune snapshots”—can provide insights into the immunological
tipping points that govern the transition from defense to tolerance,
and ultimately, to escape (13). Emerging technologies such as
spatial transcriptomics, single-cell RNA sequencing, and exosomal
profiling have enabled unprecedented resolution in delineating
these immune states (14). Gene signatures reflective of interferon
signaling, myeloid skewing, or T cell dysfunction have already
demonstrated prognostic and predictive value in bladder cancer
cohorts (15). Likewise, animal models of chemically induced cystitis
or urothelial carcinoma offer valuable platforms for temporal
tracking of immune evolution (16).

Frontiers in Immunology

10.3389/fimmu.2025.1685237

In this mini-review, we synthesize current knowledge on the
immune microenvironment along the inflammation-to-cancer
spectrum in the bladder. We highlight key immune shifts,
introduce the concept of phase-specific immune signatures, and
discuss how such snapshots may inform biomarker development,
risk stratification, and immunotherapy strategies.

2 Chronic inflammation and the
urothelial immune landscape

The urothelium, a highly specialized transitional epithelium
lining the bladder, is normally characterized by a quiescent immune
environment (15). Baseline immune surveillance is maintained by
tissue-resident macrophages, dendritic cells, and innate lymphoid
cells, while adaptive immune activity remains limited under
homeostatic conditions (16). However, upon exposure to chronic
inflammatory stimuli—such as bacterial infection, chemical
carcinogens (e.g., N-butyl-N-(4-hydroxybutyl)nitrosamine
[BBN]), or repeated trauma—this balance is disrupted, leading to
a profound remodeling of the local immune milieu (17) (Figure 1).

2.1 Triggers of chronic inflammation in the
bladder

Recurrent urinary tract infections (UTIs), especially those
caused by uropathogenic Escherichia coli (UPEC), are among the
most common triggers of chronic bladder inflammation (18). Upon
infection, bacterial components are recognized by Toll-like
receptors (TLRs) on urothelial cells, activating downstream
signaling cascades that stimulate the release of proinflammatory
cytokines such as IL-6, IL-1B, TNF-a, and IFN-y (19, 20). These
cytokines, in turn, recruit neutrophils and monocytes to the bladder
wall, initiating cycles of tissue injury and repair which, if sustained,
can become maladaptive and promote pathological changes.

Experimental evidence from rodent models further supports
this progression. Chronic exposure to N-butyl-N-(4-hydroxybutyl)
nitrosamine (BBN) in drinking water recapitulates the stepwise
transition from persistent inflammation to malignancy observed in
human bladder carcinogenesis (21). Early disease stages are
characterized by the infiltration of myeloid cells—particularly
Ly6C" monocytes and F4/80" macrophages—accompanied by
fibroblast activation and increased production of reactive oxygen
species (ROS) (22). Together, these changes establish a “pre-tumor
niche” that fosters genomic instability, epithelial hyperplasia, and
ultimately, neoplastic transformation (23).

2.2 Immune cell dynamics in chronically
inflamed urothelium

Chronically inflamed bladder mucosa demonstrates enhanced
infiltration of both innate and adaptive immune cells (24).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1685237
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Lu et al. 10.3389/fimmu.2025.1685237
Immune transition from
Evolution of the immune
inflammation tO cancer microenvironment
M
__________________ _/ Disrupt Ve e————
| immune imulati
i o n° I homeostaS|s stimulation | ¢
1 KoM nfiltration of | = “’ /’
1 Infections Exposureto BBN | immune cells Carcinogen ‘a0
1 caused by UPEC i I cossTecell
| P Baselineimmune '  Interferon Bacterial
1 ¥ [ XY surveillance \ signaling infection ,
! TR ;N %
1 \ Cytokine BCG ,
1 N = @) N
: Inili/ale organizationeﬂ —;‘} !';,-,54 =
1 damage
1
1 E
I Inflammatory cells j Macrophages
1 = e
' @ 2 sor
1 Zo%e S Y
I Neutrophilia = @L-1B ~u 6 Dendli cells
L toTNFu-\ e/ VY
: OLuk 'Inne urface
L e o theladder e o ponggmtiaton, o
FIGURE 1

Imunune transition from inflammation to cancer.

Neutrophils dominate the early response, releasing elastase and
neutrophil extracellular traps (NETs), which can cause DNA
damage in epithelial cells (25).

Over time, monocyte-derived macrophages and dendritic cells
accumulate, shaping antigen presentation and polarization of T
helper responses (26). Several studies have documented increased
CD4" T cell and regulatory T cell (Treg) populations in inflamed
urothelium, suggesting an attempt to regulate excessive
inflammation (27). As inflammation persists, monocyte-derived
macrophages and dendritic cells accumulate and shape antigen
presentation, leading to increased numbers of CD4" T cells and
regulatory T cells, while sustained interferon signaling upregulates
antigen processing machinery and immune checkpoint
molecules (28).

2.3 Cytokine and chemokine signatures

Transcriptomic analyses of chronically inflamed bladder tissue
identify a conserved cytokine milieu characterized by IL-6, CXCL1,
CXCLS8, and IFN-y (25). These mediators not only amplify immune
cell recruitment but also modulate epithelial plasticity and promote
epithelial-mesenchymal transition (EMT), a key step toward
dysplasia and invasion (26). Chemokines such as CXCL9/10/11,
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typically associated with T cell attraction, are paradoxically
expressed in regions where cytotoxic T cells are scarce, indicating
the presence of immune exclusion mechanisms (27).

The role of IL-6/STAT3 signaling is particularly well
documented in both human samples and BBN-treated mice (28).
STAT3 activation in urothelial cells promotes proliferation and
survival, while also skewing immune responses toward an
immunosuppressive myeloid phenotype. This dual effect
reinforces the chronic inflammatory loop and sets the stage for
immune escape (23). The mechanism of chronic inflammation
mediated by immune cells and their secreted cytokines is detailed
in Table 1.

2.4 Lessons from BCG and cystitis models

Controlled inflammatory responses induced by Bacillus
Calmette-Gueérin (BCG) therapy present a contrasting model (21).
BCG-induced cystitis triggers robust IFN-y-mediated responses and
recruits effector T cells, generating an immunogenic environment
that differs from the tolerogenic, carcinogen-induced setting (29,
30). Recurrent UTIs and chemical exposures like BBN initiate
chronic bladder inflammation by activating innate immune

pathways and shaping a complex cytokine milieu. This
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TABLE 1 Immune components and cytokines in chronically inflamed bladder urothelium.

Immune component
Neutrophils
Monocytes/Macrophages
Dendritic Cells
CD4" T Cells

Urothelial cells

inflammatory environment influences immune cell dynamics and
ultimately determines the balance between tumor surveillance and
immune escape.

3 Immune rewiring in preneoplastic
and dysplastic states

Immune Rewiring in Preneoplastic and Dysplastic States.

As inflammation persists, the bladder urothelium undergoes
progressive architectural and molecular changes that precede overt
malignancy (31). These intermediate stages—ranging from reactive
atypia and hyperplasia to dysplasia and carcinoma in situ (CIS)—
are not merely passive histological transitions but are accompanied
by active immune rewiring (32). The immune microenvironment in
these phases is distinct from both homeostatic and tumor states,
marked by paradoxical features of activation and suppression (33).

3.1 IFN-y—driven epithelial responses and
checkpoint induction

Sustained IFN-y signaling in preneoplastic urothelium,
triggered by activated T cells or BCG-induced inflammation,
leads to a robust transcriptional upregulation of antigen
presentation machinery, including MHC class I and II molecules
(e.g., HLA-A, HLA-DRB) and proteasomal components like TAP1
and PSMBY (34-36). In vitro exposure of normal urothelial cells to
IFN-y similarly induces key immune checkpoint molecules, notably
PD-L1 and VISTA, suggesting that immune editing is initiated well
before overt neoplastic transformation and may function to limit
tissue damage, but under chronic antigenic stimulation, this process
can promote a tolerogenic, tumor-permissive microenvironment
(28, 37-39).

3.2 Spatial and single-cell insights:
heterogeneity emerges early

Recent advances in spatial transcriptomics and single-cell RNA
sequencing have revealed striking heterogeneity within dysplastic
urothelium (40). A subset of epithelial cells acquire
proinflammatory transcriptional programs (e.g., IRF1, STATI1),
while others upregulate immune evasive signatures (e.g., TGF-f,
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Function in chronic inflammation
Early recruitment; ROS and NETs production
Antigen presentation, cytokine secretion, M2-like immunosuppression
Maturation impaired under chronic inflammation
Promote inflammation or regulatory feedback

Cytokine release, checkpoint induction

Key molecules
MPO, ELANE, CXCL1
IL-10, TNF-ct, CD163, ARG1
CDl1c, CD86, CCR7
IEN-y, IL-17, FOXP3 (Tregs)

IL-6, CXCLS8, PD-L1, VISTA, MHC-I/II

CTLA-4 ligands) (41). This co-existence suggests an early
divergence in epithelial-immune cross-talk, possibly influenced by
local cytokine gradients or stromal interactions (42).

Immune cell populations in dysplastic lesions also become
more diverse. While CD4" T cells and macrophages persist,
an influx of regulatory T cells, exhausted CD8" T cells
(expressing PD-1, LAG-3), and immature dendritic cells has been
observed in both human CIS biopsies and BBN-induced lesions in
mice (36). These cells exhibit low cytotoxic activity but high
expression of immunoregulatory genes, suggesting a shift toward
immune tolerance (38).

3.3 IFN-y gene signature and early
prognostic value

A 33-gene IFN-y response signature derived from in vitro
stimulated urothelial cells has been shown to stratify patient
outcomes in non-muscle invasive bladder cancer (NMIBC) (39).
High expression of this signature is associated with longer
recurrence-free survival, suggesting that robust early immune
activation may predict better immunosurveillance (40).

However, this benefit appears context-dependent. In muscle-
invasive bladder cancer (MIBC), high IFN-y signatures are
paradoxically linked to immune checkpoint upregulation and
therapeutic resistance (41). Thus, the timing, duration, and
localization of interferon signaling must be interpreted within the
evolving immune landscape (42).

3.4 Chemokine-checkpoint paradox and
immune exclusion

Another hallmark of dysplastic immune rewiring is the
“chemokine-checkpoint paradox™: high levels of T cell-attracting
chemokines (CXCL9, CXCL10, CXCL11) are present, but effective
cytotoxic T cell infiltration is limited (31). This may result from
stromal or epithelial expression of checkpoint molecules (PD-L1,
TIM-3 ligands), aberrant vasculature, or fibroblast-mediated
immune exclusion (32).

In BBN models, lesions exhibiting strong CXCL9 expression
paradoxically display sparse CD8" T cell infiltration, despite the
chemotactic gradient (33). These findings imply that chemokine
production alone is insufficient for immune recruitment unless
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checkpoint-mediated barriers are removed (34). IFN-vy signaling
exerts a dual role in early immunosurveillance and later immune
evasion, underscoring the need for therapeutic strategies that
overcome checkpoint barriers while harnessing early
inflammatory signals. Addressing this balance is crucial for
improving outcomes in bladder cancer.

4 Immune microenvironment in
established bladder cancer

As urothelial dysplasia progresses to carcinoma in situ and
ultimately invasive bladder cancer, the immune landscape
undergoes profound transformation (Figure 1) (43). The shift
from a chronically inflamed but immunologically active
microenvironment to one characterized by dysfunction and
tolerance is a hallmark of tumor immune escape (44). In
established bladder tumors, the immune contexture reflects a
dynamic balance between residual anti-tumor immunity and
dominant immunosuppressive mechanisms that enable tumor
growth and therapeutic resistance (44).

Figure 1. Immune rewiring in preneoplastic and dysplastic
states of bladder urothelium.

4.1 Spatial distribution and composition of
tumor-infiltrating immune cells

Recent investigations underscore that the immune
microenvironment in established bladder cancer is highly
heterogeneous, with spatial transcriptomics revealing distinct
niches. Tumor-infiltrating lymphocytes (TILs) are frequently
present in bladder tumors, but their density, composition, and
spatial arrangement vary significantly across patients and tumor
regions (45). “Immune hot” tumors exhibit dense infiltration of
CD8" T cells, natural killer (NK) cells, and antigen-presenting
dendritic cells (DCs), often localized at the invasive margin or
within tumor nests (46). In contrast, “immune cold” tumors lack
significant immune cell presence and may be associated with
stromal barriers, hypoxia, or poor antigenicity (47). Spatial
transcriptomic studies have revealed that even within the same
tumor, immune cells may segregate into peritumoral, stromal, or
intratumoral niches, each governed by distinct cytokine and
chemokine networks (48). For instance, intratumoral regions may
express high levels of IFN-y-responsive genes and checkpoint
molecules (e.g., PD-L1, VISTA), while stromal zones are enriched
with suppressive myeloid populations and fibroblast-derived TGEF-
B (49).

4.2 T cell dysfunction and checkpoint
expression

Although CD8" cytotoxic T cells are present in many bladder
tumors, their functional capacity is often impaired (50). These cells
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exhibit features of exhaustion, characterized by sustained
expression of PD-1, LAG-3, and TIM-3, diminished production
of granzyme B and IFN-y, and altered metabolic profiles (e.g.,
mitochondrial dysfunction, lipid accumulation) (51), which
together result in diminished effector functions and cytotoxic
capacity. The co-expression of multiple immune checkpoints,
including PD-L1, VISTA, and TIGIT, suggests a highly regulated
suppressive environment (52).

Based on the quantity and activity of T cells, further
classification can be carried out. Molecular profiling has revealed
at least two major immune-related subtypes of bladder cancer: 1) T-
cell inflamed subtype: Enriched with IFN-y signature, high TIL
density, increased expression of PD-L1 and other checkpoints;
typically more responsive to immune checkpoint blockade (ICB).
2) Immune desert or myeloid-dominant subtype: Characterized by
poor T cell infiltration, high MDSC/TAM burden, and dominant
TGF-B/IL-10 signaling; often resistant to ICB. These immune
phenotypes correlate with molecular subtypes of bladder cancer
(e.g., luminal, basal, neuroendocrine) and have implications for
therapy selection (47, 53, 54).

4.3 Immunosuppressive myeloid cells and
fibroblasts

Tumor-associated macrophages (TAMs), particularly the M2-
like subtype (CD163", ARG1"), dominate the myeloid
compartment in advanced bladder cancer (49). These cells
produce IL-10, TGF-B, and prostaglandin E2 (PGE2), suppressing
T cell activation and promoting tumor cell proliferation (50).
Similarly, myeloid-derived suppressor cells (MDSCs) inhibit both
innate and adaptive immunity through arginase activity, reactive
oxygen species (ROS), and nitric oxide production (51).

Cancer-associated fibroblasts (CAFs) contribute to immune
exclusion by remodeling the extracellular matrix and secreting
CXCL12, which forms a physical and chemokine-mediated
barrier to T cell infiltration (51). In some bladder tumors, CAF-
rich regions are virtually devoid of effector T cells, despite high
chemokine expression, a phenomenon also observed in pancreatic
and prostate cancers (48).

4.4 Predictors of response to
immunotherapy

Checkpoint inhibitors targeting PD-1 or PD-LI (e.g,
atezolizumab, nivolumab) have demonstrated clinical benefit in a
subset of bladder cancer patients, particularly those with high tumor
mutational burden (TMB), pre-existing TILs, and elevated IFN-y
signatures (46). The IMvigor210 trial stratified patients by immune
phenotype and found that responders tended to have T cell-
inflamed tumors with high expression of PD-L1 on immune cells
(IC2/3) (49). Conversely, non-responders often exhibited high
myeloid signatures and TGF-B-driven exclusion patterns (50).
Efforts to improve response rates now focus on rational
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combinations: ICB plus chemotherapy, anti-TGF-3 agents, CSF1R
inhibitors (targeting TAMs), or intravesical agents that modulate
the tumor immune microenvironment (51).

Checkpoint inhibitors targeting PD-1 or PD-L1, such as
atezolizumab and nivolumab, have shown significant clinical
efficacy in a subset of bladder cancer patients, particularly those
characterized by a high tumor mutational burden (TMB), pre-
existing tumor-infiltrating lymphocytes (TILs), and elevated IFN-y-
associated gene signatures (46). Evidence from the IMvigor210
clinical trial further supports this observation: patients who
responded to therapy typically exhibited T cell-inflamed tumor
phenotypes, marked by high PD-L1 expression on immune cells
(IC2/3) (49). In contrast, non-responders frequently displayed
immunosuppressive microenvironments, characterized by
dominant myeloid gene signatures and TGF-f-mediated immune
exclusion, which hinder effective T cell infiltration and limit
therapeutic efficacy (50). To overcome these resistance
mechanisms and improve response rates, current strategies focus
on rational combination therapies. These include combining
immune checkpoint blockade (ICB) with chemotherapy, anti-
TGF-B agents, CSFIR inhibitors that target tumor-associated
macrophages (TAMs), or intravesical immunomodulatory agents
designed to remodel the tumor immune microenvironment and
enhance antitumor immunity (51).

10.3389/fimmu.2025.1685237

5 Clinical and translational outlook:
snapshots as biomarkers

The concept of immune “snapshots” along the inflammation-
to-cancer continuum offers a framework not only for understanding
tumorigenesis, but also for identifying actionable biomarkers,
therapeutic windows, and strategies for patient stratification. As
technologies for immune profiling evolve, there is growing potential
to incorporate temporal and spatial immune signatures into clinical
decision-making (55)(Figure 2).

5.1 Early detection and risk stratification

Phase-specific immune signatures—such as IFN-y-responsive
gene panels, checkpoint expression patterns, or T cell infiltration
profiles—may serve as early indicators of neoplastic transformation
(56). For instance, a high IFN-y signature in non-malignant but
inflamed urothelium could predict effective immune surveillance
and a lower risk of progression (57) in Table 2. Conversely, the
emergence of suppressive myeloid markers or checkpoint co-
expression may signal immune escape and imminent
tumorigenesis (58).
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TABLE 2 Immune snapshots as predictive biomarkers in bladder cancer.

Immune snapshot
IFN-y signature high
PD-L1/VISTA co-expression
TGF-B-rich stroma
CXCL9-11 high, T cell exclusion

Urinary exosomal PD-L1/IFNG

These insights open the door for longitudinal immune
monitoring in patients with chronic bladder inflammation,
recurrent cystitis, or prior cancer history (59). In the future,
patients could be risk-stratified not only by histopathology but by
dynamic immunological states, enabling more personalized
surveillance intervals or early interventions (60).

5.2 Liquid biopsy and non-invasive immune
profiling

Urine-based assays represent an attractive and non-invasive
approach to capturing immune snapshots in bladder cancer (60).
Urinary exosomes, shed by urothelial cells and infiltrating immune
cells, contain mRNA, miRNA, and protein cargo reflective of the
tumor microenvironment (61). Several studies have demonstrated
that urinary exosomal PD-L1, IFN-y-inducible genes, or TCR/BCR
repertoire fragments can mirror intratumoral immune activity (62).

Beyond exosomes, circulating immune cells, cytokines, and
tumor-derived DNA (ctDNA) in plasma may also reflect bladder
tumor immunity, especially in advanced disease (59). High-
throughput immune repertoire sequencing, combined with AI-
assisted pattern recognition, is being explored to identify immune
“fingerprints” predictive of recurrence or therapeutic response (63).

5.3 Predicting and enhancing response to
immunotherapy

As checkpoint inhibitors become standard in both non-muscle
invasive and advanced bladder cancer, the need for robust
predictive biomarkers becomes critical (61). Immune snapshots
offer a more nuanced alternative to single-parameter markers such
as PD-L1 immunohistochemistry or TMB (62). For example: 1) T
cell-inflamed snapshots (high CXCL9-11, granzyme B, IFNG,
CD8A) are predictive of response to PD-1/PD-L1 inhibitors (64).
2) Myeloid-dominant or TGF-B-rich snapshots are associated with
resistance and may benefit from ICB plus stromal-targeting
therapies (62). 3) Mixed phenotypes may require combination
approaches involving chemotherapy, BCG, or targeted agents.
Importantly, the spatial context matters: immune cells excluded
from the tumor core but present in the periphery (“immune-
excluded” phenotype) may require normalization of vasculature,
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Predictive implication
Better prognosis in NMIBC; possible ICB responsiveness
Immune suppression; candidate for dual checkpoint blockade
Immune exclusion; resistance to ICB
Chemokine-checkpoint paradox; need for ECM targeting

Liquid biopsy biomarker for immune activation

10.3389/fimmu.2025.1685237

Example applications
33-gene IFN-v score, IMvigor210 responder subset
THC or RNAseq-based stratification
Use of anti-TGF-f in combination trials
Predicts failure of monotherapy ICB

Potential surveillance marker post-BCG

ECM, or fibroblast networks before immunotherapy becomes
effective (63).

5.4 From bench to bedside: clinical
implementation challenges

The implementation of immune snapshot-based biomarkers is
hindered by a lack of uniformity in immune cell phenotyping,
spatial analysis, and gene expression quantification protocols, which
vary significantly across platforms and studies (65). Current spatial
transcriptomics (ST) technologies remain at a relatively early stage
of development and are evolving rapidly, yet they still require trade-
offs between spatial resolution, transcriptome coverage, and
detection sensitivity. Spatial proteomics currently provides
coverage far below that of the full proteome, although new
approaches may eventually enable direct protein sequencing
within tissues (66). To obtain a complete molecular landscape,
additional modalities are required. Spatial genomics (67),
epigenomics (68), and metabolomics (69) methodologies are
under active development, but their integration with ST or
proteomic data remains a major challenge. For example, spatial
genomics may offer valuable insights into the role of somatic
mutations in aging and age-associated immune senescence.
Notably, the recently developed Slide-tags technique enables in
situ labeling of individual cells with 10 um spatial barcodes,
followed by nuclei isolation for single-nucleus RNA sequencing
(70). This innovation allows the direct transfer of single-cell
sequencing design principles to spatially resolved multimodal data
acquisition, thereby achieving true single-cell resolution. These
inconsistencies contribute to challenges in data comparability and
reproducibility, underscoring the need for harmonized protocols
and centralized standard operating procedures. Moreover, sampling
bias driven by tumor heterogeneity can underrepresent key immune
populations in small or spatially restricted biopsies, limiting the
precision of snapshot-based diagnostics (71, 72). In terms of clinical
translation, current immune landscapes and molecular phenotypes
can be integrated into prospective clinical trials and risk models by
applying advanced methodologies such as multiplex imaging,
single-cell sequencing, and automated data analysis platforms,
which enable the construction of detailed immunological profiles
that correlate with clinical outcomes (73, 74). These approaches can
inform patient stratification and therapeutic decision-making by

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1685237
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Lu et al.

capturing dynamic shifts in the immune microenvironment,
particularly when coupled with longitudinal sampling strategies.
However, limitations such as variability in urine biomarker
detection and spatial sampling constraints must be systematically
addressed through multicenter collaborative efforts that standardize
preanalytical and analytic processes (75). Immune snapshot-based
biomarkers hold promise for personalized treatment strategies.
Their successful clinical integration depends on rigorous
harmonization and the development of robust methodologies to
overcome sampling bias and inherent tumor heterogeneity.

5.5 Future directions

Cancer-associated fibroblasts (CAFs) are central mediators of
tumor progression and immune evasion, acting through secretion
of cytokines (e.g., IL-6) and modulation of the extracellular matrix
to impair immune cell infiltration (76, 77). Emerging
methodologies to overcome CAF-mediated immune exclusion
include targeted immunotherapies such as FAP-specific adoptive
T cell treatments and CAR T cell strategies, as well as vaccine
approaches aimed at enhancing T-cell responses and reducing
immune tolerance. Advanced techniques, including single-cell
transcriptomics and spatial transcriptomics, are being deployed to
resolve CAF heterogeneity and identify precise molecular markers
(78). Additional strategies focus on reprogramming CAFs toward a
quiescent phenotype using inhibitors like those targeting NADPH
oxidase-4 or TGF-B, which in turn can enhance the efficacy of
immune checkpoint inhibitors (79, 80). Imaging modalities like
[68Ga]Ga-FAPI-46 PET/CT also contribute to assessing
desmoplasia and predicting metastatic risk (81). Further research
must define specific CAF subpopulations and their molecular
signatures to enable precise targeting while minimizing systemic
toxicity (82). Establishing standardized detection methods that
preserve in vivo CAF phenotypes and integrating multi-omic
analyses will be critical. Additionally, combinatorial treatment
approaches that concurrently modulate CAF functionality and
augment antitumor immunity are imperative for advancing
cancer therapy (77). Targeted immunotherapies and advanced
molecular profiling are essential next steps in overcoming CAF-
mediated immune exclusion. Optimizing combinational
approaches will be key to enhancing overall treatment efficacy.

6 Conclusion

The transition from inflammation to cancer in the bladder
urothelium is a dynamic, immune-driven continuum in which
evolving immune signals mirror histological and molecular
changes. Each stage—from innate immune cell infiltration during
chronic inflammation to the formation of immunosuppressive
niches in invasive cancer—offers a distinct “immune snapshot”
that reveals mechanisms of immune control, adaptation, and
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eventual tumor promotion. Advances in spatial transcriptomics,
single-cell sequencing, and liquid biopsy now allow these states to
be profiled with high resolution, guiding early biomarker discovery,
risk stratification, and personalized immunotherapy. Integrating
multi-omics data with AI and conducting longitudinal studies will
further refine immune classification systems, enabling tailored
interventions and improved outcomes.
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