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Macrophages and osteoclasts:
similarity and divergence
between bone phagocytes

Julia Halper, Bastien Dolfi, Stoyan lvanov,
Maria-Bernadette Madel*" and Claudine Blin-Wakkach™'

Université Céte d'Azur, CNRS, LP2M, Nice, France

Both macrophages and osteoclasts are vital immune components of the bone
microenvironment. While macrophages play an essential role in phagocytosis,
pathogen clearance and tissue remodeling, osteoclasts are well described for
their bone resorption capacity. However, osteoclasts are much more than bone
resorbing cells. While macrophages have been intensively studied as immune
cells, the immune function of osteoclasts has long been neglected until recent
evidence demonstrated that they play an important role in modulating immune
responses. Both macrophages and osteoclasts exhibit the phenotypic and
functional characteristic plasticity of the myeloid lineage, which depends on
their origin and environment. Besides their common progenitors, osteoclasts and
macrophages share several joint mechanisms ranging from cell fusion and
phagocytosis to immune function and tissue remodeling. In this review, we
discuss and illustrate the functional and characteristic parallels between
macrophages and osteoclasts.
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Highlights

* Osteoclasts and macrophages are both important regulators of bone formation and
remodeling. They are also key players in bone pathologies and bone healing.

* They share many functional and phenotypical properties, including a fusion
capacity. However, only osteoclasts are physiologically multinucleated while
macrophages fusion is associated with pathological conditions

* BM macrophages and osteoclasts remain poorly explored for their origin, diversity
and function compared to other tissue macrophages. In particular, osteoclast
diversity and immune function have been neglected until recently.

* The finding that both osteoclasts and macrophages contribute to immune
responses demonstrates that the role of OCLs extends far beyond their bone
resorption activity and expanded the scope of osteoimmunology
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Introduction

Macrophages (M@) and osteoclasts (OCLs) both arise from the
hematopoietic lineage and belong to the monocytic family. Monocytic
cells are characterized by their ability to recognize and respond to
danger signals (e.g. infection and tissue damage) and by their
phagocytic properties and high cellular plasticity (1, 2). Besides their
common origin, there are many parallels between M¢@s and OCLs, one
of the main being a common tissue degrading and phagocytic function.
Like Mes in tissues, OCLs are essential for maintaining bone
homeostasis. Bone is constantly remodeled, while maintaining the
balance between bone formation and resorption through osteoblasts
and OCLs, respectively (3). This is a highly dynamic process in which
OCLs degrade the bone matrix through the release of protons and
catalytic enzymes. Bone resorption by OCLs is an important and
necessary physiological process for bone growth, fracture healing as
well as tooth eruption and maintenance of adequate blood calcium
levels. In a subsequent step, new bone is formed by osteoblasts, which
are in turn supported by marrow-resident M¢. However, pathological
conditions such as estrogen deficiency or traumatic fracture events
promote abnormal OCL differentiation resulting in accelerated bone
resorption as well as changes in local M¢ function.

While Ms and OCLs are both myeloid cells, the role of OCLs as
innate immune cells has long been neglected. Similar to M¢s, and in
addition to their resorptive capacity, OCLs are efficient phagocytes (4-6).
They can process, present, cross-present antigens, and activate T cells (7-
9). They also produce cytokines and immunomodulatory factors driving
immune response towards inflammation or tolerance (7, 10-13), and
thus are important players in immunologic homeostasis in the bone
marrow niche and in the whole interactome of osteoimmunological
processes. Moreover, similar to M@s, OCLs exhibit phenotypic and
functional heterogeneity (7, 12, 14) and can arise from different
precursors depending on the bone microenvironment and the stimuli
they receive (15). These findings that both bone phagocytes contribute to
immune responses not only emphasize the functional similarities
between OCLs and Mgs, but also demonstrate that the role of OCLs
extends far beyond their bone resorption function. Thus, the field of
osteoimmunology has gained significant interest through the
identification of M¢ populations from different origin and polarization
states within the bone, together with the increased appreciation of OCL
diversity. This review aims to highlight how both cell types similarly and
differentially participate in maintenance of bone metabolism and the
bone marrow environment during steady state conditions, and represent
possible target in case of hormonal, inflammatory or traumatic
disruption of their niche. We discuss the latest reports deciphering
their analogies in cell progenitors, phagocytosis, and immune function,
as well as functional and characteristic differences in certain aspects such
as bone resorption or fusion under physiological conditions. In regard to
related pathophysiological conditions, we focus on 3 main reasons for
bone disorders of diverse origin importantly mediated and/or resolved
by M¢ and OCLs; in detail, we will discuss primary Osteoporosis as a
consequence of age and hormonal disorder, fracture resolution and
healing as traumatic impact in need of intervention of bone marrow
phagocytes, and finally, Rheumatoid Arthritis, as an auto-inflammatory
disease affecting the joints and bones.
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Macrophages: characteristics and
functions

M@ populations have been identified in all tissues where they
exert organ-specific functions and have specific transcriptomic
signatures, suggesting a major influence of the local tissue-specific
environment on their genome expression and functions (16), as e.g.,
Mo located in different tissues rely on differential transcriptional
programs as indicated by dependence on certain transcription
factors. This high plasticity of M¢ still leaves many unanswered
questions, particularly with regard to environmental, organ-specific
or pathological influences, the respective outcomes and functions of
this diversity, and appropriate targets to intervene with specific M@
subsets in the context of pathologies (17).

Similar to OCLs and their progenitors, tissue resident M@s express
Macrophage Colony-Stimulating Factor receptor (CSFIR) and are
dependent on M-CSF for their maintenance. CSFIR expression
gradually increases during M¢ differentiation from common myeloid
progenitors (CMP) and granulocyte/M@ progenitors (GMP) (18). In
the bone marrow (BM), M-CSF produced by endothelial cell provides a
niche that regulates M¢/OCL/dendritic cell progenitors (MODP), and
monocytes (MNs) (19). Thus, CSFIR drives the differentiation,
survival, proliferation and chemotaxis of M@ and is used as a M
and MN marker (18). Of note, CsfIr-deficient mice not only show a
drastic decrease in M but also in OCL number, which is associated
with an osteopetrotic phenotype (20).

Of special interest for this review are M@s residing in the bone,
where they account for 15-20% of bone marrow resident immune cells
(21). Osteal M@s (OsteoMACs) represent a specific subset of Me@s
residing in bone lining tissues that are phenotypically characterized as
F4/80"CD169" Mac-2"°" cells, while non-skeletal tissue Mgs are
identified as F4/80"Mac-2"8" cells (22). Resident bone Mg@s are
present in close contact to osteoblasts and are involved in bone
formation, maintenance and repair by osteoblasts (22, 23).
Furthermore, under osteoporotic conditions characterized by
increased bone catabolism, OsteoMACs spatially join resorbing
OCLs and assist in the clearance of resorption by-products (24).
These studies highlighted the indispensable position of OsteoMACs
in both bone modeling and remodeling. OsteoMACs are involved in
the recruitment of osteoblast precursors and provide osteoblasts with
coupling-like factors (as TGFB and Ephrin B) necessary for bone
formation (25), while in turn, they are supported by osteoblast-derived
M-CSF (26). Nevertheless, the exact origin and functions of
OsteoMAGCs, their crosstalk with OCLs and their precursors, and
their contribution to bone homeostasis require further investigation.

Osteoclasts: characteristics and
functions

Similar to M@s, OCLs derive from myeloid progenitor cells; but
contrasting to Mes, they are physiologically multinucleated and
arise as a result of fusion events of various precursor cells that either
reside in or are actively recruited to the BM. Osteoclasts are specific
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to bone and are characterized by their ability to resorb bone. Bone
remodeling involves complex and tightly regulated interactions
between OCLs, osteoblasts and their environment (3). However,
in pathological conditions when this homeostasis becomes
unbalanced, such as chronic inflammatory diseases, OCLs can
become a major pathogenic player leading to skeletal tissue
damage and osteolysis.

OCL differentiation, fusion and activation are triggered by
stimulation of Receptor Activator of NFkB (RANK), which is
expressed on progenitor cells and early-stage OCLs, with its
corresponding ligand, RANK-L (27, 28) produced by various cell
types, including osteoblasts, osteocytes, mesenchymal stromal cells
(MSCs) and their adipocyte lineage progeny, as well as certain
immune cells, such as activated CD4" T cells (28, 29). As stated
above, M-CSF is another indispensable factor for OCL
differentiation (30). In addition to RANK-L and M-CSF, there is
a variety of other regulators, such as cytokines and hormones, that
stimulate or inhibit OCL differentiation, making it a tightly
regulated and complex process (31).

Classical OCL differentiation induced by RANK-L and M-CSF
activates signaling cascades that cumulate in transcription of genes
indispensable for osteoclastogenesis and resorption, e.g., Acp5, Ctsk
or Calcr. Activation of RANK induces signaling via the adaptor
protein TRAF6 that subsequently targets pathways such as NFxB,
AP1/JNK/Jun/c-Fos, p38, ERK and Src/PI3K/AKT axes, which all
induce NFATcI, the master gene of osteoclastogenesis (32). OCL
differentiation also engages the co-stimulatory pathway involving
Immunoreceptor Tyrosine-based Activation Motif (ITAM)-
containing receptors associated to Fc gamma receptors (FcyR) or
DAP12, and OSCAR or TREM2, respectively. This signaling
cascade involves Syk signaling to induce NFATc1 via PLCy and
Ca2" signaling (33-37). Of note, these receptors also play an
important role in the differentiation and function of other cells
from the innate immune system including M@s and DCs.

Mature OCLs are the sole cell type capable to resorb
mineralized bone matrix, which requires the coaction of tightly
regulated and complex cellular processes. Attachment to the bone
surface via adhesion molecules to form podosomes is indispensable
to form sealing zones around the resorption lacunae (38, 39), and to
maintain OCL mobility during this process which dictates a
resorption mode (40). These lacunae resemble giant extracellular
lysosomes, since subsequent massive acidification is required to
degrade the inorganic matrix, while secretion of proteinases
degrades the organic compounds. Finally, resorption products are
endo- and transcytosed to the apical OCL domain to be released
into the extracellular environment (41). This constitutes an
important mechanism to the coupling of bone resorption to
formation and thus bone remodeling, since the secretion of
resorption factors impacts on osteoblast recruitment, maturation
and activity (3, 42).

Although OCLs are cells of the myeloid lineage and display
characteristics of innate immune cells, their potential role as
immune cells has long been neglected. However, recent findings
in the field of osteoimmunology have shown that besides their bone
resorption capacity, OCLs are also true innate phagocytes and APCs
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(15). As such, they are able to actively shape the immune
environment and immune responses. Studies demonstrated their
capacity for phagocytosis, antigen uptake and presentation, as well
as their efficient cytokine production in response to physiological
and pathological stimuli (6-8, 43). This important finding that
OCLs are not only bone resorbing cells but also, similarly to Mes,
involved in immune responses sheds new light on OCLs and makes
them interesting targets to prevent bone diseases (15).

Common characteristics and
differences among macrophages and
osteoclasts

Common origin of bone phagocytes

Until recently, M@s and OCLs were considered to be strictly
derived from BM progenitors and to arise from a common MN-
M@/OCL progenitor (cMoP) downstream of GMP and MODP,
both in mouse and in human (44-46) (Figure 1). These progenitor
cells give rise to blood MNs that can reach tissues and differentiate
into M@s (47, 48). Similarly, transfer of blood monocytic cells
(Kit"Ly6C") into osteopetrotic Ctsk”™ mice defective in OCL
activity was shown to rescue bone resorption, demonstrating the
contribution of these cells to osteoclastogenesis (49).

However, more recent reports established that the origin of Ms
and OCLs is more complex. In particular, embryonic precursors
seed subsets of tissue M@s that persist into adulthood completely
independent of blood MN replenishment (50). In mice, embryonic
Mgs derive from erythro-myeloid progenitors (EMP) in the yolk
sac (around E7 of embryonic development) or from fetal liver
progenitors (around E16) (51). Postnatally and throughout adult
life, embryonic Mes persist through proliferation in order to sustain
a constant pool of tissue-resident M@s in most organs (51).
Importantly, tissue resident M@s co-exist with postnatally
generated MN-derived M@s and participate in organ homeostasis
during health and disease. Of note, M@ ontogeny could influence
their functions (52) (Figure 1).

Bone-resident OsteoMACs have a trophic role in bone
formation and mineralization, while MN-derived bone M@s show
pro-inflammatory properties. Both are involved in
osteoclastogenesis and OCL formation (53-55) and both
participate in osteoporosis development associated with chronic
inflammatory diseases or infection due to their production and
secretion of pro-osteoclastogenic factors such as IL-6, TNFa. or
IFN (26). In the case of bone injury in mice, deletion of CCR2
reduces MN infiltration that subsequently affects the generation of
MN-derived inflammatory Mes, and severely impairs the function
of OCLs, leading to delayed fracture healing (56). Collectively, these
data suggest that there are at least two different M@ subsets co-
existing in the BM that both carry out selective functions and roles
in bone physiology as well as during bone healing after injuries.
Nevertheless, the relative contribution of MN-derived and
embryonically-derived M@s to bone repair is still to be
determined and the interaction of OsteoMACs with OCLs
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Diversity of OCLs and their progenitors. Left side: hematopoietic lineage and progenitors in the BM. HSCs give rise to MODPs via intermediate CMP
and GMP states. M-CSF stimulation induced pre-MNs and further Ly6C™9" and Ly6C'°" MNs, while Flt3-L induces the DC lineage. Middle box:
myeloid cells can leave the BM and enter into tissues via the circulation for maturation and polarization or they reside and differentiate within the BM
and possibly give rise to OCLs. Upon appropriate stimulation with M-CSF and RANK-L, these myeloid cells can fuse and give rise to phenotypically
diverse OCLs. Macrophage-derived DCs and Ly6C"9" MNs give rise to predominantly pro-inflammatory OCLs, while Ly6C'®” MNs generate
tolerogenic OCLs. During embryogenesis and fracture repair, EMP-derived progenitors from the spleen give rise to OCLs. M1 polarized M¢ have
been described as inefficient for OCL formation, while M2 possess a higher potential for osteoclastogenesis, but the resulting OCLs phenotype has

not yet been described particularly.

remains to be fully established. In particular, deciphering the precise
transcriptomic signature of the diverse BM M@s needs to be further
investigated by single cell approaches to better understand BM M¢
diversity which could help to precisely determine their functions.
While the progenitors of M@s have been widely discussed in the
literature, the origin of OCLs has long remained elusive and
continues to evolve, mainly because OCLs arise not only from
hematopoietic progenitors but also from the fusion of mature
myeloid cells (15) (Figure 1). The myeloid origin of OCLs has
been identified 40 years ago in vivo using blood MNs labeled with
*H-thymidine in mice treated with 10.-OH Vitamin D to stimulate
osteoclastogenesis. In recipient mice, radiolabeled OCLs were
detected showing the osteoclastogenic potential of MNs, but they
represented only a small proportion of total OCLs (57, 58). Later,
different analyses demonstrated that OCLs share a common MODP
with Mes (45, 46). However, OCLs originating from BM HSC-
derived progenitors appears to be involved only after birth and in
adults. In contrast, during embryonic development and in neonatal
bones, OCLs differentiate from embryonic yolk sac-derived EMPs
as described for Mes, as confirmed by fate mapping experiments in
transgenic mice baring irreversible fluorescent marker (TdTomato
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or YFP) expression in Csflr® cells and their progenies (14, 49). At
birth, 80% of bone OCLs originate from EMP-derived M¢s, but this
proportion gradually decreases with time as EMP-derived OCLs are
replaced by HSC-derived OCLs (14, 49). However, a small fraction
of EMP-derived Cx3Cr1* Ms persist in the spleen and contribute
as precursors of a small pool of OCLs throughout adulthood (14). In
addition, they can migrate from the spleen to the bone upon injury,
where they contribute to bone healing (14). Therefore, as described
for Ms, adult long bones contain co-existing, yet very distinct OCL
populations originating from either Cx3Cr1* EMP or HSC-derived
progenitors (14, 49). However, the respective functions of these
populations, in particular beyond bone resorption, remain
unexplored (Figure 1).

As discussed above, OCL arise not only from myeloid
progenitors but also from differentiation/fusion of mature
monocytic cells, i.e. MNs (MNs), M@s and dendritic cells (DCs),
making this issue highly complex (14, 15, 49, 53, 59, 60). As
described in the next sections, this differentiation depends on the
persisting environment, and the phenotype of these cells also
impacts the functionality of the mature OCL in mouse and in
human (7, 12, 15, 61). These mature myeloid cells are themselves

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1683872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Halper et al.

highly heterogeneous and come in various polarization states
(Figure 1). Typically, blood MNs are divided into two major
subsets. First, circulating classical/inflammatory MNs are
recruited to tissues in a cytokine-dependent manner, where they
differentiate into M@s and DCs responsible to migrate and resolve
local inflammation (62-64). Inflammatory MNs are characterized
by the markers CD14"8" CD16"*€ in human and CD11b* CD115"
Ly6Chigh in mouse (65). Second, non-classical MNs (human CD14"*
CD16"#" and mouse CD11b* CD115" Ly6Cl°W) are the
housekeepers of endothelial borders by constantly fulfilling a
patrolling function in order to quickly detect and react to injury
or inflammation/infection (64). Both MN subsets are involved in
inflammatory processes due to their cytokine production, however,
their osteoclastogenic potential differs both in human and murine
models. Especially during conditions of increased bone resorption
or even destruction, inflammatory MNs were shown to differentiate
into mature OCLs much more efficiently than the non-classical
MNss (66-68).

On the other hand, DCs have been also shown to be efficient
OCL progenitors (15) (Figure 1). Initially, the differentiation of
OCLs from DCs has been demonstrated in vitro starting from
human blood MN-derived DCs, which was shown to be increased
in presence of synovial fluid from arthritic patients (60). In vitro,
murine OCLs can be generated from ex vivo isolated splenic
CD11c" MHCII" ¢DCs (69). Interestingly, the CD4°CD8 c¢DCs
possess a much higher OCL differentiation capacity than other DC
subsets. cDCs even maintain this capacity after their maturation
induced by stimulation with CpG or LPS, indicating that also
mature cDCs are still able to give rise to OCLs (69). Murine
OCLs have also been generated in vitro from purified CD11c"
DCs obtained with GM-CSF/IL-4 stimulation of BM cells (7, 70) or
from Flt3-L-induced DCs (71). DC-to-OCL differentiation also
occurs in vivo, as initially demonstrated in osteopetrotic oc/oc
mice deficient for Tcirgl which is required for bone resorption.
Transfer in newborn oc/oc mice of splenic cDC from normal mice
rescued the bone phenotype through their differentiation into
functional OCLs (69). Of note, this differentiation requires the
presence of Th17 cells, the proportion of which is increased in the
BM of oc/oc mice (69). The differentiation of DCs into OCLs has
always been primarily associated with chronic inflammation or with
the presence of Th17 cells (7, 60, 69, 72-74).

To add further complexity, short-term stimuli of the
microenvironment can directly impact the polarization state of
the respective progenitors, which is not a “either-or” static
condition but rather a flexible, fluent spectrum that can quickly
adapt to the environment. In regards to osteoclastogenesis, the
influences acting on the progenitors before initiation and during
fusion directly determine the functional outcome of the respective
OCLs (7, 12, 15, 61). Unfortunately, it is unknown whether these
different types of progenitor cells select a specific type of cell as
fusion partner or whether a mixture of multiple diverse progenitors
can form an OCL. In addition, OCLs not only undergo cell fusion
but also cell fission, as reported in vitro (75) and in vivo (76). In vivo,
OCL fission is regulated by RANK-L and generates so-called
osteomorphs, a cell type characterized by a gene signature distinct
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from both OCLs and Mes, which is able to recycle by fusing again
with OCLs. This new mechanism can contribute to a rapid and
energy-efficient generation of OCLs (76) as well as to the long live
span of OCLs that has been recently demonstrated in vivo (49).
Gaining insight into these processes could help to answer open
questions in regards to OCL diversity in physiological versus
pathological conditions, taking into account the variation in the
proportions of these cells in the BM as well as their situation-
dependent recruitment from the periphery. This will be essential to
better understand pathological bone destruction and to unravel
novel targets to interfere at multiple levels.

Fusion: a common feature between Mes
and OCLs

Linking progenitor diversity, the impact of the surrounding
environment and cellular function of both M¢ and OCLs together,
one process is importantly involved in this notion: fusion of
mononucleated cells to form multinucleated syncytia. Physiologically,
this is a rare phenomenon that can only be found in certain tissues such
as the muscle, the placenta, or OCLs in the bone. Otherwise,
multinucleation is associated with pathologic conditions such as
reactions to foreign material or chronic inflammation such as
granulomas, viral infections or cancer and metastasis (77-80). Under
these conditions, M@s have the potential to fuse and to give rise to
multinucleated giant cells (MGCs) (39, 77). Depending on the
environmental state, these MGCs can display differences in their
appearance and can be further distinguished based on histological
observations. Contrasting with OCLs, these cells do not resorb bone.
For the sake of simplicity, we will refer here to all M¢ polykaryons as
MGCs and recommend this review about the different subtypes and
their pathological associations (77). In contrast to MGC differentiation,
osteoclastogenesis is a constantly occurring event that is indispensable
for the maintenance of bone homeostasis.

In general, cell fusion is a multi-step process with different
checkpoints (81). A prerequisite for M@ fusion is the emergence of a
fusion-competent state of the cell, which is characterized by the
induction of specific molecules that often follow a time-dependent
expression pattern. Fusion involves the principle of attachment of a
“founder cell” to a “follower cell”, meaning that both fusion partners
do not necessarily have to express the required molecules (82).
Appropriate exogenous and endogenous stimuli (cytokines,
fusogens) induce chemo-attraction and attachment and ultimately
membrane fusion of partner cells (39, 81).

A couple of studies suggest that OCL progenitors preferentially
fuse with phenotypically divergent partner cells in terms of different
states of differentiation and mobility in a very dynamic process over
time (83). Moreover, the authors also describe differences in the
choice of fusion partners, i.e. 2 mononucleated progenitors, 1
mononucleated and 1 multinucleated, 2 multinucleated OCLs as
well as the initial surface attachment, which might also be
interesting as indicators for OCL diversity as well.

Regardless of their common origin, OCLs and M¢ polykaryons
differ considerably, which might be related to the particular local
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environment in which they develop. In regards to cytokines, as
noted above, RANK-L is the driving cytokine for osteoclastogenesis,
but has no reported effect on MGC development. Conversely,
MGCs are mainly induced by the type 2 cytokines IL-4 and IL-13
(84, 85), that both inhibit osteoclast formation (86, 87).
Furthermore, OCL differentiation requires M-CSF (30), whereas
MGCs are induced in the presence of either M-CSF or GM-
CSF (88).

Despite these differences, the mechanisms of fusion have been
shown to share similarities between OCLs and M@s (89) and some
molecules involved in M@ fusion are known OCL markers
(summarized in Table 1). In addition to the conventional RANK-
L axis, the IgG-like triggering receptor expressed by myeloid cells 2
(TREM2) and its adaptor protein DNAX activating protein of 12kD
(DAP12) induce an important co-stimulatory signaling pathway in
the initiation of osteoclastogenesis (36). Deletion of either partners
reduced OCL differentiation, multinucleation, and function (34,
90). Interestingly, this Ig-like receptor-associated pathway seems to
be differentially involved in OCL differentiation depending on the
origin of OCLs from dendritic or monocytic cells (61).
Concurrently, TREM2 and DAPI2 are equally involved in MGCs
development, as their deletion completely abrogated M¢ priming
for fusion competence (91). Downstream of IL-4 activation of Ms,
TREM2/DAP12 signaling via STAT6 can lead to transcription and

10.3389/fimmu.2025.1683872

induction of further fusion mediators, e.g., E-cadherin and DC-
specific transmembrane protein (DC-STAMP), which are
important mediators of fusion and cell-cell attachment (91, 92).
Inhibition and knockout of E-cadherin have been shown to severely
impair MGC development and also reduce OCL formation (92-94).
DC-STAMP is involved in the maturation of myeloid cells and was
originally described on DCs (95, 96). However, it is also expressed
on IL-4 stimulated M@s as well as OCL progenitors and turns out to
be indispensable for osteoclastogenesis and cell fusion (97-99).
During OCL differentiation, this could be explained by a
corresponding regulation of its expression via the RANK-RANK-
L/c-Fos/Nfatcl signaling axis (98). BM cells deficient in DC-
STAMP failed to fuse into multinucleated OCLs despite M-CSF
and RANK-L stimulation (99). Interestingly, however, the
remaining mononucleated TRAP" cells still expressed other OCL
markers and resorbed bone to a certain extent, provoking a mild
osteopetrotic phenotype in the DC-STAMP-deficient mice in vivo
(99). This supports the hypothesis that increased cell fusion
correlates with increased phagocytic capacity in OCLs (100). In
humans, transcript variants of DC-STAMP are associated with
Paget’s disease of bone, which is characterized by hyper-
nucleated OCLs, emphasizing a direct functional implication of
this protein in the fusion processes (101). Moreover, expression
levels of DC-STAMP on human OCL progenitors are correlated to

TABLE 1 Examples of fusogens and receptor-ligand interactions involved in cell fusion.

Molecule Function Expressed on/at Reference

TREM2/DAPI12 Phagocytosis Myeloid cells (36, 90, 91, 243)
Cell fusion
Osteoclastogenesis
Inflammation through cytokine stimulation

E-cadherin Ca2+- dependent adhesion molecule Many cell types, especially at adherens junctions (92-94, 244)
Transmembrane glycoprotein

DC-STAMP Myeloid maturation and fusion DCs, M@, OCLs and their progenitors (95, 97, 99, 101, 116, 245, 246)
Osteoclastogenesis

CD47 Immunoglobulin-like protein Ubiquitous (103, 105, 106, 247)
Don't eat me signal to prevent phagocytosis
Adhesive protein

MFR/SIRPo Mo fusion Mainly myeloid cells (103, 105, 248)
Immunoglobulin superfamily
Receptor of CD47
Regulation of phagocytosis

CD200 Membrane glycoprotein Many cell types including M@s and OCL (107)
Immunosuppression progenitors just before fusion
Produced by peripheral tissues

CD200R Receptor for CD200 Myeloid cells (107)
Myeloid downregulatory signal

CD44 Cell-cell interaction Mg about to adhere and fuse (111-113, 249)
Adhesion, migration

OC-STAMP Master fusogen of M@ and OCL precursors Mg, OCL progenitors (as DC-STAMP) (114-116, 149)

MCP1/CCL2 MN homing/recruitment Fusion processes Many cell types (119-121, 250, 251)

CD9, CD81 (CD63) Migration, motility, invasion
Differentiation
Attachment, fusion

Interaction with integrins
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OCL nuclei number in vitro (fusion potential) and activity markers
in vivo, both of which directly related to the resorptive activity in
vitro (102). DC-STAMP expression levels were reported to be
positively associated to the donor’s age and menopausal status,
regulated through an epigenetic mechanism (102).

Various members of the immunoglobulin-like superfamily have
been shown to be associated with both M¢ and OCL progenitor
fusion. M@ fusion receptor (MFR/SIRP@.) and its ligand CD47 are
prominent examples of respective ligand-receptors interactions
expressed in the early stage of fusion (103). MFR is mainly
expressed on myeloid cells including M@s, ¢cDCs and OCLs,
whereas CD47 is ubiquitously expressed as a self-signal in order
to prevent phagocytosis by M@s (103, 104). During fusion, CD47
allows cells to get in close proximity and absence of either of the
interacting partners was shown to reduce OCL differentiation both
in vitro and in vivo (105), but CD47 seems to be more important for
fusion of mononucleated rather than multinucleated cells (106).

Another member of the immunoglobulin-like family, CD200R,
is expressed on myeloid cells and interacts with CD200 which is not
expressed in myeloid cells except on M@s just before fusion (107).
CD200 expression is also stimulated by RANK-L in pre-OCLs and
its expression is maintained in mature OCLs (10, 107). CD200 is
produced in various tissue in order to regulate M@ activity and is
known as an immunomodulatory/immunosuppressive molecule
associated with cancer, infection and autoimmune diseases (108-
110). Cui et al. showed that mice lacking CD200 (or its receptor
CD200R) display delayed and reduced OCL differentiation in vitro,
which could be reversed by the addition of soluble CD200.
Consistent with these in vitro observations, CD200”" mice have
increased bone mass, indicating that the CD200-CD200R-axis plays
a crucial role in M¢ fusion and osteoclastogenesis (107).

The glycoprotein CD44 is expressed on M¢s and OCLs, and
associated with cell-cell interaction, adhesion and migration, and is
important for fusion events. As for CD200, CD44 expression
increases in M@s prior to fusion and is required for OCL
multinucleation in vitro (111, 112). However, the role of CD44 in
osteoclastogenesis appears more complex and seems to depend on
the environment. Indeed, in vivo, bone parameters of CD44-
deficient mice are similar to those of control mice (111, 113) but
they exhibit differences after stimulation as reported in a hindlimb-
unloading mouse model in which CD44 deficiency impairs OCL
differentiation in vitro and in vivo (111). Moreover, in vitro the
effects of CD44 on osteoclastogenesis depend on the substrate on
which the OCLs are differentiating (113). Importantly, it has been
suggested that an increase in CD44 expression during fusion is
required to provide free CD44 molecules to favor multinucleated,
which is abrogated in the presence of CD44 ligands (e.g., hyaluronic
acid, chondroitin sulfate or osteopontin) (112).

OC-STAMP, structurally similar to DC-STAMP but described
to be specific for OCLs, is also induced upon RANK-L stimulation
and responsible for OCL precursor fusion (114). Analysis of OC-
STAMP deficient mice demonstrated its role as a master fusogen for
Mes and OCL precursors, as its deletion leads to abrogated
multinucleation of both OCLs and MGCs in vitro and in vivo
(115, 116). However, in contrast to DC-STAMP-deficient mice (99),
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OC-STAMP -/- mice neither display differences in their bone
architecture nor in the level of resorption markers in the serum,
indicating that despite being mononucleated, OCLs in these mice
are functionally active (115, 116). However, in a murine model of
ligature-induced periodontitis, OCL activity is lower in OC-
STAMP-/- mice than controls, suggesting that despite not being
involved in physiological bone resorption, OC-STAMP may play a
role in inflammatory bone loss (117). Interestingly, the ligands for
DC- and OC-STAMP have not been identified so far, but as their
structure displays some similarities with chemokine receptors, the
MN chemo-attractant protein 1 (MCP1/CCL2) has been suggested
as a potential ligand (118). CCL2 is a chemokine required for MN
homing and recruitment to peripheral tissues as well as for fusion of
both M@s and OCL progenitors. Mice deficient for CCL2 or its
receptor CCR2 displayed reduced MGC and OCL numbers, despite
normal MN/M@ migration and infiltration (119). Moreover, other
studies shed light on a possible autocrine feed-forward mechanism
of OCL-secreted CCL2 to induce further fusion through its receptor
CCR2, which in turn is induced by RANK-L stimulation (120, 121).
The tetraspanin family participates in a huge variety of cellular
functions by influencing membrane organization (122). Tight
interaction with integrins (themselves being important players of
fusion events and probably regulated in a time- and cell-type-
dependent manner during fusion enables their influence on cell
motility, attachment and fusion (39, 123). Two members of this
family seem to be of importance in M¢ fusion: CD9 and CD8I.
Despite their reported fusogenic effect in muscle cells, sperm-oocyte
fusion and infection-induced syncytia (124-126), CD9 and CD81
appear as rather negative regulators of MGC and OCL fusion. Anti-
CD9 and CD81 neutralizing antibodies significantly increase MGC and
OCL development (127-129). CD9/CD81-deficient mice have
increased OCL formation and lower bone mass than controls (129).
However, CD81 was suggested to exert its negative effects via
modulation of CD9 rather than by itself (128). In contrast to these
findings, Yi et al. found that neutralization of CD9 reduced
osteoclastogenesis, suggesting that CD9 positively regulates OCL
differentiation (130). CD9 is highly expressed on OCLs in
inflammatory conditions such as osteoporosis induce by ovariectomy
or collagen-induced arthritis in mice (131). As for DC- and OC-
STAMP, Ishii et al. also reported that CD9 expression increases in
OCLs at the time of fusion upon RANK-L stimulation and this increase
is mediated by OC-STAMP (117, 132). Therefore, further investigations
are required to gain a better understanding of the impact of tetraspanins
in M@ and OCL fusion. Summed up, mechanisms of fusion are still not
well enough understood in order to be targeted to combat
pathophysiologic M¢ fusion or accelerated osteoclastogenesis.

Cellular heterogeneity and immune
function

Since M@ and OCLs belong to the myeloid family of innate
immune cells, they both share characteristic features of this family,
including phagocytosis, antigen presentation capacity as well as the
ability to induce adaptive immunity.
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Phagocytosis and efferocytosis

Mes and OCLs share a very efficient phagocytic ability. BM
Mes locally participate in the phagocytosis of pathogens, apoptotic
and necrotic cells in different contexts such as injury or cancer, as
well as in removing residual by-products of osteoclastic bone
resorption (24, 133). They can also phagocytose wear debris
derived from prostheses (134). CD169" BM M@s are involved in
the clearance of apoptotic cells and of the nuclei eliminated from
erythrocytes during erythropoiesis (135). However, little is known
regarding the specific ability of OsteoMACs to present antigens, to
express MHCII and costimulatory molecules and to activate T cells.
In any case, they can actively participate in pro-inflammatory
immune responses through other mechanisms as well, for
example by the expression of pathogen recognition receptors
(PRRs) like Toll-like receptors (TLRs) to recognize pathogen- or
damage-associated molecular patterns (PAMPs or DAMPs) (136).
In the case of microbial infections, bacterial lipopolysaccharide
(LPS) triggers TNFo. secretion by OsteoMACs through the
activation of TLR-4/CD14 complex (25). Secreted TNFo
subsequently promotes IFNY production by Thl and NK cells, in
turn capable to further activate M@s and promote a pro-
inflammatory immune response directed against the microbial
infection (137). These data suggest that bone M@s have, as
classical Ms, a phagocytic and sentinel function to prevent bone
infection and excessive inflammation.

Interestingly, fusion has been suspected to increase the
phagocytic capacity of MGCs compared to mononucleated Mes.
MGC:s originating from M@s under IL-4 stimulation are specialized
in the phagocytosis of very large particles and opsonized particles
for which they are much more efficient than mononuclear Mes (92,
100). MGCs have also been shown to degrade very large particles
extracellularly after their tight attachment to the particle with the
formation of a sealing zone-like structure reminiscent of that
formed by OCLs for bone degradation (138). However, and as
discussed above, MGC do not form ruffled border and are not
efficient for bone resorption (138).

Of note, OCLs are also efficient phagocytes for the uptake of
large particles of different types (6, 100, 139) including calcium-
phosphate crystals (4). They engulf bone remnants for the purpose
of bone degradation through clathrin-mediated endocytosis (140,
141). They are also involved in bacterial phagocytosis and in
efferocytosis (5, 142-145). In particular, several studies indicate
that OCLs phagocytose dying bone cells including osteocytes and
chondrocytes. Harre et al. reported that OCLs express multiple
proteins involved in the engulfment of apoptotic cells, to a similar
or even higher extend than M@s and DCs (144). In vivo evidence
revealed that they perform phagocytosis under physiological
conditions (142). Furthermore, OCLs and their progenitors sense
necrotic osteocytes thanks to their expression of Mincle, the M-
inducible C-type lectin, which stimulates osteoclastogenesis and
participates in pathological bone loss (146). Efferocytosis is essential
for the clearance of dying cells, and defects in this process lead to
chronic inflammatory and autoimmune diseases. Because
osteocytes and chondrocytes are surrounded by abundant bone
and cartilage matrices, respectively, it is more difficult for classical
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phagocytes such as M@s to reach and eliminate them. Thus, the
capacity of OCLs to perform efferocytosis is likely to be essential for
the maintenance of the bone/BM integrity (144). Interestingly,
expression of PRR and c-type lectin receptors by OCLs depends
on their cell origin from monocytic cells or dendritic cells (61). As
this origin is governed by the bone marrow environment (7, 60, 69),
this suggests that the activity of OCLs can differ depending on
their context.

Linking phagocytic capacity to the expression of PRRs
represents a hallmark of professional antigen presenting cells;
before antigen phagocytosis, presence of PAMPs potently activate
PRRs, which acts as the molecular link between myeloid antigen
ingestion, processing and subsequent presentation via MHCII that
enables bridging to adaptive immunity, a feature that both M and
OCLs share.

Antigen presentation and T cell activation

Just as M@s, OCLs are innate immune cells that uptake, process,
present and cross-present antigens (7-9). They constitutively
express major histocompatibility complexes (MHC) class I and II
as well as costimulatory molecules such as CD80 and CD86 (7, 8,
60), and are therefore able to shape the immune response by
activating naive CD4" and CD8" T cells in an antigen dependent
manner. This was first demonstrated for CD8" T cells that can be
activated by antigen cross-presentation by steady-state, physiologic
OCLs and subsequently polarized into CD8" FoxP3" regulatory T
(Treg) cells (8). Concurrently, the same was also shown for CD4" T
cells that are similarly primed towards CD4" Treg cells by steady-
state. OCLs (7, 9). Thus, steady-state OCLs have a tolerogenic
capacity by inducing regulatory T cells (t-OCLs, tolerogenic
OCLs) that is likely to represent an efficient mechanism to avoid
auto-immune reactions against self-antigens released by the OCLs
from the bone matrix during resorption. Moreover, because Treg
cells are potent inhibitors of osteoclastogenesis, it may also
represent a feedback loop controlling OCL number and activity,
which has been confirmed for OCL-activated CD8" Treg cells (147).

However, similar to M@s and other cells of the myeloid lineage,
OCLs exhibit functional heterogeneity. Recent findings indicate the
existence of distinct OCL subsets that arise from different
progenitor cells depending on the microenvironmental stimuli
and polarization state of mononuclear precursor cells before the
onset and during the course of fusion (15, 61). Thus, pro- or anti-
inflammatory subsets of M@s and MNs give rise to functionally
distinct OCL subsets (7, 15, 61, 66, 68, 109). As stated above,
tolerogenic OCLs arise during steady-state conditions (t-OCLs) and
from BM MNs (MN-OCLs) (7, 61). However, in inflammatory
conditions such as inflammatory bowel diseases (IBD) (7),
rheumatoid arthritis (RA) (60), osteoporosis (12, 61) and
osteopetrosis (69), CD11c" DCs or inflammatory CD11b"
Ly6Chigh MNss can also give rise to OCLs (DC-OCLs). Although
DC-OCLs are also resorbing bone, they exhibit drastic differences in
their immune function. Contrasting with t-OCLs that induce Treg
cells, DC-OCLs promote the development of TNFa-producing pro-
inflammatory T cells involved in systemic inflammatory processes,
therefore termed inflammatory OCLs (i-OCLs) (7, 12). These
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studies further emphasize the functional similarity between Mes
and OCLs, ranging from tolerance to inflammation. But these
functional differences also require to be phenotypically
distinguishable in order to properly identify, differentiate and
target for therapeutic applications.

Cellular markers and new potential targets

Mges and OCLs share an abundance of characteristic markers
and common functions due to their myeloid origin. Therefore,
identification of specific markers in vitro is challenging.
Furthermore, the shared environmental influences of bone
resident M@s and OCLs can lead to a large overlap of markers
and functions (Figure 2, Table 1). Nevertheless, there are some
major differences. For instance, TRAcP is a suitable marker
expressed by mature OCLs but it has been reported to be
expressed only in very few and specific M@ subsets (148, 149).
Recently, a method for analysis of mixed cultures of multinucleated
OCLs and their progenitors has been developed that uses nuclear
staining and doublet exclusion strategy to focus on pure OCL
populations (150). This approach will help to uncover more
differences to distinguish OCLs from other myeloid cells during
live cell analysis. Functionally, mature OCLs can be discriminated
by culture on biomimetic bone surfaces in order to follow matrix
degradation capacity, which is a unique feature of OCLs but not
of M@s.

Mo unique features

Shared characteristics

10.3389/fimmu.2025.1683872

As mentioned above, OsteoMACs express TLRs to participate
in pro-inflammatory immune responses during microbial
infections. Moreover, OCLs are also known to express TLRs.
Takami et al. showed that stimulation of these TLRs by their
respective ligands act as potent inhibitors of OCL differentiation
(151) (Figure 2). Other research groups, however, showed opposite
effects between freshly isolated progenitors and committed
precursors induced by RANK-L pretreatment or combined effects
of impacting environmental cues (152). A recent review discusses
these contrasting observations regarding TLR/PRR stimulation and
its effects on osteoclastogenesis, and elaborates on how this might be
explained by considering differences in OCL differentiation stages
(153). Nevertheless, these discrepancies might also be related to
OCL heterogeneity. Indeed, combining transcriptomic and flow
cytometry analysis of mature OCLs, we recently showed that TLR2
expression (along with other PRRs) differs dramatically between
tolerogenic MN-OCLs and inflammatory DC-OCLs (61).
Moreover, stimulation of OCLs with PRR agonists strongly and
very selectively affects the differentiation of OCLs associated with
inflammation, whereas physiological OCLs are much less affected.
Thus, targeting PRRs could represent a novel and interesting
pharmacological intervention in osteoporotic pathologies (61).

Closing the loop of TLR activation and subsequent cytokine
production by M@s, proinflammatory cytokines are a known factor
influencing OCL precursors and osteoclastogenesis (59, 154, 155).
TNFa, which exerts its stimulatory effect through different
mechanisms, can be used to illustrate these influences. First,

OCL unique features

Pathologically multinucleated CD45*, CD115%/Csf1r Physiologically multinucleated
+
CD169" CD11b™/Itgam CTR*
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FIGURE 2

Unique characteristics and shared features between Mgs and OCLs. Macrophages and OCLs share a lot of similarities. Both arise from the
hematopoietic lineage and depend on M-CSF maintenance (CD45+CD115+). They share common expression of integrins (CD11b+, CD11c+) and an
innate immune function markers involved in phagocytosis and antigen recognition/presentation such as FcyR I-1ll, MHC-II and co-stimulatory
molecules CD40/80/86. Macrophages are physiologically mononucleated and able to be attracted ad migrate to distant sites in response to
infection/inflammation. They express all the repertoire of TLRs to sense their environment, and can be identified by the expression of pan-
macrophage marker F4/80 and CD169 for bone-marrow macrophages. In contrast, OCLs are physiologically multinucleated, able to resorb bone
and are therefore localized in the bone compartment only. To distinguish from macrophages, OCLs express CTR, OSCAR and DC-STAMP on their
surface as well as enzymes involved in the resorptive process e.g. Trap, Ctsk and MMP9.
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TNFo indirectly increases RANK-L and M-CSF production by
mesenchymal lineage cells in the bone (156, 157). As RANK is a
member of the TNF receptor superfamily, it is not surprising that
TNFa is strongly affecting osteoclastic bone resorption, osteoblastic
bone formation and consequently also bone remodeling. Second, as
it is the case with several cytokines, TNFa. can act directly on OCL
progenitors and osteoclastogenesis. This is particularly the case in
inflammatory diseases associated with bone destruction (59, 158).
TNFo in the absence of RANK-L is not sufficient to induce fusion
of OCL progenitors (159, 160). Nevertheless, it is capable of
increasing differentiation efficiency alone or in cooperation with
other proinflammatory cytokines such as IL-1c, IL-1B or IL-17
(155,161, 162). Moreover, TNFo. also induces a dramatic expansion
of OCL progenitors in the circulation, which migrate to sites of
inflammation where they fuse into OCLs (163). Interestingly, Ohori
et al. have recently shown that TNFo-induced acceleration of bone
destruction can be reversed by simultaneous administration of IL-
33, which prevents TNFo-induced IkB phosphorylation and
subsequent NF-xB nuclear translocation, thereby inhibiting
osteoclastogenesis in vitro and in vivo (164). In synergy with
these new insights into communication networks between the
different players in the inflammatory circuits and the findings on
signaling cytokines, numerous novel possibilities for
pharmacological interventions are emerging and might lead to
interesting developments in the near future.

Preceding investigations on functional divergences of M¢s and
OCLs, it is essential to identify specific markers that allow clear
distinction and separation between these cells present in the BM, for
example, by deciphering specific and unique characteristics for each cell
type (Figure 2, Table 2). Unfortunately, bone resident M¢s are still
poorly characterized, and the identification of markers allowing to
distinguish them from DCs, MNs, and especially from OCLs, is
urgently needed. The first marker described for M@s was F4/80
(165). However, it is now known that this marker is expressed by
different M@ subtypes but is also found on MNs, CD11b* DCs and
eosinophils, for instance (16, 166). Moreover, F4/80 expression is
dependent on the cytokine environment and is therefore not a stable

TABLE 2 Major markers common to Mgs and OCLs .

10.3389/fimmu.2025.1683872

marker (167).To date, M@ populations can be characterized by the co-
expression of MerTK and FCYR-I (CD64) (16). These findings are
consistent with the functional implication of FcyR-1, -IT and -III (CD64,
32, 16, respectively) in phagocytic uptake and antigen presentation
(168, 169). In line, OCLs are known to express FcyR-II and III, but this
expression is higher in i-OCLs (61). Therefore, differential labelling of
Mgs and OCLs using cell surface markers remains challenging,
especially considering the wide heterogeneity of OCL progenitor cells
including DCs, MNs, BM and osteal M@s. Excepted for very few
markers such as CD169 expressed by Osteomacs but not OCLs (22),
the vast majority of markers identified for OCLs are shared with their
myeloid progenitors (e.g. Csflr, CD11b, CD11c, CD68 (170), Cx3crl
(7, 12), TLRs (61) (Table 2). However, combining these markers with
parameters for size and multinucleation still allows for accurate and
differential analysis (61, 150) (Figure 2). Furthermore, being able to
clearly define the precise functional differences of the various M
populations present in bone (generally identified as CD68" F4/80"
TRAP) (21, 25), will allow a better understanding of bone physiology.
Finally, in-depth knowledge of how these M subpopulations interact
with each other and with other skeletal cell types, as well as a deeper
understanding of how they influence bone homeostasis and
osteoclastogenesis in pathological conditions, will unravel novel
targets and treatment options for bone diseases.

Perspectives in pathological contexts:
osteoporosis, rheumatoid arthritis and
bone fractures

Because of their similarity and essential role in the BM, OCLs
and M@s are both key players in the development of various bone
pathologies. In this last part, we will discuss perspectives in
pathological contexts of bone. There is of course more to
consider, however, we will limit the focus to mechanisms
involved in osteoporosis (OP), rheumatoid arthritis (RA) and
fracture healing of long bones (Fx) (Figure 3).

Molecule Expressed by Function Over-lap References
CSF1R Myeloid cells M-CSF receptor MNs, Mgs, OCLs (252-254)
F4/80 Meos Adhesion, induction of CD8+ Tregs Blood cells (16, 165, 166)
FCyRI-III Phagocytes Immunoglobulins: immune function, phagocytosis All phago-cytic cells (16, 168, 169)
CD68 Mos Involved in phagocytosis, apoptotic clearance, cell-cell/pathogen contact, MNs, OCLs (25, 170)
homing
Cx3crl Mes, some i-OCLs Fractalkine receptor (7, 12, 240)
TLR2/4 Immune cells Starting immunological signaling cascades to resolve inflammation Mes, MNs, DCs, i- (61, 151, 152, 255)
OCLs
RANK OCL progenitors, early Receptor of osteoclastogenesis MNs, M@s, DCs (256-259)
OCLs
TRAP Mature OCLs, M@s, and Bone resorption processes, MNs, M@s, DCs (260, 261)

DCs Ag processing

clearance of the pathogen
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Osteoporosis

The most widespread pathology affecting the bone is osteoporosis,
a skeletal disorder characterized by a systemic loss of bone mass,
leading to architectural deterioration and ultimately to brittle and
fragile bones, and increased risk of fracture. The underlying causes are
multiple but are very much associated with gender (post-menopausal
lack of estrogen) and aging (decrease in physical activity, metabolic
disorders, additional medical conditions, pharmacological treatments,
lifestyle, etc.). It can also occur as a consequence of chronic diseases
(Figure 3). Osteoporosis is diagnosed by measure of the bone mineral
density by dual-energy x-ray absorptiometry (DXA). A DXA t-score
from -1 to -2.5 upon is defined as osteopenia, a decrease in bone mass,
which can evolve to osteoporosis when t-score is <-2.5 (171). Both
conditions are mainly due to an imbalance between osteoblastic bone
formation and osteoclastic bone resorption, the latter one exceeding
the physiological rate, thereby impacting on the coupling mechanisms
between these two cell types. A recent meta-analysis calculated the
general world-wide prevalence of osteoporosis as 18.3% (23.1% in
women and 11.7% in men, respectively) (172). Unfortunately, the
predictions for annual fragility fractures in Europe indicate an
increase of around 25% within the next decade, mainly due to an
increase in the elderly population (173). Currently approved therapies
are predominantly anti-resorptive by targeting OCLs.

10.3389/fimmu.2025.1683872

Bisphosphonates, the most prescribed anti-osteoporotic drugs, are
structurally modified phosphate molecules that integrate into
inorganic matrix. They prevent the OCL from proper attachment
or induce apoptosis (174, 175). However, all bisphosphonates provoke
side effects, especially after long-term treatment, which can lead to
rare but severe adverse events: they affect the coupling of osteoblasts
to OCLs, thereby also bone formation rates. This disbalance
eventually weakens the bone (176) or can possibly further induce
medication-related osteonecrosis of the jaw (177), a severe condition
which is thought to be at least partly induced by a direct effect of
bisphosphonates on M@ polarization (178).

More recently, the monoclonal anti-RANK-L antibody
Denosumab was developed to treat bone loss by pharmacological
inhibition of osteoclastogenesis (179). Despite its great efficiency in
preventing OCLs to form, discontinued therapy can lead to a
subsequent acceleration of bone destruction in patients (180). A
recent study hypothesized a mechanisms for OCLs to self-maintain
upon RANK-L withdrawal by fission of intermediates called
osteomorphs from mature OCLs, that recycle and refuse with one
another or different OCLs once the appropriate stimuli return (76).
This novel picture could explain an increase of osteoclastogenesis and
osteoclastic bone destruction after Denosumab withdrawal. Therefore,
alternative targets to treat pathological bone loss are needed to improve
therapeutic options.
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FIGURE 3

Fracture

Common and differential mechanisms between pathological mechanisms in osteoporosis, rheumatoid arthritis and fracture repair. Osteoporosis is
primarily associated with gender, age and medication/other conditions. Systemic low-grad inflammation leads to increase in osteoclastogenesis and
generalized bone loss. RA is an autoimmune disease caused by ACPA, mediating local joint inflammation and generalized bone destruction.
Fractures happen upon traumatic injuries and are divided not several phases including different cell types. Bone healing after callus formation is
mediated by OCL-dependent remodeling mechanisms. Despite the different origins, the inflammatory component as well as increased progenitor
fusion to form OCLs are a shared mechanism partaking in all these conditions.
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Postmenopausal osteoporosis is also defined as a chronic low-
grade inflammatory condition. Estrogen withdrawal has multiple
direct and indirect effects on the bone. They are reported to directly
inhibit osteoclastic bone resorption via its receptor ERol and to
induce apoptosis of OCLs (181). Furthermore, they are well-known
to exert an important impact on different M@s regardless their
location, as, for instance, estrogen withdrawal also increases the risk
for atherosclerosis (182), impairs skin balance and wound healing
(183) and affects immune cells (184) such as bone-resident M@s.

Physiological levels of estrogen were shown to block
osteoclastogenesis from M2 Mes via ERo (185), despite M2
possessing a higher OCL differentiation potential than M1 Mes
(186). In the ovariectomized (OVX) mouse model, lack of estrogen
altered the M1/M2 ratio of M¢s in the bone. While M2 Mgs
differentiate into OCLs, M1 M@s do not and persist in the BM (185,
187). This sustains a vicious circle of maintained production of pro-
inflammatory M1 cytokines whilst the regulatory factors coming
from M2 M@s are absent, thus shaping osteoclastogenesis to feed-
forward the inflammatory condition (12, 15, 154).

In the BM, multiple players shape the environment by secreting
cytokines capable to regulate M@ differentiation, activity and
polarization, including T cells and myeloid cells; as a
consequence, OCL differentiation and phenotype are equally
affected, which can accumulate in osteoporosis (188, 189). Pro-
inflammatory/Th1 cytokines (e.g. IL-1, IL-6, IFNy, GM-CSF and
TNFa) induce M1 M@s (190) that in turn also produce the same
kind of cytokines, resulting in a feed-forward exacerbation of
inflammation. Some of these pro-inflammatory cytokines
consequently increase osteoclastogenesis (154), while others are
reported to decrease efficiency of OCL differentiation (191). The
same increase of pro-inflammatory cytokines was found in
postmenopausal women, inducing systemic inflammation and
increased MN and lymphocyte populations (192).

In addition to their effects on M@ polarization and resulting
OCLs, T cells in osteoporosis also directly affect osteoclastogenesis.
Importantly, Th17 CD4" cells and their signature cytokine IL-17 are
reported to be the most potent pro-osteoclastic T cell population
(193), to contribute to inflammatory bone loss in vivo (59, 194) and
to induce the formation of inflammatory OCLs (7). On the
contrary, anti-inflammatory/Th2 mediators (mainly IL-4 and IL-
13) induce M2 M@s that maintain a tolerogenic environment by
production of IL-10 and IL-4, which both are reported to inhibit
osteoclastogenesis (86, 195). Reciprocally, as mentioned before,
mature OCLs also actively shape the T cell composition and thus
the pro-inflammatory environment in the BM; in contrast to
healthy, steady-state conditions, the osteoporotic BM is enriched
in TNFa™ CD4" cells, which are induced by inflammatory OCLs.
Moreover, in osteoporotic conditions, Cx3crl™ OCLs associated to
pathology are increased, suggesting a causal participation to the
screw in T cell populations (15, 61). To date, it is still controversial
to definitely conclude about the pathogenic/pathologic impact of
the presence or absence of specific cytokines and reports might be
conflicting. Therefore, one must carefully consider the diversity of
the various cytokines involved, investigate their fine-tuning
mechanisms as well as their respective abundances and possible

Frontiers in Immunology

12

10.3389/fimmu.2025.1683872

dual modes of action. More research is needed to unravel the
specific composition during physiological versus pathological
circumstances to allow specific targeting as a therapeutic option.

Importantly, as OP is a chronic inflammatory disease, other
organs are affected during the onset and progression of the disease,
e.g., the intestinal compartment. OP is associated with changes in
the gut microbiome (196-198), which weakens the intestinal
epithelium barriers and increases gut permeability (194, 199), a
process that is mainly mediated via ERP signaling (200). This
stimulates gut inflammation and leads to the activation and
amplification of inflammatory Th17 cells. These cells, as well as
microbial products, are capable to disseminate to the bone
compartment where they exacerbate inflammation and induce the
emergence of pro-inflammatory OCLs (7, 59, 61, 194, 201).
Reducing gut inflammation with bacterial probiotics limits
osteoclastogenesis and bone loss in osteoporotic mice (202, 203).
Interestingly, we showed recently that treatment of OVX mice with
a probiotic yeast improved gut leakiness, restored normal levels of
bacterial short chain fatty acids (SCFA) and reduced the proportion
of inflammatory T cells in the BM, leading to a diminished
proportion of inflammatory OCLs. Therefore, specific targeting of
inflammatory osteoclastogenesis limits the bone loss induced by
ovariectomy (61).

In summary, OP is a multifaceted disease that is induced,
influenced, and aggravated by multiple pathways. Hormonal
changes, gut inflammation, cytokine composition and other
inflammatory diseases can exert detrimental effects on the
progression of pathological bone loss. Interestingly, increasing
evidence points towards a generalized inflammatory state during
aging, called “inflammaging” (204) due to overproduction of pro-
inflammatory cytokines by Mes, which could shed light on the
development of bone-related pathologies.

Rheumatoid arthritis

RA is an autoimmune disease affecting the joints but also
characterized by extra-articular manifestations. The global
prevalence is 0.46% (205) and it represents a major cause of sick
leaves, hospitalization, physical handicap and early retirement, with
an about 2-fold increased risk of mortality compared to the general
population (206). RA represents an increasing global
socioeconomic burden with an increasing number of patients
worldwide (206). RA starts as a local inflammation of the
synovial tissue of various joints that becomes chronic over time,
causing cartilage erosions and bone destruction at juxta positioned
sites that eventually culminate in pain, disability and risk of fracture
(207, 208) (Figure 3). Bone destruction can become systemic
leading to secondary osteoporosis in about 50% of the patients
(209). Autoimmunity against citrullinated proteins (due to the
presence of anti-citrullinated protein antibodies, ACPA) is one of
the main risk factors in RA, in particular associated with an
increased risk to develop bone erosions (Figure 3). ACPA levels
are used as a serological marker to detect RA even before the onset
of clinical manifestation as well as to predict disease progression.
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Bone erosion can occur very early in ACPA positive patients even
before the first articular manifestation (210). Clinically, the major
therapeutic options are disease modifying anti-rheumatic drugs
(DMARDs, e.g. methotrexate) in combination or not with other
drugs that regulate inflammation (such as cytokine inhibitors) or
interfere with osteoclastogenesis (denosumab, bisphosphonates)
(211). TNFo inhibition efficiently reduces local joint
inflammation and interferes with OCL differentiation, thereby
providing a beneficial effect on bone in those patients that did not
respond to other treatments (212, 213). As discussed earlier, TNFo.
is reported to positively stimulate osteoclastogenesis via direct or
indirect mechanisms. It has been shown to even be sufficient in
inducing osteoclastogenesis in combination with IL-6 in a RANK-
KO model (214). Despite the variety of possible combinations, more
than 4 out of 10 patients do not respond to methotrexate, including
the ones that develop severe adverse effects such as gastrointestinal
events and liver toxicity (215). Thus, new therapeutics are also
urgently needed to reach non-responders and to reduce therapy-
associated problems.

Mes are reported to be the main drivers of RA development and
expansion and are found highly diverse in the inflamed synovium
(53, 216-218). Under steady-state conditions, self-renewing tissue
resident M@ subsets of embryonic origin populate the synovium
and carry out very specialized yet distinct functions to maintain the
integrity of the synovial capsule (217, 218). Contrasting, in murine
models of RA, it was found that these populations shift in both
morphology and phenotype (217), while there was also infiltration
of MN-derived M@s that participate in inflammation by
differentiating into pro-inflammatory M¢@s or OCLs (217-219). In
the serum-transfer model of arthritis (STA), which is independent
of the adaptive immune system and resolves after around 12 days,
non-classical Ly6C'®" blood MNs that gave rise to MHCII*
inflammatory M@s initiated the inflammatory phase, while tissue-
resident MHCII” M@s were involved in STA resolution. This latter
phase was also characterized by a switch from M1 Mes during
initiation towards M2 resolving phenotype (218). Additionally,
non-classical Ly6C'®™ MNs were localized at sites of bone erosion
together with OCLs while classical Ly6C"'8" MNs were absent (220).
However, the data on OCL differentiation potential from these
different MN subsets is conflicting and results are still under debate
(68, 220). In a different model of murine RA, the collagen-induced
arthritis (CIA), another study reported Ly6C™&" classical MNs as
driver population for RA, both by the production of TNFo and the
downregulation of the immune-regulatory ant anti-osteoclastogenic
microRNA miR-146a (221). While specific targeting of Ly6C™&"
MNs with miR-146a containing liposomes did not alter the arthritic
score, it abrogated bone loss in these animals (221).

In line with these preclinical studies, the amount of articular
Mg infiltration is also used as a direct measure of disease activity
and remission in humans patients (222). Moreover, transcriptomic
data suggested that Mo diversity in murine RA might resemble the
human disease situation (223). Recent investigations further
confirm that distinct populations might be involved in different
phases of the disease and remission, by possessing diverse capacities
to progress or resolve inflammation (224). However, the classical
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M1/M2 categorization might not be valid in this setting, since
polarization states are thought to be mixed in terms of markers and
functions (225). Hasegawa et al. recently described a BM-derived
Mo population (referred to as AtoMs) in the joint of mice with CIA
as well as in human RA patients with a particularly high potential to
differentiate into OCLs and to induce bone erosions (53). This
population is characterized by the expression of FoxMl, a
transcription factor they also suggest as a target (53). More
markers for M@ subsets associated to RA are being discovered,
and chemokines are importantly involved in the recruitment of
potential OCL progenitors to the inflamed joint. As an example,
inhibition of the chemokine receptor 2 (CCL2/CCR2) axis (by
pharmacological depletion or genetic tools) has shown to be
efficient in preventing circulating CCR2™ MN populations from
infiltrating the joints in murine RA, which did not alter the
inflammatory score but abrogated OCL differentiation and bone
erosions (68, 218, 226). Additionally, the CCL21/CCR?7 axis was
also described to be highly involved in RA progression (227).
Increased levels of CCL21 in the synovial fluid of patients attract
CCR7" monocytic cells to the inflamed joint, where they polarize
towards M1-like M@s (227). Via IL-6 and IL-23 production, these
Mes induce Th17 polarization of naive T cells, which possess a high
osteoclastogenic potential and therefore partake in exacerbation of
RA by inducing bone erosion (193, 228). In patients, the IL-17 level
can be elevated in the serum and synovial fluid, which also
correlates with disease severity (229). Combining different
cytokines might also display an interesting option to catch 2 birds
with 1 stone, e.g. shaping M@ polarization at the same time as Th
induction. Importantly, both directions of M@-T cell crosstalk again
play a role that should not be neglected.

Fracture healing of long bones

In 2019, the global number of fracture cases reached around 178
million and is more common in men than in women as well as in
the elderly population (230). Regarding the number of cases
described each year and the resulting economic burden in terms
of costs for hospitalization, rehabilitation or potential permanent
handicaps, a better understanding of the underlying molecular
mechanisms in fracture repair along with the implication of
diverse immune cell populations could improve the healing
process through potential pharmacological modulation of
their actions.

The fracture repair process is initiated by BM immune cells that
are able to remove debris and dead cells, which allows the creation
of an endochondral callus in the beginning, that is followed by the
remodeling phase. Fractures come together with a disruption of
vasculature and soft tissues at the site of the trauma. This
vasculature disruption allows the formation of a hematoma where
platelets, MNs and neutrophils are recruited from the blood vessels
(Figure 3). Aggregating platelets form a thrombus that induces
immune cells (including neutrophils, MNs and Mg@s) to secrete
various chemokines and cytokines (231). In this process, LyGChi
Cx3crl® CCR2™ inflammatory MNss are recruited by chemokines

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1683872
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Halper et al.

secreted by bone resident immune cells such as resident Mes/
OsteoMACs and MSCs at the site of injury. When this recruitment
of MN is impaired, the number of M@s strongly decreases (25).
Moreover, this MN recruitment leads to an increase of IL-17, IL-6"
and TNFo" (232) and dysregulation of cytokine secretion seems to
impair also bone healing (233). These MNs will differentiate into
Meos under the control of the CCL2-CCR2 axis (234). The role of
OsteoMAC:s in this early stage of MN recruitment has also been
investigated using Mafia (M¢ Fas-induced apoptosis) mice.
Depletion of OsteoMACs in MAFIA mice impaired bone healing
after fracture (133). If the depletion occurred at the time of the
surgery, there was no callus formation (235), demonstrating that the
newly recruited, MN-derived inflammatory Mes are important in
the initial steps of fracture repair. Indeed, CCR2”" mice, which
display impaired MN recruitment, show a decrease of M@
infiltration at the site of the fracture 3 days after the injury. This
phenomenon was shown to impair vascularization, highlighting the
role of M@s in this first important phase of trauma resolution (56).

In the next step, the formation of a fibrocartilaginous callus
takes place around day 7 post-injury. In the soft callus, the new
cartilage matrix could be observed as soon as day 7 after fracture,
and was found to align with the fracture gap by day 14 post-fracture
(236). In this process of endochondral bone formation, there is a
proliferation of mesenchymal cells and their progenitors, which are
committed to an osteochondral progenitor lineage during this
period. However, the role of M@s in this process remains largely
unclear. CCR2-deficient mice exhibit a smaller callus at day 7 post-
fracture, but there was no impact on the total volume of new bone
or cartilage at this point (56). Depletion of OsteoMACs and MN-
derived Mes at day 5 also reduced the size of the callus during the
anabolic phase (235). Therefore, it seems that OsteoMACs are
important in the early stage of the fracture repair in order to
secrete chemokines attracting MNs that give rise to M¢s, which
allows the re-vascularization of the thrombus. Both populations of
Me@s seem to be importantly involved in the formation of
fibrocartilaginous callus to sustain mesenchymal cell proliferation
and differentiation.

The transformation of a soft fibrocartilaginous callus into the
hard boney callus follows this process. This hard boney callus is
then remodeled to form the new bone structure. M@s, OsteoMACs
and OCLs are implicated in this late remodeling process. In
particular, OCLs are crucial in this remodeling process of the
hard callus, to allow the formation of a bone structure with
similar dimensions to the pre-fractured bone (237). OCLs are
thought to be less important in cartilage remodeling, as their
depletion during the early cartilage remodeling process by OPG
did not affect callus remodeling but instead delayed fracture repair
(238). However, some studies have also shown that OCLs are able to
degrade cartilage (239). Interestingly, during bone healing, the
spleen represents a source of a new wave of hematopoiesis.
Indeed, after a fracture, in Cx3crl Cr¢ERT2, RppgtdTomato ;.0
labeled at E9.5, tdTomato™ cells were present in the red pulp of
the spleen (14). When the spleen of these mice is removed, the
number of tdTomato " TRAP* OCLs decreases at the site of injury,
suggesting a contribution of splenic M@s to the formation of OCLs
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after bone injury (14). However, it seems that the contribution of
circulating MNs to the OCL pool is a minor event under
homeostatic condition but is restricted to fracture events, as
shown with parabiotic experiments (240). Additionally,
intravenous injection of OCL progenitors into mice has proven
incorporation of these cells into mature OCLs only during fracture
repair, not in control mice (240). M@s are also involved in this part
of the process but the exact contribution between OsteoMACs and
MN-derived M@s remains unclear. Although OsteoMACs and M@s
play more important roles in the previous part of intramembranous
ossification, they do not seem to be crucial for this process. Overall,
Mes act preferentially during the first steps of fracture repair in
order to clean and create a new matrix for osteoblastic bone
formation and subsequent remodeling by OCLs to ultimately
obtain a new bone structure.

Conclusion

Osteoimmunology is an interdisciplinary and increasingly evolving
field that describes the interplay between immune and bone cells and
the role of OCLs and Mgs in this field is crucial. Major research
advances in recent years have shown that M@s and OCLs play an
essential role in the BM microenvironment and regulate the balance of
bone remodeling and bone resorption. Current research approaches
focus mainly on the unidirectional action of M@s on OCLs during
polarization. However, OCLs are also involved in the production of
different cytokines that significantly affect M@s and the BM
microenvironment. In addition to their common origin from
hematopoietic progenitor cells, OCLs and M¢s share a wealth of
similarities regarding their characteristics and function. In particular,
with respect to their immune function, both cell types share common
signaling pathways and, like other cells from the myeloid lineage, both
cells exhibit high cellular plasticity. The finding that both OCLs and
Mes contribute to immune responses demonstrates that the role of
OCLs extends far beyond their bone resorption activity and expanded
the scope of osteoimmunology.

Because of their similarities and essential role in the BM, both OCLs
and Mes are instrumental in the pathogenesis of a variety of skeletal
diseases. These disorders mainly involve overproduction of
inflammatory cytokines by M@s and increased OCL differentiation
leading to imbalanced bone resorption. It is therefore critical to
determine the precise triggers and underlying molecular signaling
pathways to better understand the contribution of each cell type in
order to gain deeper insights into the pathologies associated with OCLs
and M@s.

In the clinical point of view, to date, most therapeutic options
for the aforementioned bone-related pathologies have been disease-
modifying drugs that regulate inflammation or interfere with
osteoclastogenesis. This is similar to clinical practice during
chronic inflammatory diseases, as chosen biologicals interfere
with certain mediating cytokines but provoke severe side effects
due to their indispensable role in fighting e.g. infection or cancer
(241). There is a lack of approaches that specifically target the
interaction of different cells in the bone microenvironment; in part,
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this can be explained by the relatively difficult access to human
samples to study steady-state and pathological conditions, as well as
important challenges in preclinical models to establish e.g.,
intravital imaging, fate mapping experiments inside the bone
marrow niche, problematic ex vivo isolation of viable cells etc.
Despite, it is of uttermost importance to further determine cellular
phenotypic changes, exact triggers and signaling pathways involved
in various pathologies to more accurately comprehend the
contribution of OCLs and Mes, and to finally develop targeted
approaches for the clinics. As described before, preclinical data is
available in this regard, and is still attracting increasing interest. As
such, the identification of targetable surface markers specific for
certain OCL subsets identified options to specifically reduce OCLs
associated to inflammation in the osteoporotic background (61);
other reports describe distinct transcriptional programs of
progenitor cells as main drivers of bone loss in RA, highlighting a
possible point of interference with this specific progenitor
subpopulation (53); the development of nanoparticles to deliver
targeted inducers of apoptosis of both M¢ and OCLs in the arthritic
joints to combat inflammation (242). In summary, the identification
of specific targets to interfere with the emergence of M@ as drivers
of inflammatory conditions directly or as OCL progenitors, and in
the same way osteoclastogenesis or originating pro-inflammatory
subsets, will be key to develop targeted therapeutic strategies and to
reduce side effects in treatment options for patients. In this outlook,
recent technological advances such as single-cell RNA sequencing
will help to further improve the molecular understanding of OCLs
and M@s during health and disease. In combination with spatial
imaging and transcriptomic, they will unravel important insights
into specific location, cellular interactions, spatial proximities and
communication networks between M@s and OCLs. This will give
important insights on their phenotype and function directly in their
native environment, as well as their role in the BM
microenvironment maintenance in health and dysregulation
during disease to enable the identification of novel
pharmacological targets addressing their pathological association.
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