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Identification of glycolysis-
related clusters and immune
cell infiltration in hepatic
fibrosis progression using
machine learning models
and experimental validation
Guanglin Xiao, Zhiling Deng, Ke Qiu, Aoyi Li , Xingyue Yi
and Hong Ren*

Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases,
Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical
University, Chongqing, China
Objectives: Although glycolytic reprogramming constitutes a fundamental driver

of hepatic fibrosis (HF), its precise mechanistic contributions remain

incompletely characterized. This investigation systematically identified

molecular signatures of glycolysis-related genes (GRGs) in HF. We further

developed a glycolytic activity-based model for HF risk stratification.

Methods: Integrated analysis of GEO datasets (GSE276114, GSE84044,

GSE49541) identified differentially expressed genes (DEGs) associated with HF

progression. Integrated weighted gene co-expression network analysis

(WGCNA) with six machine learning algorithms to identify core GRGs genes

associated with HF progression, and systematically characterized their biological

functions and immunoregulatory roles through immune infiltration assessment,

functional enrichment, consensus clustering, and single-cell differential state

analysis. Glycolytic activity was evaluated in CCl4-induced fibrotic mice and TGF-

b-stimulated LX-2 cells. Additionally, the expression of core GRGs was validated

using immunohistochemical staining and RT-qPCR.

Results: Through the intersection ofWGCNA, DEGs, and GRGs, machine learning

identified six core GRGs: B3GNT3, CHST4, DCN, GPC3, SOX9, and VCAN. Based

on the core GRGs, three GRG-basedmolecular subtypes were defined. Cluster C,

with higher expression of the core GRGs, exhibited significantly enhanced

immune infiltration, particularly of adaptive immune cells compared to Cluster

A and B. Cluster C comprised a mixed landscape of T cells, mast cells, and pro-

fibrogenic cells, distinct from the innate immune-dominant profiles of Clusters A

and B. Both in vivo and in vitro analyses demonstrated enhanced glycolysis in

fibrotic progression, accompanied by consistent upregulation of core GRGs.
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Conclusions: Glycolytic reprogramming is a key pathogenic driver in HF

progression and associated immune infiltration. Investigating this metabolic-

immune dysregulation represents a promising therapeutic focus for progression

of HF.
KEYWORDS

glycolytic reprogramming, hepatic fibrosis, WGCNA, machine learning, immune
cell infiltration
1 Introduction

Hepatic fibrosis (HF) initially functions as a self-limiting repair

mechanism, where transient extracellular matrix deposition

preserves tissue integrity during acute injury. This tightly

regulated process becomes detrimental when chronic insults (e.g.,

MASLD) sustain fibrogenic activation, leading to disproportionate

scar accumulation that disrupts hepatic architecture and function

(1). This maladaptive remodeling drives cirrhosis, which accounts

for 2.4% of global mortality and often necessitates liver

transplantation due to vascular distortion and regenerative failure

(2). Despite decades of research, current antifibrotic strategies

remain limited to symptom management rather than targeting

core regulators of progressive matrix deposition.

The Warburg effect, originally described in cancer, denotes a

metabolic shift from oxidative phosphorylation to aerobic

glycolysis. This adaptation allows cancer cells to rapidly generate

biomass and energy to support proliferation. Subsequently, this

metabolic reprogramming has been observed in fibrotic diseases

across multiple organs, including the liver, kidneys, skin, and lungs

(3–6). Hepatic stellate cells (HSCs) located in the space of Disse are

the primary pro-fibrogenic cells in the liver. Upon activation, the

quiescent HSCs transdifferentiate into proliferative, migratory, and

contractile myofibroblasts (7). During HSC activation, key

glycolytic enzymes, including HK2, PFK1, PKM2, GLUT1, and

MCT4, are upregulated, while gluconeogenic enzymes such as

PCK1 and FBP1 are downregulated (8, 9). This metabolic shift

from oxidative phosphorylation to aerobic glycolysis supports the

high energy demands of proliferating HSCs by enabling rapid ATP

generation (10).

Glycolysis underpins the functional capacity of innate immune

cells (such as inflammatory macrophages, DCs, and neutrophils)

and is equally critical for innate-like and adaptive immune cells,

particularly in the acquisition of an IL-17+ phenotype (11).

Macrophage heterogeneity plays a central role in liver fibrogenesis

(12). Resident Kupffer cells, upon activation, initiate and propagate

inflammatory responses during liver injury. The transition of

macrophages toward an inflammatory phenotype is regulated by

metabolic reprogramming of glucose metabolism (13).

Inflammatory macrophages engage glycolysis, the pentose

phosphate pathway, and a TCA cycle configured for citrate
02
production, alongside nitric oxide generation. Conversely, anti-

inflammatory macrophages are dependent on fatty acid oxidation,

oxidative phosphorylation, and the arginase pathway (14). In liver

fibrosis, this metabolic shift is exploited through PKM2 activation,

which augments glycolytic flux and drives macrophage

reprogramming toward a profibrogenic phenotype, as

demonstrated in mouse models (15).

Glycolysis in HF is under intensive study but far from fully

elucidated. HF involves joint action from HSCs, immunocytes, and

hepatocytes. However, glycolysis of HF and its impact on the

infiltration and activation of immune cells has been scarcely

studied. To address this, we combined transcriptomic data from

multiple patient cohorts with comprehensive glycolysis-related

genes (GRGs) sets to identify core GRGs consistently associated

with HF progression. Utilizing machine learning algorithms, we

developed a robust diagnostic model and validated its staging

performance. Furthermore, we performed consensus clustering to

define novel glycolysis-based molecular subtypes and characterized

their distinct immunological profiles. Finally, we experimentally

validated the relevance of core GRGs and glycolytic phenotypes in

vitro and in animal models. Our work thus provides a holistic view

of glycolytic reprogramming in HF, establishing a foundational

resource for future mechanistic and therapeutic exploration.
2 Materials and methods

2.1 Data sources

Transcriptomic profiles and clinical staging data from patients

with HF were obtained from three GEO datasets: GSE276114,

GSE84044, and GSE49541. GSE276114 classified 177 specimens

into histological fibrosis stages: 39 early fibrosis (F0-F2), 24 severe

fibrosis (F3), and 114 cirrhosis (F4) cases (16). GSE84044 provided

Scheuer Score-evaluated data encompassing 43 non-fibrotic livers,

20 stage 1, 33 stage 2, 18 stage 3, and 10 stage 4 fibrosis cases (17).

GSE49541 contained 72 samples grouped as 40 stage 0–1 versus 32

stage 3–4 fibrosis specimens (18). Based on clinical consensus,

stages F0-F2 and F3-F4 were designated mild and advanced

fibrosis respectively. Additionally, 315 GRGs were retrieved from

the MSigDB. The GSE136103 dataset included single-cell
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transcriptome data from 5 healthy patient liver tissue samples and 5

cirrhotic patient liver tissue samples (19).

To validate the generalizability of core GRGs in HF, we

retrieved two independent GEO datasets: GSE130970 and

GSE14323. The GSE130970 cohort comprised 23 healthy controls

and 53 fibrosis patients stratified by disease severity (stage 1: n=28,

stage 2: n=9, stage 3: n=14, stage 4: n=2) (20). GSE14323 provided

transcriptomic profiles from liver specimens of individuals with

cirrhosis attributed to hepatitis C virus (HCV) infection or alcohol

consumption. Liver tissue samples were classified for the analysis as

normal livers (n=19) and HCV cirrhosis (n=41). The characteristics

of the samples are described in the Supplementary Tables 1, 2 (21).

Additionally, gene expression data and corresponding survival

information for hepatocellular carcinoma (HCC) cases were

acquired from the TCGA.
2.2 Data preprocessing and differential
gene expression analysis

The efficacy of batch effect correction was validated through

two-dimensional principal component analysis (PCA) clustering.

Following quality control, we generated a consolidated normalized

gene expression dataset using the “limma” package (22). To

improve the reliability of differentially expressed genes (DEGs),

probe sets for which the adjusted P <0.05, and |log2FC| > 0.5

between mild and advanced fibrosis were defined as

significant DEGs.
2.3 Functional analyses of DEGs and gene
set enrichment analysis

Using the “ClusterProfiler” package (23), we conducted

comprehensive GO and KEGG enrichment analyses. Statistical

significance thresholds were established at a false discovery rate

(FDR) < 0.05, with P-values adjusted via the Benjamini-Hochberg

procedure for multiple test correction.
2.4 Weighted gene co-expression network
analysis

WGCNA was implemented to delineate associations between

gene modules and pathological traits, enabling identification of hub

genes implicated in HF progression. We constructed a similarity

matrix using Pearson correlation coefficients, subsequently

transformed into adjacency and topological overlap matrices

(TOM) through optimized soft-thresholding. Gene clustering was

performed via dynamic tree-cutting algorithms with a minimum

module size threshold of 50 genes. Modules were designated

arbitrary color labels, while module eigengenes (MEs) represented

their transcriptional signatures. We identified GRGs critically

involved in HF pathogenesis by intersecting these candidate genes

with DEGs and pre-defined GRGs.
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2.5 Development and validation of a
diagnostic signature for HF progression
using machine learning algorithms

Six distinct machine learning algorithms—Random Forest (RF),

Support Vector Machine (SVM), Generalized Linear Model (GLM),

Gradient Boosting Machine (GBM), Neural Network (NNET), and

Least Absolute Shrinkage and Selection Operator (LASSO)—were

employed to assess gene significance. Using the “caret” package,

models underwent training with 70% of data (stratified sampling via

createDataPartition) and validation on 30% test sets. Model

robustness was enhanced through 5-fold repeated cross-

validation. Hyperparameter tuning was conducted using the

default tuning grids of the caret package, while feature

importance ranking was performed through a model-agnostic

approach implemented in the “DALEX” package. Core GRGs

were derived from intersecting the top-ranked features across all

algorithms. Building on this, we established a logistic regression

model using the “glm” package. This model subsequently served as

the foundation for constructing a clinical nomogram via the “rms”

package to stratify HF progression. Performance of the prognostic

model was rigorously evaluated through calibration curves, decision

curve analysis (DCA), and receiver operating characteristic

(ROC) curves.
2.6 Gene set enrichment analysis

To elucidate signaling pathway disparities between mild and

advanced fibrosis stages, GSEA was implemented (24). Annotated

gene sets for disease-relevant pathways were curated from the

MsigDB to establish the background reference. Gene sets that

were significantly enriched were pinpointed using consistency

scores (adjusted p value <0.05).
2.7 Gene set variation analysis

Employing an unsupervised, non-parametric methodology,

GSVA quantifies pathway-level perturbations by transforming

gene-centric expression data into functional enrichment scores

(25). This approach characterizes biological activity through

comprehensive scoring of predefined gene sets. For the current

study, we retrieved pathway-specific gene collections from the

MsigDB and computed enrichment profi les using the

GSVA algorithm.
2.8 Consensus clustering analysis and
differences between subtypes

Leveraging expression profiles of hepatic fibrosis-associated

GRGs, we performed molecular subtyping of HF patients through

unsupervised consensus clustering. This analysis was implemented

in R using the “ConsensusClusterPlus” package (26) with the
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following parameters: 1,000 bootstrap iterations to ensure

algorithmic stability, item resampling proportion of 0.8, feature

resampling proportion of 1.0, and the k-means clustering algorithm

as the foundational method.
2.9 Immune cell infiltration analysis

Immune cell infiltration was quantified using both CIBERSORT

and ssGSEA. Spearman correlation analysis assessed relationships

between immune cell proportions and core GRGs expression, while

boxplots visualized infiltration differences of 28 immune cells across

GRG-based subtypes.
2.10 Analysis of scRNA-seq data

Single-cell RNA sequencing data were processed and analyzed

using the “Seurat” package, which facilitated normalization,

dimensionality reduction, clustering, and visualization (27).

Differentially expressed genes across clusters were identified using

the FindAllMarkers function to support cell type classification. Cell

identities were determined through a three-step annotation

workflow: automated cell type prediction was performed with

SingleR, followed by manual verification using well-established

marker genes from literature, and finally validated through the

CellMarker database (28, 29). Single-cell Phenotype-Associated

Subpopulation identifier (scPAS) was applied to quantify the

association between individual cells in scRNA-seq data and GRG-

based molecular subtypes. Differential expression analysis between

high- and low-glycolysis cell subpopulations was performed using

the Wilcoxon rank-sum test via the FindAllMarkers function.

Genes with log2FC > 1 and FDR < 0.05 in high-glycolysis cells

were defined as a positive signature, while those with log2FC < –1

and FDR < 0.05 in low-glycolysis cells comprised the negative

signature. GSVA was then used to compute signature scores for

each sample, with a composite score derived by subtracting the

negative signature score from the positive signature score (30).
2.11 CCl4-induced HF model and
histological analysis

All experimental procedures involving animals were conducted

in compliance with ethical standards approved by the Institutional

Animal Care and Use Committee of Chongqing Medical University

(Approval No. IACUC-SAHCQMU-2025-0116). To establish

fibrosis models, mice received intraperitoneal injections of carbon

tetrachloride (CCl4) dissolved in corn oil (1:4 v/v) at 1 ml/kg body

weight. Administration occurred three times weekly with

differential durations: 8 weeks for mild fibrosis induction and 12

weeks for advanced fibrosis induction. Liver sections underwent

histological evaluation using standardized Hematoxylin and Eosin
Frontiers in Immunology 04
(H&E) and Masson ’s trichrome staining protocols as

described (31).
2.12 Immunohistochemistry

Deparaffinized and rehydrated sections underwent antigen

retrieval in heated citrate buffer. After peroxidase blocking, tissues

were incubated with primary antibody at 4 °C overnight, followed

by a secondary antibody and DAB development using a standard

IHC protocol.
2.13 Cell lines and culture

The human HSC line LX-2 was acquired from Ubigene

Biosciences (China). Cells were maintained at 37 °C under 5%

CO2 atmosphere with saturated humidity. Culture medium

consisted of high-glucose DMEM supplemented with 10% FBS

(ExCell Bio, China) and 1% penicillin/streptomycin.
2.14 EdU staining assay

LX-2 cells were plated in 6-well plates and maintained

overnight. The cells were treated with TGF-b (10 ng/ml,

Sinobiological) and/or the glycolytic inhibitor 2-DG (2mM,

Selleck, USA). EdU incorporation assay was performed with an

EdU assay kit (Beyotime, Shanghai, China), according to the

manufacturer’s instructions (32). Finally, stain the nuclei with

DAPI and observe them using a fluorescence microscope (Nikon,

Tokyo, Japan).
2.15 Cell migration

Cell migratory capacity was quantified using 8-mm pore

Transwell chambers (LABSELECT, China). LX-2 cells were plated

in serum-free medium within the upper compartment, while the

lower chamber contained 10% FBS. Following 24-hour incubation,

traversed cells were fixed with 4% paraformaldehyde and stained

with 0.1% crystal violet (Beyotime, China). Invasive cells were

manually enumerated across five randomly selected microscopic

fields using an inverted fluorescence microscope (Nikon, Japan),

with subsequent image acquisition and quantitative analysis.
2.16 Lactate and glucose measurement

Lactate concentrations in LX-2 cell supernatant, mice serum,

and mice liver tissue were quantified using lactate assay kits (A019-

2-1, Nanjing Jiancheng Bioengineering Institute, China), strictly

adhering to the manufacturer’s protocol. Glucose concentration in
frontiersin.org
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LX-2 cell supernatant was measured using a glucose assay kit

(#S0201S, Beyotime, Shanghai, China).
2.17 2-NBDG glucose uptake

LX-2 cells were plated in 24-well plates and allowed to adhere

overnight. Experimental groups were stimulated with TGF-b (10

ng/ml) for 24 hours. Following treatment, cellular glucose uptake

was measured by incubating cells with 0.5 ml 2-NBDG working

solution at 37 °C for 60 min per manufacturer’s instructions

(Beyotime, China). After removal of supernatant and two PBS

washes, nuclei counterstaining was performed. Fluorescence

microscopy (Nikon, Japan) was employed to quantify

glucose uptake.
2.18 Real-time reverse transcription PCR

Total RNA isolation employed Trizol reagent per

manufacturer’s protocol (Invitrogen, USA). Subsequent cDNA

synthesis utilized a Takara reverse transcription kit (Japan).

Primer sequences are detailed in Supplementary Tables 3, 4.
2.19 Statistical analysis

The Wilcoxon test was utilized to complete the comparative

analysis among the groups. Correlation analyses utilized

Spearman’s rank-order method. All analyses were performed in R

4.4.1 and GraphPad Prism 8.0, with P < 0.05 defining

statistical significance.
3 Results

3.1 DEGs between mild and advanced HF

To establish a robust integrated cohort, the three HF datasets

(GSE276114, GSE84044, and GSE49541) were systematically

combined. PCA revealed distinct clustering patterns among

fibrotic cases both before and after normalization (Figure 1A).

Furthermore, distribution characteristics were assessed using box

plots, which demonstrated improved comparability after batch

adjustment (Figure 1B). Comparative profiling revealed distinct

transcriptional signatures between mild and advanced HF stages,

yielding 517 significantly upregulated and 208 downregulated

DEGs. These differential expression patterns were visualized

through volcano plot and hierarchical clustering heatmap

analyses (Figures 1C, D). Subsequent pathway enrichment

analysis of hepatic fibrosis-associated DEGs identified critical

biological mechanisms. GO analysis demonstrated significant

enrichment (P<0.05) in fibrogenic processes, particularly elastic

fiber assembly, collagen-activated signaling pathway, and complex

of collagen trimers (Figure 1E). Complementary KEGG pathway
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analysis revealed prominent involvement in ECM-receptor

interactions, galactose metabolism, and fructose and mannose

metabolism (Figure 1F). Integrated GO and KEGG analyses

indicate that hepatic fibrogenesis is associated with metabolic

reprogramming in glycometabolism.
3.2 Identification of key genes related to
HF progression using WGCNA

WGCNA identified HF-associated hub genes through

integrated analysis of transcriptomic profiles and clinical

metadata. Sample clustering based on Pearson’s correlation

coefficients revealed distinct patient subgroups (Figure 2A).

Optimization of the scale-free topology model determined a soft

threshold power of 3, which maximized network interconnectivity

while preserving gene similarity (Figure 2B). This approach

delineated 11 co-expression modules, among which the blue

module (976 genes) exhibited the strongest correlation with HF

progression (r = 0.42, P = 3 × 10-17) (Figures 2C, D).
3.3 Glycolysis underscores the core
predictive DEGs in HF progression

Fifteen upregulated GRGs were identified through intersecting

three gene sets: 517 upregulated DEGs, 976 key genes from the

WGCNA module most relevant to HF progression, and 315 known

GRGs (Figure 3A). These genes included B3GNT3, CHST4, DCN,

GPC3, GPC4, HIF1A, HK1, HKDC1, LDHB, SLC2A1, SOX9, TFF3,

TGFBI, TPBG, and VCAN. Heatmap analysis demonstrated

pronounced upregulation of these 15 GRGs in advanced fibrosis

compared to mild fibrosis (Figure 3B). Protein-protein interaction

(PPI) network analysis of the 15 GRGs revealed robust connectivity

among all genes except TPBG, TFF3, CHST4, and B3GNT3, with

the transcription factor SOX9 emerging as a central hub genes

(Figure 3C). Distinct expression patterns between advanced and

mild HF further supported their pathological relevance (Figure 3D).

Functional enrichment analysis via GO highlighted their

association with glycolytic processes (e.g., “lactate metabolic

process”) and fibrotic pathways, including “negative regulation of

mesenchymal cell apoptotic process” (Figure 3E). KEGG pathway

analysis underscored their involvement in critical pathways such as

“Central carbon metabolism in cancer” and “Glycolysis/

Gluconeogenesis” (Figure 3F), suggesting a mechanistic link

between glycolysis dysregulation and fibrotic progression.
3.4 Construction and validation of
diagnostic model by machine learning

A diagnostic model was constructed using six machine learning

algorithms: GBM, RF, GLM, SVM, LASSO, and NNET. Evaluation

of the cumulative residual distribution plots and residual boxplots

revealed that GBM, RF, GLM, SVM, and LASSO exhibited minimal
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FIGURE 1

Merging the database and screening differential expressed genes (DEGs). (A) Principal Component Analysis (PCA) of samples from the three
databases before and after data merging. (B) Sample distribution before and after homogenization of the datasets. (C, D) DEGs were screened using
the limma package under the standard of adj.P.Val<0.05, and |log2FC| > 0.5. Upregulated genes were plotted in red and downregulated genes in
green in a volcano plot (C). The heatmap (D) displays a group of genes differentially expressed in mild and advanced fibrosis. (E) GO annotation of
the DEGs in association with annotated biological process (BP), cellular component (CC), and molecular function (MF). (F) Demonstration of KEGG
enrichment results.
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residuals (Supplementary Figure S1), while all six models

demonstrated robust discriminative performance for clinical

outcomes (AUC > 0.8; Figure 4A). The top ten variables for each

model, ranked by root-mean-square error (RMSE), were visualized

in Figure 4B. To identify core diagnostic biomarkers, we extracted

the intersection of the top ten most influential genes across all

models, yielding six core GRGs: B3GNT3, CHST4, DCN, GPC3,

SOX9, and VCAN. ROC analysis confirmed strong diagnostic

utility for all genes except B3GNT3 (Figure 4C). A nomogram

integrating these six core GRGs was subsequently developed using

the “rms” package to stratify HF risk (Figure 4D). The calibration

curve (Brier: 0.139) and DCA collectively demonstrated the model’s

robust predictive performance (Figures 4E, F).

External validation in the GSE14323 and GSE130970 datasets

confirmed the robust discriminative power of these core GRGs.

Furthermore, subgroup analyses stratified by etiology
Frontiers in Immunology 07
(steatohepatitis and viral hepatitis) consistently demonstrated

their diagnostic efficacy across distinct fibrotic subtypes

(Supplementary Figure S2).
3.5 Immune landscape analysis across HF
progression

Immune infiltration profiling across HF patient samples

characterized the relative abundance of 22 immune cell subtypes,

visualized via stacked bar chart (Figure 5A). In addition, there was a

close interplay between immune cells, with a significant negative

correlation between M1 macrophages and M2 macrophages, and a

strong positive correlation between activated dendritic cells and M2

macrophages (Figure 5B). In patients with advanced HF, the proportion

of memory B cells, naive B cells, activated mast cells, plasma cells, CD4
FIGURE 2

Construction and module analysis of WGCNA. (A) Sample dendrogram and trait heatmap. (B) Network topology analysis under different soft threshold
powers. (C) Clustering Dendrogram, illustrating the hierarchical grouping of genes by topological overlap, with the specified module colors representing
different gene clusters. (D) Correlation analysis for the relationship between different coexpression modules and clinical features.
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memory activated T cells, M0 macrophages, M1 macrophages was

found to be higher than those in mild HF. However, the percentage of

activated dendritic cells, M2 macrophages, monocytes, resting NK cells,

and neutrophils was lower in advanced HF samples (Figure 5C). All of
Frontiers in Immunology 08
the core GRGs had positive correlations with M0 macrophages,

activated mast cells, plasma cells and activated T cells CD4 memory

and negative correlation with M2 macrophages, resting mast cells,

monocytes, resting NK cells and naive T cells CD4 (Figure 5D).
FIGURE 3

Glycolysis of DEGs in mild and advanced fibrotic livers. (A) Venn plot displaying the intersection of upregulated DEGs, WGCNA and glycolysis-related
genes (GRGs). (B) Heatmap displaying the expression patterns of the 15 GRGs. (C) PPI network of 15 overlapping genes. (D) Boxplot displaying the
expression patterns of the 15 GRGs. (E, F) GO annotation and KEGG enrichment analyses of GRGs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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3.6 GSEA and GSVA analysis of core GRGs

GSEA analysis of six core GRGs revealed distinct pathway

enrichments: B3GNT3 was predominantly enriched in integrin

ab-talin-vinculin signaling and translation initiation; CHST4

showed significant enrichment in translation initiation and

aberrant TDP-43-mediated electron transfer in complex I; DCN

primarily enriched Salmonella SopB-ARNO-ARF-G-actin signaling

pathway and ARNO-ARF-G-actin signaling pathway; GPC3 and

SOX9 both activated Shigella IpgD-ARNO-ARF-G-actin signaling
Frontiers in Immunology 09
pathway and ARNO-ARF-G-actin signaling pathway; VCAN was

enriched in PI3K signaling pathway and RAS-PI3K signaling

pathway (Supplementary Figure S3).

GSVA demonstrated that overexpression of all examined genes

(B3GNT3, CHST4, DCN, GPC3, SOX9, and VCAN) consistently

activated the epithelial-mesenchymal transition (EMT) pathway.

Furthermore, angiogenesis was co-activated by CHST4, DCN,

GPC3, SOX9, and VCAN, while hypoxia signaling was shared by

B3GNT3 and CHST4. Notably, distinct pathways exhibited gene-

specific activation: apical junction by B3GNT3, apoptosis by DCN,
FIGURE 4

Construction and validation of diagnostic model by machine learning. (A) The ROC curves for GBM, RF, GLM, SVM, LASSO and NNET models and
their corresponding AUC values. (B) The top ten variables in the RMSE ranking used for evaluating the feature importance of the models (GBM, RF,
GLM, SVM, LASSO and NNET), and the significance contribution of each model to the input features was analyzed. (C) ROC curve and AUC values of
core GRGs (B3GNT3, CHST4, DCN, GPC3, SOX9, and VCAN). (D) A nomogram of six core GRGs. (E) Calibration curve analysis of the prognostic
model. (F) DCA.
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and TNF-a/NF-kB signaling by the GPC3, SOX9, and VCAN

(Supplementary Figure S4).
3.7 Analysis of core GRGs based on the
GSE136103 single-cell dataset

We further explored the expression of the core GRGs in HF

patients through scRNA-seq data. After rigorous quality control

screening, 51,972 high-quality cells were included in the subsequent

analysis. The FindAllMarkers function and the Wilcoxon rank sum

test were used to identify specific gene signatures for each cluster. 17

major cell clusters were identified, including exhausted CD8+ T cells

(CD3D+CD8A+PDCD1+), Naive/central memory CD8+ T cells

(CD3D+CD8A+LEF1+), NK cells (GNLY+NKG7+), B cells

(MZB1+CD79A+), plasma cells (MZB1+CD38+), neutrophils

(S100A8+VCAN+), conventional dendritic cells (CLEC9A+XCR1+),

mast cells (TPSAB1+CPA3+), Liver sinusoidal endothelial cells

(LSEC) (CLEC4G+OIT3+), Kupffer cells (ADGRE1+CD68+),

endothelial cells(CLEC14A+PLVAP+), HSCs (ACTA2+COL1A1+),

innate lymphoid cells (KLRF1+KLRC1+), myofibroblasts (COL1A1

+COL3A1+), and vascular endothelial cells (VWF+ACKR1+),
Frontiers in Immunology 10
epithelial cells (EPCAM+ALB+), proliferating cells (MKI67+),

plasmacytoid dendritic cells (LILRA4+LRRC26+) (Figures 6A, B).

Analysis of the UMAP clustering and expression heatmap showed

prominent expression of B3GNT3, CHST4, and SOX9 in epithelial

cells; DCN and GPC3 in HSCs and myofibroblasts; and VCAN in

neutrophils (Figure 6C).
3.8 Phenotyping power of the core GRGs
in HF

Leveraging core GRG expression profiles, we stratified 373

multi-database samples into three distinct molecular phenotypes

(Figure 7A). PCA validated clear separation among these subtypes

(Figure 7B). Clinically, advanced fibrosis cases predominantly

accumulated in Clusters C versus Cluster A and B (Figure 7C). A

gradient expression pattern of core GRGs was observed across the

clusters, which correlated with low (Cluster A), intermediate

(Cluster B), and high (Cluster C) glycolytic levels (Figure 7D). To

functionally characterize the differences among GRG-based

molecular subtypes identified in our analysis, we performed

GSEA comparing the transcriptional profiles of Cluster A and B
FIGURE 5

Immune infiltration analysis. (A) The bar chart displays immune cell infiltration results of 22 immune cells in each liver fibrosis patients. (B) The
correlation matrix of immune cell proportions. (C) The group comparison chart illustrates differences in the abundance of immune cell infiltration
between Cluster C and Cluster A and B. (D) Correlation analysis of the core GRGs with immune cells. *P < 0.05, **P < 0.01, ***P < 0.001. ns: no
statistically significant (P > 0.05).
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vs Cluster C. The most notably enriched gene sets in Cluster C were

Epithelial-Mesenchymal Transition (EMT), Hypoxia, and TNFA

Signaling via NFKB (p < 0.001) (Figure 7E). ssGSEA was performed

to clarify the characteristics of the three GRG-based molecular

subtypes in the immune microenvironment. The proportions of

activated B cells, activated CD4 T cells, activated CD8 T cells,

central memory CD4 T cells, effector memory CD8 T cells,

eosinophils, mast cells, MDSCs, memory B cells, NK cells, NKT

cells, plasmacytoid dendritic cells, Th1 cells, and Th2 cells were

positively correlated with glycolytic levels. In contrast, the

proportions of macrophages and monocytes showed a negative

correlation (Figure 7F).

Utilizing 373 bulk tissue samples as reference, scPAS analysis

identified 3,511 cells associated with Cluster C and 6,791 cells

associated with Clusters A and B (Figure 7G). Notably, Cluster C
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was predominantly enriched with immune cell populations,

including exhausted CD8+ T cells, naive T cells, mast cells, and

plasma cells. Additionally, this cluster contained substantial

contributions from epithelial cells, myofibroblasts and HSCs. In

contrast, Clusters A and B were primarily composed of NK cells,

Kupffer cells, and dendritic cells (Figure 7H).
3.9 Analysis of the core GRGs in HCC

HF poses significant diagnostic challenges and frequently

progresses to malignancy, with many patients presenting at

advanced HCC stages. Analysis of TCGA-LIHC data revealed

elevated expression of SOX9, DCN, GPC3, and B3GNT3 in

tumor tissues versus non-tumor counterparts (Figure 8A).
FIGURE 6

Clustering of GSE136103 scRNA-seq data and identification of cell types. (A) UMAP visualization of different group. (B) UMAP visualization of different
cell types. (C) UMAP visualization of core GRGs.
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Notably, survival analysis identified CHST4 (log-rank P = 0.040),

SOX9 (log-rank P = 0.018), and VCAN (log-rank P = 0.037) as

prognostic biomarkers significantly correlated with overall survival

in HCC patients (Figure 8B), implicating these genes as potential

oncogenic drivers during fibrotic malignant transformation.
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3.10 Glycolysis and core GRGs expression
CCl4-induced HF mice model

Mice models of HF with varying severity were induced by

intraperitoneal injection of CCl4 for 8 or 12 weeks (Figure 9A). The
FIGURE 7

Phenotype clustering by the expression of core GRGs. (A) Consensus clustering on liver fibrosis samples based on the six core GRGs. (B) PCA of the
sample distribution across different phenotypes. (C) Heatmap showing the association between gene expression and different phenotypes plotted.
(D) Expression distinction of core GRGs across different phenotypes. (E) GSEA analysis based on the canonical pathways gene sets. (F) Box plot
showing immune infiltration differences among GRG-based molecular subtypes by ssGSEA. (G) The UMAP visualization of the GRG subtype-calculated
risk scores and the UMAP visualization of the GRG subtype-selected cells. (H) GRG subtype-selected cells with the corresponding bar plots shows the
detailed constitutions in each cell type. *P < 0.05, **P < 0.01, ***P < 0.001.
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results of HE, Masson and IHC staining showed that compared with

the oil controls, the CCl4 groups had significantly increased collagen

deposition (Figure 9B). As HF progresses, plasma levels of alanine

aminotransferase (ALT) and aspartate aminotransferase (AST)

increased (Figure 9C). Given that lactate is the end product of

glycolysis, we measured lactate levels in both plasma and liver

tissues of mice. Our results demonstrated a concomitant elevation

in lactate levels with the progression of HF (Figure 9D). IHC

staining for the core GRGs demonstrated a clear and significant

upregulation of these proteins in fibrotic liver tissues compared to

oil controls (Figure 9E). RT-PCR analyses demonstrated compared

to oil controls, CCl4-induced fibrotic mice exhibited significant

elevation of B3gnt3, Chst4, Dcn, Gpc3, Sox9, and Vcan (all

p<0.05) (Figure 9F).
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3.11 Glycolysis and core GRGs expression
in LX-2 cells

Given that HSC activation is a central event in HF, we further

investigated alterations in glycolysis and the expression of core

GRGs during LX-2 cell activation. Following TGF-b stimulation,

LX-2 cells exhibited increased glucose uptake (Figure 10A), reduced

supernatant glucose levels, and elevated lactate production

(Figure 10B). Treatment with the glycolytic inhibitor 2-DG

suppressed LX-2 cell migration (Figure 10C), proliferation

(Figure 10D), glucose consumption and lactate production

(Figure 10E). Finally, we examined the expression of core GRGs

(Figure 10F). TGF-b stimulation significantly upregulated the

expression of B3GNT3,GPC3, and SOX9 (p < 0.05).
FIGURE 8

Expression and prognostic values of core GRGs in patients with HCC. (A) Expressions of core GRGs in the TCGA-LIHC patients. (B) Overall survival of
HCC patients with high or low expression of core GRGs.
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4 Discussion

This investigation established the prognostic relevance of GRGs

in HF progression through integrated analysis of GEO datasets.
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Initial screening prioritized 15 candidate marker genes (B3GNT3,

CHST4, DCN, GPC3, GPC4, HIF1A, HK1, HKDC1, LDHB,

SLC2A1, SOX9, TFF3, TGFBI, TPBG, and VCAN). Subsequent

validation via six machine learning algorithms consistently
FIGURE 9

Glycolysis and core GRGs expression in vivo model of liver fibrosis in mice. (A) Scheme of protocol. (B) Paraffin sections were stained with H&E,
Masso’s staining, and anti-a-SMA. (C) Plasma ALT and AST levels. (D) Lactate levels in plasma and liver tissue. (E) Core GRGs were examined by
immunohistochemistry. (F) Core GRGs were examined by qPCR. Mice, n = 3/group. Data are presented as mean ± SD. *p < 0.05; **p < 0.01;
***p < 0.001.
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identified six core GRGs (B3GNT3, CHST4, DCN, GPC3, SOX9,

and VCAN) as robust predictors of HF progression. Immunological

landscape analysis further uncovered significant correlations

between GRG expression and immune cell infiltration within the

fibrotic microenvironment. These findings were experimentally

confirmed in a CCl4-induced murine HF model, where all six

core GRGs demonstrated marked upregulation in fibrotic liver

tissues (P<0.05). Collectively, our results delineate a glycolytic

regulatory axis driving fibrogenesis and provide mechanistic

insights for therapeutic targeting.

Metabolic reprogramming toward enhanced glycolysis represents

a pivotal mechanism in fibrogenesis, facilitating fibroblast activation

and pathological extracellular matrix deposition (33). Our findings

align with prior studies demonstrating SOX9 upregulation in fibrotic

tissues, where it promotes myofibroblast differentiation as a key
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pathological feature of fibrosis (34). Notably, SOX9 modulates

disease progression in various pathologies by regulating glycolysis

(35, 36). Our findings support this, as we observed a significant SOX9

dysregulation in HF, suggesting a crucial role of glycolysis in the

fibrotic process. We additionally identified VCAN as an orchestrator

of fibroblast migration/proliferation and collagen deposition (37).

DCN, a minor chondroitin-dermatan sulfate proteoglycan in normal

liver ECM, becomes progressively upregulated during fibrogenesis

and serves as a structural component in cirrhotic ECM scaffolding

(38). GPC3 is a heparan sulfate proteoglycan. Although its expression

is elevated in HF, numerous studies have demonstrated its utility as a

biomarker for HCC (39, 40). The relationship between

glycosyltransferase B3GNT3 and carbohydrate sulfotransferase

CHST4 in HF remains unreported; however, both enzymes exhibit

upregulated expression in cancers (41, 42). Since elevated glycolytic
FIGURE 10

Glycolysis and core GRGs expression in TGF-b-stimulated LX-2 cells. (A, B) Glycolytic alterations in LX-2 cells after 48-hour stimulation with TGF-b
(10 ng/ml). (A) Representative images of glucose uptake with quantifications; (B) Glucose consumption and lactate production in LX-2 cell supernatants.
(C-E) Effects of the glycolytic inhibitor 2-DG on LX-2 cell proliferation, migration, and glycolysis. (C) Representative images of transwell migration assay
with quantifications; (D) Representative images of EdU assay (proliferation) with quantifications; (E) Glucose consumption and lactate production;
(F) Core GRGs were examined by qPCR. n = 3/group. Data are presented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001.
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activity is similarly observed in both cancer and HF, the upregulation

of these genes in HF may provide a plausible explanation for this

shared metabolic alteration.

The distinct immune landscapes associated with glycolysis in

liver fibrosis, revealed by bulk and single-cell analyses, reflect

complementary biological processes within the chronic

inflammatory microenvironment. The broad, positive correlation

between glycolytic levels and numerous activated and memory

lymphocyte populations in bulk tissue signifies a systemic state of

immune engagement. This pattern is characteristic of persistent

antigenic stimulation, where adaptive immune cells undergo

activation, clonal expansion, and differentiation (43). The

concurrent rise in myeloid and innate cells like MDSCs and

pDCs further illustrates a coordinated, multi-lineage immune

response (44). Previous studies have demonstrated that glycolytic

signatures, including LDHA, promote the accumulation and

immunosuppressive function of MDSCs. In tumors, glycolytic

metabolism orchestrates a molecular network involving the

AMPK-ULK1 axis, autophagy, and the transcription factor

CEBPB to sustain this MDSC-mediated immunosuppression (45).

Single-cell analysis refines this view by identifying the specific

metabolic states of key cellular players. The high glycolytic flux in

CD8+ exhausted T cells represents a critical adaptation to chronic

activation (46). Similarly, the elevated glycolysis in plasma cells is a

fundamental requirement for their role as antibody factories,

meeting the substantial biosynthetic demands of high-rate protein

secretion (47). The convergence of both datasets on mast cells

confirms their active participation in the glycolytic milieu, likely

fueling their rapid degranulation and cytokine production (48). The

finding that naive T cells also display a glycolytic phenotype

suggests that the inflammatory microenvironment can impose

metabolic reprogramming even on quiescent cells, potentially

priming them for future activation (49).

This study has several limitations. First, the functional

relationship between glycolytic reprogramming and fibrosis

remains primarily correlative in our study. Future work

necessitates genetic perturbation of key GRGs in relevant cell

models to establish direct causality. Second, although we validated

core GRGs in mouse liver, their therapeutic potential remains

unexplored. Subsequent studies will employ liver-specific AAV or

Cre-loxP systems to modulate these genes in both preventive and

therapeutic regimens, with parallel assessment of fibrosis and

glycolytic flux. Finally, transcriptome-based immune infiltration

algorithms require complementary validation via experimental

approaches such as immunohistochemistry and mass cytometry

performed directly on liver tissues.
5 Conclusions

This study holds significant translational potential. Elevated

expression of B3GNT3, CHST4, DCN, GPC3, SOX9, and VCAN

may represent therapeutic targets for HF through modulation of

glycolytic pathways. The glycolysis-derived model robustly

distinguished fibrotic progression stages, enabling early
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identification of high-risk patients and supporting personalized

therapeutic stratification. Collectively, these findings expand the

mechanistic understanding of metabolic dysregulation in fibrosis

and provide actionable insights for clinical intervention.
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