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Objectives: Although glycolytic reprogramming constitutes a fundamental driver
of hepatic fibrosis (HF), its precise mechanistic contributions remain
incompletely characterized. This investigation systematically identified
molecular signatures of glycolysis-related genes (GRGs) in HF. We further
developed a glycolytic activity-based model for HF risk stratification.

Methods: Integrated analysis of GEO datasets (GSE276114, GSE84044,
GSE49541) identified differentially expressed genes (DEGs) associated with HF
progression. Integrated weighted gene co-expression network analysis
(WGCNA) with six machine learning algorithms to identify core GRGs genes
associated with HF progression, and systematically characterized their biological
functions and immunoregulatory roles through immune infiltration assessment,
functional enrichment, consensus clustering, and single-cell differential state
analysis. Glycolytic activity was evaluated in CCly-induced fibrotic mice and TGF-
B-stimulated LX-2 cells. Additionally, the expression of core GRGs was validated
using immunohistochemical staining and RT-gqPCR.

Results: Through the intersection of WGCNA, DEGs, and GRGs, machine learning
identified six core GRGs: B3GNT3, CHST4, DCN, GPC3, SOX9, and VCAN. Based
on the core GRGs, three GRG-based molecular subtypes were defined. Cluster C,
with higher expression of the core GRGs, exhibited significantly enhanced
immune infiltration, particularly of adaptive immune cells compared to Cluster
A and B. Cluster C comprised a mixed landscape of T cells, mast cells, and pro-
fibrogenic cells, distinct from the innate immune-dominant profiles of Clusters A
and B. Both in vivo and in vitro analyses demonstrated enhanced glycolysis in
fibrotic progression, accompanied by consistent upregulation of core GRGs.
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Conclusions: Glycolytic reprogramming is a key pathogenic driver in HF
progression and associated immune infiltration. Investigating this metabolic-
immune dysregulation represents a promising therapeutic focus for progression

of HF.

glycolytic reprogramming, hepatic fibrosis, WGCNA, machine learning, immune

cell infiltration

1 Introduction

Hepatic fibrosis (HF) initially functions as a self-limiting repair
mechanism, where transient extracellular matrix deposition
preserves tissue integrity during acute injury. This tightly
regulated process becomes detrimental when chronic insults (e.g.,
MASLD) sustain fibrogenic activation, leading to disproportionate
scar accumulation that disrupts hepatic architecture and function
(1). This maladaptive remodeling drives cirrhosis, which accounts
for 2.4% of global mortality and often necessitates liver
transplantation due to vascular distortion and regenerative failure
(2). Despite decades of research, current antifibrotic strategies
remain limited to symptom management rather than targeting
core regulators of progressive matrix deposition.

The Warburg effect, originally described in cancer, denotes a
metabolic shift from oxidative phosphorylation to aerobic
glycolysis. This adaptation allows cancer cells to rapidly generate
biomass and energy to support proliferation. Subsequently, this
metabolic reprogramming has been observed in fibrotic diseases
across multiple organs, including the liver, kidneys, skin, and lungs
(3-6). Hepatic stellate cells (HSCs) located in the space of Disse are
the primary pro-fibrogenic cells in the liver. Upon activation, the
quiescent HSCs transdifferentiate into proliferative, migratory, and
contractile myofibroblasts (7). During HSC activation, key
glycolytic enzymes, including HK2, PFK1, PKM2, GLUT1, and
MCT4, are upregulated, while gluconeogenic enzymes such as
PCK1 and FBP1 are downregulated (8, 9). This metabolic shift
from oxidative phosphorylation to aerobic glycolysis supports the
high energy demands of proliferating HSCs by enabling rapid ATP
generation (10).

Glycolysis underpins the functional capacity of innate immune
cells (such as inflammatory macrophages, DCs, and neutrophils)
and is equally critical for innate-like and adaptive immune cells,
particularly in the acquisition of an IL-17+ phenotype (11).
Macrophage heterogeneity plays a central role in liver fibrogenesis
(12). Resident Kupffer cells, upon activation, initiate and propagate
inflammatory responses during liver injury. The transition of
macrophages toward an inflammatory phenotype is regulated by
metabolic reprogramming of glucose metabolism (13).
Inflammatory macrophages engage glycolysis, the pentose
phosphate pathway, and a TCA cycle configured for citrate
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production, alongside nitric oxide generation. Conversely, anti-
inflammatory macrophages are dependent on fatty acid oxidation,
oxidative phosphorylation, and the arginase pathway (14). In liver
fibrosis, this metabolic shift is exploited through PKM2 activation,
which augments glycolytic flux and drives macrophage
reprogramming toward a profibrogenic phenotype, as
demonstrated in mouse models (15).

Glycolysis in HF is under intensive study but far from fully
elucidated. HF involves joint action from HSCs, immunocytes, and
hepatocytes. However, glycolysis of HF and its impact on the
infiltration and activation of immune cells has been scarcely
studied. To address this, we combined transcriptomic data from
multiple patient cohorts with comprehensive glycolysis-related
genes (GRGs) sets to identify core GRGs consistently associated
with HF progression. Utilizing machine learning algorithms, we
developed a robust diagnostic model and validated its staging
performance. Furthermore, we performed consensus clustering to
define novel glycolysis-based molecular subtypes and characterized
their distinct immunological profiles. Finally, we experimentally
validated the relevance of core GRGs and glycolytic phenotypes in
vitro and in animal models. Our work thus provides a holistic view
of glycolytic reprogramming in HF, establishing a foundational
resource for future mechanistic and therapeutic exploration.

2 Materials and methods
2.1 Data sources

Transcriptomic profiles and clinical staging data from patients
with HF were obtained from three GEO datasets: GSE276114,
GSE84044, and GSE49541. GSE276114 classified 177 specimens
into histological fibrosis stages: 39 early fibrosis (FO-F2), 24 severe
fibrosis (F3), and 114 cirrhosis (F4) cases (16). GSE84044 provided
Scheuer Score-evaluated data encompassing 43 non-fibrotic livers,
20 stage 1, 33 stage 2, 18 stage 3, and 10 stage 4 fibrosis cases (17).
GSE49541 contained 72 samples grouped as 40 stage 0-1 versus 32
stage 3-4 fibrosis specimens (18). Based on clinical consensus,
stages FO-F2 and F3-F4 were designated mild and advanced
fibrosis respectively. Additionally, 315 GRGs were retrieved from
the MSigDB. The GSE136103 dataset included single-cell

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1684937
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xiao et al.

transcriptome data from 5 healthy patient liver tissue samples and 5
cirrhotic patient liver tissue samples (19).

To validate the generalizability of core GRGs in HF, we
retrieved two independent GEO datasets: GSE130970 and
GSE14323. The GSE130970 cohort comprised 23 healthy controls
and 53 fibrosis patients stratified by disease severity (stage 1: n=28,
stage 2: n=9, stage 3: n=14, stage 4: n=2) (20). GSE14323 provided
transcriptomic profiles from liver specimens of individuals with
cirrhosis attributed to hepatitis C virus (HCV) infection or alcohol
consumption. Liver tissue samples were classified for the analysis as
normal livers (n=19) and HCV cirrhosis (n=41). The characteristics
of the samples are described in the Supplementary Tables 1, 2 (21).
Additionally, gene expression data and corresponding survival
information for hepatocellular carcinoma (HCC) cases were
acquired from the TCGA.

2.2 Data preprocessing and differential
gene expression analysis

The efficacy of batch effect correction was validated through
two-dimensional principal component analysis (PCA) clustering.
Following quality control, we generated a consolidated normalized
gene expression dataset using the “limma” package (22). To
improve the reliability of differentially expressed genes (DEGs),
probe sets for which the adjusted P <0.05, and |log,FC| > 0.5
between mild and advanced fibrosis were defined as
significant DEGs.

2.3 Functional analyses of DEGs and gene
set enrichment analysis

Using the “ClusterProfiler” package (23), we conducted
comprehensive GO and KEGG enrichment analyses. Statistical
significance thresholds were established at a false discovery rate
(FDR) < 0.05, with P-values adjusted via the Benjamini-Hochberg
procedure for multiple test correction.

2.4 Weighted gene co-expression network
analysis

WGCNA was implemented to delineate associations between
gene modules and pathological traits, enabling identification of hub
genes implicated in HF progression. We constructed a similarity
matrix using Pearson correlation coefficients, subsequently
transformed into adjacency and topological overlap matrices
(TOM) through optimized soft-thresholding. Gene clustering was
performed via dynamic tree-cutting algorithms with a minimum
module size threshold of 50 genes. Modules were designated
arbitrary color labels, while module eigengenes (MEs) represented
their transcriptional signatures. We identified GRGs critically
involved in HF pathogenesis by intersecting these candidate genes
with DEGs and pre-defined GRGs.
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2.5 Development and validation of a
diagnostic signature for HF progression
using machine learning algorithms

Six distinct machine learning algorithms—Random Forest (RF),
Support Vector Machine (SVM), Generalized Linear Model (GLM),
Gradient Boosting Machine (GBM), Neural Network (NNET), and
Least Absolute Shrinkage and Selection Operator (LASSO)—were
employed to assess gene significance. Using the “caret” package,
models underwent training with 70% of data (stratified sampling via
createDataPartition) and validation on 30% test sets. Model
robustness was enhanced through 5-fold repeated cross-
validation. Hyperparameter tuning was conducted using the
default tuning grids of the caret package, while feature
importance ranking was performed through a model-agnostic
approach implemented in the “DALEX” package. Core GRGs
were derived from intersecting the top-ranked features across all
algorithms. Building on this, we established a logistic regression
model using the “glm” package. This model subsequently served as
the foundation for constructing a clinical nomogram via the “rms”
package to stratify HF progression. Performance of the prognostic
model was rigorously evaluated through calibration curves, decision
curve analysis (DCA), and receiver operating characteristic
(ROC) curves.

2.6 Gene set enrichment analysis

To elucidate signaling pathway disparities between mild and
advanced fibrosis stages, GSEA was implemented (24). Annotated
gene sets for disease-relevant pathways were curated from the
MsigDB to establish the background reference. Gene sets that
were significantly enriched were pinpointed using consistency
scores (adjusted p value <0.05).

2.7 Gene set variation analysis

Employing an unsupervised, non-parametric methodology,
GSVA quantifies pathway-level perturbations by transforming
gene-centric expression data into functional enrichment scores
(25). This approach characterizes biological activity through
comprehensive scoring of predefined gene sets. For the current
study, we retrieved pathway-specific gene collections from the
MsigDB and computed enrichment profiles using the
GSVA algorithm.

2.8 Consensus clustering analysis and
differences between subtypes

Leveraging expression profiles of hepatic fibrosis-associated
GRGs, we performed molecular subtyping of HF patients through
unsupervised consensus clustering. This analysis was implemented
in R using the “ConsensusClusterPlus” package (26) with the
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following parameters: 1,000 bootstrap iterations to ensure
algorithmic stability, item resampling proportion of 0.8, feature
resampling proportion of 1.0, and the k-means clustering algorithm
as the foundational method.

2.9 Immune cell infiltration analysis

Immune cell infiltration was quantified using both CIBERSORT
and ssGSEA. Spearman correlation analysis assessed relationships
between immune cell proportions and core GRGs expression, while
boxplots visualized infiltration differences of 28 immune cells across
GRG-based subtypes.

2.10 Analysis of scRNA-seq data

Single-cell RNA sequencing data were processed and analyzed
using the “Seurat” package, which facilitated normalization,
dimensionality reduction, clustering, and visualization (27).
Differentially expressed genes across clusters were identified using
the FindAllMarkers function to support cell type classification. Cell
identities were determined through a three-step annotation
workflow: automated cell type prediction was performed with
SingleR, followed by manual verification using well-established
marker genes from literature, and finally validated through the
CellMarker database (28, 29). Single-cell Phenotype-Associated
Subpopulation identifier (scPAS) was applied to quantify the
association between individual cells in scRNA-seq data and GRG-
based molecular subtypes. Differential expression analysis between
high- and low-glycolysis cell subpopulations was performed using
the Wilcoxon rank-sum test via the FindAllMarkers function.
Genes with log,FC > 1 and FDR < 0.05 in high-glycolysis cells
were defined as a positive signature, while those with log,FC < -1
and FDR < 0.05 in low-glycolysis cells comprised the negative
signature. GSVA was then used to compute signature scores for
each sample, with a composite score derived by subtracting the
negative signature score from the positive signature score (30).

2.11 CCls-induced HF model and
histological analysis

All experimental procedures involving animals were conducted
in compliance with ethical standards approved by the Institutional
Animal Care and Use Committee of Chongqing Medical University
(Approval No. TACUC-SAHCQMU-2025-0116). To establish
fibrosis models, mice received intraperitoneal injections of carbon
tetrachloride (CCl,) dissolved in corn oil (1:4 v/v) at 1 ml/kg body
weight. Administration occurred three times weekly with
differential durations: 8 weeks for mild fibrosis induction and 12
weeks for advanced fibrosis induction. Liver sections underwent
histological evaluation using standardized Hematoxylin and Eosin
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(H&E) and Masson’s trichrome staining protocols as
described (31).

2.12 Immunohistochemistry

Deparaffinized and rehydrated sections underwent antigen
retrieval in heated citrate buffer. After peroxidase blocking, tissues
were incubated with primary antibody at 4 °C overnight, followed
by a secondary antibody and DAB development using a standard
IHC protocol.

2.13 Cell lines and culture

The human HSC line LX-2 was acquired from Ubigene
Biosciences (China). Cells were maintained at 37 °C under 5%
CO, atmosphere with saturated humidity. Culture medium
consisted of high-glucose DMEM supplemented with 10% FBS
(ExCell Bio, China) and 1% penicillin/streptomycin.

2.14 EdU staining assay

LX-2 cells were plated in 6-well plates and maintained
overnight. The cells were treated with TGF-B (10 ng/ml,
Sinobiological) and/or the glycolytic inhibitor 2-DG (2mM,
Selleck, USA). EdU incorporation assay was performed with an
EdU assay kit (Beyotime, Shanghai, China), according to the
manufacturer’s instructions (32). Finally, stain the nuclei with
DAPI and observe them using a fluorescence microscope (Nikon,
Tokyo, Japan).

2.15 Cell migration

Cell migratory capacity was quantified using 8-um pore
Transwell chambers (LABSELECT, China). LX-2 cells were plated
in serum-free medium within the upper compartment, while the
lower chamber contained 10% FBS. Following 24-hour incubation,
traversed cells were fixed with 4% paraformaldehyde and stained
with 0.1% crystal violet (Beyotime, China). Invasive cells were
manually enumerated across five randomly selected microscopic
fields using an inverted fluorescence microscope (Nikon, Japan),
with subsequent image acquisition and quantitative analysis.

2.16 Lactate and glucose measurement

Lactate concentrations in LX-2 cell supernatant, mice serum,
and mice liver tissue were quantified using lactate assay kits (A019-
2-1, Nanjing Jiancheng Bioengineering Institute, China), strictly
adhering to the manufacturer’s protocol. Glucose concentration in
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LX-2 cell supernatant was measured using a glucose assay kit
(#S0201S, Beyotime, Shanghai, China).

2.17 2-NBDG glucose uptake

LX-2 cells were plated in 24-well plates and allowed to adhere
overnight. Experimental groups were stimulated with TGF-B (10
ng/ml) for 24 hours. Following treatment, cellular glucose uptake
was measured by incubating cells with 0.5 ml 2-NBDG working
solution at 37 °C for 60 min per manufacturer’s instructions
(Beyotime, China). After removal of supernatant and two PBS
washes, nuclei counterstaining was performed. Fluorescence
microscopy (Nikon, Japan) was employed to quantify
glucose uptake.

2.18 Real-time reverse transcription PCR

Total RNA isolation employed Trizol reagent per
manufacturer’s protocol (Invitrogen, USA). Subsequent cDNA
synthesis utilized a Takara reverse transcription kit (Japan).
Primer sequences are detailed in Supplementary Tables 3, 4.

2.19 Statistical analysis

The Wilcoxon test was utilized to complete the comparative
analysis among the groups. Correlation analyses utilized
Spearman’s rank-order method. All analyses were performed in R
4.4.1 and GraphPad Prism 8.0, with P < 0.05 defining
statistical significance.

3 Results
3.1 DEGs between mild and advanced HF

To establish a robust integrated cohort, the three HF datasets
(GSE276114, GSE84044, and GSE49541) were systematically
combined. PCA revealed distinct clustering patterns among
fibrotic cases both before and after normalization (Figure 1A).
Furthermore, distribution characteristics were assessed using box
plots, which demonstrated improved comparability after batch
adjustment (Figure 1B). Comparative profiling revealed distinct
transcriptional signatures between mild and advanced HF stages,
yielding 517 significantly upregulated and 208 downregulated
DEGs. These differential expression patterns were visualized
through volcano plot and hierarchical clustering heatmap
analyses (Figures 1C, D). Subsequent pathway enrichment
analysis of hepatic fibrosis-associated DEGs identified critical
biological mechanisms. GO analysis demonstrated significant
enrichment (P<0.05) in fibrogenic processes, particularly elastic
fiber assembly, collagen-activated signaling pathway, and complex
of collagen trimers (Figure 1E). Complementary KEGG pathway

Frontiers in Immunology

10.3389/fimmu.2025.1684937

analysis revealed prominent involvement in ECM-receptor
interactions, galactose metabolism, and fructose and mannose
metabolism (Figure 1F). Integrated GO and KEGG analyses
indicate that hepatic fibrogenesis is associated with metabolic
reprogramming in glycometabolism.

3.2 ldentification of key genes related to
HF progression using WGCNA

WGCNA identified HF-associated hub genes through
integrated analysis of transcriptomic profiles and clinical
metadata. Sample clustering based on Pearson’s correlation
coefficients revealed distinct patient subgroups (Figure 2A).
Optimization of the scale-free topology model determined a soft
threshold power of 3, which maximized network interconnectivity
while preserving gene similarity (Figure 2B). This approach
delineated 11 co-expression modules, among which the blue
module (976 genes) exhibited the strongest correlation with HF
progression (r = 0.42, P = 3 x 10""7) (Figures 2C, D).

3.3 Glycolysis underscores the core
predictive DEGs in HF progression

Fifteen upregulated GRGs were identified through intersecting
three gene sets: 517 upregulated DEGs, 976 key genes from the
WGCNA module most relevant to HF progression, and 315 known
GRGs (Figure 3A). These genes included B3GNT3, CHST4, DCN,
GPC3, GPC4, HIF1A, HK1, HKDCI, LDHB, SLC2A1, SOX9, TFF3,
TGFBI, TPBG, and VCAN. Heatmap analysis demonstrated
pronounced upregulation of these 15 GRGs in advanced fibrosis
compared to mild fibrosis (Figure 3B). Protein-protein interaction
(PPI) network analysis of the 15 GRGs revealed robust connectivity
among all genes except TPBG, TFF3, CHST4, and B3GNT3, with
the transcription factor SOX9 emerging as a central hub genes
(Figure 3C). Distinct expression patterns between advanced and
mild HF further supported their pathological relevance (Figure 3D).
Functional enrichment analysis via GO highlighted their
association with glycolytic processes (e.g., “lactate metabolic
process”) and fibrotic pathways, including “negative regulation of
mesenchymal cell apoptotic process” (Figure 3E). KEGG pathway
analysis underscored their involvement in critical pathways such as
“Central carbon metabolism in cancer” and “Glycolysis/
Gluconeogenesis” (Figure 3F), suggesting a mechanistic link
between glycolysis dysregulation and fibrotic progression.

3.4 Construction and validation of
diagnostic model by machine learning

A diagnostic model was constructed using six machine learning
algorithms: GBM, RF, GLM, SVM, LASSO, and NNET. Evaluation
of the cumulative residual distribution plots and residual boxplots
revealed that GBM, RF, GLM, SVM, and LASSO exhibited minimal
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FIGURE 1

Merging the database and screening differential expressed genes (DEGs). (A) Principal Component Analysis (PCA) of samples from the three
databases before and after data merging. (B) Sample distribution before and after homogenization of the datasets. (C, D) DEGs were screened using
the limma package under the standard of adj.P.Val<0.05, and [log,FC| > 0.5. Upregulated genes were plotted in red and downregulated genes in
green in a volcano plot (C). The heatmap (D) displays a group of genes differentially expressed in mild and advanced fibrosis. (E) GO annotation of
the DEGs in association with annotated biological process (BP), cellular component (CC), and molecular function (MF). (F) Demonstration of KEGG

enrichment results.
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FIGURE 2

Construction and module analysis of WGCNA. (A) Sample dendrogram and trait heatmap. (B) Network topology analysis under different soft threshold
powers. (C) Clustering Dendrogram, illustrating the hierarchical grouping of genes by topological overlap, with the specified module colors representing
different gene clusters. (D) Correlation analysis for the relationship between different coexpression modules and clinical features.

residuals (Supplementary Figure S1), while all six models
demonstrated robust discriminative performance for clinical
outcomes (AUC > 0.8; Figure 4A). The top ten variables for each
model, ranked by root-mean-square error (RMSE), were visualized
in Figure 4B. To identify core diagnostic biomarkers, we extracted
the intersection of the top ten most influential genes across all
models, yielding six core GRGs: B3GNT3, CHST4, DCN, GPC3,
SOX9, and VCAN. ROC analysis confirmed strong diagnostic
utility for all genes except B3GNT3 (Figure 4C). A nomogram
integrating these six core GRGs was subsequently developed using
the “rms” package to stratify HF risk (Figure 4D). The calibration
curve (Brier: 0.139) and DCA collectively demonstrated the model’s
robust predictive performance (Figures 4E, F).

External validation in the GSE14323 and GSE130970 datasets
confirmed the robust discriminative power of these core GRGs.
Furthermore, subgroup analyses stratified by etiology
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(steatohepatitis and viral hepatitis) consistently demonstrated
their diagnostic efficacy across distinct fibrotic subtypes
(Supplementary Figure S2).

3.5 Immune landscape analysis across HF
progression

Immune infiltration profiling across HF patient samples
characterized the relative abundance of 22 immune cell subtypes,
visualized via stacked bar chart (Figure 5A). In addition, there was a
close interplay between immune cells, with a significant negative
correlation between M1 macrophages and M2 macrophages, and a
strong positive correlation between activated dendritic cells and M2
macrophages (Figure 5B). In patients with advanced HF, the proportion
of memory B cells, naive B cells, activated mast cells, plasma cells, CD4
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FIGURE 3

Glycolysis of DEGs in mild and advanced fibrotic livers. (A) Venn plot displa

ying the intersection of upregulated DEGs, WGCNA and glycolysis-related

genes (GRGs). (B) Heatmap displaying the expression patterns of the 15 GRGs. (C) PPI network of 15 overlapping genes. (D) Boxplot displaying the
expression patterns of the 15 GRGs. (E, F) GO annotation and KEGG enrichment analyses of GRGs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

memory activated T cells, MO macrophages, M1 macrophages was
found to be higher than those in mild HF. However, the percentage of
activated dendritic cells, M2 macrophages, monocytes, resting NK cells,
and neutrophils was lower in advanced HF samples (Figure 5C). All of
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the core GRGs had positive correlations with MO macrophages,
activated mast cells, plasma cells and activated T cells CD4 memory
and negative correlation with M2 macrophages, resting mast cells,
monocytes, resting NK cells and naive T cells CD4 (Figure 5D).
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FIGURE 4

Construction and validation of diagnostic model by machine learning. (A) The ROC curves for GBM, RF, GLM, SVM, LASSO and NNET models and
their corresponding AUC values. (B) The top ten variables in the RMSE ranking used for evaluating the feature importance of the models (GBM, RF,
GLM, SVM, LASSO and NNET), and the significance contribution of each model to the input features was analyzed. (C) ROC curve and AUC values of
core GRGs (B3GNT3, CHST4, DCN, GPC3, SOX9, and VCAN). (D) A nomogram of six core GRGs. (E) Calibration curve analysis of the prognostic

model. (F) DCA.

3.6 GSEA and GSVA analysis of core GRGs

GSEA analysis of six core GRGs revealed distinct pathway
enrichments: B3GNT3 was predominantly enriched in integrin
of-talin-vinculin signaling and translation initiation; CHST4
showed significant enrichment in translation initiation and
aberrant TDP-43-mediated electron transfer in complex I; DCN
primarily enriched Salmonella SopB-ARNO-ARF-G-actin signaling
pathway and ARNO-ARF-G-actin signaling pathway; GPC3 and
SOXO9 both activated Shigella IpgD-ARNO-ARF-G-actin signaling
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pathway and ARNO-ARF-G-actin signaling pathway; VCAN was
enriched in PI3K signaling pathway and RAS-PI3K signaling
pathway (Supplementary Figure S3).

GSVA demonstrated that overexpression of all examined genes
(B3GNT3, CHST4, DCN, GPC3, SOX9, and VCAN) consistently
activated the epithelial-mesenchymal transition (EMT) pathway.
Furthermore, angiogenesis was co-activated by CHST4, DCN,
GPC3, SOX9, and VCAN, while hypoxia signaling was shared by
B3GNT3 and CHST4. Notably, distinct pathways exhibited gene-
specific activation: apical junction by BAGNT3, apoptosis by DCN,
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statistically significant (P > 0.05).

and TNF-0/NF-xB signaling by the GPC3, SOX9, and VCAN
(Supplementary Figure S4).

3.7 Analysis of core GRGs based on the
GSE136103 single-cell dataset

We further explored the expression of the core GRGs in HF
patients through scRNA-seq data. After rigorous quality control
screening, 51,972 high-quality cells were included in the subsequent
analysis. The FindAllMarkers function and the Wilcoxon rank sum
test were used to identify specific gene signatures for each cluster. 17
major cell clusters were identified, including exhausted CD8+ T cells
(CD3D+CD8A+PDCD1+), Naive/central memory CD8+ T cells
(CD3D+CDSA+LEF1+), NK cells (GNLY+NKG7+), B cells
(MZB1+CD79A+), plasma cells (MZB1+CD38+), neutrophils
(S100A8+VCAN+), conventional dendritic cells (CLEC9A+XCR1+),
mast cells (TPSAB1+CPA3+), Liver sinusoidal endothelial cells
(LSEC) (CLEC4G+OIT3+), Kupffer cells (ADGRE1+CD68+),
endothelial cells(CLEC14A+PLVAP+), HSCs (ACTA2+COL1A1+),
innate lymphoid cells (KLRF1+KLRC1+), myofibroblasts (COL1A1
+COL3A1+), and vascular endothelial cells (VWF+ACKR1+),
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epithelial cells (EPCAM+ALB+), proliferating cells (MKI67+),
plasmacytoid dendritic cells (LILRA4+LRRC26+) (Figures 6A, B).
Analysis of the UMAP clustering and expression heatmap showed
prominent expression of B3GNT3, CHST4, and SOX9 in epithelial
cells; DCN and GPC3 in HSCs and myofibroblasts; and VCAN in
neutrophils (Figure 6C).

3.8 Phenotyping power of the core GRGs
in HF

Leveraging core GRG expression profiles, we stratified 373
multi-database samples into three distinct molecular phenotypes
(Figure 7A). PCA validated clear separation among these subtypes
(Figure 7B). Clinically, advanced fibrosis cases predominantly
accumulated in Clusters C versus Cluster A and B (Figure 7C). A
gradient expression pattern of core GRGs was observed across the
clusters, which correlated with low (Cluster A), intermediate
(Cluster B), and high (Cluster C) glycolytic levels (Figure 7D). To
functionally characterize the differences among GRG-based
molecular subtypes identified in our analysis, we performed
GSEA comparing the transcriptional profiles of Cluster A and B
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FIGURE 6

Clustering of GSE136103 scRNA-seq data and identification of cell types. (A) UMAP visualization of different group. (B) UMAP visualization of different

cell types. (C) UMAP visualization of core GRGs.

vs Cluster C. The most notably enriched gene sets in Cluster C were
Epithelial-Mesenchymal Transition (EMT), Hypoxia, and TNFA
Signaling via NFKB (p < 0.001) (Figure 7E). ssGSEA was performed
to clarify the characteristics of the three GRG-based molecular
subtypes in the immune microenvironment. The proportions of
activated B cells, activated CD4 T cells, activated CD8 T cells,
central memory CD4 T cells, effector memory CD8 T cells,
eosinophils, mast cells, MDSCs, memory B cells, NK cells, NKT
cells, plasmacytoid dendritic cells, Thl cells, and Th2 cells were
positively correlated with glycolytic levels. In contrast, the
proportions of macrophages and monocytes showed a negative
correlation (Figure 7F).

Utilizing 373 bulk tissue samples as reference, scPAS analysis
identified 3,511 cells associated with Cluster C and 6,791 cells
associated with Clusters A and B (Figure 7G). Notably, Cluster C
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was predominantly enriched with immune cell populations,
including exhausted CD8+ T cells, naive T cells, mast cells, and
plasma cells. Additionally, this cluster contained substantial
contributions from epithelial cells, myofibroblasts and HSCs. In
contrast, Clusters A and B were primarily composed of NK cells,
Kupffer cells, and dendritic cells (Figure 7H).

3.9 Analysis of the core GRGs in HCC

HF poses significant diagnostic challenges and frequently
progresses to malignancy, with many patients presenting at
advanced HCC stages. Analysis of TCGA-LIHC data revealed
elevated expression of SOX9, DCN, GPC3, and B3GNT3 in
tumor tissues versus non-tumor counterparts (Figure 8A).
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Phenotype clustering by the expression of core GRGs. (A) Consensus clusteri

ing on liver fibrosis samples based on the six core GRGs. (B) PCA of the

sample distribution across different phenotypes. (C) Heatmap showing the association between gene expression and different phenotypes plotted.

(D) Expression distinction of core GRGs across different phenotypes. (E) GSEA analysis based on the canonical pathways gene sets. (F) Box plot
showing immune infiltration differences among GRG-based molecular subtypes by ssGSEA. (G) The UMAP visualization of the GRG subtype-calculated
risk scores and the UMAP visualization of the GRG subtype-selected cells. (H) GRG subtype-selected cells with the corresponding bar plots shows the

detailed constitutions in each cell type. *P < 0.05, **P < 0.01, ***P < 0.001.

Notably, survival analysis identified CHST4 (log-rank P = 0.040),
SOX9 (log-rank P = 0.018), and VCAN (log-rank P = 0.037) as
prognostic biomarkers significantly correlated with overall survival
in HCC patients (Figure 8B), implicating these genes as potential
oncogenic drivers during fibrotic malignant transformation.
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3.10 Glycolysis and core GRGs expression
CCls-induced HF mice model

Mice models of HF with varying severity were induced by
intraperitoneal injection of CCl, for 8 or 12 weeks (Figure 9A). The
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Expression and prognostic values of core GRGs in patients with HCC. (A) Expressions of core GRGs in the TCGA-LIHC patients. (B) Overall survival of

HCC patients with high or low expression of core GRGs.

results of HE, Masson and THC staining showed that compared with
the oil controls, the CCl, groups had significantly increased collagen
deposition (Figure 9B). As HF progresses, plasma levels of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST)
increased (Figure 9C). Given that lactate is the end product of
glycolysis, we measured lactate levels in both plasma and liver
tissues of mice. Our results demonstrated a concomitant elevation
in lactate levels with the progression of HF (Figure 9D). ITHC
staining for the core GRGs demonstrated a clear and significant
upregulation of these proteins in fibrotic liver tissues compared to
oil controls (Figure 9E). RT-PCR analyses demonstrated compared
to oil controls, CCly-induced fibrotic mice exhibited significant
elevation of B3gnt3, Chst4, Dcn, Gpc3, Sox9, and Vcan (all
p<0.05) (Figure 9F).
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3.11 Glycolysis and core GRGs expression
in LX-2 cells

Given that HSC activation is a central event in HF, we further
investigated alterations in glycolysis and the expression of core
GRGs during LX-2 cell activation. Following TGF-f stimulation,
LX-2 cells exhibited increased glucose uptake (Figure 10A), reduced
supernatant glucose levels, and elevated lactate production
(Figure 10B). Treatment with the glycolytic inhibitor 2-DG
suppressed LX-2 cell migration (Figure 10C), proliferation
(Figure 10D), glucose consumption and lactate production
(Figure 10E). Finally, we examined the expression of core GRGs
(Figure 10F). TGF-B stimulation significantly upregulated the
expression of B3GNT3,GPC3, and SOX9 (p < 0.05).
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4 Discussion

This investigation established the prognostic relevance of GRGs
in HF progression through integrated analysis of GEO datasets.

Frontiers in Immunology

14

Initial screening prioritized 15 candidate marker genes (B3GNTS3,
CHST4, DCN, GPC3, GPC4, HIF1A, HK1, HKDC1, LDHB,
SLC2A1, SOX9, TFF3, TGFBI, TPBG, and VCAN). Subsequent
validation via six machine learning algorithms consistently
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Glycolysis and core GRGs expression in TGF-B-stimulated LX-2 cells. (A, B) Glycolytic alterations in LX-2 cells after 48-hour stimulation with TGF-3

(10 ng/ml). (A) Representative images of glucose uptake with quantifications; (B) Glucose consumption and lactate production in LX-2 cell supernatants.
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(F) Core GRGs were examined by gPCR. n = 3/group. Data are presented as mean + SD. *p < 0.05; **p < 0.01; ***p < 0.001

identified six core GRGs (B3GNT3, CHST4, DCN, GPC3, SOX9,
and VCAN) as robust predictors of HF progression. Immunological
landscape analysis further uncovered significant correlations
between GRG expression and immune cell infiltration within the
fibrotic microenvironment. These findings were experimentally
confirmed in a CCl-induced murine HF model, where all six
core GRGs demonstrated marked upregulation in fibrotic liver
tissues (P<0.05). Collectively, our results delineate a glycolytic
regulatory axis driving fibrogenesis and provide mechanistic
insights for therapeutic targeting.

Metabolic reprogramming toward enhanced glycolysis represents
a pivotal mechanism in fibrogenesis, facilitating fibroblast activation
and pathological extracellular matrix deposition (33). Our findings
align with prior studies demonstrating SOX9 upregulation in fibrotic
tissues, where it promotes myofibroblast differentiation as a key
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pathological feature of fibrosis (34). Notably, SOX9 modulates
disease progression in various pathologies by regulating glycolysis
(35, 36). Our findings support this, as we observed a significant SOX9
dysregulation in HF, suggesting a crucial role of glycolysis in the
fibrotic process. We additionally identified VCAN as an orchestrator
of fibroblast migration/proliferation and collagen deposition (37).
DCN, a minor chondroitin-dermatan sulfate proteoglycan in normal
liver ECM, becomes progressively upregulated during fibrogenesis
and serves as a structural component in cirrhotic ECM scaffolding
(38). GPC3 is a heparan sulfate proteoglycan. Although its expression
is elevated in HF, numerous studies have demonstrated its utility as a
biomarker for HCC (39, 40). The relationship between
glycosyltransferase B3GNT3 and carbohydrate sulfotransferase
CHST4 in HF remains unreported; however, both enzymes exhibit
upregulated expression in cancers (41, 42). Since elevated glycolytic
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activity is similarly observed in both cancer and HF, the upregulation
of these genes in HF may provide a plausible explanation for this
shared metabolic alteration.

The distinct immune landscapes associated with glycolysis in
liver fibrosis, revealed by bulk and single-cell analyses, reflect
complementary biological processes within the chronic
inflammatory microenvironment. The broad, positive correlation
between glycolytic levels and numerous activated and memory
lymphocyte populations in bulk tissue signifies a systemic state of
immune engagement. This pattern is characteristic of persistent
antigenic stimulation, where adaptive immune cells undergo
activation, clonal expansion, and differentiation (43). The
concurrent rise in myeloid and innate cells like MDSCs and
pDCs further illustrates a coordinated, multi-lineage immune
response (44). Previous studies have demonstrated that glycolytic
signatures, including LDHA, promote the accumulation and
immunosuppressive function of MDSCs. In tumors, glycolytic
metabolism orchestrates a molecular network involving the
AMPK-ULK1 axis, autophagy, and the transcription factor
CEBPB to sustain this MDSC-mediated immunosuppression (45).
Single-cell analysis refines this view by identifying the specific
metabolic states of key cellular players. The high glycolytic flux in
CD8+ exhausted T cells represents a critical adaptation to chronic
activation (46). Similarly, the elevated glycolysis in plasma cells is a
fundamental requirement for their role as antibody factories,
meeting the substantial biosynthetic demands of high-rate protein
secretion (47). The convergence of both datasets on mast cells
confirms their active participation in the glycolytic milieu, likely
fueling their rapid degranulation and cytokine production (48). The
finding that naive T cells also display a glycolytic phenotype
suggests that the inflammatory microenvironment can impose
metabolic reprogramming even on quiescent cells, potentially
priming them for future activation (49).

This study has several limitations. First, the functional
relationship between glycolytic reprogramming and fibrosis
remains primarily correlative in our study. Future work
necessitates genetic perturbation of key GRGs in relevant cell
models to establish direct causality. Second, although we validated
core GRGs in mouse liver, their therapeutic potential remains
unexplored. Subsequent studies will employ liver-specific AAV or
Cre-loxP systems to modulate these genes in both preventive and
therapeutic regimens, with parallel assessment of fibrosis and
glycolytic flux. Finally, transcriptome-based immune infiltration
algorithms require complementary validation via experimental
approaches such as immunohistochemistry and mass cytometry
performed directly on liver tissues.

5 Conclusions

This study holds significant translational potential. Elevated
expression of BAGNT3, CHST4, DCN, GPC3, SOX9, and VCAN
may represent therapeutic targets for HF through modulation of
glycolytic pathways. The glycolysis-derived model robustly
distinguished fibrotic progression stages, enabling early
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identification of high-risk patients and supporting personalized
therapeutic stratification. Collectively, these findings expand the
mechanistic understanding of metabolic dysregulation in fibrosis
and provide actionable insights for clinical intervention.
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