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Introduction: Gastric cancer (GC) is a highly heterogeneous malignancy with

poor prognosis, underscoring the urgent need for reliable biomarkers to guide

precise stratification and therapy. Transfer RNA-derived small RNAs (tsRNAs)

have emerged as potential key regulators in cancer, yet their systematic role in

defining GC subtypes remains unexplored.

Methods: We profiled tsRNA expression in GC using transcriptomic data from

TCGA and GEO databases. Unsupervised consensus clustering identified tsRNA-

based subtypes. A prognostic model was constructed using machine learning

algorithms and validated across multiple cohorts. The functional role of a key

tsRNA, tsRNA-Asp-3-0024, was investigated through Pandora-seq, qRT-PCR,

and in vitro and organoid-based assays.

Results: Three distinct tsRNA-mediated subtypes (Stromal_H, Stromal_L,

Stromal_M) were identified, exhibiting significant differences in stromal activity,

tumor microenvironment, and clinical outcomes. The Stromal_H subtype

demonstrated the poorest prognosis, characterized by an immunosuppressive

microenvironment and dysregulated DNA repair pathways. A random survival

forest (RSF)-based prognostic signature (GCtsRNAscore) effectively stratified

patients into high- and low-risk groups, with high-risk patients showing

increased sensitivity to targeted therapies (axitinib, bexarotene, dasatinib) and

low-risk patients benefiting more from immunotherapy. Furthermore, tsRNA-
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Asp-3-0024 was significantly upregulated in GC tissues and cell lines, where it

promoted proliferation and inhibited apoptosis.

Discussion: Our study establishes tsRNAs as powerful biomarkers for molecular

subtyping and prognostic prediction in GC. The tsRNA-defined subtypes and

GCtsRNAscore model provide a novel framework for personalized treatment

strategies. The functional characterization of tsRNA-Asp-3-0024 highlights its

potential as both a therapeutic target and a prognostic indicator, paving the way

for tsRNA-based precision medicine in GC.
KEYWORDS

gastric cancer, tsRNA subtype, machine learning, prognostic model, organoid
GRAPHICAL ABSTRACT
1 Introduction

Gastric cancer (GC) remains a significant global health

challenge, ranking among the most common malignancies and

accounting for over 780,000 deaths annually (1). Incidence rates are

notably higher in men than women, and there is a concerning

increase in younger patients, likely related to changes in lifestyle and

environmental exposure (2). The persistently high mortality rate is

mainly due to late-stage diagnosis and metastasis, which limit

therapeutic options and result in poor prognosis (3).
02
Current diagnostic practices, such as upper gastrointestinal

endoscopy, are invasive and heavily dependent on operator

expertise, leading to discomfort and variable patient detection

ra tes (4 , 5) . Common serum biomarkers , inc luding

carcinoembryonic antigen (CEA), carbohydrate antigen 19-9

(CA19-9), and CA72-4, demonstrate limited sensitivity and

specificity for GC detection (6). Despite advances in

immunotherapy and targeted treatments, including trastuzumab,

ramucirumab, and immune checkpoint inhibitors, clinical

responses vary, and many patients fail to benefit from these
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approaches (7, 8). Despite the remarkable progress achieved

through immunization and targeted therapies in treating gastric

cancer, individual responses to these approaches can be variable.

Therefore, identifying new therapeutic targets and novel

biomarkers for early screening is crucial to enhancing the

prognosis of patients with gastric cancer.

Noncoding RNAs (ncRNAs) have emerged as important

regulators in cancer biology and are actively being explored for

their diagnostic and prognostic potential (6). Among these, transfer

RNA-derived small RNAs (tsRNAs) are a class of noncoding RNAs

produced from precursor or mature tRNAs under various cellular

stress conditions (9–12). TsRNAs-including tRNA halves (tiRNAs)

and tRNA-derived fragments (tRFs)-have been implicated in gene

regulation, mRNA stability, translation, and epigenetic modulation

(13–19). Many tsRNAs are stable and detectable in biological fluids,

supporting their potential as non-invasive biomarkers (20, 21).

Emerging evidence reveals that select tRNA-derived fragments

(tRFs/tiRNAs) exhibit dysregulation in stress responses and

oncogenesis (22). Their remarkable stability in circulation,

particularly within blood-derived extracellular vesicles [e.g.,

MCF7 breast cancer models (23)], establishes them as potent

signaling molecules with biomarker potential. Mounting clinical

evidence demonstrates aberrant tRF expression across malignancies

(24). Critically, their detectability in biofluids and functional

implications position them as non-invasive diagnostic indicators.

For instance, diminished tiRNA-5034-GluTTC-2 expression

predicts accelerated progression in gastric cancer patients,

supporting its utility as a prognostic biomarker (25). Given the

conserved prevalence of tRFs in biological systems (26), these

molecules represent promising translational targets for enhancing

GC outcomes through early detection and precision intervention.

PANDORA-seq (27) revolutionized small RNA profiling by

uncovering a vast repertoire of post-transcriptionally modified

sncRNAs, predominantly tRNA-derived (tsRNA) and rRNA-derived

(rsRNA) fragments. Previously obscured in conventional sequencing,

these sncRNAs exhibit striking tissue-specific expression across murine

organs (brain, liver, spleen, sperm) and cell-type-specific dynamics in

embryonic stem cells (ESCs) versus HeLa cells. This technological

advance provides the foundation for identifying clinically actionable

sncRNA biomarkers in human cancers.

These challenges underscore the urgent need for novel biomarkers

to improve early detection, prognostic stratification, and personalized

therapy in gastric cancer. To address these gaps, this study aims to

systematically characterize tsRNA profiles through integrated multi-

omics approaches and experimental validation.
2 Materials and methods

2.1 Single-cell RNA sequencing data

The scRNA-seq dataset (GSE167297), derived from five gastric

cancer samples, was processed and analyzed using the Seurat package.

To ensure quality, cells were retained only if they contained between

300 and 10,000 transcripts, expressed genes detected in at least three
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cells, and exhibited mitochondrial read percentages below 5%. All cells

were grouped by applying a clustering resolution parameter of 0.5.

Major cell types were identified based on established reference markers

from literature or the CellMarker database.
2.2 Genomic mutation analysis

Somatic mutation data were retrieved from the TCGA database.

Significant mutated genes were detected using the “maftools” R

package. We retrieved the mutational signature of liver cancer

patients and compared them with the mutation database

(COSMIC V2) using the cosine similarity method (https://

cancer.sanger.ac.uk/cosmic/).
2.3 Geneset variation analysis

To examine biological pathway disparities among tsRNA

subtypes, we used Gene Set Variation Analysis (GSVA) to

leverage the eponymous R package. This non-parametric,

unsupervised approach is widely adopted for assessing pathway

activity variation and biological process alterations within

expression datasets (28). “Hallmark gene sets” were retrieved

from the MSigDB database for the analysis. A threshold of P <

0.05 defined statistical significance.
2.4 Immunophenoscore

We employed Immunophenoscore (IPS), a superior molecular

marker for immune response, to characterize intratumoral immune

landscapes and cancer antigenomes. This scoring system integrates

features derived from four immune-related gene clusters: major

histocompatibility complex (MHC) molecules, immunomodulators/

checkpoints, effector cells, and suppressor cells. Elevated IPS values

correlate with enhanced immunotherapeutic efficacy (29).
2.5 Tumor mutational burden and
microsatellite instability status

The data on TMB were obtained from a previous study (30).

Microsatellite instability (MSI) status was stratified into three

categories: microsatellite stable (MSS), MSI-low (MSI-L; one unstable

marker), and MSI-high (MSI-H; >2 unstable markers). Corresponding

classification data were sourced from the UCSC Xena database.
2.6 Copy number variation

We assessed copy number variation (CNV) within tsRNA

genomic regions. Significant CNV segments (alteration frequency

> 0.3) in gastric cancer (GC) were further identified. Visualization

of subtype-specific CNV patterns was achieved using the
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ComplexHeatmap R package: a waterfall plot illustrated significant

CNV segments across three tsRNA subtypes, while a heatmap

depicted corresponding alteration frequencies.
2.7 Data collection and preprocessing

The study workflow is shown in Supplementary Figure S1. This

study employed publicly available gene expression data from TCGA

and the Gene Expression Omnibus (GEO) database. Corresponding

clinical data of TCGA gastric cancer were extracted from the UCSC

Xena web data resource (https://xenabrowser.net/datapages/). For

further evaluation, patients who did not have survival information

available were excluded from the analysis. Utilizing TCGA data

(https://portal.gdc.cancer.gov/), we calculated fragments per

kilobase per million (FPKM) values. These FPKM metrics,

sourced from the TCGA program, were converted to transcripts

per kilobase million (TPM). For microarray datasets from

Affymetrix® in the GEO database, raw “CEL” files were acquired

and preprocessed via R’s affy package, implementing robust

multiarray averaging normalization. Normalized matrix files from

other GEO platforms were directly retrieved. RNA-seq cohort data

were processed using the GENCODE v22 resource (http://

www.gencodegenes.org/). Five gastric cancer cohorts met the

inclusion criteria: GSE13861 (N = 64), GSE15459 (N = 192),

GSE26901 (N = 109), GSE34942 (N = 56), and TCGA-STAD (N

= 349). TCGA and GEO mRNA expression datasets underwent

independent normalization. Somatic mutation profiles originated

from UCSC Xena, while gastric cancer copy number alterations

were der ived f rom Broad GDAC Firehouse (ht tp : / /

gdac.broadinstitute.org/). tsRNA expression matrices and

metadata were obtained from the tsRFun database (27).
2.8 Consensus cluster of GC-specific
tsRNAs

TsRNAs detected in at least 70% of the samples with a mean

RPM value >1 were used for data analysis. Subsequently, we

establish the designation of gastric cancer-specific tsRNAs by

identifying tsRNAs that exhibit differential expression patterns

between cancer and para-cancer. To delineate heterogeneous

patterns in tsRNA transcriptional regulation, we performed

unsupervised consensus clustering based on expression profiles of

80 gastric cancer (GC)-specific tsRNAs. This algorithm

simultaneously quantified optimal cluster quantity and partition

stability, thus establishing molecular subtypes for downstream

analysis. For the steps mentioned above, we utilized the

ConsensusClusterPlus package, which facilitated the execution of

the consensus clustering analysis. To ensure robustness and stability

in the classification, we performed 100 repetitions, allowing for a

comprehensive assessment of the cluster assignments and

enhancing the results’ reliability.
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2.9 Estimation of TME cell infiltration
between tsRNA subtypes

The relative abundance of each cell infiltration in the GC TME

was determined using the single-sample gene set enrichment

analysis (ssGSEA) algorithm. A previous study identified

biomarker genes specific to 28 types of immune cells. Among the

28 immune cell subtypes are MDSCs, activated dendritic cells,

macrophages, natural killer T cells, and regulatory T cells (29,

31). Using ssGSEA enrichment scores, we could estimate the

relative abundance of each TME-infiltrating cell within each

sample. ESTIMATER was used to calculate the Stromal Score in

this study. A Stromal Score was calculated based on the TPM values

obtained from RNA-seq data. This score was used to stratify tsRNA

clusters further.
2.10 Multiple machine learning algorithms
were utilized to construct tsRNA-related
prognostic model

A scoring system was developed for each patient to determine

the regulatory extent of tsRNAs expressed within their tumors. The

term “tsRNA score” (RS) was assigned as the name for this specific

tsRNA signature. The following are the steps taken to establish the

tsRNA signature:

Prognostic associations of tsRNA-related genes were

determined via univariate Cox regression. Subsequent machine

learning analyses exclusively incorporated genes demonstrating

statistical significance (P < 0.005). We utilized a total of 74

combinations of machine-learning algorithms to develop a

prognostic model, incorporating ten specific algorithms: Lasso,

Enet, plsRcox, CoxBoost, StepCox, GBM, Ridge, RSF, survival-

SVM, and SuperPC. To ensure model robustness and mitigate

overfitting, the training process employed 10-fold cross-validation

repeated 5 times for hyperparameter optimization. Model

performance was evaluated using the concordance index (C-

index). Each of these algorithms can calculate the RS score in GC

patients. Employing the R survminer package, patients underwent

stratification into high- and low-recurrence score (RS) groups based

on optimal cutoff values. The Kaplan-Meier method evaluated both

high- and low-RS patients for overall survival (OS). This study

indicated statistical significance at P < 0.05 using the Log-rank test.
2.11 Predict chemotherapeutic response

We employed the R package “pRRophetic” (32) to forecast

chemotherapeutic response in gastric cancer (GC) patients. Sample

half-maximal inhibitory concentration (IC50) values were derived

via ridge regression, with prediction accuracy evaluated through 10-

fold cross-validation on the GDSC training set (33).
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2.12 Pandora sequencing

In order to analyze the differential expression of tsRNA in

cancerous and adjacent non-cancerous tissues, Pandora sequencing

(Panoramic RNA Display by Overcoming RNA modification

Aborted sequencing)was performed according to previous

methods (27, 34) on tissue samples obtained from three patients

diagnosed with gastric cancer. The study included three cancer

tissues and three adjacent non-cancerous tissues.
2.13 Clinical samples and cell lines

The Institutional Review Board of Tianjin Medical University

Cancer Institute and Hospital granted ethical approval for this

investigation. Clinical gastric cancer specimens were procured from

surgical resections conducted within the Department of

Gastrointestinal Oncology at the aforementioned institution.

Human gastric cancer cell lines HGC-27, AGS, MKN45, and

normal human gastric mucosa cells GES were obtained from the

Chinese Academy of Biological Sciences (Shanghai) cell bank. SGC-

7901 cell lines were purchased from GENECHEM. All five cell lines

were cultured in RPMI 1640 medium with 10% fetal bovine serum

at 37°C with 5% CO2 in proper humidity. Authentication via short

tandem repeat (STR) profiling confirmed cellular identity, and

comprehensive mycoplasma screening yielded negative results

across all lines.
2.14 Organoid construction and
characterization

Fresh tissues of human gastric cancer and adjacent normal

tissues were obtained by surgical excision of the specimens. Gastric

cancer tissues were rinsed with antibiotic-containing PBS, then the

fresh tissues were minced with scissors, placed in a 15-cm centrifuge

tube containing tissue digestive solution, and digested at 37°C for

10–30 min. A portion of the digestive solution containing the tissues

was aspirated at any time during the digestion process for

observation under a microscope, and the digestion process was

terminated when the majority of the digested tissues were found to

be cellular agglomerates. The digested tissue fragments were filtered

through a 70 mm filter, and the filtrate was collected and centrifuged

at 4°C for 5 min at 250 g. If the precipitate was red blood cells, 2 ml

of lysate was added for lysis. After centrifugation, the precipitate

was washed twice and transferred to a 1.5 ml centrifuge tube. The

cell precipitate was collected and resuspended with organoid-

specific matrix gel(CORNING, USA), and the cell-matrix gel

mixture was quickly spread on a pre-warmed 24-well plate. The

24-well plates were placed in the incubator and left to stand for 30

minutes until the matrix gel formed a soft gel, and then covered

with an organoid complete medium. Twenty-four hours later, the

organoids could be observed under the microscope in clusters. The
Frontiers in Immunology 05
organoid complete medium was replaced with fresh organoid

complete medium every three days, and passaging could be

carried out in about 15 days. When the size of the organoids

averaged 200 mm, the organoids in the well plates could be

collected and fixed with 4% paraformaldehyde and embedded for

HE staining to compare with the pathological results of the

patient’s source.
2.15 RNA isolation and quantitative RT-PCR

Total RNA isolation from cellular and tissue specimens

employed Trizol reagent (Thermo Fisher, USA). All samples

exhibited OD 260/280 ratios of 1.8-2.0 before storage at -80°C in

RNase-free water. RNA integrity and concentration were quantified

via NanoDrop 2000 spectrophotometry (Thermo Fisher). For

tsRNA-Asp-3–0024 analysis, reverse transcription utilized Bulge-

Loop miRNA qRT-PCR Starter Kit (Ribobio, China) with gene-

specific stem-loop primers under RT reaction conditions of 42°C

for 60 min and 70°C for 10 min. Then, the samples were analyzed

with the SYBR Premix Ex Taq (Takara) for qPCR. After adding

forward and reverse primers, the reaction was incubated at 95°C for

10 min, 95°C for 10 s, 60°C for 20 s, 70°C for 10 s, and cycling for 40

times. TsRNA expression normalization referenced U6 snRNA,

employing Ruibo Biotechnology-designed primers (Guangzhou).
2.16 Cell and organoid transfection

For cell transfection, cells were inoculated into petri dishes

overnight before transfection. Synthetic stranded inhibitor (tsRNA-

Asp-3–0024 inhibitor, 50nM) was purchased from Reebok

Biotechnology Ltd. RNA oligonucleotides were transiently

transfected with RNAiMAX transfection reagent (Thermo

Scientific Dharmacon Inc, USA). For organoid transfection, the

organoids were digested with tissue digest at 37°C for 10–30 min

centrifuged. The precipitates were washed twice and resuspended in

1.5 ml centrifuge tubes. The transfection complexes were incubated

in the organoid suspension for 4 h. Upon completion of the

incubation, the cellular precipitates were collected by

centrifugation and resuspended with organoid-specific matrix gel,

and the cell-matrix gel mixture was rapidly spread in pre-warmed

24-plate and 96-well plates. 96-well plates. The 24- and 96-well

plates were placed in an incubator for 30 min until the matrix gel

formed a soft gel, and the organoids were covered with complete

medium mixed with transfection complexes, respectively. After

12 h, 24 h, 48 h, 72 h, and 96 h of incubation, the growth status

was recorded by microscopic photographs. The viability of the

organoids was detected, and growth curves were plotted using the

3D Cell Viability Assay Kit (Vazyme, Nanjing), and the absorbance

of the medium plus the assay reagent at the time of organoids was

used as a background control. Experiments were performed

in triplicate.
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2.17 Cell proliferation, colony formation,
and apoptosis assays

Cell proliferative activity was assessed with Cell Counting Kit 8

(CCK8; KeyGEN BioTECH, Jiangsu) per manufacturer’s protocol.

HGC-27 or AGS cells (1,500 cells/well) were seeded in 96-well

plates. Following 12-72h culture intervals, cultures were

supplemented with 10ml CCK-8 solution and underwent 2h

incubation at 37°C. Optical density at 450nm was quantified via a

microplate reader, using cell-free medium/CCK-8 mixtures as

background controls. All assays incorporated technical triplicates.

Following 48-hour inhibitor transfection, cells were subjected to

colony formation assays by seeding in 6-well plates (1×10³ cells/

well) with 8–10 day incubation. Subsequent processing involved

fixation in 4% paraformaldehyde and 0.1% crystal violet staining.

Using representative images, the relative colony-forming capacity

was quantified through ImageJ analysis (NIH, USA).

For the cell apoptosis assay, the transfected cells (8 × 10^5 cells

per well) were evenly spread into six-well plates for culture. After

the cells were attached to the wall, a line was drawn in the six-well

plate with the same strength of the pipette tip of 10 mL, and the

degree of healing was observed and photographed under the

microscope at 0h, 24h, and 48h after the drawing of the line,

respectively. The wound healing percentage was calculated as

(wound width at 0 h − wound width at 24 h)/wound width at 0 h.

The cell apoptosis assay was performed by using an Annexin V-

fluorescein isothiocyanate (FITC) Apoptosis Detection Kit I (BD

Biosciences, USA). Seed the cells to be tested into a 6-well plate or

culture dish and culture until the logarithmic growth phase. Remove the

culture medium and gently wash the cells twice with pre-chilled PBS.

Add an appropriate amount of trypsin (without EDTA) to digest the

cells, and once the cells have rounded up, add complete culturemedium

to terminate digestion. Subject the cell suspension to centrifugation

(1000 rpm, 5 min) with subsequent supernatant removal. Resuspend

the pellet in ice-cold PBS, perform two sequential washes under

identical centrifugation parameters, then reconstitute cells in 1×

Binding Buffer at 1×106 cells/mL. Aliquot 100 mL suspension into

flow cytometry tubes, introduce 5 mL Annexin V-FITC with gentle

vortexing, and incubate protected from light (RT, 15min); subsequently

add 5 mL PI with mixing followed by dark incubation (RT, 5 min). Add

400 mL of 1× Binding Buffer to terminate staining, gently mix, and

immediately analyze on the instrument. For organoid transfection,

digest the organoids with tissue digestion solution at 37°C for 45

minutes to dissociate cell clusters into single cells. Subject the single-

cell suspension to centrifugation (500g, 5 min) with supernatant

removal. Resuspend the pellet in 4°C-chilled PBS, followed by two

sequential washes under identical centrifugation parameters. The

procedure was identical to that used for cell handling.
2.18 Statistical analysis

Statistical analyses were performed using R v4.1.1 (freely accessible

at https://www.r-project.org) and SPSS 22.0 (IBM, USA) with

GraphPad Prism 9.0. Intergroup comparisons utilized: Kruskal-
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Wallis test for ≥3 groups; Student’s t-test or Mann-Whitney U-test

for two groups. Survival prognoses incorporated Kaplan-Meier

curves with Log-rank testing (significance threshold P < 0.05).

Optimal expression-based patient stratification was achieved via

survminer-derived cutoff values. Continuous data represent mean ±

SD from ≥3 independent experiments. Statistical significance

was defined as *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

(ns: non-significant), applying two-tailed testing throughout.
3 Result

3.1 Identification of tsRNA-mediated
gastric cancer subtypes

We extracted expression profiles of 80 GC-specific tsRNAs

from the tsRFun database (Supplementary Table S1). Consensus

clustering analysis was performed on 349 TCGA GC samples with

complete survival information. Cumulative distribution function

(CDF) curves indicated optimal stability at k = 2 clusters

(Figures 1A, B). Accordingly, GC samples were stratified into two

primary tsRNA-based clusters: tsRNA-cluster 1 (n = 214) and

tsRNA-cluster 2 (n = 135). A heatmap visualizes the overall

tsRNA expression patterns across these clusters (Figure 1C).

Single-sample gene set enrichment analysis (ssGSEA) of immune

cell infiltration revealed distinct patterns within tsRNA-cluster 1,

suggestive of both “hot” and “cold” tumor immune phenotypes

(Figure 1D). Given the critical contribution of stromal cells to

tumor immune evasion (35), we further investigated the molecular

heterogeneity within tsRNA-cluster 1 by analyzing stromal

activation scores derived from gene expression profiles. Among

the 214 patients in tsRNA-cluster 1, 96 (45%) exhibited high

stromal scores, while 118 (55%) had low stromal scores (Figure 1E).

This refined analysis delineated three distinct GC subtypes

based on the integration of tsRNA expression and stromal activity:
1. Stromal_H: High-stromal score group derived from

tsRNA-cluster 1 (n = 96, 45%).

2. Stromal_L: Low-stromal score group derived from tsRNA-

cluster 1 (n = 118, 55%).

3. Stromal_M: Representative of tsRNA-cluster 2 (n =

135) (Figure 1F).
Survival analysis demonstrated significant overall survival (OS)

differences among these subtypes (log-rank P = 0.019). Patients

with the Stromal_H subtype exhibited the poorest prognosis, while

those with the Stromal_L subtype had the most favorable outcomes

(Figure 1G). Multivariate Cox regression analysis results confirmed

the tsRNA-mediated stromal subtype as an independent prognostic

factor (P = 0.01414) (Figure 1H). Meanwhile, we employed the

random forest algorithm to map the subtypes and calculated the

classification results in two additional datasets. Kaplan-Meier (K-

M) analysis was then performed, and the results showed that in

GSE15459 (P = 0.018) and GSE84437 (P = 0.0079), the p-values for

the three subtypes were all less than 0.05. Moreover, the prognostic
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order was consistent across these datasets, with Stromal_H having

the worst prognosis, followed by Stromal_M, and Stromal_L having

the best prognosis (Supplementary Figure S2A, B).

We have performed a comparative analysis of our subtypes with

the TCGA and ACRG subtypes. Using the Fisher exact test, we

found that our subtypes show distinct characteristics compared to

the TCGA (P = 0.004027) and ACRG (P = 6.19e-09) classifications

(Supplementary Figure S3 A, B).
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3.2 Construction of the tsRNA regulatory
network in gastric cancer

To elucidate the molecular framework underlying the

previously identified tsRNA-mediated gastric cancer (GC)

subtypes (Stromal_H, Stromal_M, Stromal_L), we investigated

their associated transcriptomic landscapes. Employing

Bioconductor’s limma package, we first conducted differential
FIGURE 1

Construction of the tsRNA subtype with distinct immune infiltration and prognosis of GC. (A) Cluster optimization derived K = 2 from cumulative
distribution function analysis, demonstrating optimal segregation. (B) Principal component analysis visualizing GC sample distribution. (C) Patient
stratification into Cluster1/2 groups with tsRNA expression Z-score normalization. (D, E) Single-sample GSEA quantifying relative infiltration of 28
immune cell subpopulations across distinct tsRNA subtypes. The relative infiltration of each cell type was normalized into the Z-score. (F) The
boxplot showed a statistical difference in Stromal Score between the three tsRNA subtypes (P < 2.2e-16). (G) Survival analysis of three tsRNA
subtypes in the TCGA GC cohort was created using Kaplan-Meier curves. (H) Multivariate Cox regression analyses of the association between
clinicopathological factors and OS of GC patients in the TCGA cohort. *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1684113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2025.1684113
expression analysis on mRNA profiles across the three subtypes

(cutoffs: P < 0.05 and |log2 fold change| > 0.5). This analysis

identified 375 differentially expressed mRNAs (DEmRNAs)

(Supplementary Figure S4, Supplementary Table S2).

Subsequently, we focused on tsRNA expression differences

specific to these subtypes using the same limma framework

(cutoffs: P < 0.05 and |log2 fold change| > 1). This stringent

filtering yielded six differentially expressed tsRNAs (DEtsRNAs)

(Figures 2A–D), highlighting potential subtype-specific

regulatory drivers.

We constructed a protein-protein interaction (PPI) network

using the 375 DEmRNAs to integrate these findings and explore

potential functional connections. Nodes exhibiting high

connectivity (degree centrality > 20) were identified as 67 hub

genes (Supplementary Table S3), representing central components

within this dysregulated transcriptomic network.
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Finally, we integrated the expression data of the six DEtsRNAs

and the 67 hub DEmRNAs to construct a comprehensive tsRNA

regulatory network using Cytoscape software (Figure 2E). This

integrative network model visualizes potential interactions

between subtype-specific tsRNAs and core downstream mRNA

targets in gastric cancer, providing a framework for further

functional exploration.
3.3 Significant differences of biological
features and CNV in tsRNA subtypes

The Gene Set Variation Analysis (GSVA) revealed distinct

pathway activation patterns among the three stromal subtypes.

The Stromal_M subtype exhibited marked enrichment in

coagulation and MTORC1 signaling pathways, suggesting
FIGURE 2

tsRNAs network in GC. (A) The volcano plot showed that differentially expressed tsRNAs between Stromal_H and no_Stromal_H subtypes. Each red
dot showed an upregulated tsRNA, and each blue dot showed a downregulated tsRNA. (B) Volcano plots illustrated differential tsRNA expression
profiles between Stromal_L and no_Stromal_L subtypes, where red and blue data points indicate up- and down-regulated tsRNAs respectively (C)
Stromal_M and no_Stromal_M subtypes, with equivalent color coding denoting analogous expression alterations. (D) The veen plot showed that six
differentially expressed tsRNAs between the three tsRNA subtypes. (E) tsRNA network in GC.
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potential therapeutic vulnerabilities to pathway-specific inhibitors.

Contrary to the findings in the Stromal_L group, the Gene Set

Variation Analysis (GSVA) revealed that the G2M checkpoint

pathway was upregulated in the Stromal_H group (Figures 3A–C).

Comprehensive copy number variations (CNVs) analysis

revealed subtype-specific genomic instability patterns. Significant

differences emerged in focal amplification events at 1q21.3 (Fisher-
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test, P < 0.01), 3q26.2 (Fisher-test, P < 0.05), and 5p15.33 (Fisher-

test, P < 0.01), as well as deletion hotspots at 3p26.1 (Fisher-test, P <

0.05), 3p14.2 (Fisher-test, P < 0.01), and 4q35.1 (Fisher-test, P <

0.05) (Figure 3D). The Stromal_L subtype carried the highest

burden of both arm-level gains and losses (Figure 3E), as

determined by GISTIC 2.0 analysis. This genomic instability

profile provides mechanistic insight into the observed tsRNA
FIGURE 3

Significant differences of biological features and CNV in tsRNA subtypes. (A–C) GSVA analysis depicted differential pathway activation patterns across
three tsRNA subtypes. Yellow bars indicate pathways that are significantly activated in the corresponding subtype, while blue bars represent
pathways that are significantly inactivated in the corresponding subtype (|t value| > 2.5 and P < 0.05). (D) Copy number variation (CNV) profiles
delineating subtype-specific gains (upper) and losses (lower). The left heatmap illustrates the frequency of CNV events for specific chromosomal
regions, with red indicating amplifications and blue indicating deletions. The intensity of the colors reflects the frequency of CNV events, where
darker shades represent higher frequencies. Numerical values within the heatmap denote the specific CNV frequency for each chromosomal region.
The right panel presents mutation waterfall plots for each chromosomal segment, depicting the CNV status across the three subtypes, ***P < 0.001,
**P < 0.01, *P < 0.05. (E) Distribution of focal versus broad-scale CNV alterations among subtypes, with statistical significance denoted as
***P < 0.001, **P < 0.01, *P < 0.05, ns.
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expression heterogeneity, as CNV-driven gene dosage effects may

directly modulate tsRNA biogenesis pathways.

The co-occurrence of 5p15.33 amplifications and 3p deletions

across subtypes was particularly interesting, a genomic signature

previously associated with epigenetic dysregulation in

gastrointestinal malignancies. These findings collectively suggest

that tsRNA subtypes encapsulate both transcriptomic and genomic

dimensions of gastric cancer heterogeneity.
3.4 Mutation pattern differences among
tsRNA subtypes

To investigate potential links between the defined tsRNA

subtypes and somatic mutation profiles, we performed a

significant mutated genes (SMG) analysis across the gastric cancer

cohort stratified by subtype. Using waterfall plots, visualizing gene

mutation frequencies revealed distinct mutation patterns

segregating with the three tsRNA subtypes. Notably, the mutation

rate of the PCLO gene exhibited a statistically significant difference

among the subtypes (Fisher-test, P < 0.05) (Fisher-test, P <

0.05) (Figure 4A).
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To further characterize the underlying mutational processes

associated with each tsRNA subtype, we extracted mutational

signatures from the whole-exome sequencing data of gastric

cancer samples, leveraging the COSMIC mutational signatures

database (v2) (https : / /cancer .sanger .ac .uk/s ignatures/

signatures_v2/). This analysis identified signature 21 as

independently associated with the Stromal_H subtype

(Figures 4B-D). This association suggests a unique mutational

etiology specific to this high-stromal group. Furthermore, the

mutation profile observed in the Stromal_H group indicated

defective DNA mismatch repair, providing a mechanistic insight

into the genomic instability features of this subtype.
3.5 Development and validation of an RSF-
based tsRNA prognostic model

Univariate Cox regression identified 25 tsRNA-associated

mRNAs (P < 0.005) from 375 subtype-specific DEmRNAs as

having significant survival relevance. Ten machine learning

algorithms were systematically evaluated for prognostic model

construction. The Random Survival Forest (RSF) algorithm
FIGURE 4

Mutational landscape in tsRNA subtypes. (A) Mutational landscape of gene between three tsRNA subtypes. (B-D) Mutation patterns in three tsRNA
subtypes.
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demonstrated optimal performance, achieving the highest

concordance index (C-index = 0.669) across all gastric cancer

(GC) cohorts (Figure 5A). Using the RSF-derived tsRNA score

(RS), patients were stratified into high- and low-risk groups based

on a predefined cutoff (RS = 44.13084). The low-RS group exhibited

significantly superior overall survival compared to the high-RS

group (log-rank test, P < 0.0001; Figure 5B). This prognostic

robustness was further validated by receiver operating

characteristic (ROC) analysis (5-year AUC = 0.967; Figure 5C),

with expression patterns of the 25 model genes visualized in a
Frontiers in Immunology 11
heatmap (Figure 5D). External validation using independent GEO

cohort and TianJin cohorts confirmed the model’s generalizability,

consistently stratifying patients into high- and low-risk groups with

distinct survival outcomes (Figures 5E–G). Single-cell analysis

revealed predominant expression of the 25 model genes in

fibroblast and endothelial cell populations (Figures 6A–E). To

facilitate clinical implementation, we developed the R package

“GCtsRNAscore” (https://github.com/huxintmu/GCtsRNAscore)

for automated tsRNA prognostic scoring in GC patients

(Supplementary Figure S5).
FIGURE 5

Multiple machine learning algorithms were utilized to construct tsRNA-related prognostic model. (A)74 machine learning algorithm combinations
were employed to construct prognostic model based on ten machine learning algorithms. (B, C) Kaplan-Meier analysis generated recurrence-free
survival (RFS) curves for the TCGA cohort (D) The expression of 25 mRNAs in GC patients. (E–G) Survival analysis of RS in the GEO cohort was
created using Kaplan-Meier curves.
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3.6 Clinical utility of the tsRNA score in
treatment stratification

Multivariate Cox regression confirmed the RS as an independent

prognostic factor independent of clinicopathological variables (age,

gender, stage; Figure 7A). Notably, RS values increased significantly

with advancing tumor stage (Kruskal–Wallis test, P = 6.6e-05;

Figure 7B), underscoring its clinical relevance. For therapeutic

guidance, chemotherapy response analysis using the R package

“pRRophetic” revealed distinct drug sensitivities between risk groups:

In silico drug sensitivity analysis using the pRRophetic algorithm

suggested that the high-RS group may exhibit potentially enhanced

sensitivity to axitinib, bexarotene, and dasatinib (Figures 7C–E). These

predictive findings provide a potential basis for further experimental

and clinical validation and may guide future mechanistic and

translational studies. Complementary analysis via the eXtreme Sum

(XSum) algorithm further identified X4.5.dianilinophthalimide as a

potential therapeutic candidate for high-RS patients (Figure 7F).

To evaluate the predictive capacity of the risk score (RS) model in

immunotherapy response, we conducted comprehensive analyses of

tumor mutational burden (TMB) and immune-related biomarkers.

TMB analysis revealed significantly divergent responses to

immunotherapy between high- and low-RS groups (P < 0.05;

Figure 8A). In contrast, microsatellite instability (MSI) status,

immunophenoscore (IPS), and neoantigen load exhibited

no significant differences between the subgroups (P > 0.05;
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Figures 8B–D). These findings suggest that RS-stratified subgroups

may exhibit differential sensitivity to immunotherapy independent of

conventional biomarkers.

Further investigation identified seven immune-related

pathways (e.g., antigen processing, cytokine signaling) that were

differentially activated between high- and low-RS groups (Wilcoxon

test, P < 0.05; Figure 8E), providing mechanistic insights into the

observed therapeutic heterogeneity. We analyzed the IMvigor210

cohort (anti-PD-L1-treated bladder cancer patients) to validate

clinical relevance using the RS model. Kaplan-Meier analysis

demonstrated significantly prolonged overall survival (OS) in low-

RS patients compared to high-RS counterparts (log-rank P = 0.021;

Figure 8F). Critically, low-RS patients exhibited a 2.3-fold higher

objective response rate (ORR; complete response [CR] + partial

response [PR]) to immunotherapy than high-RS patients (35.2% vs.

15.4%, P = 0.00499; Figure 8G), highlighting RS as a robust

predictor of immunotherapeutic benefit. These findings suggest

an association between the RS model and immunotherapy benefit,

which warrants further validation in prospective clinical studies.
3.7 Validation of bioinformatics analysis
results through Pandora sequencing

We performed Pandora sequencing on three pairs of gastric

cancer and adjacent tissues to validate the bioinformatics analysis
FIGURE 6

Single-cell analysis. (A) cell marker genes. (B) The expression of cell marker genes in nine types of cell. (C) The result of cell annotation. (D-E) The
result of AUcell score in nine types of cells.
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results, identifying 1,300 differentially expressed tsRNAs. Further

comparison of tsRNA base pairs confirmed that the expression

patterns of six tsRNAs were consistent with the preliminary analysis

results (Figures 9A-D).
3.8 tsRNA-Asp-3–0024 is upregulated in
GC and is significantly associated with
poor prognosis

Based on the results of the previous analysis, we further collected 10

pairs of gastric cancer and adjacent tissue samples for qRT-PCR

validation to detect the expression levels of the four tsRNAs obtained

(Supplementary Table S4). Expression levels of tsRNA-Phe-5–0006

and tsRNA-Arg-5–0002 showed no significant difference between

cancerous and adjacent tissues (Figures 9E, H). In contrast, tsRNA-

Asp-3–0024 was significantly upregulated in tumor tissue (Figure 9F),

whereas tsRNA-Gly-i-0004 was significantly downregulated

(Figure 9G), suggesting potential involvement of both tsRNAs in

gastric tumorigenesis. Notably, tsRNA-Asp-3–0024 represents a

novel, previously unreported tRF. Derived from nucleotides 52–75 at
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the 5ʹ-end of tRNA-Asp-GTC-2-10, it is a 24-nt 3ʹ-tRF (Figure 9I).

qRT-PCR confirmed its significant upregulation in gastric cancer tissue

(Figure 9F). Consistently, tsRNA-Asp-3–0024 expression was elevated

in STAD cell lines (HGC27, MKN45, AGS, HGC7901) compared to

normal gastric epithelial cells (Figure 9J). Subcellular fractionation

revealed higher cytoplasmic than nuclear abundance of tsRNA-Asp-

3-0024 (Figures 9K, L). We integrated TCGA-STAD clinical data with

tsRFun-derived expression profiles for prognostic assessment to

evaluate its clinical relevance. Clinical analysis demonstrated that

elevated tsRNA-Asp-3–0024 was associated with shorter overall

survival in GC patients (log-rank P < 0.0001) and functioned as an

independent prognostic factor by multivariable Cox regression

(Figures 9M, N).
3.9 Knockdown of tsRNA-Asp-3–0024
inhibits proliferation in GC cells and
organoids

To assess the biological function of tsRNA-Asp-3–0024 in GC,

we established tsRNA-Asp-3–0024 knockdown models in HGC-27
FIGURE 7

RS score and clinical indicators. (A) Multivariate Cox regression assessed associations between clinicopathological variables and overall survival (OS)
in the TCGA cohort. (B) The boxplot showed RS was elevated as the tumor stage progressed (Kruskal-Wallis statistical test, P = 6.6e-05). (C–E) The
IC50 values of three chemotherapeutic agents with RS. Axitinib, Bexarotene, and Dasatinib. (F) Top 5 Small-molecule compounds with RS.
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and AGS cells. Knockdown efficiency was confirmed by qRT-PCR

in both cell lines (Figure 10A). CCK-8 assays demonstrated that

tsRNA-Asp-3–0024 knockdown significantly inhibited

proliferation in HGC-27 and AGS cells (Figure 10B). Colony

formation assays further revealed that knockdown markedly

reduced colony formation in these cells (Figure 10C). Flow

cytometry analysis showed that knockdown significantly increased

apoptosis rates in HGC-27 and AGS cells compared to controls
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(F igure 10D) . To be t te r mode l the tumor immune

microenvironment in vivo, we validated these findings using

patient-derived gastric cancer organoids. Histopathological

assessment of H&E-stained organoids confirmed they

recapitulated gastric cancer features consistent with the original

patient pathology (Figure 10E). Following successful establishment

of tsRNA-Asp-3–0024 knockdown in organoids (Figure 10F), 3D

viability assays demonstrated that knockdown significantly
FIGURE 8

Predicted tsRNA associated with immunotherapy response and outcomes in GC. (A)The boxplot showed a statistically different TMB between high-
and low-RS groups. (B) The proportion of MSI status in high versus low RS subgroups. (C) The boxplot showed a statistical difference in neoantigens
between high- and low-RS groups. (D) The boxplot showed no statistical difference in IPS between high- and low-RS groups. (E) The correlation of
RS and immune-related pathway. (F) Kaplan-Meier analysis of the high versus low RS subgroup in the IMvigor210 cohort. (G) The proportion of
immune response to immunotherapy in high versus low RS subgroups. CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1684113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2025.1684113
suppressed organoid proliferation (Figures 10G, H). Flow

cytometry analysis revealed that knockdown promoted organoid

apoptosis (Figure 10I), consistent with cellular findings. These

results demonstrate that tsRNA-Asp-3–0024 knockdown exerts
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tumor-suppressive effects on gastric cancer progression. In

addition, we have conducted additional analyses using the

ssGSEA algorithm to calculate the tsRNA-Asp-3–0024 score in 15

gastric cancer cohorts (Supplementary Figure S6A). Our analysis
FIGURE 9

tsRNA-Asp-3–0024 tsRNA-Asp-3–0024 is upregulated in STAD and is significantly associated with poor prognosis.(A-D) tsRNA expression in
Pandora sequencing. (D–H) tsRNA expression in gastric tissues. (I) Location of tsRNA-Asp-3–0024 in tRNA-derived fragments. (J) The expression
levels of tsRNA-Asp-3–0024 in STAD cells were higher than that in normal bronchial epithelial cells (GES). (K-L) higher cytoplasmic than nuclear
abundance of tsRNA-Asp-3-0024. (M) Higher tsRNA-Asp-3–0024 levels were associated with shorter overall survival in STAD patients. (N) tsRNA-
Asp-3–0024 as an independent prognostic factor in gastric cancer. *p < 0.05, ***p < 0.001, ****p < 0.0001,ns: non-significant.
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revealed that the tsRNA-Asp-3–0024 score activates several cancer-

related pathways, including Mtorc1 signaling, Myc targets v1, DNA

replication, and Cell cycle (Supplementary Figure S6B–D). These

findings suggest that tsRNA-Asp-3–0024 may exert its tumor-

promoting effects through the regulation of these key pathways.
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4 Discussion

Gastric cancer is a highly heterogeneous malignancy, with survival

outcomes varying dramatically by stage and molecular characteristics

(36, 37). Historically, clinical classification systems such as those by
FIGURE 10

Knockdown of tsRNA-Asp-3–0024 inhibits proliferation in STAD cells and organoids (A) Transfection efficiency of tsRNA-Asp-3–0024 inhibitor in
gastric cancer cell lines detected by qRT-PCR. (B, C) tsRNA-Asp-3–0024 knockdown significantly inhibited the proliferation of HGC-27 and AGS
cells. (D) Flow cytometry analysis showed that knockdown significantly increased apoptosis rates in HGC-27 and AGS cells. (E) HE staining for
organoid identification. (F) Transfection efficiency of tsRNA-Asp-3–0024 mimics in gastric organoid detected by qRT-PCR. (G) Organoids grow on
the fourth day after transfection of organoids. (H) GC organoids’ growth is summarized using a line chart. (I) Flow cytometry analysis revealed that
knockdown promoted organoid apoptosis. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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FIGURE 11

Workflow of Pandora-seq for comprehensive tsRNA profiling. The schematic illustrates the key experimental and bioinformatic steps. The process
begins with RNA extraction from paired gastric cancer and para-cancerous tissues, followed by AlkB and T4 PNK treatment to overcome RNA
modification barriers. Subsequent steps include small RNA library construction, deep sequencing, and bioinformatic processing using the epiblotek
system and SPORTS1.1 pipeline to generate clean reads and perform variation analysis.
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Lauren, Nakamura, and the WHO have been foundational for

diagnosis and treatment decisions, but these frameworks often lack

the granularity needed to capture the full spectrum of molecular

diversity in GC (38–40). Recent genomic studies-including those by

TCGA and ACRG-have further delineated GC subtypes based on

genetic, epigenetic, and transcriptional landscapes, revealing distinct

biological and clinical features (36, 37). However, these classifications

are rarely translated into routine clinical practice, and reliable

biomarkers for early detection and prognosis remain urgently

needed. We found that our subtypes show distinct characteristics

compared to the TCGA (P = 0.004027) and ACRG (P = 6.19e-09)

classifications (Supplementary Figure S3 A, B). This analysis highlights

the unique aspects of our classification. Compared to the ACRG

subtypes, the EMT subtype has the highest proportion in the

stromal-H subtype and the worst prognosis, while the stromal-L

subtype has the best prognosis and does not include the EMT

subtype. Compared with TCGA subtypes, stromal-H had higher

proportions of CIN and GS subtypes, indicating a poorer prognosis,

while the MSI subtype was most prevalent in stromal-L.

Our study demonstrates that tsRNA expression signatures can

robustly define three molecular subtypes of gastric cancer, each

associated with unique tumor microenvironment profiles and clinical

outcomes. The Stromal_H subtype was linked to higher stromal

infiltration, a greater frequency of DNA repair gene mutations, and

poorer prognosis, while Stromal_L was associated with more favorable

outcomes. These findings are consistent with prior research showing

that stromal and immune cell composition significantly influence

tumor progression and therapeutic response in GC (41–44).

We further developed and validated a tsRNA-based prognostic

model using machine learning algorithms. This model accurately

stratified patients into high- and low-risk groups, correlating with

both survival outcomes and therapeutic response. High-risk

patients identified by the tsRNA risk score were more likely to

benefit from targeted therapies such as axitinib, bexarotene, and
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dasatinib. In contrast, low-risk patients had better responses to

immunotherapy. These results highlight the potential of tsRNA

profiling to guide precision medicine in gastric cancer.

It is important to note that drug sensitivity predictions (e.g., axitinib,

dasatinib) and immunotherapy response analyses (e.g., TMB, IPS,

IMvigor210) presented in this study are based on computational

inference using publicly available algorithms and datasets. These

findings should be considered exploratory and do not constitute

direct evidence of clinical efficacy. Prospective clinical trials and in

vitro/in vivo validation are essential to confirm the predictive value of the

RS model before it can be considered for guiding treatment decisions.

Importantly, we identified tsRNAAsp-3–0024 as a novel

independent prognostic biomarker through Pandora sequencing

and validated it experimentally (Figure 11). Elevated expression of

tsRNA-Asp-3–0024 was consistently linked to poor survival in GC

patients and promoted tumor cell proliferation in both cellular and

organoid models. Knockdown of tsRNA-Asp-3–0024 suppressed

tumor growth and increased apoptosis, suggesting a functional role

in GC pathogenesis. Previous studies have similarly shown that

tRNA-derived fragments can regulate oncogenic pathways and

influence tumor biology (45–48), supporting our findings.

Our multi-cohort analysis reveals that the tsRNA-Asp-3–0024 score

is significantly associated with the activation of key oncogenic pathways,

including mTORC1 signaling, Myc targets, DNA replication, and the Cell

cycle. This strongly suggests that tsRNA-Asp-3–0024 contributes to

gastric cancer progression by coordinately enhancing tumor-promoting

signals. Given that mTORC1 and Myc are well-established central

regulators of cell growth and proliferation (49, 50), their concurrent

enrichment implies that tsRNA-Asp-3–0024 may function as a high-level

regulator. As tsRNAs can post-transcriptionally regulate gene expression

(51), we hypothesize it may promote proliferation by repressing tumor

suppressors or stabilizing mRNAs of cell cycle proteins, a mechanism

documented for other tsRNAs (52). Thus, tsRNA-Asp-3–0024 emerges as

a potential key player and therapeutic target in gastric cancer.
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Our results also provide new insight into the relationship

between tsRNAs, fibroblasts, and the tumor microenvironment.

Single-cell analysis indicated that key tsRNA-related genes were

highly expressed in fibroblast and endothelial populations, which

are increasingly recognized as drivers of GC aggressiveness and

therapeutic resistance (41–43).

While this study leveraged comprehensive multi-omics

approaches and rigorous experimental validation, several

limitations remain. Our analyses were primarily based on

retrospective cohorts, and future prospective studies will be

required to confirm the clinical utility of tsRNA-based biomarkers

and models in diverse patient populations. Additional mechanistic

studies are warranted to elucidate the regulatory networks connecting

tsRNA expression to tumor progression and immune response.

Our work establishes tsRNAs as robust molecular markers for

gastric cancer subtyping and prognosis. TsRNA-Asp-3-0024, in

particular, emerges as a promising biomarker and therapeutic

target. Integrating tsRNA profiling into clinical workflows may

significantly enhance risk stratification, early detection, and

personalized treatment in gastric cancer.
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