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Introduction: Gastric cancer (GC) is a highly heterogeneous malignancy with
poor prognosis, underscoring the urgent need for reliable biomarkers to guide
precise stratification and therapy. Transfer RNA-derived small RNAs (tsRNAs)
have emerged as potential key regulators in cancer, yet their systematic role in
defining GC subtypes remains unexplored.

Methods: We profiled tsRNA expression in GC using transcriptomic data from
TCGA and GEO databases. Unsupervised consensus clustering identified tsRNA-
based subtypes. A prognostic model was constructed using machine learning
algorithms and validated across multiple cohorts. The functional role of a key
tsRNA, tsRNA-Asp-3-0024, was investigated through Pandora-seq, qRT-PCR,
and in vitro and organoid-based assays.

Results: Three distinct tsRNA-mediated subtypes (Stromal_H, Stromal_L,
Stromal_M) were identified, exhibiting significant differences in stromal activity,
tumor microenvironment, and clinical outcomes. The Stromal_H subtype
demonstrated the poorest prognosis, characterized by an immunosuppressive
microenvironment and dysregulated DNA repair pathways. A random survival
forest (RSF)-based prognostic signature (GCtsRNAscore) effectively stratified
patients into high- and low-risk groups, with high-risk patients showing
increased sensitivity to targeted therapies (axitinib, bexarotene, dasatinib) and
low-risk patients benefiting more from immunotherapy. Furthermore, tsRNA-
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Asp-3-0024 was significantly upregulated in GC tissues and cell lines, where it
promoted proliferation and inhibited apoptosis.

Discussion: Our study establishes tsRNAs as powerful biomarkers for molecular
subtyping and prognostic prediction in GC. The tsRNA-defined subtypes and
GCtsRNAscore model provide a novel framework for personalized treatment
strategies. The functional characterization of tsRNA-Asp-3-0024 highlights its
potential as both a therapeutic target and a prognostic indicator, paving the way
for tsRNA-based precision medicine in GC.
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Current diagnostic practices, such as upper gastrointestinal
endoscopy, are invasive and heavily dependent on operator

Gastric cancer (GC) remains a significant global health
challenge, ranking among the most common malignancies and
accounting for over 780,000 deaths annually (1). Incidence rates are
notably higher in men than women, and there is a concerning
increase in younger patients, likely related to changes in lifestyle and
environmental exposure (2). The persistently high mortality rate is
mainly due to late-stage diagnosis and metastasis, which limit
therapeutic options and result in poor prognosis (3).

Frontiers in Immunology 02

expertise, leading to discomfort and variable patient detection
rates (4, 5). Common serum biomarkers, including
carcinoembryonic antigen (CEA), carbohydrate antigen 19-9
(CA19-9), and CA72-4, demonstrate limited sensitivity and
specificity for GC detection (6). Despite advances in
immunotherapy and targeted treatments, including trastuzumab,
ramucirumab, and immune checkpoint inhibitors, clinical
responses vary, and many patients fail to benefit from these
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approaches (7, 8). Despite the remarkable progress achieved
through immunization and targeted therapies in treating gastric
cancer, individual responses to these approaches can be variable.
Therefore, identifying new therapeutic targets and novel
biomarkers for early screening is crucial to enhancing the
prognosis of patients with gastric cancer.

Noncoding RNAs (ncRNAs) have emerged as important
regulators in cancer biology and are actively being explored for
their diagnostic and prognostic potential (6). Among these, transfer
RNA-derived small RNAs (tsRNAs) are a class of noncoding RNAs
produced from precursor or mature tRNAs under various cellular
stress conditions (9-12). TsRNAs-including tRNA halves (tiRNAs)
and tRNA-derived fragments (tRFs)-have been implicated in gene
regulation, mRNA stability, translation, and epigenetic modulation
(13-19). Many tsRNAs are stable and detectable in biological fluids,
supporting their potential as non-invasive biomarkers (20, 21).

Emerging evidence reveals that select tRNA-derived fragments
(tRFs/tiRNAs) exhibit dysregulation in stress responses and
oncogenesis (22). Their remarkable stability in circulation,
particularly within blood-derived extracellular vesicles [e.g.,
MCEF?7 breast cancer models (23)], establishes them as potent
signaling molecules with biomarker potential. Mounting clinical
evidence demonstrates aberrant tRF expression across malignancies
(24). Critically, their detectability in biofluids and functional
implications position them as non-invasive diagnostic indicators.
For instance, diminished tiRNA-5034-GluTTC-2 expression
predicts accelerated progression in gastric cancer patients,
supporting its utility as a prognostic biomarker (25). Given the
conserved prevalence of tRFs in biological systems (26), these
molecules represent promising translational targets for enhancing
GC outcomes through early detection and precision intervention.

PANDORA-seq (27) revolutionized small RNA profiling by
uncovering a vast repertoire of post-transcriptionally modified
sncRNAs, predominantly tRNA-derived (tsRNA) and rRNA-derived
(rsRNA) fragments. Previously obscured in conventional sequencing,
these sncRNAs exhibit striking tissue-specific expression across murine
organs (brain, liver, spleen, sperm) and cell-type-specific dynamics in
embryonic stem cells (ESCs) versus HeLa cells. This technological
advance provides the foundation for identifying clinically actionable
sncRNA biomarkers in human cancers.

These challenges underscore the urgent need for novel biomarkers
to improve early detection, prognostic stratification, and personalized
therapy in gastric cancer. To address these gaps, this study aims to
systematically characterize tsRNA profiles through integrated multi-
omics approaches and experimental validation.

2 Materials and methods
2.1 Single-cell RNA sequencing data

The scRNA-seq dataset (GSE167297), derived from five gastric
cancer samples, was processed and analyzed using the Seurat package.

To ensure quality, cells were retained only if they contained between
300 and 10,000 transcripts, expressed genes detected in at least three
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cells, and exhibited mitochondrial read percentages below 5%. All cells
were grouped by applying a clustering resolution parameter of 0.5.
Major cell types were identified based on established reference markers
from literature or the CellMarker database.

2.2 Genomic mutation analysis

Somatic mutation data were retrieved from the TCGA database.
Significant mutated genes were detected using the “maftools” R
package. We retrieved the mutational signature of liver cancer
patients and compared them with the mutation database
(COSMIC V2) using the cosine similarity method (https://
cancer.sanger.ac.uk/cosmic/).

2.3 Geneset variation analysis

To examine biological pathway disparities among tsRNA
subtypes, we used Gene Set Variation Analysis (GSVA) to
leverage the eponymous R package. This non-parametric,
unsupervised approach is widely adopted for assessing pathway
activity variation and biological process alterations within
expression datasets (28). “Hallmark gene sets” were retrieved
from the MSigDB database for the analysis. A threshold of P <
0.05 defined statistical significance.

2.4 Immunophenoscore

We employed Immunophenoscore (IPS), a superior molecular
marker for immune response, to characterize intratumoral immune
landscapes and cancer antigenomes. This scoring system integrates
features derived from four immune-related gene clusters: major
histocompatibility complex (MHC) molecules, immunomodulators/
checkpoints, effector cells, and suppressor cells. Elevated IPS values
correlate with enhanced immunotherapeutic efficacy (29).

2.5 Tumor mutational burden and
microsatellite instability status

The data on TMB were obtained from a previous study (30).
Microsatellite instability (MSI) status was stratified into three
categories: microsatellite stable (MSS), MSI-low (MSI-L; one unstable
marker), and MSI-high (MSI-H; >2 unstable markers). Corresponding
classification data were sourced from the UCSC Xena database.

2.6 Copy number variation

We assessed copy number variation (CNV) within tsRNA
genomic regions. Significant CNV segments (alteration frequency
> 0.3) in gastric cancer (GC) were further identified. Visualization
of subtype-specific CNV patterns was achieved using the
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ComplexHeatmap R package: a waterfall plot illustrated significant
CNV segments across three tsSRNA subtypes, while a heatmap
depicted corresponding alteration frequencies.

2.7 Data collection and preprocessing

The study workflow is shown in Supplementary Figure S1. This
study employed publicly available gene expression data from TCGA
and the Gene Expression Omnibus (GEO) database. Corresponding
clinical data of TCGA gastric cancer were extracted from the UCSC
Xena web data resource (https://xenabrowser.net/datapages/). For
further evaluation, patients who did not have survival information
available were excluded from the analysis. Utilizing TCGA data
(https://portal.gdc.cancer.gov/), we calculated fragments per
kilobase per million (FPKM) values. These FPKM metrics,
sourced from the TCGA program, were converted to transcripts
per kilobase million (TPM). For microarray datasets from
Aﬁ’ymetrix® in the GEO database, raw “CEL” files were acquired
and preprocessed via R’s affy package, implementing robust
multiarray averaging normalization. Normalized matrix files from
other GEO platforms were directly retrieved. RNA-seq cohort data
were processed using the GENCODE v22 resource (http://
www.gencodegenes.org/). Five gastric cancer cohorts met the
inclusion criteria: GSE13861 (N = 64), GSE15459 (N = 192),
GSE26901 (N = 109), GSE34942 (N = 56), and TCGA-STAD (N
= 349). TCGA and GEO mRNA expression datasets underwent
independent normalization. Somatic mutation profiles originated
from UCSC Xena, while gastric cancer copy number alterations
were derived from Broad GDAC Firehouse (http://
gdac.broadinstitute.org/). tsSRNA expression matrices and
metadata were obtained from the tsRFun database (27).

2.8 Consensus cluster of GC-specific
tsRNAs

TsRNAs detected in at least 70% of the samples with a mean
RPM value >1 were used for data analysis. Subsequently, we
establish the designation of gastric cancer-specific tsSRNAs by
identifying tsRNAs that exhibit differential expression patterns
between cancer and para-cancer. To delineate heterogeneous
patterns in tsRNA transcriptional regulation, we performed
unsupervised consensus clustering based on expression profiles of
80 gastric cancer (GC)-specific tsRNAs. This algorithm
simultaneously quantified optimal cluster quantity and partition
stability, thus establishing molecular subtypes for downstream
analysis. For the steps mentioned above, we utilized the
ConsensusClusterPlus package, which facilitated the execution of
the consensus clustering analysis. To ensure robustness and stability
in the classification, we performed 100 repetitions, allowing for a
comprehensive assessment of the cluster assignments and
enhancing the results’ reliability.
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2.9 Estimation of TME cell infiltration
between tsRNA subtypes

The relative abundance of each cell infiltration in the GC TME
was determined using the single-sample gene set enrichment
analysis (ssGSEA) algorithm. A previous study identified
biomarker genes specific to 28 types of immune cells. Among the
28 immune cell subtypes are MDSCs, activated dendritic cells,
macrophages, natural killer T cells, and regulatory T cells (29,
31). Using ssGSEA enrichment scores, we could estimate the
relative abundance of each TME-infiltrating cell within each
sample. ESTIMATER was used to calculate the Stromal Score in
this study. A Stromal Score was calculated based on the TPM values
obtained from RNA-seq data. This score was used to stratify tsSRNA
clusters further.

2.10 Multiple machine learning algorithms
were utilized to construct tsRNA-related
prognostic model

A scoring system was developed for each patient to determine
the regulatory extent of tsRNAs expressed within their tumors. The
term “tsRNA score” (RS) was assigned as the name for this specific
tsRNA signature. The following are the steps taken to establish the
tsRNA signature:

Prognostic associations of tsRNA-related genes were
determined via univariate Cox regression. Subsequent machine
learning analyses exclusively incorporated genes demonstrating
statistical significance (P < 0.005). We utilized a total of 74
combinations of machine-learning algorithms to develop a
prognostic model, incorporating ten specific algorithms: Lasso,
Enet, plsRcox, CoxBoost, StepCox, GBM, Ridge, RSF, survival-
SVM, and SuperPC. To ensure model robustness and mitigate
overfitting, the training process employed 10-fold cross-validation
repeated 5 times for hyperparameter optimization. Model
performance was evaluated using the concordance index (C-
index). Each of these algorithms can calculate the RS score in GC
patients. Employing the R survminer package, patients underwent
stratification into high- and low-recurrence score (RS) groups based
on optimal cutoff values. The Kaplan-Meier method evaluated both
high- and low-RS patients for overall survival (OS). This study
indicated statistical significance at P < 0.05 using the Log-rank test.

2.11 Predict chemotherapeutic response

We employed the R package “pRRophetic” (32) to forecast
chemotherapeutic response in gastric cancer (GC) patients. Sample
half-maximal inhibitory concentration (IC50) values were derived
via ridge regression, with prediction accuracy evaluated through 10-
fold cross-validation on the GDSC training set (33).
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2.12 Pandora sequencing

In order to analyze the differential expression of tsRNA in
cancerous and adjacent non-cancerous tissues, Pandora sequencing
(Panoramic RNA Display by Overcoming RNA modification
Aborted sequencing)was performed according to previous
methods (27, 34) on tissue samples obtained from three patients
diagnosed with gastric cancer. The study included three cancer
tissues and three adjacent non-cancerous tissues.

2.13 Clinical samples and cell lines

The Institutional Review Board of Tianjin Medical University
Cancer Institute and Hospital granted ethical approval for this
investigation. Clinical gastric cancer specimens were procured from
surgical resections conducted within the Department of
Gastrointestinal Oncology at the aforementioned institution.
Human gastric cancer cell lines HGC-27, AGS, MKN45, and
normal human gastric mucosa cells GES were obtained from the
Chinese Academy of Biological Sciences (Shanghai) cell bank. SGC-
7901 cell lines were purchased from GENECHEM. All five cell lines
were cultured in RPMI 1640 medium with 10% fetal bovine serum
at 37°C with 5% CO2 in proper humidity. Authentication via short
tandem repeat (STR) profiling confirmed cellular identity, and
comprehensive mycoplasma screening yielded negative results
across all lines.

2.14 Organoid construction and
characterization

Fresh tissues of human gastric cancer and adjacent normal
tissues were obtained by surgical excision of the specimens. Gastric
cancer tissues were rinsed with antibiotic-containing PBS, then the
fresh tissues were minced with scissors, placed in a 15-cm centrifuge
tube containing tissue digestive solution, and digested at 37°C for
10-30 min. A portion of the digestive solution containing the tissues
was aspirated at any time during the digestion process for
observation under a microscope, and the digestion process was
terminated when the majority of the digested tissues were found to
be cellular agglomerates. The digested tissue fragments were filtered
through a 70 um filter, and the filtrate was collected and centrifuged
at 4°C for 5 min at 250 g. If the precipitate was red blood cells, 2 ml
of lysate was added for lysis. After centrifugation, the precipitate
was washed twice and transferred to a 1.5 ml centrifuge tube. The
cell precipitate was collected and resuspended with organoid-
specific matrix gel(CORNING, USA), and the cell-matrix gel
mixture was quickly spread on a pre-warmed 24-well plate. The
24-well plates were placed in the incubator and left to stand for 30
minutes until the matrix gel formed a soft gel, and then covered
with an organoid complete medium. Twenty-four hours later, the
organoids could be observed under the microscope in clusters. The
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organoid complete medium was replaced with fresh organoid
complete medium every three days, and passaging could be
carried out in about 15 days. When the size of the organoids
averaged 200 um, the organoids in the well plates could be
collected and fixed with 4% paraformaldehyde and embedded for
HE staining to compare with the pathological results of the
patient’s source.

2.15 RNA isolation and quantitative RT-PCR

Total RNA isolation from cellular and tissue specimens
employed Trizol reagent (Thermo Fisher, USA). All samples
exhibited OD 260/280 ratios of 1.8-2.0 before storage at -80°C in
RNase-free water. RNA integrity and concentration were quantified
via NanoDrop 2000 spectrophotometry (Thermo Fisher). For
tsSRNA-Asp-3-0024 analysis, reverse transcription utilized Bulge-
Loop miRNA qRT-PCR Starter Kit (Ribobio, China) with gene-
specific stem-loop primers under RT reaction conditions of 42°C
for 60 min and 70°C for 10 min. Then, the samples were analyzed
with the SYBR Premix Ex Taq (Takara) for qPCR. After adding
forward and reverse primers, the reaction was incubated at 95°C for
10 min, 95°C for 10 s, 60°C for 20 s, 70°C for 10 s, and cycling for 40
times. TSRNA expression normalization referenced U6 snRNA,
employing Ruibo Biotechnology-designed primers (Guangzhou).

2.16 Cell and organoid transfection

For cell transfection, cells were inoculated into petri dishes
overnight before transfection. Synthetic stranded inhibitor (tsRNA-
Asp-3-0024 inhibitor, 50nM) was purchased from Reebok
Biotechnology Ltd. RNA oligonucleotides were transiently
transfected with RNAIMAX transfection reagent (Thermo
Scientific Dharmacon Inc, USA). For organoid transfection, the
organoids were digested with tissue digest at 37°C for 10-30 min
centrifuged. The precipitates were washed twice and resuspended in
1.5 ml centrifuge tubes. The transfection complexes were incubated
in the organoid suspension for 4 h. Upon completion of the
incubation, the cellular precipitates were collected by
centrifugation and resuspended with organoid-specific matrix gel,
and the cell-matrix gel mixture was rapidly spread in pre-warmed
24-plate and 96-well plates. 96-well plates. The 24- and 96-well
plates were placed in an incubator for 30 min until the matrix gel
formed a soft gel, and the organoids were covered with complete
medium mixed with transfection complexes, respectively. After
12 h, 24 h, 48 h, 72 h, and 96 h of incubation, the growth status
was recorded by microscopic photographs. The viability of the
organoids was detected, and growth curves were plotted using the
3D Cell Viability Assay Kit (Vazyme, Nanjing), and the absorbance
of the medium plus the assay reagent at the time of organoids was
used as a background control. Experiments were performed
in triplicate.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1684113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tian et al.

2.17 Cell proliferation, colony formation,
and apoptosis assays

Cell proliferative activity was assessed with Cell Counting Kit 8
(CCKS8; KeyGEN BioTECH, Jiangsu) per manufacturer’s protocol.
HGC-27 or AGS cells (1,500 cells/well) were seeded in 96-well
plates. Following 12-72h culture intervals, cultures were
supplemented with 10ul CCK-8 solution and underwent 2h
incubation at 37°C. Optical density at 450nm was quantified via a
microplate reader, using cell-free medium/CCK-8 mixtures as
background controls. All assays incorporated technical triplicates.

Following 48-hour inhibitor transfection, cells were subjected to
colony formation assays by seeding in 6-well plates (1x10* cells/
well) with 8-10 day incubation. Subsequent processing involved
fixation in 4% paraformaldehyde and 0.1% crystal violet staining.
Using representative images, the relative colony-forming capacity
was quantified through ImageJ analysis (NIH, USA).

For the cell apoptosis assay, the transfected cells (8 x 10/ cells
per well) were evenly spread into six-well plates for culture. After
the cells were attached to the wall, a line was drawn in the six-well
plate with the same strength of the pipette tip of 10 uL, and the
degree of healing was observed and photographed under the
microscope at Oh, 24h, and 48h after the drawing of the line,
respectively. The wound healing percentage was calculated as
(wound width at 0 h — wound width at 24 h)/wound width at 0 h.

The cell apoptosis assay was performed by using an Annexin V-
fluorescein isothiocyanate (FITC) Apoptosis Detection Kit I (BD
Biosciences, USA). Seed the cells to be tested into a 6-well plate or
culture dish and culture until the logarithmic growth phase. Remove the
culture medium and gently wash the cells twice with pre-chilled PBS.
Add an appropriate amount of trypsin (without EDTA) to digest the
cells, and once the cells have rounded up, add complete culture medium
to terminate digestion. Subject the cell suspension to centrifugation
(1000 rpm, 5 min) with subsequent supernatant removal. Resuspend
the pellet in ice-cold PBS, perform two sequential washes under
identical centrifugation parameters, then reconstitute cells in 1x
Binding Buffer at 1x10° cells/mL. Aliquot 100 pL suspension into
flow cytometry tubes, introduce 5 UL Annexin V-FITC with gentle
vortexing, and incubate protected from light (RT, 15 min); subsequently
add 5 uL PI with mixing followed by dark incubation (RT, 5 min). Add
400 pL of 1x Binding Buffer to terminate staining, gently mix, and
immediately analyze on the instrument. For organoid transfection,
digest the organoids with tissue digestion solution at 37°C for 45
minutes to dissociate cell clusters into single cells. Subject the single-
cell suspension to centrifugation (500g, 5 min) with supernatant
removal. Resuspend the pellet in 4°C-chilled PBS, followed by two
sequential washes under identical centrifugation parameters. The
procedure was identical to that used for cell handling.

2.18 Statistical analysis
Statistical analyses were performed using R v4.1.1 (freely accessible

at https://www.r-project.org) and SPSS 22.0 (IBM, USA) with
GraphPad Prism 9.0. Intergroup comparisons utilized: Kruskal-
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Wallis test for >3 groups; Student’s t-test or Mann-Whitney U-test
for two groups. Survival prognoses incorporated Kaplan-Meier
curves with Log-rank testing (significance threshold P < 0.05).
Optimal expression-based patient stratification was achieved via
survminer-derived cutoff values. Continuous data represent mean +
SD from 23 independent experiments. Statistical significance
was defined as *P < 0.05, **P < 0.01, **P < 0.001, ***P < 0.0001
(ns: non-significant), applying two-tailed testing throughout.

3 Result

3.1 Identification of tsRNA-mediated
gastric cancer subtypes

We extracted expression profiles of 80 GC-specific tsRNAs
from the tsRFun database (Supplementary Table SI). Consensus
clustering analysis was performed on 349 TCGA GC samples with
complete survival information. Cumulative distribution function
(CDF) curves indicated optimal stability at k = 2 clusters
(Figures 1A, B). Accordingly, GC samples were stratified into two
primary tsRNA-based clusters: tsRNA-cluster 1 (n = 214) and
tsRNA-cluster 2 (n = 135). A heatmap visualizes the overall
tsRNA expression patterns across these clusters (Figure 1C).
Single-sample gene set enrichment analysis (ssGSEA) of immune
cell infiltration revealed distinct patterns within tsRNA-cluster 1,
suggestive of both “hot” and “cold” tumor immune phenotypes
(Figure 1D). Given the critical contribution of stromal cells to
tumor immune evasion (35), we further investigated the molecular
heterogeneity within tsRNA-cluster 1 by analyzing stromal
activation scores derived from gene expression profiles. Among
the 214 patients in tsRNA-cluster 1, 96 (45%) exhibited high
stromal scores, while 118 (55%) had low stromal scores (Figure 1E).

This refined analysis delineated three distinct GC subtypes
based on the integration of tsRNA expression and stromal activity:

1. Stromal_H: High-stromal score group derived from
tsRNA-cluster 1 (n = 96, 45%).

2. Stromal_L: Low-stromal score group derived from tsRNA-
cluster 1 (n = 118, 55%).

3. Stromal_M: Representative of tsRNA-cluster 2 (n =
135) (Figure 1F).

Survival analysis demonstrated significant overall survival (OS)
differences among these subtypes (log-rank P = 0.019). Patients
with the Stromal_H subtype exhibited the poorest prognosis, while
those with the Stromal_L subtype had the most favorable outcomes
(Figure 1G). Multivariate Cox regression analysis results confirmed
the tsRNA-mediated stromal subtype as an independent prognostic
factor (P = 0.01414) (Figure 1H). Meanwhile, we employed the
random forest algorithm to map the subtypes and calculated the
classification results in two additional datasets. Kaplan-Meier (K-
M) analysis was then performed, and the results showed that in
GSE15459 (P = 0.018) and GSE84437 (P = 0.0079), the p-values for
the three subtypes were all less than 0.05. Moreover, the prognostic
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FIGURE 1

Construction of the tsRNA subtype with distinct immune infiltration and prognosis of GC. (A) Cluster optimization derived K = 2 from cumulative
distribution function analysis, demonstrating optimal segregation. (B) Principal component analysis visualizing GC sample distribution. (C) Patient
stratification into Cluster1/2 groups with tsRNA expression Z-score normalization. (D, E) Single-sample GSEA quantifying relative infiltration of 28
immune cell subpopulations across distinct tsSRNA subtypes. The relative infiltration of each cell type was normalized into the Z-score. (F) The
boxplot showed a statistical difference in Stromal Score between the three tsRNA subtypes (P < 2.2e-16). (G) Survival analysis of three tsRNA
subtypes in the TCGA GC cohort was created using Kaplan-Meier curves. (H) Multivariate Cox regression analyses of the association between
clinicopathological factors and OS of GC patients in the TCGA cohort. *p < 0.05, **p < 0.01, ***p < 0.001.

order was consistent across these datasets, with Stromal_H having 3.2 Construction of the tsRNA regu[atory
the worst prognosis, followed by Stromal_M, and Stromal_L having  network in gastric cancer
the best prognosis (Supplementary Figure S2A, B).

We have performed a comparative analysis of our subtypes with To elucidate the molecular framework underlying the
the TCGA and ACRG subtypes. Using the Fisher exact test, we  previously identified tsRNA-mediated gastric cancer (GC)
found that our subtypes show distinct characteristics compared to  subtypes (Stromal H, Stromal M, Stromal L), we investigated
the TCGA (P = 0.004027) and ACRG (P = 6.19¢-09) classifications  their associated transcriptomic landscapes. Employing
(Supplementary Figure S3 A, B). Bioconductor’s limma package, we first conducted differential
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FIGURE 2

tsRNAs network in GC. (A) The volcano plot showed that differentially expressed tsRNAs between Stromal_H and no_Stromal_H subtypes. Each red
dot showed an upregulated tsRNA, and each blue dot showed a downregulated tsRNA. (B) Volcano plots illustrated differential tsRNA expression
profiles between Stromal_L and no_Stromal_L subtypes, where red and blue data points indicate up- and down-regulated tsRNAs respectively (C)
Stromal_M and no_Stromal_M subtypes, with equivalent color coding denoting analogous expression alterations. (D) The veen plot showed that six
differentially expressed tsRNAs between the three tsRNA subtypes. (E) tsRNA network in GC.

expression analysis on mRNA profiles across the three subtypes
(cutoffs: P < 0.05 and |log2 fold change| > 0.5). This analysis
identified 375 differentially expressed mRNAs (DEmRNAs)
(Supplementary Figure S4, Supplementary Table S2).

Subsequently, we focused on tsRNA expression differences
specific to these subtypes using the same limma framework
(cutoffs: P < 0.05 and |[log2 fold change| > 1). This stringent
filtering yielded six differentially expressed tsRNAs (DEtsRNAs)
(Figures 2A-D), highlighting potential subtype-specific
regulatory drivers.

We constructed a protein-protein interaction (PPI) network
using the 375 DEmRNAs to integrate these findings and explore
potential functional connections. Nodes exhibiting high
connectivity (degree centrality > 20) were identified as 67 hub
genes (Supplementary Table S3), representing central components
within this dysregulated transcriptomic network.
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Finally, we integrated the expression data of the six DEtsRNAs
and the 67 hub DEmRNASs to construct a comprehensive tsRNA
regulatory network using Cytoscape software (Figure 2E). This
integrative network model visualizes potential interactions
between subtype-specific tsRNAs and core downstream mRNA
targets in gastric cancer, providing a framework for further
functional exploration.

3.3 Significant differences of biological
features and CNV in tsRNA subtypes

The Gene Set Variation Analysis (GSVA) revealed distinct
pathway activation patterns among the three stromal subtypes.
The Stromal M subtype exhibited marked enrichment in
coagulation and MTORCI signaling pathways, suggesting
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FIGURE 3

Significant differences of biological features and CNV in tsRNA subtypes. (A—C) GSVA analysis depicted differential pathway activation patterns across
three tsRNA subtypes. Yellow bars indicate pathways that are significantly activated in the corresponding subtype, while blue bars represent
pathways that are significantly inactivated in the corresponding subtype (|t value| > 2.5 and P < 0.05). (D) Copy number variation (CNV) profiles
delineating subtype-specific gains (upper) and losses (lower). The left heatmap illustrates the frequency of CNV events for specific chromosomal
regions, with red indicating amplifications and blue indicating deletions. The intensity of the colors reflects the frequency of CNV events, where
darker shades represent higher frequencies. Numerical values within the heatmap denote the specific CNV frequency for each chromosomal region.
The right panel presents mutation waterfall plots for each chromosomal segment, depicting the CNV status across the three subtypes, ***P < 0.001,
**P < 0.01, *P < 0.05. (E) Distribution of focal versus broad-scale CNV alterations among subtypes, with statistical significance denoted as

***p < 0.001, **P < 0.01, *P < 0.05, ns.
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potential therapeutic vulnerabilities to pathway-specific inhibitors.
Contrary to the findings in the Stromal_L group, the Gene Set
Variation Analysis (GSVA) revealed that the G2M checkpoint
pathway was upregulated in the Stromal H group (Figures 3A-C).

Comprehensive copy number variations (CNVs) analysis
revealed subtype-specific genomic instability patterns. Significant
differences emerged in focal amplification events at 1q21.3 (Fisher-
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test, P < 0.01), 3q26.2 (Fisher-test, P < 0.05), and 5p15.33 (Fisher-
test, P < 0.01), as well as deletion hotspots at 3p26.1 (Fisher-test, P <
0.05), 3p14.2 (Fisher-test, P < 0.01), and 4q35.1 (Fisher-test, P <
0.05) (Figure 3D). The Stromal L subtype carried the highest
burden of both arm-level gains and losses (Figure 3E), as
determined by GISTIC 2.0 analysis. This genomic instability
profile provides mechanistic insight into the observed tsRNA
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expression heterogeneity, as CNV-driven gene dosage effects may
directly modulate tsRNA biogenesis pathways.

The co-occurrence of 5p15.33 amplifications and 3p deletions
across subtypes was particularly interesting, a genomic signature
previously associated with epigenetic dysregulation in
gastrointestinal malignancies. These findings collectively suggest
that tsRNA subtypes encapsulate both transcriptomic and genomic
dimensions of gastric cancer heterogeneity.

3.4 Mutation pattern differences among
tsRNA subtypes

To investigate potential links between the defined tsRNA
subtypes and somatic mutation profiles, we performed a
significant mutated genes (SMG) analysis across the gastric cancer
cohort stratified by subtype. Using waterfall plots, visualizing gene
mutation frequencies revealed distinct mutation patterns
segregating with the three tsSRNA subtypes. Notably, the mutation
rate of the PCLO gene exhibited a statistically significant difference
among the subtypes (Fisher-test, P < 0.05) (Fisher-test, P <
0.05) (Figure 4A).
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To further characterize the underlying mutational processes
associated with each tsRNA subtype, we extracted mutational
signatures from the whole-exome sequencing data of gastric
cancer samples, leveraging the COSMIC mutational signatures
database (v2) (https://cancer.sanger.ac.uk/signatures/
signatures_v2/). This analysis identified signature 21 as
independently associated with the Stromal_H subtype
(Figures 4B-D). This association suggests a unique mutational
etiology specific to this high-stromal group. Furthermore, the
mutation profile observed in the Stromal H group indicated
defective DNA mismatch repair, providing a mechanistic insight
into the genomic instability features of this subtype.

3.5 Development and validation of an RSF-
based tsRNA prognostic model

Univariate Cox regression identified 25 tsRNA-associated
mRNAs (P < 0.005) from 375 subtype-specific DEmRNAs as
having significant survival relevance. Ten machine learning
algorithms were systematically evaluated for prognostic model
construction. The Random Survival Forest (RSF) algorithm
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Multiple machine learning algorithms were utilized to construct tsRNA-related prognostic model. (A)74 machine learning algorithm combinations

were employed to construct prognostic model based on ten machine learning algorithms. (B, C) Kaplan-Meier analysis generated recurrence-free

survival (RFS) curves for the TCGA cohort (D) The expression of 25 mRNAs in GC patients. (E—G) Survival analysis of RS in the GEO cohort was

created using Kaplan-Meier curves.

demonstrated optimal performance, achieving the highest
concordance index (C-index = 0.669) across all gastric cancer
(GC) cohorts (Figure 5A). Using the RSF-derived tsRNA score
(RS), patients were stratified into high- and low-risk groups based
on a predefined cutoff (RS = 44.13084). The low-RS group exhibited
significantly superior overall survival compared to the high-RS
group (log-rank test, P < 0.0001; Figure 5B). This prognostic
robustness was further validated by receiver operating
characteristic (ROC) analysis (5-year AUC = 0.967; Figure 5C),
with expression patterns of the 25 model genes visualized in a
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heatmap (Figure 5D). External validation using independent GEO
cohort and TianJin cohorts confirmed the model’s generalizability,
consistently stratifying patients into high- and low-risk groups with
distinct survival outcomes (Figures 5E-G). Single-cell analysis
revealed predominant expression of the 25 model genes in
fibroblast and endothelial cell populations (Figures 6A-E). To
facilitate clinical implementation, we developed the R package
“GCtsRNAscore” (https://github.com/huxintmu/GCtsRNAscore)
for automated tsRNA prognostic scoring in GC patients
(Supplementary Figure S5).

frontiersin.org


https://github.com/huxintmu/GCtsRNAscore
https://doi.org/10.3389/fimmu.2025.1684113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tian et al.

10.3389/fimmu.2025.1684113

A B >
BN S
FELEF S
EPCAM cp3D cp79A cp14 6}\ S @° & & & & &
© " £, ] o o ST o7 ¥ < & oY
o 8 | ERON - | ERI L ER B
g . e 0 g ° ? . » g0 W 0 & 0 »
£ 72 Pois Bo i Bois ¥o
" 0 o @ 0
5 5 15 45
O S T 5w T 5w R !
UMAP_1 UMAP_1 UMAP_1 UMAP_1
TPSAB1 PTPRC VWF coL1A2 Expression
0 0 & 0] 0
o 5 | ERVG I N PR L ERUE L E) . 2
%0 ‘ 20 %0 @ 20 % 0 20 %0 20
H % g 01, % 0.
is Bois | PR Boisis B 1
10- 10- 101 10 “ 0
5 5 15 5
T o W oo W ] W0 W
UMAP_1 UMAP_1 UMAP_1 UMAP_1 -1
sbc1 MS4A1
10 1 U -2
o 5 | ERU L E3 |
Fa 20 %0 20
S %
£ o Rods) | B :
10- 10 &
g
s e . !
UMAP_1 UMAP_1
c D E AUC
10 10
0.4.
5 Macrophages
® Teel 5 03
N ® Beel ~ :
oo ha cel Mastcell =~ Macrophages | AUC
<§( & 3 ® Plasma cell <0 ¢ 04 02
=] E@thelial cel ) ® Epithelial % o 03
sl ﬁkﬁnehal © Endothelial cell @ 02
Fﬁuam Other gl ® Fibroblasts -5 A 01 0.1
) b ag ® Other cell ; 00
od Mast cell X
-10 1 -10 0.0 ! -
e N N o > @ D 5 N NS
&‘fz\ S F & RS
S W S
& QE 2 e\‘& & W~
-0 -5 0 5 10 15 -10 -5 0 5 10 15 <
UMAP_1 UMAP. 1
FIGURE 6

Single-cell analysis. (A) cell marker genes. (B) The expression of cell marker genes in nine types of cell. (C) The result of cell annotation. (D-E) The

result of AUcell score in nine types of cells.

3.6 Clinical utility of the tsRNA score in
treatment stratification

Multivariate Cox regression confirmed the RS as an independent
prognostic factor independent of clinicopathological variables (age,
gender, stage; Figure 7A). Notably, RS values increased significantly
with advancing tumor stage (Kruskal-Wallis test, P = 6.6e-05;
Figure 7B), underscoring its clinical relevance. For therapeutic
guidance, chemotherapy response analysis using the R package
“pRRophetic” revealed distinct drug sensitivities between risk groups:
In silico drug sensitivity analysis using the pRRophetic algorithm
suggested that the high-RS group may exhibit potentially enhanced
sensitivity to axitinib, bexarotene, and dasatinib (Figures 7C-E). These
predictive findings provide a potential basis for further experimental
and clinical validation and may guide future mechanistic and
translational studies. Complementary analysis via the eXtreme Sum
(XSum) algorithm further identified X4.5.dianilinophthalimide as a
potential therapeutic candidate for high-RS patients (Figure 7F).

To evaluate the predictive capacity of the risk score (RS) model in
immunotherapy response, we conducted comprehensive analyses of
tumor mutational burden (TMB) and immune-related biomarkers.
TMB analysis revealed significantly divergent responses to
immunotherapy between high- and low-RS groups (P < 0.05;
Figure 8A). In contrast, microsatellite instability (MSI) status,
immunophenoscore (IPS), and neoantigen load exhibited
no significant differences between the subgroups (P > 0.05;
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Figures 8B-D). These findings suggest that RS-stratified subgroups
may exhibit differential sensitivity to immunotherapy independent of
conventional biomarkers.

Further investigation identified seven immune-related
pathways (e.g., antigen processing, cytokine signaling) that were
differentially activated between high- and low-RS groups (Wilcoxon
test, P < 0.05; Figure 8E), providing mechanistic insights into the
observed therapeutic heterogeneity. We analyzed the IMvigor210
cohort (anti-PD-L1-treated bladder cancer patients) to validate
clinical relevance using the RS model. Kaplan-Meier analysis
demonstrated significantly prolonged overall survival (OS) in low-
RS patients compared to high-RS counterparts (log-rank P = 0.021;
Figure 8F). Critically, low-RS patients exhibited a 2.3-fold higher
objective response rate (ORR; complete response [CR] + partial
response [PR]) to immunotherapy than high-RS patients (35.2% vs.
15.4%, P = 0.00499; Figure 8G), highlighting RS as a robust
predictor of immunotherapeutic benefit. These findings suggest
an association between the RS model and immunotherapy benefit,
which warrants further validation in prospective clinical studies.

3.7 Validation of bioinformatics analysis
results through Pandora sequencing

We performed Pandora sequencing on three pairs of gastric
cancer and adjacent tissues to validate the bioinformatics analysis
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in the TCGA cohort. (B) The boxplot showed RS was elevated as the tumor stage progressed (Kruskal-Wallis statistical test, P = 6.6e-05). (C—E) The
IC50 values of three chemotherapeutic agents with RS. Axitinib, Bexarotene, and Dasatinib. (F) Top 5 Small-molecule compounds with RS.

results, identifying 1,300 differentially expressed tsRNAs. Further
comparison of tsSRNA base pairs confirmed that the expression
patterns of six tsSRNAs were consistent with the preliminary analysis
results (Figures 9A-D).

3.8 tsRNA-Asp-3-0024 is upregulated in
GC and is significantly associated with
poor prognosis

Based on the results of the previous analysis, we further collected 10
pairs of gastric cancer and adjacent tissue samples for qRT-PCR
validation to detect the expression levels of the four tsRNAs obtained
(Supplementary Table S4). Expression levels of tsRNA-Phe-5-0006
and tsRNA-Arg-5-0002 showed no significant difference between
cancerous and adjacent tissues (Figures 9E, H). In contrast, tsRNA-
Asp-3-0024 was significantly upregulated in tumor tissue (Figure 9F),
whereas tsRNA-Gly-i-0004 was significantly downregulated
(Figure 9G), suggesting potential involvement of both tsRNAs in
gastric tumorigenesis. Notably, tsRNA-Asp-3-0024 represents a
novel, previously unreported tRF. Derived from nucleotides 52-75 at
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the 5-end of tRNA-Asp-GTC-2-10, it is a 24-nt 3~tRF (Figure 9I).
qRT-PCR confirmed its significant upregulation in gastric cancer tissue
(Figure 9F). Consistently, tsRNA-Asp-3-0024 expression was elevated
in STAD cell lines (HGC27, MKN45, AGS, HGC7901) compared to
normal gastric epithelial cells (Figure 9J). Subcellular fractionation
revealed higher cytoplasmic than nuclear abundance of tsRNA-Asp-
3-0024 (Figures 9K, L). We integrated TCGA-STAD clinical data with
tsRFun-derived expression profiles for prognostic assessment to
evaluate its clinical relevance. Clinical analysis demonstrated that
elevated tsRNA-Asp-3-0024 was associated with shorter overall
survival in GC patients (log-rank P < 0.0001) and functioned as an
independent prognostic factor by multivariable Cox regression
(Figures 9M, N).

3.9 Knockdown of tsRNA-Asp-3-0024
inhibits proliferation in GC cells and
organoids

To assess the biological function of tsRNA-Asp-3-0024 in GC,
we established tsRNA-Asp-3-0024 knockdown models in HGC-27
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and AGS cells. Knockdown efficiency was confirmed by qRT-PCR
in both cell lines (Figure 10A). CCK-8 assays demonstrated that
tsRNA-Asp-3-0024 knockdown significantly inhibited
proliferation in HGC-27 and AGS cells (Figure 10B). Colony
formation assays further revealed that knockdown markedly
reduced colony formation in these cells (Figure 10C). Flow
cytometry analysis showed that knockdown significantly increased
apoptosis rates in HGC-27 and AGS cells compared to controls
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(Figure 10D). To better model the tumor immune
microenvironment in vivo, we validated these findings using
patient-derived gastric cancer organoids. Histopathological
assessment of H&E-stained organoids confirmed they
recapitulated gastric cancer features consistent with the original
patient pathology (Figure 10E). Following successful establishment
of tsRNA-Asp-3-0024 knockdown in organoids (Figure 10F), 3D
viability assays demonstrated that knockdown significantly
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suppressed organoid proliferation (Figures 10G, H). Flow
cytometry analysis revealed that knockdown promoted organoid
apoptosis (Figure 10I), consistent with cellular findings. These
results demonstrate that tsSRNA-Asp-3-0024 knockdown exerts
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tumor-suppressive effects on gastric cancer progression.

In

addition, we have conducted additional analyses using the
ssGSEA algorithm to calculate the tsRNA-Asp-3-0024 score in 15
gastric cancer cohorts (Supplementary Figure S6A). Our analysis
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FIGURE 10

Knockdown of tsRNA-Asp-3-0024 inhibits proliferation in STAD cells and organoids (A) Transfection efficiency of tsRNA-Asp-3-0024 inhibitor in
gastric cancer cell lines detected by gRT-PCR. (B, C) tsRNA-Asp-3-0024 knockdown significantly inhibited the proliferation of HGC-27 and AGS
cells. (D) Flow cytometry analysis showed that knockdown significantly increased apoptosis rates in HGC-27 and AGS cells. (E) HE staining for
organoid identification. (F) Transfection efficiency of tsSRNA-Asp-3-0024 mimics in gastric organoid detected by qRT-PCR. (G) Organoids grow on
the fourth day after transfection of organoids. (H) GC organoids’ growth is summarized using a line chart. (I) Flow cytometry analysis revealed that
knockdown promoted organoid apoptosis. *p < 0.05, ***p < 0.001, ****p < 0.0001.

revealed that the tsSRNA-Asp-3-0024 score activates several cancer-
related pathways, including Mtorcl signaling, Myc targets vl, DNA
replication, and Cell cycle (Supplementary Figure S6B-D). These
findings suggest that tsRNA-Asp-3-0024 may exert its tumor-
promoting effects through the regulation of these key pathways.
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4 Discussion

Gastric cancer is a highly heterogeneous malignancy, with survival
outcomes varying dramatically by stage and molecular characteristics
(36, 37). Historically, clinical classification systems such as those by
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Lauren, Nakamura, and the WHO have been foundational for
diagnosis and treatment decisions, but these frameworks often lack
the granularity needed to capture the full spectrum of molecular
diversity in GC (38-40). Recent genomic studies-including those by
TCGA and ACRG-have further delineated GC subtypes based on
genetic, epigenetic, and transcriptional landscapes, revealing distinct
biological and clinical features (36, 37). However, these classifications
are rarely translated into routine clinical practice, and reliable
biomarkers for early detection and prognosis remain urgently
needed. We found that our subtypes show distinct characteristics
compared to the TCGA (P = 0.004027) and ACRG (P = 6.19¢-09)
classifications (Supplementary Figure S3 A, B). This analysis highlights
the unique aspects of our classification. Compared to the ACRG
subtypes, the EMT subtype has the highest proportion in the
stromal-H subtype and the worst prognosis, while the stromal-L
subtype has the best prognosis and does not include the EMT
subtype. Compared with TCGA subtypes, stromal-H had higher
proportions of CIN and GS subtypes, indicating a poorer prognosis,
while the MSI subtype was most prevalent in stromal-L.

Our study demonstrates that tsRNA expression signatures can
robustly define three molecular subtypes of gastric cancer, each
associated with unique tumor microenvironment profiles and clinical
outcomes. The Stromal H subtype was linked to higher stromal
infiltration, a greater frequency of DNA repair gene mutations, and
poorer prognosis, while Stromal_L was associated with more favorable
outcomes. These findings are consistent with prior research showing
that stromal and immune cell composition significantly influence
tumor progression and therapeutic response in GC (41-44).

We further developed and validated a tsSRNA-based prognostic
model using machine learning algorithms. This model accurately
stratified patients into high- and low-risk groups, correlating with
both survival outcomes and therapeutic response. High-risk
patients identified by the tsRNA risk score were more likely to
benefit from targeted therapies such as axitinib, bexarotene, and
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dasatinib. In contrast, low-risk patients had better responses to
immunotherapy. These results highlight the potential of tsRNA
profiling to guide precision medicine in gastric cancer.

It is important to note that drug sensitivity predictions (e.g., axitinib,
dasatinib) and immunotherapy response analyses (e.g, TMB, IPS,
IMvigor210) presented in this study are based on computational
inference using publicly available algorithms and datasets. These
findings should be considered exploratory and do not constitute
direct evidence of clinical efficacy. Prospective clinical trials and in
vitro/in vivo validation are essential to confirm the predictive value of the
RS model before it can be considered for guiding treatment decisions.

Importantly, we identified tsRNAAsp-3-0024 as a novel
independent prognostic biomarker through Pandora sequencing
and validated it experimentally (Figure 11). Elevated expression of
tsRNA-Asp-3-0024 was consistently linked to poor survival in GC
patients and promoted tumor cell proliferation in both cellular and
organoid models. Knockdown of tsRNA-Asp-3-0024 suppressed
tumor growth and increased apoptosis, suggesting a functional role
in GC pathogenesis. Previous studies have similarly shown that
tRNA-derived fragments can regulate oncogenic pathways and
influence tumor biology (45-48), supporting our findings.

Our multi-cohort analysis reveals that the tsRNA-Asp-3-0024 score
is significantly associated with the activation of key oncogenic pathways,
including mTORCI signaling, Myc targets, DNA replication, and the Cell
cycle. This strongly suggests that tsSRNA-Asp-3-0024 contributes to
gastric cancer progression by coordinately enhancing tumor-promoting
signals. Given that mTORCI and Myc are well-established central
regulators of cell growth and proliferation (49, 50), their concurrent
enrichment implies that tsRNA-Asp-3-0024 may function as a high-level
regulator. As tsSRNAs can post-transcriptionally regulate gene expression
(51), we hypothesize it may promote proliferation by repressing tumor
suppressors or stabilizing mRNAs of cell cycle proteins, a mechanism
documented for other tsRNAs (52). Thus, tsRNA-Asp-3-0024 emerges as
a potential key player and therapeutic target in gastric cancer.
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Our results also provide new insight into the relationship
between tsRNAs, fibroblasts, and the tumor microenvironment.
Single-cell analysis indicated that key tsRNA-related genes were
highly expressed in fibroblast and endothelial populations, which
are increasingly recognized as drivers of GC aggressiveness and
therapeutic resistance (41-43).

While this study leveraged comprehensive multi-omics
approaches and rigorous experimental validation, several
limitations remain. Our analyses were primarily based on
retrospective cohorts, and future prospective studies will be
required to confirm the clinical utility of tsRNA-based biomarkers
and models in diverse patient populations. Additional mechanistic
studies are warranted to elucidate the regulatory networks connecting
tsRNA expression to tumor progression and immune response.

Our work establishes tsSRNAs as robust molecular markers for
gastric cancer subtyping and prognosis. TsRNA-Asp-3-0024, in
particular, emerges as a promising biomarker and therapeutic
target. Integrating tsSRNA profiling into clinical workflows may
significantly enhance risk stratification, early detection, and
personalized treatment in gastric cancer.
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SUPPLEMENTARY FIGURE 1
The workflow of our study.

SUPPLEMENTARY FIGURE 2
Kaplan-Meier (K-M) survival analysis in the supplementary data set.

SUPPLEMENTARY FIGURE 3
tsRNA subtypes exhibit significantly different characteristics in TCGA
and ACRG.

SUPPLEMENTARY FIGURE 4
375 differentially expressed mRNAs (DEmRNAs) in three tsRNA subtypes.
(cutoff thresholds:P < 0.05 and |log2 fold change| > 0.5).
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