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1 Introduction

One of the most unexpected consequences of the COVID-19 pandemic was the

resurgence of numerous bacterial and viral infections in its aftermath. Notably, the

incidence of several infectious diseases in 2022–2023 returned to—or even surpassed—

pre-pandemic levels (1–5). A number of high-income countries with well-developed

healthcare systems, including the United Kingdom, Ireland, the Netherlands, France,

Denmark, Sweden, the United States, Australia, and New Zealand, reported a marked

increase in Streptococcus pyogenes (GAS) infections, particularly scarlet fever and invasive

GAS hospitalizations, compared to pre-COVID-19 levels (6–8).

During the pandemic lockdown, widespread implementation of long-term non-

pharmaceutical interventions (NPIs) led to a dramatic reduction in the incidence of

various infectious diseases (9, 10). This was largely attributed to decreased circulation of

environmental microbiota and pathogens, resulting in reduced natural exposure and a

subsequent decline in population-level immunity (11). This concept—often referred to as

“immunity debt”—is especially relevant to the post-pandemic resurgence of respiratory

viral infections (e.g., RSV and influenza) and GAS infections (12–14). It underscores the

relationship between reduced pathogen exposure and increased population susceptibility

(15, 16). While several mechanisms have been proposed to explain this resurgence, a

comprehensive explanation remains elusive.

A recent comprehensive review by Nygaard et al. in The Lancet explored possible

contributors to the post-pandemic infection surge. Their analysis considered multiple

factors, including antimicrobial resistance, reduced vaccine coverage, emergence of more

virulent pathogen strains, virus–bacteria interactions, and altered immune function due to

limited pathogen exposure. They concluded that the primary driver of the resurgence was

the accumulation of immunity debt, coinciding with the re-emergence of common viral

and bacterial pathogens (5, 10). Importantly, the role of COVID-19 in modulating trained
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immunity has been extensively investigated. However, to date, no

association with upsurge of GAS infections has been

reported (17–23).

It is challenging to formulate a universal explanation for this

phenomenon, given the diversity of the pathogens involved—

ranging from bacterial to viral, vaccine-preventable to non-

vaccine-preventable, and those primarily governed by innate

versus adaptive immunity. Nevertheless, the global lockdown

created an unprecedented natural experiment in which an

estimated four billion individuals experienced prolonged

reduction in pathogen exposure (18). This scale of immunological

isolation may never be replicated again, offering a rare opportunity

to study population-level infectious immunity under such

conditions (24, 25) In this study, we narrowed our focus to the

post-pandemic surge in Group A Streptococcus pyogenes (GAS)

infections. GAS lacks an available vaccine and is primarily

controlled by innate immune mechanisms (26). Furthermore, this

infection provides a unique lens through which it is possible to

examine impaired trained (innate) immunity at the herd level—a

phenomenon we previously described shortly after the COVID-19

pandemic (27).
1.1 S. pyogenes and the immune system: a
model for post-pandemic immunity debt

Group A Streptococcus pyogenes (GAS) is a Gram-positive, beta-

hemolytic bacterium that exclusively infects humans. It causes a

range of diseases, most of which are self-limiting, but some can be

severe or even fatal. GAS typically colonizes the upper respiratory

tract and can evade host defense mechanisms, leading to conditions

such as pharyngitis, pyoderma, scarlet fever, and invasive infections

like necrotizing fasciitis and streptococcal toxic shock syndrome

(STSS) (28–30).

GAS produces several virulence factors, including superantigens

and the M1 protein. Superantigens, encoded by 13 distinct genes,

induce massive T-cell proliferation and cytokine release, potentially

triggering a cytokine storm and leading to sepsis (31). Such fatal

outcomes are often linked to defects in the host’s innate immune

response (15, 32). The M1 protein, another major virulence factor,

prevents immunoglobulins from effectively attacking the pathogen

by inhibiting immunoglobulin-mediated phagocytosis and

enhancing resistance to neutrophil bactericidal activity (33). The

M1 protein is part of the emm family, with over 250 distinct emm

types identified based on variability in the N-terminal region. The

emm1 genotype, particularly the M1UK sub-lineage, first identified

in the United Kingdom in 2019—has been associated with an

increased incidence of scarlet fever and invasive GAS infections in

the 21st century. Importantly, M1UK is strongly linked to an

increase risk of STSS due to elevated superantigens production

and enhanced ability to evade the immune system (14, 34). In

addition, the M1UK lineage may acquire integrative conjugative

elements (ICEs), thereby gaining new characteristics such as

antibiotic resistance (26, 27, 35).
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Notably, during the post-COVID-19 era, there has been a shift

in the distribution of emm types in high-income countries, with

emm1 (especially M1UK) and emm12 emerging as the most

prevalent and virulent strains, capable of evading the immune

system more effectively (36, 37).
1.2 Post-pandemic immunity debt and loss
of trained immunity

Immunity debt, refers to the reduction in pathogen exposure

and subsequent weakening of population immunity during the

COVID-19 pandemic due to widespread non-pharmaceutical

interventions (NPIs) (10). As a result, individuals experienced

diminished levels of immunity typically acquired through regular

exposure to pathogens. Proposed consequences of immunity debt

include reduced antibody levels, a diminished pool of memory B

and T cells, impaired innate defenses, and heightened susceptibility

to infections. Recent reports have shown a decrease in circulating

antibodies to common pathogens like respiratory syncytial virus

(RSV) and GAS (13, 16). However, the impact of immunity debt on

innate immunity, particularly on trained immunity, remains less

well understood (38).

Trained immunity is a relatively new concept that redefines the

role of the innate immune system in pathogen defense (39). Unlike the

adaptive immune system, which develops antigen-specific memory, the

innate immune system can “learn” from previous encounters with

pathogens and enhance its response upon re-exposure. This process is

triggered by interactions between microbiota and the host’s innate

immune system (40). Notably, certain pathogens, vaccines (e.g., the

BCG vaccine), and immune-modulating substances like b-glucans
(derived from yeast species such as Candida and Saccharomyces) are

potent inducers of trained immunity (41–43).

Trained immunity has revolutionized our understanding of

innate immunity’s role in infectious disease defense. It enables a

faster, more robust response to pathogens, preventing their

multiplication and the onset of disease (44). The global reduction

in microbial exposure during the COVID-19 lockdown has led to

widespread depletion of trained immunity, weakening population-

level defenses. As a result, herd trained immunity (HTI) has been

impaired (27).
1.3 Innate immunity and GAS infections

The immune response to GAS infections is predominantly

innate rather than adaptive. Recent studies have highlighted the

role of macrophages and IFN-g in protecting against GAS infection,

with adaptive immune responses playing a lesser role in immediate

defense (45). While adaptive immune responses can generate GAS-

specific antibodies, these are often insufficient for long-term

protection. Recurrent GAS infections do not confer effective,

antigen-specific immunity, suggesting a critical role for the innate

immune system in preventing infection. GAS exposure, however,
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does lead to the development of trained immunity (TI), wherein

innate immune cells develop enhanced, non-specific memory and

stronger responses to subsequent infections (32, 46, 47).

Importantly, TI requires ongoing interaction with the microbiota,

as the lifespan of trained immune cells, such as monocytes, is

relatively short—typically no longer than three months (39, 44). In

conclusion, the transmission and control of GAS infections may be

governed more by population-level trained innate immunity rather

than the generation of antigen-specific memory B and T cells

(38–40). (41–44).
1.4 Herd immunity vs. herd trained
immunity

The concept of herd immunity traditionally refers to the

protection of a population from infectious disease through

widespread acquisition of antigen-specific adaptive immunity,

particularly by memory B and T cells (48). In contrast, herd

trained immunity (HTI) refers to the defense mechanisms

conferred by the innate immune system, which operates through

nonspecific memory and enhanced responsiveness to pathogens.

Unlike adaptive immune memory, trained immunity involves cells

such as monocytes and macrophages that have a much shorter

lifespan—typically weeks to months (40). I have created with the

assistance of AI, the comparison table between classical herd

immunity and my concept of HTI to clarify their impact on

infectious immunity at the populational level (Table 1).
Frontiers in Immunology 03
2 Discussion

The COVID-19 pandemic lockdown created a unique and

unexpected opportunity to investigate infectious immunity

following a prolonged period of reduced exposure to common

pathogens, including Streptococcus pyogenes (GAS). Of particular

note is the sharp post-pandemic surge in GAS infections, with

reported rates exceeding pre-pandemic prevalence by 2–4-fold (1,

2). This atypical rise is believed to be multifactorial, involving both

host and pathogen-related factors, as postulated by previous studies.

Key contributing elements include: i) emergence or resurgence

of virulent GAS strains, notably the emm1 lineage (M1UK) (36). In

Europe, early evidence indicated a predominance of the highly

virulent M1UK variant; however, no corresponding increase in

antibiotic resistance was observed (12, 49); ii) an expanded reservoir

of asymptomatic GAS carriers, potentially increasing community

transmission (8); iii) a rise in respiratory viral infections (e.g., RSV,

influenza), which may predispose individuals to secondary bacterial

infections, though these alone cannot fully explain the observed

GAS increase (3); iv) immunity debt, a phenomenon characterized

by reduced innate and adaptive immune preparedness due to

decreased pathogen exposure during prolonged lockdown

periods (38).

While each of these factors likely contributed to the unique

epidemiological pattern observed, immunity debt—particularly its

impact on trained innate immunity—appears to be the dominant

driver. Trained immunity refers to a form of innate immune

memory that enhances the host’s nonspecific defense mechanisms

after repeated microbial encounters (31). At the population level,

this concept extends to what has been termed Herd Trained

Immunity (HTI), which complements classical antigen-specific

herd immunity mediated by B and T cells. HTI may play a

crucial role in preventing the spread of infections such as invasive

GAS (iGAS) (27).

Importantly, the global pandemic restrictions have underscored

the importance of HTI, a phenomenon that had not been widely

recognized until now. While adaptive immune memory can persist

for years, trained immunity offers a rapid, short-term defense that is

crucial in controlling infections, especially in the absence of

vaccine-induced immunity (45). The lockdown-induced reduction

in pathogen exposure has thus exposed a critical vulnerability in our

immune system—one that was previously underestimated. Impact

of the long-term pandemic lockdown on overthrow of Herd

Trained Immunity (HTI) is explained in Table 2.

Moreover, the post-pandemic resurgence of infections

highlights the critical role of continual immune stimulation by

environmental microbes in maintaining immune readiness. Social

distancing and other NPIs, while essential in controlling SARS-

CoV-2 transmission, inadvertently disrupted this natural immune

training. Notably, trained immunity has a limited duration—

estimated at around three months —suggesting that extended

lockdowns led to the population-wide waning of innate immune

protection acquired pre-pandemically (14, 23). The timeline of GAS

infections in England (2019-2024), aligned with the implementation
TABLE 1 Comparison of Classical Herd Immunity and Herd Trained
Immunity (HTI).

Feature
Classical herd
immunity

Herd trained immunity
(HTI)

Underlying
mechanism

Adaptive immune
responses (pathogen-
specific antibodies and
memory T/B cells)

Innate immune system
reprogramming (“trained
immunity”) via epigenetic and
metabolic changes

Specificity
Pathogen-specific, often
strain-dependent

Broad, non-specific protection
against diverse pathogens

Induction
Achieved through
vaccination or natural
infection

Achieved through repeated microbial
exposure and environmental stimuli
(e.g., commensal microbiota,
vaccines with off-target effects)

Threshold
concept

Requires a critical
proportion of immune
individuals to block
transmission (R₀
dependent)

No fixed threshold; dependent on
intensity and continuity of microbial
stimulation across the population

Population
effect

Reduces transmission of
a specific pathogen,
indirectly protecting
non-immune individuals

Enhances baseline resistance to
infections at the population level,
potentially reducing severity and
incidence of diverse pathogens

Durability

Long-lasting if immune
memory is stable and
pathogen evolution
limited

Transient; may wane without
sustained microbial exposure
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and relaxation of NPIs, further supports the hypothesis of impaired

HTI during this period (Figure 1).

Crucially, the decline in GAS incidence observed in some

countries during 2024–2025 provides compelling evidence for this

hypothesis (49). This decline likely reflects the re-establishment of
Frontiers in Immunology 04
innate immune memory across populations through renewed

microbial exposure, thereby restoring HTI (50). However, the

pace of recovery of innate immunity varies between countries and

depends on both the duration of lockdowns and the degree of

compliance during the epidemic. In my opinion, the global
TABLE 2 Impact of the long-term pandemic lockdown on overthrow of Herd Trained Immunity (HTI).
FIGURE 1

Timeline of S. pyogenes infections (2019–2024) and their relationship with the COVID-19 NPIs (reduced exposure to environmental microbiota
2020-2022), temporary suspension of routine vaccinations (2020), presence of pre-pandemic B and T memory cells (2019-2024), decline of
population antibody levels (2021-2023), gap of trained immunity (2020-2022), disappearance (2020-2022) and re-creating of HTI (2022-2024).
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incidence of GAS infections may return to pre-pandemic levels

within two years. Nevertheless, strong evidence indicates that the

incidence of extremely severe iGAS infections, such as STSS, has

returned to pre-pandemic levels. For example, in Poland the

reported number of STSS cases was 19–20 in the pre-pandemic

years (2018-2019), decreased to 2 cases during the lockdown year

(2020), surged to 100 cases in the post-pandemic period (2023), and

declined to 15 cases in the current year (01.01-31.08.2025) (51, 52).
3 Conclusion

The COVID-19 pandemic lockdown has underscored the essential

role of regular microbial exposure in sustaining immune competence.

The post-pandemic surge in infections such as iGAS illustrates the

impact of immunity debt—particularly innate immunity debt—

resulting from prolonged NPIs. The emerging concept of HTI

provides novel insights into the interplay between innate and adaptive

immune responses and offers a new framework for understanding and

managing infectious disease risks in the context of public health

interventions. By acknowledging HTI, we can better inform future

strategies for epidemic preparedness and immune system resilience.

Finally, this hypothesis, which associates impaired Herd Trained

Immunity (HTI) with the post-pandemic resurgence of GAS

infections, does not exclude the contribution of additional factors or

triggers. Notably, it indicates for the first time, that population-level of

trained innate immunity exists and may be compromised by prolonged

reduced contact with microbiota. However, it should be confirmed in

the future by retrospective epidemiological studies covering pre- and

post-pandemic few years. Nevertheless, the observed association

between COVID-19 lockdown and impaired HTI suggests that

future pandemic response strategies should, in addition to

widespread vaccination, carefully balance the extent of lockdown

measures with the preservation of HTI.
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