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Chronic obstructive pulmonary disease (COPD) is currently one of the major causes

of death and hospitalization globally. Pulmonary inflammation and oxidative stress

are considered important mechanisms underlying the disease. Recent studies have

indicated that the metabolic processes of immune cells in COPD, notably alveolar

macrophages (AMs), may undergo significant alterations, exhibiting distinct

metabolic characteristics related to their functional state and polarization

phenotype. This phenomenon is known as the immunometabolic reprogramming

of macrophages. In this article, we review the polarization phenotype andmetabolic

characteristics of macrophages in COPD, as well as the mechanisms affecting

macrophage metabolism, and discuss the potential significance of pathways

targeting immunometabolism of AMs in the treatment of COPD.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory pulmonary

disease marked by persistent airflow obstruction. Its heterogeneity is manifested in parenchymal

destruction and airway remodeling, often accompanied by chronic bronchitis and emphysema,

which collectively lead to a progressive and irreversible decline in lung function. COPD

symptoms often encompass coughing, expectoration, dyspnea, and wheezing. Prolonged

tobacco exposure, occupational exposure to particulate matter environments, or indoor air

pollution may exacerbate chronic airway inflammation, intensifying clinical symptoms and

hastening disease progression. Poorly controlled COPD may further progress to cor pulmonale

or even respiratory failure (1). According to World Health Organization (WHO) data, COPD

currently ranks as the fourth leading cause of death globally, causing 3.5 million deaths in 2021,

which constitutes approximately 5% of the total global mortality (2). COPD is regarded as the

consequence of dynamic gene-environment interactions; however, its specific pathophysiology

remains inadequately understood. Widely recognized mechanisms include airway oxidative
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stress, inflammatory responses, and protease/antiprotease imbalance.

Furthermore, the crucial role of macrophages in the pathogenesis of

COPD has been frequently reported.

The respiratory tract is in direct contact with the external

environment (3), and its immune system, particularly alveolar

macrophages (AMs), plays an important role in maintaining

immunological homeostasis. AMs exert crucial immune defense

and surveillance functions by phagocytosing inhaled contaminants

and pathogens (4, 5). In COPD, this delicate balance was disrupted,

as evidenced by elevated macrophage levels in the bronchoalveolar

lavage fluid (BALF) and damaged lung tissue of patients (6), which

may coordinate the immune response (7) but also contributed to

persistent airway inflammation and alveolar destruction. More

critically, AMs in COPD patients exhibited significant phagocytic

defects, which correlated with worse pulmonary function following

bacterial challenges (8). These observations raise a pivotal question:

why do AMs become dysfunctional despite their increased

abundance? This shifts the research focus from cell numbers to

the potential mechanisms regulating their functional state.

The core of this functional dysregulation might be due to

macrophage immunometabolic reprogramming—an emerging and

crucial research area. AMs exhibit heterogeneous phenotypes under

pathological conditions (9). Various studies pointed out that the

metabolic alterations in AMs enhanced the adaptability and

uniqueness of their functional subsets (10, 11). Macrophages are

traditionally categorized into classically activated (M1) and

alternatively activated (M2) phenotypes (12), and their functional

states may shaped by core metabolic pathways: M1 polarization is

linked to aerobic glycolysis (the “Warburg effect”), driving pro-

inflammatory mediator production, whereas M2 polarization relies

on oxidative phosphorylation (OXPHOS) and the tricarboxylic acid

(TCA) cycle to support anti-inflammatory and repair functions (13,

14). Consequently, alterations in macrophage metabolic patterns may

dictate their inflammatory responses (13, 15). In the specific condition

of COPD, the imbalance of this “metabolism-polarization-function”

axis is particularly critical: M1-associated glycolysis promotes tissue

destruction, while dysregulated M2-associated metabolic processes can

lead to abnormal tissue repair and fibrosis. Prominent metabolic

alterations in AMs may strongly correlate with disease severity in

COPD patients (16), introducing the viewpoint that metabolic

reprogramming may not as an epiphenomenon but as a crucial

promoter of COPD pathophysiology, explaining why targeting this

axis represents a promising new therapeutic strategy.

This review focuses on the phenotypes and function states of AMs

associated with the pathogenesis of COPD, as well as the specific

mechanisms underlying their heterogeneous immunometabolism

patterns, referred to as metabolic reprogramming, hoping to be

exploited to develop potential therapeutic ideas for COPD.
2 Macrophage function and metabolic
characteristics

Macrophages are extensively present in various tissues

throughout the body and therefore can be classified according to
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their anatomical location. Based on ontological origin, the

macrophage populations existing in the lungs consist primarily of

tissue-resident (TR-) AMs, monocyte-derived (MO-) AMs, and

interstitial macrophages. Notably, TR-AMs, which originate from

embryonic development, are continuously renewed within lung

tissue. Circulating monocytes in the peripheral blood can be

rapidly recruited to the sites of infection or injury during

pulmonary inflammation and subsequently differentiate into MO-

AMs (17–20). Studies of airway AMs in lung transplant patients

have reinforced the key position of peripheral blood CD14+CD16-

(classical) monocytes, which constitute 85% of the circulating

monocyte pool, in the origin of pulmonary AMs (21–24).

Furthermore, based on their activation state, human monocyte-

derived macrophages (MDMs) or murine bone marrow-derived

macrophages (BMDMs) cultured in vitro are categorized as M1 or

M2 macrophages. These subsets exhibit distinct functional

tendencies and metabolic characteristics, contributing to the

inflammatory process of COPD through complex immune and

metabolic mechanisms (25, 26).
2.1 Macrophage polarization and function

Macrophages eliminate pathogens through phagocytosis,

initiate the innate immune response in the lung, while also

orchestrating pro-inflammatory, anti-inflammatory, and tissue

repair processes. Changes in local microenvironmental signals

induce macrophage polarization into distinct phenotypes (27).

Upon stimulation with lipopolysaccharide (LPS) and/or

interferon-g (IFN-g), M1 macrophages highly expressed inducible

nitric oxide synthase (iNOS) and pro-inflammatory cytokines to

drive chronic inflammation. Besides, they also inhibited tumor

growth via anti-angiogenic effects (28). However, interleukin (IL)-

4-activated M2 macrophages mainly participate in inflammation

suppression and tissue repair, facilitating pathological angiogenesis,

organ fibrosis, tumor growth, and the progression of allergic and

parasitic diseases (28).

In COPD patients who smoke, studies indicated a positive

correlation between pulmonary function decline/disease severity

and the dual polarization of M1 and M2 in AMs. This contrasted

with healthy individuals, whose airway AMs predominantly

remained in a non-polarized state (7). Similarly, an increase in

both the total number of pulmonary macrophages and the M2/M1

phenotype ratio was observed in the COPD mouse model (29),

highlighting the critical role of excessively polarized macrophages in

COPD pathologies.

2.1.1 M1 macrophages
M1 macrophage polarization, triggered by pathogens or pro-

inflammatory cytokines, is central to the immune response in

COPD. It can be induced in macrophages upon stimulation with

bacterial endotoxin LPS, Th1 pro-inflammatory cytokines such as

IFN-g, tumor necrosis factor a (TNF-a), or granulocyte-

macrophage colony-stimulating factor (GM-CSF). This

polarization is characterized by the expression of specific markers,
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including MHC-II molecules, CD80, and CD86 on the cell surface,

alongside a cytokine profile featuring high levels of IL-12 and IL-23,

but low IL-10 (30). Functionally, polarized M1 macrophages

generate abundant inflammatory mediators, including reactive

oxygen species (ROS), iNOS, TNF-a, IL-6, IL-1b, and the

chemokines chemokine (C-X-C motif) ligand 9 (CXCL9/MIG),

CXCL10/IP-10, and chemokine (C-C motif) ligand 2 (CCL2/

MCP-1). Through antigen presentation, they initiated Th1-type

immunity, recruiting Th1 lymphocytes in response to pathogenic

microorganisms (30, 31). In COPD, this M1-driven response may

become dysregulated and contribute to disease pathogenesis (1).

While M1-secreted mediators initially help clear pathogens,

persistent M1 activation may lead to cytotoxic tissue injury (32).

Highly expressed iNOS produced elevated nitric oxide (NO) by

inducing the activation of nuclear factor kappa-B (NF-kB). Together
with ROS and sustained Th1 cell recruitment, they induced substantial

damage to lung tissue due to their cytotoxic effects (33). Clinically,

Bazzan et al. reported an increase in both M1 and M2 macrophage

proportions in the lungs of COPD patients, correlating with smoking

history and disease severity. Moreover, M1 polarization was more

pronounced and specifically correlated with the severity of airflow

obstruction, as measured by FEV1/FVC% (7), indicating the

involvement of M1 hyperpolarization in Th1 immune inflammation

of COPD. Cigarette smoke (CS) further shiftedmacrophages toward an

M1-dominated state by upregulating Wnt family member 5a (Wnt5a)

and suppressing anti-inflammatory peroxisome proliferator-activated

receptor g (PPARg), thereby reinforcing pulmonary inflammation and

COPD in human and mouse models (34). Thus, the metabolic and

functional profile of M1 macrophages is not merely descriptive; it

underlies the sustained inflammation, tissue injury, and disease

progression observed in COPD.

2.1.2 M2 macrophages
Upon induction by Th2 cytokines such as IL-4, IL-13, IL-10, and

transforming growth factor-b (TGF-b), polarized M2 macrophages

release anti-inflammatory factors like IL-1, IL-10, and TGF-b. This
functional response, which also enhances the phagocytosis of apoptotic

cells and collagen deposition, serves to protect the host from

inflammatory damage and promote tissue healing (35).

During the initial phase of mycobacterium tuberculosis infection,

the expression of IFN-g and iNOS in the BALF of mice gradually

increased, aligning with the observed trend of AM polarization,

indicating M1-biased AM polarization. However, as the

inflammation persisted, the level of M1 markers gradually reduced

while the M2 markers IL-4 and arginase 1 (Arg1) secretion were

substitutionally enhanced. These results indicated a dynamic

polarization plasticity during inflammatory progression, as evidenced

by the transition from M1-dominance in acute infection to M2-

preference in chronic phases (36). In COPD, this pattern manifested

as increased M2 polarization during middle and later stages, initially

serving to maintain pulmonary homeostasis and mitigate the excessive

inflammatory responses (37). However, chronic M2 activation

becomes unadaptive. Chronic inflammatory stimulation in COPD

leads to repeated processes of damage and repair in lung tissues,

while emphysema, the main pathological manifestation of COPD, is
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closely linked to the tissue repair function of M2 AMs (25). In vivo,

chronic pulmonary inflammation resulting from prolonged exposure

to CS can induce the highly expressed CD206 and TGF-b in

macrophages, driving the adaptive immune response of the M2

phenotype to participate in tissue repair (38). Various inflammatory

mediators secreted by M2 in the lung tissues of COPD patients were

reported, such as matrix metalloproteinase (MMP)-2, MMP-9, MMP-

12, and cathepsin S, to cause lung parenchymal injury and eventually

form emphysema, with the increase inM2 amount positively correlated

with the emphysema severities (39–41). An animal study reported that

PM2.5-induced M2 AM polarization upregulated the level of MMP12

via the IL-4/STAT6 pathway in mice (42), while another research

indicated that IL-4-induced M2 interstitial macrophages (IMs), rather

than AMs, appeared to be the major producer of MMP-12 in lungs of

COPD mice (43) However, similarly, both of these studies found that

M2 macrophages caused the dysfunction of the alveolar epithelial

barrier and ultimately led to COPD progression, suggesting that MMP-

12 secreted by M2 phenotype may play an important role in the

formation of emphysema signs in COPD. In vivo and in vitro, M2-

directed polarization related to the TGF-b/Smad pathway in COPD

was observed (29, 44), with the M2/M1 proportions generally

negatively correlated with the lung function of mice (29),

demonstrating the potential significance of the polarization state

biased towards M2 macrophages in COPD.

As illustrated in Figure 1, AMs play an important role in the

pathogenesis of COPD by driving chronic inflammation and tissue

destruction. Additionally, Table 1 summarizes the distribution of

different macrophage phenotypes in COPD patients compared with

non-COPD people, highlighting the characteristics in AM

polarization of COPD.

However, it must be pointed out that this M1/M2 classification is a

simplification of the complex functional state within the body. In

chronic diseases such as COPD, macrophages may exhibit mixed

phenotypes or a vague state between the two (46, 51). There are

apparent contradictions in evidences regarding macrophage

polarization in COPD, such as the debated impact of smoking on

polarization subtypes (52). These discordances may arise from disease

heterogeneity, variations in clinical stages, and differences in

experimental systems. Supporting this complexity, studies by Bazzan

et al. and He et al. reported associations of both mixed M1/M2

polarization and phenotype skewing with COPD severity (7, 29),

challenging the traditional binary classification. The dynamic

alterations between M1 and M2 phenotypes underline the necessity

of a balanced response across disease stages for effective immunity and

repair. Consequently, a full understanding of macrophage roles in

COPD requires a shift in focus from rigid categorization towards

dynamic equilibrium and condition-dependent functional states.
2.2 Metabolic events that occur in
macrophages

The above-mentioned functional characteristics of macrophages

are closely related to intracellular metabolic reprogramming. Under the

stimulation of a specific microenvironment, the metabolic pattern
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switches between glycolysis and OXPHOS, involving the polarization

tendency of M1/M2 macrophages (14). M1 macrophage metabolism

mainly shifts to glycolysis, the pentose phosphate pathway (PPP), and

fatty acid (FA) synthesis to fulfill their ATP demands (10, 53, 54).

Meanwhile, the functions of the TCA cycle (Krebs cycle) andOXPHOS

are compromised, accompanied by the downregulated fatty acid

oxidation (FAO) (10, 55, 56). Nevertheless, the M2 type mainly relies

on the full TCA cycle, OXPHOS, and FAO (54).

The concept of immunometabolism was thus introduced to

describe how metabolic processes within immune cells influence

their functions. Specifically, these processes may not only supply

energy for immune responses but also directly shape cellular activity

by regulating transcriptional and post-transcriptional events. Figure 2

outlines the distinct functional states of M1 and M2 macrophages,

highlighting their characteristic metabolic reprogramming.

2.2.1 M1 macrophages
M1 macrophage polarization may be induced by metabolic

reprogramming toward aerobic glycolysis, a process with

potential implications for COPD pathogenesis. This shift is
Frontiers in Immunology 04
characterized by several interconnected metabolic adaptations

that collectively sustain pro-inflammatory responses. 6-

phosphofructose-2-kinase/fructose-2, 6-bisphosphatase (PFK2)

isomer (L-PFK2) was induced by M1 activation, converted into a

more active form (u-PFK2), and led to the accumulation of fructose-

2, 6-diphosphate, which promoted intracellular aerobic glycolysis

(57). Conversely, the expression of carbohydrate kinase-like protein

(CARKL) was inhibited upon the activation of the M1 phenotype,

which under basal conditions supports the PPP. The over-

expression of CARKL led to the decreased secretion of pro-

inflammatory factors, conforming with the M2 phenotype (58).

Meanwhile, the increase in the consumption of glutamine and

arginine was conducive to exerting the pro-inflammatory function

of M1 macrophages (59, 60). Furthermore, LPS-stimulated M1

phenotype metabolism also depends on the interrupted TCA

cycle, resulting in the accumulation of several intermediate

products, such as citrate, succinate, fumarate, and a-ketoglutarate,
with signal transduction functions (53, 61). Among them, succinate

was produced by IL-1b, regulated by hypoxia-inducible factor 1-

alpha (HIF1a), and the process can be blocked by 2-deoxyglucose
FIGURE 1

The Role of AMs in the pathogenesis of COPD. Chronic stimulation drives AMs to polarize into M1/M2 phenotypes. The sustained inflammation/
damage mediated by M1 and the dysregulated repair/fibrosis of M2 jointly promote the key pathological processes in COPD, leading to persistent
chronic inflammation, chronic bronchitis, and emphysema, ultimately resulting in progressive lung function decline. AM, alveolar macrophage; TNF-
a, tumor necrosis factor-alpha; IL, interleukin; MMP, matrix metalloproteinase; ROS, reactive oxygen species; TGF-b, transforming growth factor-
beta; IFN-g, interferon-g; CXCL, chemokine (C-X-C motif) ligand; CCL, C-C motif chemokine ligand; EMT, epithelial-mesenchymal transition; a-1-
AT, a-1-antitrypsin; ECM, extracellular matrix.
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via inhibiting glycolysis (62). HIF1a was found by metabolomics to

intervene in the expression of multiple glycolytic genes (63) and

thus may become a potential target for M1 metabolism.

In brief, we might consider that metabolic events in classically

activated macrophages serve a dual purpose: they rapidly provide

energy and reduction equivalents to fuel bactericidal activity, and

they directly participate in transcriptional regulation to shape

immune responses.

2.2.2 M2 macrophages
The low glycolytic levels in IL-4-activated macrophages were

reported to be compensated by elevated OXPHOS, and their

metabolic activity was achieved by high OXPHOS rates, an intact

TCA cycle, and FAO. Activated M2 macrophages massively induced

oxidative metabolic programs, including FAO, OXPHOS, and

mitochondrial respiration. In the long term, it leads to substantial

ATP production via the electron transport chain (ETC) to support

cellular anti-inflammatory and repair functions. Simultaneously,

constituents of the ETC supported OXPHOS and introduced

pyruvate into the Krebs cycle (13, 15, 53). Cellular FA levels were

elevated following phagocytosis of apoptotic cells by macrophages,

amplifying mitochondrial respiration and inducing NAD+-dependent

signaling pathways that triggered anti-inflammatory responses for

tissue healing and repair (64). This may imply that FAO is a key

metabolic process underpinning M2 macrophage function (65).

However, this perspective remains controversial (66), reflecting a

critical need to evaluate the strength and context of the evidence.

The contradiction primarily centers on whether FAO is an
Frontiers in Immunology 05
indispensable driver of M2 polarization or a correlative consequence

of it. Therefore, while the association between FAO andM2 function is

well-supported, its essentiality requires more rigorous validation.

Under IL-4 stimulation, the activation of its transcription factor

STAT6 induced the secretion of PPARg-coactivator protein 1b
(PGC-1b), which triggered the production of key components of

mitochondrial respiration (67, 68), considered critical for the

metabolic switch of M2 macrophages. The knockdown of PGC-1b
impaired themetabolic profile and functions of theM2 phenotype (69).

In addition, PPARs, especially PPARg and PPARd, are essential for

phenotype maintenance as well, including the coordination of the

functions of the alternative activation effect and the transcription of

fatty acid b oxidation-related factors (70, 71). Moreover, TNF-a-
induced protein 8-like 2 (TIPE2) was also found to induce arginine

metabolism (72). Increased Arg1 catalyzed the conversion of arginine

to ornithine, which is associated with the M2 polarization phenotype

and repair function (13, 61).

The maintenance of M1/M2 polarization balance involves the

action of multiple pathways. Inhibiting oxidative metabolism

impeded M2 polarization and promoted a shift toward the M1

phenotype. Conversely, forcing oxidative metabolism in M1

macrophages reinforced the manifestation of M2 phenotype (69,

73). Thus, we consider that the state of oxidative metabolism may

bidirectionally regulate macrophage polarization. On the other

hand, PPP restriction in M2 macrophages led to decreased ROS

and NO production, while inhibition of OXPHOS by NO

suppressed the polarization from M1 to M2 phenotype under the

specific microenvironment (74).
TABLE 1 Macrophage phenotype distribution in COPD patients#.

Source Method Number Object Total Mø M1 M2 Double-
polarized (DP)

Non-
polarized

(NP)

Ref.

BALF FC 18 (vs.10) Marker
COPD (vs.non-

COPD)

Uncategorized CD40
+CD163−

NS

CD40−CD163+
NS

CD40+CD163+
↓

CD40−CD163−
↑

(45)

BALF FC 8 (vs.17) Marker
COPD (vs.non-

COPD)

Uncategorized CD40
+CD163−

NS

CD40−CD163+
NS

CD40+CD163+
↓

CD40−CD163−
↑

(46)

BALF FC 47 (vs.30) Marker
COPD (vs.non-

COPD)

Uncategorized CD86+
↑

CD206+
↑

No detection No detection (47)

Lung
tissues

IHC 38 (vs.25) Marker
COPD (vs.non-

COPD)

CD68+
↑(III/IV stage

COPD)

No
detection

CD163+, CD204+,
CD206+

↑(III/IV stage
COPD)

No detection No detection (48)

Lung
tissues

IHC 10 (vs.15) Marker
COPD (vs.non-

COPD)

CD68+
↑

iNOS
+CD68+

↓

CD206+CD68+
↑

No detection No detection (49)

Lung
tissues

IHC 23 (vs.30) Marker
COPD (vs.non-

COPD)

Uncategorized iNOS+
↑

CD206+
↑

iNOS+CD206+
↑

iNOS-CD206-
↓

(7)

Lung
tissues

IHC 7 (vs.16) Marker
COPD (vs.non-

COPD)

CD68+
↑

iNOS
+CD68+

↓

CD206+CD68+
↑

No detection No detection (50)
frontier
# ↑, increased; ↓, decreased; Mø, macrophages; FC, flow cytometry; IHC, immunohistochemistry.
sin.org
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In conclusion, key metabolic diversity in macrophages under

different activation states has been widely accepted. Nevertheless,

the intricate molecular mechanisms that coordinate these metabolic

pathways remain indistinct, and how metabolic patterns specifically

regulate the polarization bias has not been fully elucidated.
3 Metabolic drivers of macrophage
dysfunction in COPD

The increase in both total and polarized AMs may drive COPD

pathogenesis through multiple mechanisms, including the secretion of

proinflammatory cytokines, chemokines, and MMPs, along with
Frontiers in Immunology 06
impaired phagocytic and bactericidal functions (75). As mentioned

above, the differing polarization trends and cell functions resulting

from macrophage metabolic reprogramming may be closely related to

the pathogenesis of COPD. In COPD, key immunometabolic features

include excessive ROS/NO production, oxidative stress, and iron

accumulation. These features are linked to the disease through

mitochondrial phenotypic alterations and dysfunction, which appear

to play a central mediating role. This connection further elucidates the

critical link betweenmacrophage metabolism and COPD pathogenesis.

In addition, macrophage-associated glycolysis, amino acid metabolism,

and microbial metabolism may also contribute to the pathological

mechanism of COPD. Evidences for metabolic alterations of AMs in

COPD are summarized in Table 2.
FIGURE 2

Polarization and metabolic alterations of M1 and M2 macrophages. M1 and M2 macrophages exhibit distinct functional phenotypes shaped by
specific stimuli. M1 polarization is driven by LPS, IFN-g, and TLRs, leading to production of pro-inflammatory mediators (e.g., IL-1b, IL-12, IL-23, ROS,
TNF-a). The metabolic changes of M1 macrophages were characterized by enhanced glycolysis, disruption of the TCA cycle, and damage to
OXPHOS, accompanied by downregulation of FAO. M2 polarization mainly depended on the complete TCA cycle, OXPHOS, and FAO. M2
polarization is primarily induced by IL-4, IL-13, etc., and characterized by anti-inflammatory/pro-fibrotic responses, exemplified by IL-10 and TGF-b1
release. IL, lnterleukin; MHC-II, major histocompatibility complex II; GM-CSF, granulocyte-macrophage colony-stimulating factor; Acetyl-CoA, acetyl
coenzyme A; Acyl-CoA, acyl-coenzyme A; FAO, fatty acid oxidation; Glu, glucose; G6P, Glucose 6-phosphate; OXPHOS, oxidative phosphorylation;
ADP, adenosine-diphosphate; ATP, adenosine-triphosphate;a-KG, a-Ketoglutaric acid; ARG1, arginase 1; IFN-g, interferon g; TNF-a, tumor necrosis
factor-alpha; TGF-b, transforming growth factor-beta; VEGF, vascular endothelial growth factor; LPS, lipopolysaccharide; NO, nitric acid; iNOS,
inducible nitric oxide synthase; PPP, pentose phosphate pathway; ROS, reactive oxygen species; mtROS, mitochondrial ROS; TCA, tricarboxylic acid;
TLRs, Toll-like receptors.
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3.1 Mitochondria-associated metabolic
reprogramming of macrophages

Mitochondria serve as the central hub for macrophage

metabolic plasticity, which plays an important role in energy

production, immune regulation, signal transduction, and cell fate

determination, intervening the inflammation regulation and

macrophage repair (84). A study indicated that AMs in BALF

from COPD patients exhibited lower mitochondrial respiration and

compensatory glycolytic defects compared with smokers, associated

with a lower predicted FEV1% (16), supporting results from several

prior studies (77, 80, 85). These findings indicated that COPD

patients may display abnormal macrophage responses linked to

mitochondrial dysfunction. This abnormality may impair the

phagocytosis and bactericidal activity of AMs against respiratory

pathogens, consequently driving persistent chronic airway

inflammation and lung function decline. Mitochondrial

metabolism is central to the cellular metabolic network,

encompassing the Krebs cycle, OXPHOS, glycolysis, FAO, amino

acid metabolism, etc. (86). The intricate communication, whether

direct or indirect, between mitochondrial metabolism and AM

polarization may lead to changes in cellular function and help

explain the shifts in the immunometabolic behavior of AMs within

the context of COPD pathology.

3.1.1 ROS and oxidative stress
Chronic exposure to cigarette smoke extracts (CSE) or particulate

matter resulted in elevated oxidative stress, a critical metabolic

characteristic in AMs of COPD patients (87). Oxidative stress led to

a significant increase in the production of mitochondrial reactive

oxygen species (mtROS), superoxide anions, and hydrogen peroxide
Frontiers in Immunology 07
in AMs (88). Moreover, oversecreting of mtROS and a decreased ratio

of mROS/superoxide dismutase 2 were linked to defective bacterial

killing of AMs (77).

Subsequent research indicated that AMs from COPD patients

exhibited impaired phagocytosis associated with mitochondrial

dysfunction (80), possibly due to the decreased mitochondrial

membrane potential, which caused cellular energy depletion, proton

leakage, and overproduction of mtROS (89). Further studies revealed a

strong correlation between ROS level and the polarization and

metabolic characteristics of macrophages. Typically, mitochondria

generate ATP via electron transport and OXPHOS. However, some

electronsmay escape from protein complex 1 or 3 in the ETC, resulting

in the generation of superoxide anion, which is subsequently converted

to ROS (such as H2O2 and hydroxyl radicals·OH).Whenmitochondria

are metabolically active to meet the high metabolic demand, ETC is

overloaded, and the likelihood of electron leakage is increased. In

addition, upon activation of M1, mitochondria also markedly enhance

ROS production via the reverse electron transport (RET) mechanism,

thereby facilitating bactericidal and pro-inflammatory functions in

cells. However, a high ROS state induces oxidative stress, leading to

mitochondrial DNA (mtDNA) damage and membrane integrity

disruption. Therefore, the M1 phenotype mainly relies on

compensatory glycolysis for rapid energy supply, and mitochondria

still maintain part of their function to support the enhanced RET,

resulting in the explosively generated ROS (80). On the other hand, a

low ROS state shows an OXPHOS-dominated M2 metabolic mode,

featured by efficient ETC and reduced ROS production, which is

conducive to the maintenance of M2 polarization and facilitates anti-

inflammatory and repair functions (90). Thus, ROS plays an important

role in the alteration and maintenance of M1/M2 polarization, as well

as macrophages’ corresponding functions.
TABLE 2 AM metabolic alterations in COPD#.

Object Metabolic change
Functional change and
consequence

Ref.

Lung tissues from COPD patients ↑ CD73, ↑ A2BR ↑ Adenosine metabolism (76)

BALF from COPD patients, CD68.hMcl-
1-/+ transgenic mice, BMDM

↑ Mcl-1, ↓ Caspase-dependent mROS
after pneumococcal challenge

↓ intracellular bacterial killing (77)

Lung tissues from COPD patients ↓ Gamma-glutamylcysteine synthetase ↓ GSH synthesis, ↑ Oxidative stress (78)

NO concentration measurement and
sputum of COPD patients

↑ iNOS, ↑ Nitrotyrosine ↑ NO production (79)

BALF and lung tissues from COPD
patients

↑ Early mROS, ↓ DYm
Defective bacterial phagocytosis,
dysfunctional mitochondria

(80)

BALF and lung tissues from COPD
patients

↑ Transferrin, transferrin receptor, and
ferritin

↑ Iron sequestration, which may decrease
iron-induced oxidative stress

(81)

BALF and sputum from COPD patients,
ozone-exposed mice

↑ MIF, ↑ HIF-1a May increase glycolysis (82)

BALF from COPD patients
↓ Mitochondrial respiration, ↓
Compensatory glycolysis

Unmet energetic demand, and lower total
mitochondrial numbers and mass

(16)

BALF from COPD patients ↓ Coupling efficiency, ↑ Proton leak ↓ OXPHOS, and dysfunctional metabolism (16)

BALF from COPD patients
Alterations of genes involved in lipid
metabolism

Lipid metabolism changes (83)
# ↑, increased; ↓, decreased; mROS, mitochondrial ROS; DYm, mitochondrial membrane potential; MIF, macrophage migration inhibitory factor.
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The key pathways of ROS generation are NADPH oxidase

(NOX) and RET, which produce pathogen-killing ROS and

mtROS, respectively. NOX isoforms 1, 2, 4, and 5 were all

observed to remain activated in patients with end-stage COPD,

whereas NOX1 and NOX4 mediated oxidative stress and

inflammatory responses in mice following acute CS exposure

(91). Recently, NOX2 and NOX4 were found to be involved in

macrophage polarization related to ROS production. The quantity

of NOX2-positive macrophages was elevated in the lungs of

emphysema patients, and the elastase-induced emphysema and

the high expression of ROS were prevented in NOX2-deficient

mice. These findings collectively suggested a potential role of NOX2

in the pathogenesis of emphysema, probably through the sirtuin 1

(SIRT1)/MMP-9 pathway involved in macrophage-specific NOX2

(92). For macrophage polarization, NOX2-dependent ROS

generation may be involved in the polarization pathway of

primary macrophages to the M2 phenotype, linked to the high-

mobility group box 1 (HMGB1)/Toll-like receptor 2 (TLR2)/NOX2

autophagy axis (93). Moreover, NOX4 was identified as a mediator

of M1 polarization in mouse intestinal macrophages via ROS (94).

Nonetheless, conclusive evidence regarding the role of NOX in AM

polarization in COPD remains lacking, highlighting a key area for

future research that bridges mechanistic findings to COPD

pathology. The ROS degradation program exhibited a correlation

with macrophage polarization as well. Peroxiredoxins (Prxs) serve

as crucial antioxidant enzymes that eliminate excessive ROS in cells,

thereby sustaining redox homeostasis. Deficiency of Prx5 in

macrophages can induce M2 polarization and a reduction in M1-

related inflammatory factor expression in lung cancer macrophages,

while N-acetylcysteine (NAC), an antioxidant, was observed to

suppress this tendency by inhibiting ROS production (95).

Mitophagy in macrophages, as a selective autophagy mechanism,

may also influence macrophage differentiation through its impact on

ROS levels. Under external environments such as ROS stress, nutrient

deficiency, and cellular aging, mtDNA mutations accumulate, along

with a decrease in mitochondrial membrane potential and

depolarization damage (96). Damaged mitochondria are

encapsulated into autophagosomes and fused with lysosomes to

complete degradation. This process is called mitophagy, specifically

removing dysfunctional mitochondria from the cytoplasm to maintain

mitochondrial functional integrity and cellular homeostasis (97).

Autophagy inhibition was observed to enhance the production of

ROS-associated macrophage migration inhibitory factor (MIF), which

induced and continuously promoted M1 macrophage polarization

(98). Low levels of MAP kinase kinase 3 (MKK3) can enhance

mitophagy and regeneration of macrophages, protecting mice from

sepsis-induced lung injury (99). In contrast, another study indicated

that NIX-dependent mitophagy contributes to the elimination of

mitochondria during macrophage polarization to the

proinflammatory and more glycolytic M1 phenotype, promoting a

metabolic transition toward glycolysis in macrophage metabolism

(100). However, the role of mitophagy in macrophage polarization

within the context of COPD still requires further investigation.

The AM-related ROS pathway and iron accumulation in COPD

have also received attention in recent years. Iron metabolism was
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revealed to be integral to the ROS pathway. It influenced mtROS

production and lipid peroxidation, thereby activating necroptosis and

ferroptosis. These forms of cell death contributed to the pathogenesis of

COPD (101). With the increasing severity of COPD and emphysema,

the amount of iron deposition and the percentage of iron-positive

macrophages (AM as the main type) increased. It supported an iron

chelation mechanism activated by AMs in COPD, potentially serving

as a protective mechanism against iron-induced oxidative stress (81).

Based on this, an in vitro study found that treating COPD with

sulforaphane can activate the antioxidant and anti-inflammatory

NRF2 pathway, restoring bacterial recognition and phagocytosis in

AMs (102). Moreover, the use of a mitochondrial iron chelator or a

low-iron diet can protect mice from CS-induced COPD, jointly

supporting the therapeutic potential of targeting the mitochondria-

iron axis in COPD (103).

3.1.2 Glucose metabolism
Macrophages can manifest with bidirectional metabolic changes

between aerobic OXPHOS and anaerobic glycolysis in response to

specific microenvironmental stimuli (40). Early studies in immune

cell metabolism identified aerobic glycolysis in neutrophils. It is

characterized by increased glucose uptake and an accelerated

glycolytic rate despite sufficient oxygen, leading to excessive

lactate production and suppressed OXPHOS. This metabolic shift

helped to generate the bio-precursors and energy required for cell

proliferation (104, 105).

A study on AM metabolic profiles indicated that AMs in COPD

exhibited a diminished capacity to dynamically compensate for

mitochondrial dysfunction through increasing glycolysis. This pattern

manifested with significantly reduced compensatory glycolysis, non-

glycolysis, and non-mitochondrial extracellular acidification rate

(ECAR) in COPD smokers. The AMs of COPD patients showed

impairments in mitochondrial respiration and compensatory

glycolysis, correlating with the decreasing trend of lung function

(16). For the direction of AM polarization, glycerol-3-phosphate

dehydrogenase 2 (GPD2) was found to shift the metabolic pattern of

M1 macrophages during infection and promote the activation of the

M2 phenotype during tissue repair by modulating glycolysis (106).

Mitochondrial dysfunction in lung epithelial cells can lead to defective

ATP production and enhanced glycolysis, thereby promoting arsenic-

induced massive lactate production and inducing polarization toward

the M2 phenotype (107). The above results indicate that glycolysis is

closely related to mitochondrial function in AMs of COPD, affecting

the activation state and polarization direction of macrophages.

Nonetheless, its impact on macrophage function within the COPD

environment and the precise mechanisms involved in the disease

process remain to be further explored.

3.1.3 Lipid metabolism
Lipids encompass both fats and lipoids, of which metabolic

processes are functionally coupled with mitochondria, playing a

crucial role in maintaining lung function (108). In COPD, AMs

exhibited GOLD-level-dependent lipid metabolism alterations (83),

further indicating the potential association between COPD lipid

metabolism and the phenotype and function of AMs.
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The fatty acidmetabolism process involvingmitochondria includes

fatty acid synthesis (FAS) and FAO. Mitochondria degrade glucose in

the cytoplasm via glycolysis, yielding pyruvate, which is then catalyzed

by the pyruvate dehydrogenase complex (PDH) to generate acetyl

coenzyme A, serving as the crucial raw material for FAS. Acetyl

coenzyme A undergoes transmembrane transport through the

citrate-pyruvate cycle. FAO refers to the cellular process of fatty acid

degradation for energy production. At this time, acyl-coenzyme A

enters the mitochondrial matrix and engages in the b-oxidation of

long-chain fatty acids within the mitochondria, generating acetyl

coenzyme A and reducing equivalents (NADH/FADH2), providing

energy for the cell and participating in immune regulation (109). The

direct effects of the FAS and FAO pathways on macrophage

polarization have not been fully elucidated. Nevertheless, studies have

indicated that the regulation of their states may coincide with

alterations in macrophage phenotype, suggesting possible indirect or

potential connections between them. For example, a study on

macrophage FAS found that IL-4 can activate sterol regulatory

element-binding protein 1 (SREBP1), triggering the de novo

lipogenesis (DNL) program, separating it from the cell’s antioxidant

defense by depleting NADPH, thus increasing ROS levels. In this

process, ROS acts as a second messenger, transmitting adequate DNL

signals to promote the polarization of the macrophage M2 phenotype

(110). On the other hand, FAO may also be related to macrophage

polarization. The Fgr tyrosine kinase may promote theM1 polarization

phenotype of macrophages via the phosphorylation complex II.

Additionally, the clearance of mitochondrial peroxides can inhibit

Fgr activation and lead to increased FAO levels (111), indicating that

mitochondrial ROS-Fgr kinase may be a key regulatory axis for pro-

inflammatory macrophage activation.

The above results indicate that mitochondrial FA metabolism may

play a significant role in the polarization of macrophages in COPD.

Additionally, sphingolipid metabolism also plays an important role in

the pathogenesis of COPD by regulating the function of AMs.

Ceramide, a core product of sphingolipid metabolism, can inhibit the

endocytosis of AMs by down-regulating Rac1. The excessive

accumulation of ceramides may impair the cell skeleton function and

consequently diminish the ability of AMs to engulf apoptotic cells,

thereby amplifying the damage of emphysema (112). This process may

involve its metabolite sphingosine-1-phosphate (S1P), indicating that

modulating the production of sphingolipid metabolites could be a

viable approach for restoring the phagocytic function of AMs to treat

COPD (113). Currently, there is still inadequate evidence to illustrate

its impact on the polarization phenotype of COPD macrophages.

3.1.4 Amino acid metabolism
The important role of amino acid metabolism in COPD has been

confirmed (114). Studies revealed that the expression of genes related to

glutathione metabolism, mitochondrial transport, pyruvate

metabolism, the TCA cycle, ETC were altered in smokers and

COPD patients (16). Glutathione (GSH) is a tripeptide consisting of

three amino acids: glutamic acid, cysteine, and glycine. This important

antioxidant can safeguard cells from oxidative damage by neutralizing

free radicals. Procysteine, its precursor, has been shown to enhance the

phagocytic function of AMs in COPD mice (37). In addition, the
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expression of iNOS in COPD AMs increased, leading to elevated levels

of NO and adenosine receptor A2BR (76, 79). The rise in adenosine

metabolism in COPDmay be related to the increased level of HIF1a in

AMs (82). Moreover, it has been observed that CS can promote the

glutamine metabolism of raw cells and induce their M2 polarization

phenotype (115). However, the evidence regarding amino acid

metabolism’s impact on macrophage polarization and function in

COPD is still insufficient and requires further research.
3.2 Microbial metabolism

The interaction between the gut microbiome, its metabolites, and

the pathophysiology of pulmonary diseases is referred to as the “gut-

lung axis”, which has been widely discussed in respiratory diseases

(116, 117). The microbial communities colonizing the airways and

alveoli, such as proteobacteria, bacteroides, firmicutes, and

actinobacteria, can generate numerous metabolites, notably short-

chain fatty acids (SCFAs) such as acetic acid, propionic acid, and

butyric acid. These metabolites can modulate pulmonary immune-

inflammatory responses, affect pulmonary barrier function, and

thereby intervene in the disease progression (118). Currently,

macrophages are considered the main target of SCFA produced by

the microbial community (119).

According to a study by Ji et al., a probiotic mixture enhanced

antiviral defense by modulating the gut-lung axis: it increased gut-

derived acetate and beneficial lung bacteria (including corynebacterium

and lactobacillus), which improve pulmonary microbiome dysbiosis

induced by respiratory syncytial virus (RSV), and boost AM

phagocytosis and IFN-b secretion. These results highlighted that the

microbiome-AM axis may serve as a potential pathway for regulating

AM function and its downstream factors (120). Direct evidence from

multi-omics analyses of airway host-microbe interactions in COPD

patients indicated that indole-3-acetic acid (IAA) derived from airway

microbiota alleviated neutrophil inflammation, cell apoptosis,

emphysema, and lung function decline through IL-22-mediated

macrophage-epithelial cell interactions. And intranasal inoculation of

two airway lactobacillus (potential producers of airway IAA) for 6

weeks can alter the lung microbiome in mice, restore IAA levels, and

exert a protective effect in COPDmice (121). These studies proposed a

potential link between the metabolic activities of the pulmonary

microbiome and the functionality of AMs in COPD. However, the

effects of SCFA on the metabolism and polarization phenotype of AMs

are still in the exploration stage. Studies in experimental models further

clarify the roles of specific SCFAs. Butyrate has been found to alter

metabolic pathways in macrophages, leading to an increase in

OXPHOS and fatty acid metabolism, and inducing polarization

towards the M2 phenotype. Although the specific mechanism is still

unclear, SCFAs have been reported to induce the activation of genes

related to the aforementioned metabolic pathways (122, 123).

Furthermore, butyrate and propionate have been reported to inhibit

M2 polarization and mitigate inflammatory responses caused by

allergic airway reactions in animal models. And the effects of

butyrate, butyric acid, and propionate on macrophage lines may be

mediated by the activation of GPR43 receptors and/or inhibition of
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HDAC enzymes (124). These apparent contradictory evidences

regarding the pro- versus anti-M2 effects of SCFAs may be due to

methodological differences. Key variables such as the specific disease

context, the timing and concentration of SCFA exposure, and the

source of macrophages may profoundly influence the outcome. The

observed dual effects could suggest a context-dependent, homeostatic

role for SCFAs in immune responses. Therefore, future research might

systematically control these variables to clarify the precise conditions

under which SCFAs promote or suppress M2 polarization, which is

essential for evaluating their therapeutic potential.

In summary, while the precise mechanisms require further

clarification, microbiome-derived metabolites, including IAA,

propionate, and butyrate, may intervene in AM function and

polarization in COPD. This regulation occurs via the gut-lung axis

and within the local pulmonary microenvironment, representing a

promising novel therapeutic target.

These evidences in Chapter 3 suggest the potential mechanisms

underlying the immune-related metabolic changes in AMs. While

direct longitudinal studies tracing the temporal dynamics of AM

immunometabolism in human COPD are still emerging, the existing

evidences allows for an assumption of this process. In the acute

exacerbations or early phases driven by CS, AMs may undergo a

metabolic shift towards glycolysis to meet the urgent energy demands

for pro-inflammatory responses. This state is characterized by the

upregulation of M1-like markers and the release of ROS and proteases,

contributing to tissue damage. As COPD transitions to a more chronic

phase, the sustained metabolic stress and altered microenvironment

may lead to mitochondrial dysfunction and the persistence of

inflammation. Notably, some populations of AMs might adopt a

mixed or alternative (M2-like) activation state, potentially relying on

oxidative phosphorylation to varying degrees, which could

paradoxically contribute to impaired bacterial clearance and fibrotic

repair processes, thus driving disease progression. Spatially, the

metabolic phenotype of AMs is likely shaped by local niches. For

instance, the alveolar compartment might favor certain metabolic

adaptations due to its direct exposure to inhaled stimuli and unique

oxygen tension, whereas the bronchial tree could present a different set

of metabolic challenges and inflammatory signals. Future studies could

employ single-cell technologies on longitudinally collected patient

samples are crucial to validate this spatiotemporal model and

uncover novel, stage-specific therapeutic targets.

4 Prospective therapies targeting
macrophage immunometabolism in
COPD

Based on the central role of macrophage immunometabolism in

COPD, targeting this axis represents a promising therapeutic strategy.

Numerous natural compounds derived frommedicinal plants, animals,

and fungi, such as flavonoids, terpenoids, and phenols, have shown

potential in modulating the immune-metabolic state in pre-clinical

models of COPD (125–135), offering the advantages of fewer toxic side

effects and multi-targeted mechanisms (136). The potential

mechanisms of these compounds can be categorized as follows:
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First, certain flavonoids can impact macrophage polarization and

abundance. Fisetin, rutin, and casticin were reported to effectively

reverse the increase in neutrophil and macrophage populations in

BALF of rats/mice induced by CS, mitigating oxidative stress and

inflammation in lungs (127, 130, 135). Naringenin, as the main

flavanone in citrus, was reported to suppress the disorder of

extracellular vesicular cargoes derived from BEAS-2B induced by

CSE, thereby inhibiting M1 macrophage polarization (133). Second,

a key mechanism involves the enhancement of antioxidant defenses.

Fisetin and oroxylin A activated the Nrf2 pathway to alleviate oxidative

stress (128, 130), which was similar to the efficacy of ginsenosides (126).

Third, some compounds demonstrate the ability to ameliorate

mitochondrial dysfunction in macrophages. Andrographolide, a

diterpene lactone compound, can alleviate mitochondrial

dysfunction, inflammation, and oxidative stress in RAW 264.7

macrophages exposed to CSE by inhibiting SIRT1/ERK signaling,

thereby preventing tissue damage in COPD (132). Finally, several

compounds showed efficacy in specific, COPD-relevant models.

Compound K (CK), a secondary ginsenoside, may act as a potential

ligand for glucocorticoid receptors and a regulator of macrophage

inflammatory responses, exerting potential effects on COPD (134).

Triterpene acids from Eriobotrya japonica (Thunb.) Lindl. Leaf

significantly inhibited NO and iNOS in AMs of chronic bronchitis

rats, associated with the inhibition of p38 MAPK phosphorylation

signal transduction (125). Furthermore, astaxanthin and olive kermes

can reduce macrophage infiltration and tissue destruction in the BALF

of COPD mice induced by CS (129, 131).

While the aforementioned findings are primarily derived from

preclinical models, such as CSE-treated animals or cells, they

demonstrate the possibility of using natural products to intervene

in COPD pathology by regulating macrophage metabolic

imbalances. However, we still lack direct evidence for the specific

targets towards AMs. Future studies should consider mechanistic

exploration in COPD AM models to advance clinical translation.

Micro-RNAs (miRNAs), as small, endogenous non-coding RNA

molecules, are considered key regulators of metabolic homeostasis that

influence macrophage function and inflammatory response in chronic

lung diseases associated with mitochondrial dysfunction (137, 138). In

COPD, the M1 and M2 phenotypes of AMs exhibited distinct miRNA

expression profiles, implying their regulatory role in macrophage

polarization (139, 140). Moreover, in Mycobacterium tuberculosis

(Mtb) infection, Let-7f miRNAs can inhibit NF-kB inhibitor A20 by

targeting NF-kB, promoting the polarization of M1 macrophages and

NF-kB activity (141). At the same time, let-7adf can promote the

expression of pro-inflammatory cytokine IL-6 and the accumulation of

glycolysis and succinate through targeting the succinate metabolic

pathway in LPS-activated macrophages (142). Let-7a has also been

reported to target SNAP23 in colorectal cancer cells, thereby inhibiting

OXPHOS (143). These results emphasize the significance of miRNAs

in the metabolic reprogramming of macrophages; however, their

clinical application in COPD requires a more comprehensive

understanding of their mechanisms and targets, which still

faces challenges.

On the other hand, targeting specific metabolic pathways may

reshape the metabolism and phenotypic changes of COPD
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macrophages, potentially serving as a strategy to inhibit inflammation.

Dimethyl fumaric acid (DMF) functions as a chemical regulator of

macrophage phenotype (144). It has been found to inhibit the catalytic

cysteine of glycolytic enzyme glyceraldehyde-3-phosphate

dehydrogenase (GAPDH), thereby down-regulating aerobic glycolysis

in activated myeloid and lymphoid cells, altering the phenotype of

macrophages (145). Given that M1 macrophages are characterized by

an increased aerobic glycolysis rate and glucose demand, the inhibition

of glycolysis may serve as an effective way to manipulate macrophage

metabolism and suppress inflammation. 2-Deoxy-D-glucose (2DG), a

glycolysis inhibitor, can competitively bind to hexokinase to inhibit

glycolysis, subsequently reducing the inflammatory response triggered

byM1macrophages (61). The glycolysis regulator TEPP-46 can inhibit

the pro-inflammatory effect of macrophages by obstructing the

tetramerization of pyruvate kinase M2 (146) and simultaneously

enhance the tolerance of macrophages to endotoxin (147). Moreover,

the small molecule CPUY192018 can down-regulate glycolysis in AMs

of COPD patients, thereby enhancing their phagocytic function (148).

Based on this, targeted delivery of drugs to AMs may enable the

precise regulation of AM immunometabolism, allowing for the

optimization of therapeutic effects and avoiding capture by mucus

(149). An inhalation-based drug delivery system targeting AMs

employs micro- and nanocarriers for implementation. Currently,

micro- and nanospheres coated with mannose, which is based on the

phagocytic activity of AMs, have been developed for the targeted

delivery of antibiotics in the treatment of AM bacterial infections (150).

It also provides ideas for drug delivery to AMs in other diseases, such as

COPD. As mentioned in this article, chelating agents, antioxidants,

miRNAs, chemical regulators, etc., may be able to regulate AM

immunometabolism to treat COPD. Incorporating them into

aerosolized micro- or nano-delivery systems to assist in drug

administration may represent a potential idea for the development of

new drugs for COPD.
5 Conclusion

In the lungs, macrophages polarize towards the M1/M2 direction

under the activation of inflammatory factors, exerting pro-

inflammatory/anti-inflammatory effects and participating in the

COPD process of airway inflammation, lung parenchymal damage,

and repair. They engulf and eliminate apoptotic and necrotic tissue cells,

collaboratively shaping the microenvironment of the lungs in COPD.

However, research on the staged induction of macrophage

polarization by CS remains insufficient. Further studies are

required to clarify the role of AMs in the microenvironment of

COPD lungs based on the polarization tendencies and functional

states at different disease stages, as well as the specific molecular

mechanisms involved in these mechanisms to participate in the

disease, so as to provide clear directions for macrophage-targeted

COPD treatment. In summary, despite its utility as a foundational

framework, the M1/M2 model has limitations in COPD. Future

studies may therefore apply techniques such as single-cell RNA

sequencing to elucidate the full spectrum of macrophage
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heterogeneity across COPD stages and subtypes, to deepen the

understanding of macrophage phenotypes.

On the other hand, the metabolic reprogramming of macrophages

under microenvironment stimuli, involving oxidative stress,

mitochondrial dysfunction, and metabolic pathways such as

glycolysis, lipogenesis, amino acid metabolism, and microbial

metabolism, is closely related to their polarization direction and

functional expression, contributing to the pathogenesis of COPD.

Interfering with metabolic patterns to reshape the phenotype of

macrophages is considered a promising therapeutic strategy, but

before this can be achieved, a more accurate understanding of the

relationship between metabolic pathways and phenotypes is required.

This review explored the mechanisms of metabolic adaptation on AM

phenotypes and functions in COPD, highlighting the potential of AM

metabolic plasticity for drug development and offering novel concepts

for targeted treatment strategies in COPD.
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98. Cotzomi-Ortega I, Nieto-Yañez O, Juárez-Avelar I, Rojas-Sanchez G, Montes-
Alvarado JB, Reyes-Leyva J, et al. Autophagy inhibition in breast cancer cells induces
ROS-mediated MIF expression and M1 macrophage polarization. Cell Signal. (2021)
86:110075. doi: 10.1016/j.cellsig.2021.110075

99. Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE, Bohanon M, et al.
MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung
injury. Am J Physiol Lung Cell Mol Physiol. (2014) 306:L604–619. doi: 10.1152/
ajplung.00272.2013
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COPD chronic obstructive pulmonary disease
Frontiers in Immunol
WHO World Health Organization
AMs alveolar macrophages
BALF bronchoalveolar lavage fluid
M1 classically activated
M2 alternatively activated
OXPHOS oxidative phosphorylation
ROS reactive oxygen species
TCA tricarboxylic acid
TR- tissue-resident
MO- monocyte-derived
MDMs monocyte-derived macrophages
BMDMs bone marrow-derived macrophages
LPS lipopolysaccharide
IFN-g interferon-g
iNOS inducible nitric oxide synthase
IL interleukin
TNF-a tumor necrosis factor a
GM-CSF granulocyte-macrophage colony-stimulating factor
CXCL9/MIG chemokine (C-X-C motif) ligand 9
CCL2/MCP-1 chemokine (C-C motif) ligand 2
NF-kB nuclear factor kappa-B
PPARg peroxisome proliferator-activated receptor g
Wnt5a Wnt family member 5a
TGF-b transforming growth factor-b
Arg1 arginase 1
MMP matrix metalloproteinase
PPP pentose phosphate pathway
FA fatty acid
FAO fatty acid oxidation
CARKL carbohydrate kinase-like protein
HIF1a hypoxia-inducible factor 1-alpha
ogy 16
PGC-1b PPARg-coactivator protein 1b
TIPE2 TNF-a-induced protein 8-like 2
CSE cigarette smoke extracts
mtROS mitochondrial reactive oxygen species
ETC electron transfer chain
RET reverse electron transport
mtDNA mitochondrial DNA
NOX NADPH oxidase
SIRT1 sirtuin 1
HMGB1 high-mobility group box 1
TLR2 Toll-like receptor 2
Prxs Peroxiredoxins
NAC N-acetylcysteine
MIF migration inhibitory factor
MKK3 MAP kinase kinase 3
ECAR extracellular acidification rate
GPD2 glycerol-3-phosphate dehydrogenase 2
FAS fatty acid synthesis
PDH pyruvate dehydrogenase complex
SREBP1 sterol regulatory element-binding protein 1
DNL de novo lipogenesis
S1P sphingosine-1-phosphate
GSH Glutathione
SCFA short-chain fatty acids
RSV respiratory syncytial virus
IAA indole-3-acetic acid
miRNAs Micro-RNAs
Mtb Mycobacterium tuberculosis
DMF Dimethyl fumaric acid
GAPDH glyceraldehyde-3-phosphate dehydrogenase
2DG 2-Deoxy-D-glucose
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