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Recent studies on macrophages showed their contribution to tumorigenesis,
progression, metastasis, and chemoresistance by influencing the local tumor
microenvironment and cancer cells. Exosomes form a subset of extracellular
vesicles and have played a major role in the interaction between cancer cells and
macrophages. This review intends to discuss the existing literature on employing
macrophage-derived exosomes as a vehicle for microRNA (miRNA) delivery in
oncological applications. It will evaluate the molecular principles of this
therapeutic approach and its capacity to enhance cancer therapy by
elucidating problems like drug and radio-resistance. This review uniquely
emphasizes the diagnostic and therapeutic potential of macrophage-derived
exosomal miRNAs, summarizing current understandings into their molecular
processes, tumor specificity, and strategies to overcome therapeutic resistance.
This review synthesizes recent studies and evaluates how macrophage-derived
exosomes and their miRNAs contribute to cancers. These vesicles are
multipurpose tools that regulate tumor behavior, considering they can regulate
it through post-transcriptional regulation and protein phosphorylation. Such
exosomes that are engineered can potentially introduce a novel dimension
because they have the capability of delivering targeted oncogenic or tumor-
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suppressive miRNAs to overcome limitations of current cancer therapeutics,
particularly drug and radioresistance. Engineered macrophage-derived
exosomes may thus have the potential as a novel approach for cancer
treatment and overcoming therapeutic resistance.

cancer biomarkers, exosomal miRNAs, macrophage-derived exosomes, therapeutic
resistance, tumor-associated macrophages, tumor microenvironment

1 Introduction

Exosomes are extracellular vesicles (EVs), typically 30-150 nm in
diameter, secreted by various cells, such as cancer and immune cells or
stromal cells (1). Proteins, nucleic acids, and lipids carried by these
vesicles are biologically active and mediate intercellular communication
(2). Exosomes have been in the limelight in the field of oncology and
are already regarded as significant contributors to the tumor
microenvironment (TME) (3). They participate in numerous
processes essential to tumorigenesis, e.g., tumor growth, metastasis,
immune evasion, and the development of drug resistance (4). The fact
that exosomes can induce plasticity in the recipient cells, mostly
through inciting malignant transformation, makes them an
indispensable to cancer development and a target for therapeutic
intervention (5, 6). Exosomes form as intraluminal vesicles (ILVs) in
multivesicular bodies (MVBs) and are released by fusion with the
plasma membrane; their proteins, lipids, and nucleic acid cargo can
reprogram recipient cells within the TME (7). In cancers, tumor-
associated macrophages (TAMs) tend to be biased towards
immunoregulatory M2-like phenotypes, with the M1-like
macrophages being pro-inflammatory. Meanwhile, macrophage-
derived exosomes (MDEs) are exosomes that are released by
macrophages; their microRNA (miRNA) cargo (MDE-miRNAs) can
be suggestive of macrophage polarization and local stimuli and
reorganize tumor growth, metastasis, immune evasion, and
therapeutic resistance (8, 9). MDEs may play an important role in
cancer biology (10). The TAMs are primarily polarized to a pro-
tumorigenic phenotype (11). These TAMs will be involved in circuits
maintaining tumor growth, angiogenesis, or invasion/metastasis, which
may reprogram cancer behavior (12). By transmitting such a load,
MDEs stimulate tumor cell survival and growth and invasion, and the
development of an immunosuppressed microenvironment hostile to
immune editing by tumor cells (13, 14).

Recent advancements in studies have navigated this avenue of
MDE therapeutics, particularly with regard to the delivery of miRNA to
cancer cells. Selective treatment based on the affinity of MDE:s to areas
of tumors creates an appealing treatment strategy (15). Targeted
delivery of therapeutic miRNAs resulting in gene modulation via
MDE:s has the potential to prevent the advancement of cancer and
overcome the limitations present in conventional nanocarriers (16). In

addition, individual variability in MDEs across cancers is the rationale
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for personalized medicine approaches (17). MiRNA content
personalization in MDEs with the help of the tumor environment
signature can lead to amelioration and personalized intervention (18).
Developments in our understanding of the complexity of MDEs in
cancer hold great possibilities to be further exploited as potential
markers and as therapeutic vehicles in this context to allow the
creation of specific new treatment paradigms (19). Even though
exosome biogenesis is common across cell types, it is the cell of
origin that leaves a mark on cargo and cellular functions (20).
Relative to tumor-derived exosomes (TDEs) that tend to exacerbate
oncogenic messaging in cancer cells, MDEs predominantly inform the
TME and remodel cancer cells, stromal cells, and immunity by
miRNAs associated with the macrophage state. They also exhibit
tropism for hypoxic tumor subregions, and MDEs carry
immunomodulatory signals that are less noticeable in alternative
stromal exosomes. Although there is growing evidence on the diverse
functions, there is inadequate systematic knowledge on how
macrophage-derived exosomal miRNAs determine tumor biology
and respond to therapy. The review is a summary of contemporary
information on their mechanistic contributions, clinical associations
with multiple large-scale cancer types, and obstacles to utilizing them in
translation research. Given their dual potential role in tumor
promotion and suppression, these exosomes represent a promising
yet underexplored therapeutic avenue. The primary focus in this review
is MDEs; other exosomes released by tumor cells or other stromal cells
are only mentioned in the form of contrast where necessary.
Understanding their molecular mechanisms and translational
potential could unlock innovative strategies to overcome drug and
radioresistance, paving the way for more precise and effective cancer
treatments. In this review, we have explored the potential of
Macrophage-derived exosomal miRNAs in tumor progression
and resistance.

2 Biogenesis of macrophage-derived
exosomes

2.1 Mechanisms of exosome formation

The biogenesis of exosomes initiates with the internal budding
of the cellular plasma membrane, leading to small vesicle-like
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structures called early endosomes; this is followed by a highly
complex process known as MVBs formation (21). Subsequent
invagination of these early endosomes leads to the formation of
ILVs within MVBs (22). One of these steps is the formation of ILVs,
which are important precursor vesicles containing bioactive cargo
that will ultimately be delivered to recipient cells in exosomes (23).
The membrane of these endosomes is then remodeled and
organized into discrete domains that are enriched in particular
proteins, lipids, or nucleic acids (24). This sorting process is mostly
selective, by which only specific molecules are included in exosomes
(25). After MVBs reach full maturation, they either fuse with
lysosomes for degradation or fuse with the plasma membrane and
release ILVs as exosomes into the extracellular space (26). The
choice between these fates is controlled by several signaling
pathways and molecule interactions that are the subject matter of
ongoing research (27). At the heart of this endosomal maturation
process are Ras-associated binding (Rab) GTPases that direct MVBs
to fuse with the cell surface through SNARE protein-dependent
final fusion (28). Exosomes are released into the extracellular space
to act as a mode of intercellular communication, particularly within
the TME, thus influencing cancer progression (Figure 1) (29). The
polarization state (M1 vs. M2/TAM) of macrophages in particular
alters miRNA abundance and loading in exosomes through
established sorting pathways to remodel the exosomal repertoire.
Polarization leaves different miRNA signatures on the MDEs
with functional implications in the tumor. M1-polarized
macrophages specifically pack miR-155-5p into exosomes (greater
in M1 than in M0/M2), and M1-exosomal miRNA can have anti-
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tumor effects in several models. Conversely, the reports of M2/TAM
exosomes being repeatedly highly enriched with oncogenic miRNAs
that engage cancer cells and trigger activated pro-survival signatures
and invasion, and chemoresistance are recurrently mentioned (30).
Mechanistically, such polarization-specific differences in cargo fold
into general pathways of exosome sorting, hnRNPA2B1 attachment
to EXOmotifs (31), YBX1-selection (e.g., of miR-223) (32), relative
enrichment of 3’-uridylated isoforms in exosomes (33), and
ceramide/neutral sphingomyelinase 2 (nSMase2)-mediated
miRNA export (34) to provide a macrophage-specific basis to
how M1 versus M2 states bias the exosomes-mediated
miRNA positing.

2.2 Role of ESCRT machinery and other
molecular players

The endosomal sorting complexes required for transport
(ESCRT) machinery is an ATP-dependent mechanism that
functions in the packaging of cargo into intraluminal vesicles
(ILVs) within multivesicular bodies (MVBs), a critical step during
exosome biogenesis (35). The ESCRT machine consists of four large
complexes that include ESCRT-0, I, II, and III. Various complexes
perform different roles in the process of exosome production (36).
The major role of ESCRT-0 is to identify and enclose the cargo
tagged with ubiquitin at the endosome membrane. During the
formation of the MVBs, ILVs are generated by the process
catalyzed by ESCRT-I and ESCRT-II. Meanwhile, ESCRT-III
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The graphic illustrates the cellular process of exosome production. This diagram depicts the process of early endosome creation leading to the
production of multivesicular bodies (MVB/LE) and the eventual release of exosomes, as well as the routes involved in lysosomal degradation.

Important compounds include ESCRT, Rab27, and sphingolipid ceramide.
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performs a last separation by breaking membranes to release
nascent ILVs inside the lumen of MVB (37).

A wide variety of accessory proteins has also been shown to be
involved in exosome biogenesis in addition to the ESCRT complexes
(38). Alix and TSG101 are significant regulators that get involved with
the ESCRT apparatus in orchestrating proper cargo sorting/packaging.
Alix plays a critical role in the process of budding, and TSG101
associates with the ubiquitinated protein to mark them in the
immature exosomes (39). Along with this, other molecular elements
such as Rab GTPases are also necessary to release exosomes in the
plasma membrane through transport and docking of MVBs (40). Two
of the Rab family members, namely Rab27a and Rab27b have been
demonstrated as being critical in the localization of MVBs near the
plasma membrane through exosome release. Newer studies have also
indicated the orchestration of the lipid nanodomains (also called as
room rafts) in the exosome biogenesis (41). These membrane lipid-rich
areas serve as protein complex scaffolds that participate in exosome
formation (42). Consequently, the biophysical nature of such
microdomains is significantly modulated by cholesterol,
sphingomyelin, and ceramide, and hence various abilities to convert
them to exosomes (43).

2.3 Influence of external stimuli

The generation and secretion of MDE are induced by external
factors such as hypoxia, inflammation, or oxidative stress. EV content
changes in the hypoxic, acidic, and low glucose TME, which leads to
alterations in their function (44). Hypoxia is a hallmark of solid tumors
known to promote the secretion of exosomes from cancer cells and
TAMs (45). Exosomal cargo is likewise altered under hypoxic
conditions that tend to enrich for pro-angiogenic factors such as
miRNA and vascular endothelial growth factor (VEGF), enhancing
metastasis. These observations suggest that not only does hypoxia
produce exosomes, but it also modifies their cargo to the advantage of
tumor progression (46). In line with its inflammatory status, which is
well characterized in cancer, exosome biogenesis was also altered. The
released exosomes contain additional protein and RNA cargo when
macrophages are exposed to inflammatory cytokines such as TNF-o or
IL-6 (47, 48). Studies have demonstrated that exosomes secreted from
inflamed cells can deliver immunosuppressive molecules to dampen
the activation of cytotoxic T cells and facilitate immune evasion (49).
On the other hand, cellular stress, such as that induced by oxidative
stress and nutrient deprivation or provoked by treatment with
chemotherapeutic agents, may result in increased exosome secretion
(50, 51). This stress-induced exosomal secretion is believed to represent
a cytoprotective process that removes deleterious proteins and RNAs
from cells, as well as modulates the TME, which further influences
cancer cell proliferation/survival in response to treatment (52).

3 Functions of MDEs in cancer

The MDEs significantly contribute to tumor biology through
intercellular communication in the TME. These vesicles convey

Frontiers in Immunology

10.3389/fimmu.2025.1683799

regulatory miRNAs, proteins, and lipids that significantly affect
cancer cells’ surrounding stroma. MDEs can lead to tumor
progression, angiogenesis, invasion, and immune suppression and
therapy resistance depending on their molecular cargo (53). The
subsections below provide an overview of the key MDE-regulated
processes in cancer progression.

3.1 MDEs promote tumor proliferation

One of the major functionalities that MDEs carry out in case of
cancer is to create a suitable condition for tumor growth and
proliferation (54). Oncogenic dysregulation of MDEs often
involves oncogenic miRNAs and proteins to instigate signaling
pathways in human cancer cells, e.g., PI3K/AKT or Wnt/pB-
catenin pathway that brings about increased cell proliferation/
survival (55). MiR-501-3p in M2-exosomes favors tumor
progression by triggering the transforming growth factor-p (TGF-
B) cascade and suppressing the tumor suppressor gene TGFBR3
(56). In human epithelial ovarian cancer (EOC), exosomal miR-221
—3p derived from M2 macrophages promotes cancer growth by
reducing the cyclin-dependent kinase inhibitor 1B (CDKNI1B) (57).
A separate investigation indicates that exosomal miR-29a-3p and
miR-21-5p derived from M2 macrophages increase the proportion
of T regulatory cells (Tregs) to T helper cell 17 (Th17), thereby
contributing to a tumor immune inhibitory TME and facilitating
the development of cancer and metastasis (58). The data indicate
that macrophage-derived exosomal miRNAs target not only
cancerous cells directly but also the immune systems, thereby
influencing cancer cells indirectly.

3.2 MDEs promote metastasis

Moreover, MDEs modulate the TME by modifying stromal cell
behavior, favoring angiogenesis, and establishing a permissive niche for
many phases of tumorigenesis. MDEs are also involved in promoting
the metastatic ability of cancer cells (59, 60). Through the transmission
of pro-metastatic molecules, MDEs can reshape extracellular matrices
to promote cancer cell invasiveness and assist in developing pre-
metastatic niches at target organs (61). M2-Exos carry IncRNA
AFAP1-ASI, downregulating miR-26a and upregulating activating
transcription factor 2 (ATF2), hence facilitating esophageal cancer
(EC) penetration and metastasis. Engaging M2 macrophages and the
IncRNA AFAP1AS1/miR-26a/ATF2 pathway is a promising treatment
option for EC (62). Lan et al. observed that M2-Exos regulate Brahma-
related gene 1 (BRG1) by delivering miR-21 and miR-155-5p, leading
to the downregulation of BRGI and promoting colorectal cancer
(CRC) metastasis (63).

3.3 MDEs confer drug resistance

Furthermore, MDEs are also involved in drug resistance to
cancer. They can take up and transmit miRNAs, as well as other
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molecules that regulate the expression of drug-resistance genes in
cancer cells, which helps reduce both chemotherapeutic response
and response to targeted therapies (64, 65). Such exosome-mediated
communication develops a multidrug-resistant and aggressive
tumor phenotype. Recent data indicate that MDEs-derived
miRNAs exert an inhibitory effect on cancer. MDEs, rich in miR-
7, are internalized by EOC cells following treatment with tumor
necrosis factor-like weak inducer of apoptosis (TWEAK). This
internalization inhibits cell invasion by targeting the EGFR-
mediated AKT/ERK system (66). MDEs miR-let-7a-5p can be
transferred to lung cancer cells, resulting in the inhibition of cell
growth, migration, and invasion through the downregulation of
Bcl2-like 1 (BCL2L1) expression (67).

3.4 MDEs regulate immune responses

MDEs partake in the immune regulation within the TME (68).
Consequently, these cells can modulate anti-tumor immune
responses by affecting the function of different types of innate and
adaptive immunity effector cells, leading to immunostimulants and
cancer progression (69).

4 miRNA loading and cargo selection
in MDEs

MiRNA loading and cargo selection in MDEs is a tightly
regulated transcriptional program that dictates response to
various stimuli, including cancer (70). Besides, the selective
incorporation of specific miRNAs and other bioactive molecules
into MDEs is not random, as specific cellular mechanisms mediate
this process to provide directed signaling to recipient cells. MiRNA
incorporation into MDEs occurs during the biogenesis of these
vesicles in parent mesenchymal stromal/stem cells (MSCs) (71, 72).
Many important proteins and pathways participate in modulating
the selective packaging of miRNAs (73, 74). Key players for
recognizing and mediating the loading of selected miRNAs into
MDE:s are those represented by RNA-binding proteins (RBPs), such
as Argonaute 2 (Ago2), heterogeneous nuclear ribonucleoproteins,
and endosomal sorting complexes required for transport (75, 76).
Exosome-targeting motifs (EXO-motifs; GGAG/UGGA-like
motifs) and U/CA-rich elements are preferentially bound by
hnRNP family proteins, in macrophages, enhancing their export
in budding intraluminal vesicles. The miRNAs that interact with
Ago2 are selectively targeted to exosomes by a combination of their
stable seed imaginary pairing potential and their preference for 5-
nucleotides to interact with Ago2. Additional sequence-
independent sorting bias modulates RBP affinity/retention, versus
export decisions are affected by secondary structure and 3-end
modifications. A combination of these features can be used to
operationalize the selective, non-random packaging of miRNAs
into macrophage-derived exosomes. In practice, these RBPs read
the above EXO-motifs, U/CA-rich elements, 3’-end marks, and
exposed hairpins to triage individual miRNAs for vesicular export,
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committing them as cargo precursors during ILV budding within
maturing MVBs (77). The miRNAs are then loaded into the
intraluminal vesicles, which, after the bulbs are fused to the
plasma membrane, lead to the release of MDEs out of the cell.
The miRNA content of MDEs may reflect the physiological status of
MSCs and even stimuli from external surroundings (78, 79). Under
hypoxic conditions or in response to inflammatory signals, MSCs
may selectively furnish MDEs with different miRNA cargos (ie.,
pro-angiogenic miRs for TME redirecting recipient cancer cells and
immunomodulatory miRs preventing anti-tumoral immune cell
activation) (80). Hypoxia, which is a characteristic of solid
tumors, enhances exosome release by TAMs and cargo
composition, in part by altering the expression and post-
translational status of RBPs, favoring certain motifs and
diminishing others (81). Cellular stress and inflammatory
cytokines also reprogram exosomes’ biogenesis and cargo
selection, enriching pro-angiogenic or immunomodulatory
miRNAs and reconfiguring the TME (82). Such context-
dependent modifications justify the reason why exosomes of
hypoxia-related, macrophage-produced exosomes often carry pro-
metastatic/therapy-resistance miRNAs, which are evident
throughout Section 5.

In addition to miRNAs, MDEs also selectively incorporate other
molecular cargo, such as proteins, lipids, and IncRNA, under
specific cellular contexts to mediate a targeted biological effect
(83-85). The cargo sorting is indispensable to the function of
MDEs in regulating the TME, promoting metastasis, and
inducing drug resistance (86). The interaction between miRNAs
and other cargo components in MDEs may enhance their potency
on recipient cells synergistically (87). The miRNA cargo of MDEs in
cancer can downregulate tumor suppressor genes or upregulate
oncogenes in recipient cells, leading to the promotion of
tumorigenesis and metastasis. Additionally, MDEs could be
artificially designed to carry tumor-suppressive miRNAs and
serve as a therapeutic strategy (88-90). Elucidating these
processes in MDEs will be critical for the future design of
targeted therapies that either suppress the pathological functions
of MDE:s or use them to deliver therapeutic molecules in cancer and
potentially other diseases (91).

5 Applications of miRNA-loaded
macrophage-derived exosomes as
delivery vehicles

For a cross-comparison of key MDE-miRNAs, their validated
targets, and net functional outcome across cancers, refer to Table 1.
5.1 Lung cancer

Lung cancer, the most lethal of all cancers worldwide, arises
principally in cells that line the airways. This is generally divided

into non-small cell lung cancer (NSCLC), which represents around
85% of cases, and small cell lung cancer, which is more aggressive
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(98). This disease is associated with risk factors like smoking,
carcinogen exposure, and genetic predisposition. The early stage
of lung cancer is often asymptomatic; thus, most patients present
with advanced disease at diagnosis, and they usually have a poor
prognosis (99, 100). Lung cancer is the leading cause of cancer
deaths, with more than 2 million new cases reported every year
worldwide, especially in developing countries where smoking rates
are high. It occurs much more often among men, although it is
becoming an increasingly common problem with women (101).
Currently, despite increasingly effective surgical and
chemotherapeutic treatments, the five-year survival rate is only
around 20%, mainly due to the late detection of disease with its
aggressive nature (102, 103). There is a growing realization that
miRNAs are key players in gene expression closely associated with
lung tumor development, progression to advanced disease, and
therapeutic resistance (104, 105). All these miRNAs can work as
oncomiRs or tumor suppressor genes, influencing key regulators
implicated in cell proliferation, apoptosis, and metastasis (106, 107).
Considering the ability of miRNAs to serve as both blood-based
markers for early detection and prognosis, in addition to being
therapeutic targets themselves, they represent a novel target group
in personalized treatment strategies for lung cancer (108). For
instance, let-7a-5p downregulates the oncogene BCL2L1 by-
thereby targeting it for gene silencing through association with a
specific mRNA encoding protein activity that affects multiple
signaling transcripts and inhibiting cell proliferation and
migration/invasive phenotype in lung cancer (109). The miRNA
activates the PI3Ky signaling pathway and induces autophagy and
apoptosis in human lung cancer cells (110). Duan et al. utilized let-
7a-5p as exosome cargo because high levels of this miRNA in
macrophages hinder lung cancer, and the cells also treated A549
NSCLC with BCL2L1 are targets. Surprisingly, let-7a-5p
upregulation induced autophagy and cell death in lung cancer
cells without triggering apoptosis or pyroptosis (Figure 2) (111).
The biological role of TNF-o, in lung cancer is paradoxical,
being capable of both averting tumor proliferation and also

10.3389/fimmu.2025.1683799

facilitating it (112, 113). On the one hand, this cytokine can
mediate inflammation and promote tumor growth through
activating transduction pathways that enhance cell survival
processes like nuclear factor-kB (NF-kB). It acts alone or together
with other agents under various conditions, selectively kills cancer
cells by apoptosis cascade clearance mediated through ligating its
receptor pathway (114, 115). Jiao et al. identified that TNF-o.-
stimulated exosomes of PMNs were implicated in sepsis-related
ALI promoting M1 macrophage activation and pyroptosis via the
NEF-xB signal pathway. Inhibition of this pathway is regulated by
exosomal miR-30d-5p directly targeting SOCS1/SIRT1 in
macrophages. Knocking down miR-30d-5p decreased the
pyroptosis, macrophage activation, and lung injury in sepsis-
related acute lung injury (ALI) rats by inhibiting PMN-M
interaction via a novel mechanism; these results suggest new
potential therapeutic targets for treating sepsis (116).

Moreover, the use of certain microRNAs as diagnostic
biomarkers led to progress in the early detection of lung cancer
(117). Cazzoli et al. discovered microRNAs able to distinguish lung
adenocarcinomas from benign lung conditions with sensitivities
and specificities exceeding 90 percent. Their screening test was
97.5% sensitive and 72.0% specific, whereas, for lung
adenocarcinoma versus granulomas, their diagnostic assay had a
sensitivity of 96.0%, with a specificity of only 60%. This implies a
promise of using circulating exosomal miRNAs as early diagnostic
markers for lung cancer (118). In addition, Munagala et al. showed
that miR-21 and miR-155 exhibited higher levels of the two
sequences in serum exosomes from recurrent lung tumors
compared to primary ones. These miRNAs are proposed to be
potential biomarkers for non-invasive diagnosis of recurrent lung
cancer, as their expression patterns in exosomes overlap with those
of pathological tissues from primary and metastatic lung tumors.
Consequently, miRNAs serve as potential markers of disease
progression and relapse monitoring (119). Exosomal miRNAs
including let-7a-5p, miR-21, and miR-155 that are released by
macrophages influence both the proliferation of tumors and

TABLE 1 Comparative summary of macrophage-derived exosomal (MDE) miRNAs across cancers.

Cancer type = Key MDE-miRNA(s) Validated direct target(s) in Functional outcome References
recipient cell
Ovarian (EOC) miR-223 PTEN Tumor-promoting (chemoresistance via (92)
PI3K/AKT activation).

Gastric miR-21 PTEN Tumor-promoting (cisplatin resistance; (93)
PI3K/AKT).

PDAC miR-365 CDA induction/nucleotide pool remodeling Tumor-promoting (drug resistance). (94)

(gemcitabine inactivation)
PDAC miR-501-3p TGFBR3 Tumor-promoting (TGF-P activation; (56)
invasion/metastasis).

NSCLC miR-155; miR-196a-5p RASSF4 Tumor-promoting (EMT, migration, (95)
metastasis).

CRC miR-155-5p ZC3HI12B (1IL-6 stability) Tumor-promoting (immune escape/tumor (96)
formation).

Melanoma miR-29¢-3p (from M1 ENPP2 Suppressive (reduced aggressiveness). (97)

macrophages)
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FIGURE 2

The image illustrates key signaling pathways involved in lung cellular processes, highlighting the MAPK and mTOR pathways. It depicts the interaction
between IGF1R, INS, and RAS and the downstream effects on autophagy through the endoplasmic reticulum, mediated by Rheb and PI3K complexes.

development of drug-resistance as well as function as non-invasive
diagnostic and predictive biomarkers that can be detected in serum
exosomes (120, 121), which has a practical value in screening and
monitoring drug-resistance lung cancer in early diagnosis and the
chosen therapeutic response and treatment.

5.2 Breast cancer

Breast cancer is the most frequently diagnosed of all cancers among
women, with the highest incidence rates in North America and Europe;
it originates in ducts (ductal carcinoma) or lobules (lobular carcinoma)
(122). With the capacity to metastasize, this cancer can spread all over,
and hence its early detection matters (112, 113, 123). The prognosis has
substantially improved with the advent of screening methods such as
mammography, which allows early detection. There are many
treatments for breast cancer, which vary depending on the stage of
the disease and its characteristics (124-126). Although the disease is
much more common in women over 50, even men can have breast
cancer. Age, genetic mutations (e.g, BRCA1/2), family history,
reproductive history, and lifestyle factors. Although advancements in
detection and treatment have improved survival rates, disparities persist,
influenced by geographic, socioeconomic, and racial factors (127).
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MiRNAs are involved in the post-transcriptional regulation of
gene expression and play a fundamental role in breast cancer by
controlling genes related to growth, metastasis, or resistance to
therapy. These miRNAs exert oncogenic or tumor suppressor roles
modulating key signaling pathways that lead to cancer development
(128-130). Due to their potential as biomarkers for diagnosis and
prognosis or even therapeutic targets, miRNAs are of great interest
in breast cancer research workflow development. In breast cancer,
bone marrow stromal macrophages exert a dual effect on both
cancer cell dormancy and chemoresistance (131). The M2
macrophages are mainly associated with the induction of
dormancy and chemoresistance to cancer cells. The Ml
macrophages, however, counteract the dormancy, reactivating the
cancer cells and making them more susceptible to chemotherapy
(132). This balance is essential in the determination of both
dormancy and susceptibility to the treatment of breast cancer in
the bone marrow (133). Walker et al. revealed that bone marrow
stromal macrophages induced breast cancer cell dormancy, with
M2 cells enhancing quiescence and resistance to carboplatin via a
gap junctional communication. However, the process was reversed
by the M1 cells, which activated NF-kB, increased cellular
sensitivity to carboplatin, and improved the survival of the hosts.
Driving the modulation of the macrophage phenotype could be the
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preferred treatment option to control breast cancer dormancy. This
will hinder cancer cells from spreading to other parts of the
body (134).

Exosomes, as one of the types of microvesicles, are of
paramount importance in breast cancer, as they help cells
communicate with each other (135). Cells are capable of
transferring oncogenic molecules, including several forms of
miRNA, proteins, and lipids responsible for the cells’ promotion
of tumor growth, invasion, and metastasis (136). Exosomes are of
essential importance due to their role in forming the TME (137).
According to the study by Yang et al., IL-4-activated macrophages
enhance the invasion of breast cancer cells by transferring miR-223.
The latter, in turn, raises the invasiveness of cancer cells through the
Mef2c-B-catenin pathway. Inhibition of miR-223 in macrophages
decreases the suppressive effect of these cells on the invasiveness of
breast cancer cells in co-culture, demonstrating the pivotal role of
the exosomal transfer of miRNAs in the interaction of macrophages
with breast cancer cells that promotes metastasis (138).

One of the leading accelerators of breast cancer development is
TAMs. They provide favorable conditions for tumors by enhancing
growth, invasion, and metastasis and promoting angiogenesis,
immune escape, and tissue remodeling in the TME (139, 140). In
most cases, TAMs are oriented toward the M2 type, as it is closely
related to the poor prognosis of breast cancer patients (141). The
study of Li et al. shows that miR-146a and miR-222 are
downregulated, which contributes to tumor progression.
Specifically, miR-146a promotes M2 macrophage polarization,
which accelerates tumor progression. Secondly, miR-222 inhibits
TAM chemotaxis by targeting C-X-C chemokine receptor type 4
(CXCR4) and C-X-C motif chemokine ligand 12 (CXCL12), which
ultimately suppresses tumor growth in vivo. Thus, miRNAs are a
significant factor in regulating TAM functioning and the rate of
breast cancer progression (142). MDEs’ miRNAs such as miR-223
and miR-146a affect metastasis and macrophage polarization and
hence connect macrophage polarization with tumor aggressiveness
and immune evasion (120, 143). Their constancy is contributed by
their exosomal state that allows food to nurture them as floating
biomarkers and possible agents to reverse this chemoresistance
within breast cancer.

5.3 Ovarian cancer

Ovarian cancer is a malignancy that starts in the ovaries and
often goes undetected until it has spread within the pelvis and
abdomen. Therefore, ovarian cancer is the most malignant of
gynecologic cancers due to late diagnosis (144, 145). The disease
reportedly has several subtypes, including EOC, which is the most
common. Generally, however, ovarian cancer is usually manifested
by non-specific symptoms such as bloating, pelvic pain, and
changes in bowel habits, which makes its detection at early stages
quite challenging (146). Moreover, the disease is the eighth most
common type of cancer among women worldwide, in addition to
being the greatest cause of death from all gynecologic malignancies
(147, 148). Ovarian cancer is more commonly reported in Europe
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and North America than in other parts of the world (149). The
disease is mainly encountered among postmenopausal women, with
a median age at diagnosis standing at 63 years. Despite the rapid
increase in the number of ovarian cancer treatment options, the
overall 5-year survival rate remains less than 50% due to its
tendency to be diagnosed in late stages (150). In particular, risk
factors are common and include age, family history of ovarian
cancer, family history of breast cancer, a personal history of breast
or ovarian cancer, BRCA1 or BRCA2 mutation, never having given
birth, and estrogen hormone therapy (151).

Ovarian cancer depends on oncogenic or tumor suppressor
miRNAs that control gene expression involved in tumor
development, invasion, and resistance to chemotherapy. Some
miRNAs have been strongly linked to poor clinical outcomes in
ovarian cancer and have been proposed as early diagnostic or
therapeutic targets (152, 153). Li et al. found that exosomal miR-
221-3p originating in TAMs drives late EOC progression via
CDKNIB inhibition and is selectively enriched in M2 exosomes.
miR-221-3p is highly enriched in both the cytoplasm and nucleus of
M2 exosomes and appears to stimulate the G1/S phase transmission
of EOC cells. The results of this study identify exosomal miR-221-
3p as a potential diagnostic serum EOC biomarker and a novel M2-
derived target for EOC therapy (57).

GATA3 is a transcription factor involved in breast cancer.
However, its role in ovarian cancer cells is also emerging as an
important finding. These vital factors are often found in cells, which
contribute to the progression of the tumor (154). Tumor cells
become aggressive by modulating the TME. GATA3 can also
activate other associated pathways (155) in a study conducted by
El-Arabey et al. GATA3 is demonstrated to be released from TAMs
in an exosomal form. This also activates macrophage polarization
and its interaction with High-grade serous carcinoma (HGSOC)
cells. It facilitates tumor growth and epithelial-mesenchymal
transformation. Major tumor-stimulating effects are reduced by
the use of siRNA in the GATA3-targeted TAMs. Therefore, GATA3
acts as an important marker for prognosis and a better therapeutic
technique for HGSOC (Figure 3) (156). The interaction between
regulatory T cells and Th17 cells within the TME serves to define
the type and the intensity of immune response-resistant EOC,
which, as a rule, defines the clinical course and treatment results
(157, 158). Tregs play a rather valuable role in boosting tumors,
offering a suppressive effect on anti-tumor immunity. In contrast,
Th17 cells accumulate in tumors in response to the immune
response to regulation (159). The study by Zhou et al.
investigated the functions of the exosomal miRNAs from TAMs,
which are termed miR-29a-3p and miR-21-5p, since they suppress
the CD4+ T cells in a STAT3 manner. This suppresses the balance
of the Treg/Th17 and promotes the progression of EOC in an
immunosuppressive atmosphere. This remains clear as targeting the
exosomes by the miRNAs may be a novel manner of treating
EOC (58).

In ovarian cancer, TWEAK double communicates as it
promotes tumor progression and immune perturbation. Namely,
TWEAK serves to enhance the proliferation, migration, and
resistance of cancer cells by activating the NF-xB signaling
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The image illustrates the role of mutant TP53 in high-grade serous ovarian cancer (HGSOC), highlighting GATA3 expression’s impact on tumor
growth, angiogenesis, and migration. It also depicts exosome-mediated communication, contributing to chemoresistance, EMT, and epigenetic

regulation in the tumor microenvironment.

pathway (160). Moreover, according to Hu et al., exosomes
collected by TWEAK-stimulated macrophages impede the
metastasis of ovarian cancer by transmitting miR-7 to EOC cells
to reduce passage through the EGFR/AKT/ERK1/2 pathway. Using
antagomiR-7 transfection, the levels of miR-7 in the macrophages,
exosomes, and EOC cells were reduced, and metastasis was
enhanced. Studies in a mixed xenograft rodent model showed
that TAMs’ exosomal miR-7 prohibits EOC metastasis (66).
Besides, Zhu et al. showed that exosomal miR-223 secreted by
hypoxic macrophages accelerated the resistance of EOC to
chemotherapy by inhibiting the PTEN-PI3K/AKT signaling
pathway. Hypoxic exosomes highly expressed miR-223, and they
were transferred to EOC to increase its drug resistance. In addition,
higher levels of miR-223 contained in the exosomes of patients with
EOC were identified in the course of the disease recurrence, which
confirms the interaction between macrophages and EOC, which
increases the resistance of EOC to chemotherapy (92). M2-
macrophage-derived exosomal miR-221-3p, miR-29a-3p, and
miR-21-5p are actively amplified to facilitate EOC growth and
immune suppression (161). They serve as both clinical agents
(correlation in tumor progression prevention) and clinical

biomarkers (early detection or monitoring of disease).

5.4 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the prime variation of
primary liver cancer, usually presenting in the background of
chronic liver diseases, such as hepatitis B and C, alcoholic liver
disease, and non-alcoholic fatty liver disease (NAFLD). Of note,
HCC is characterized by its notorious aggressiveness and extremely
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poor prognosis (162). Since HCC frequently manifests at an
advanced stage, making early detection difficult and curable
treatment scarce, this disease is followed by a high rate of death.
Regarding the disease frequency, worldwide HCC ranks as the fifth
most frequent cancer and the third major cause of cancer death
(163). It predominantly affects the male population and has been
notably recognized in East Asia and Sub-Saharan African regions,
wherein hepatitis B and C infections are common. Nevertheless, in
Western countries, this phenomenon is continuously increasing as a
result of the burgeoning rates of obesity, diabetes, and NAFLD (164,
165). Notably, the function of miRNAs in HCC is pivotal. It is
related to their ability to control gene expression associated with
tumor development, progression, and metastasis in either a
stimulatory or repressive manner (166).

CD90 is one of the important markers in HCC, and it is
Thymus cell antigen 1 (Thy-1), a stem cell antigen that plays an
essential role as a marker for cancer stem cells (CSCs). A variety of
lines of evidence suggest that CD90+ cells are associated with tumor
initiation, progression, and resistance to therapy. CD90+ cells in
HCCs exhibit higher self-renewal, invasion, and metastasis
properties (167, 168). Wang et al. demonstrated that exosomes
from TAMs promote HCC cell proliferation and enhance the
relative CSC traits by delivering miR-125a/b. The down-
regulation of miR-125a/b in TAM-derived exosomes enhanced
CSC traits associated primarily targeting the stem cell marker
CD90. These results suggest that miR-125a and miR-125 b play a
critical role in the regulation of CSCs in HCC through TAM-
derived exosomes (169). Apart from miR-125a/b, miR-142 and
miR-223 transfer between the cells substantially contributes to HCC
(170). Aucher et al. showed that human macrophages transfer miR-
142 and miR-223 to HCC cells via gap junctions. The transfer
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inhibits the proliferation of HCC since it regulates the expression of
the key proteins, including stathmin-1 and insulin-like growth
factor 1 (IGF-1) receptor (IGF1R); thus, a novel defense
mechanism of immune cells from tumor proliferation. Multiple
mechanisms and processes keep cell proliferation under control,
and some of them have been discovered only recently, such as the
transfer of small RNA molecules between cells (171).

Alcoholic liver disease is a disorder that is caused by excessive
consumption of alcohol. This results in damage to the liver, which
could range from fatifying of liver to more severe forms of the
disorder, such as alcoholic hepatitis or cirrhosis (172). The chronic
consumption of alcohol disrupts the normal functions of the liver
cells and is associated with inflammation, which may cause an
individual to develop scar tissue on the liver. It increases the risk of
liver failure and death and is regarded as a major cause of liver-
related incidences of morbidity and mortality in most parts of the
world (172). Babuta et al. found that alcohol disrupts autophagy in
alcoholic liver disease (ALD) by impairing the functions of
autophagosomes and lysosomes. The latter is attributed to the
downregulation of Lysosome-Associated Membrane Protein 1 &
Protein 2 (LAMP1 and LAMP2). This is a result of miR-155, which
targets key oncogenes in the process and causes an increase in the
production of exosomes. Notably, the mice that lacked the miR-155
molecule were not affected by the effects, and this proves its role in
the disruption of autophagy and the release of exosomes by alcohol
in ALD (173). TAM-derived exosomal miR-125a/b, miR-142, and
miR-223 control the expression of cancer-stem-cell-associated
genes like CD90 that boost tumor recurrence and resistance in
HCC (174). Their practical usefulness and their identification in
plasma justify their possible use as biomarkers that predict relapse
and treat therapeutic nodes in precision-based management
of HCC.

5.5 Pancreatic cancer

Pancreatic cancer is a highly aggressive malignancy that
originates in the pancreatic tissues and is often detected late, as it
is asymptomatic and has rapid progress and a lack of response to
any treatments (175). This is the unfinished business of most
malignant neoplasms in the pancreas and perhaps one of the
most lethal types of cancer. Pancreatic ductal adenocarcinoma
(PDAC) is the most common form of pancreatic cancer (176).
Risk factors associated with this blockage include cigarette smoking,
chronic pancreatitis, being overweight, and having a family history
of pancreatic cancer. There are only a several drugs to deal with this
diagnosis, which is why the five-year percentile has a very low rate
of 5-10% pancreatic cancer (177). Compared to other types of
cancer, this one is the twelfth different cancer.

On the other hand, it has a high mortality rate and occupies the
seventh place among the deadliest forms of neoplasms. The biggest
number of incidence falls in prosperous countries where a large
number of men were affected by it (178). People who are obese and
have diabetes are also in the high-risk group. One of the critical
roles of miRNAs in pancreatic cancer is the involvement in

Frontiers in Immunology

10.3389/fimmu.2025.1683799

signaling pathways that control the growth, metastasis, and drug
resistance of tumors. This is achieved by miRNAs either as
oncogenes or as tumor-suppressive genes (179). Binenbaum et al.
discovered that miR-365, which is found in TAMs-derived
exosomes in PDAC, impairs gemcitabine activity, which is a drug
used in chemotherapy, thus inducing cancer cell resistance to this
medicine. The study showed that restoring the latter’s sensitivity
was possible by blocking miR-365, which provides yet more
evidence for the fact that MDEs are among the primary
regulators of chemotherapy resistance in PDAC (94).

X-linked inhibitor of apoptosis protein (XIAP) is also a critical
factor in pancreatic cancer. It inhibits apoptosis and promotes cell
survival. Hence, the XIAP’s overexpression in cancer cells
guarantees survival despite chemotherapy and other treatments
(180). Overexpression of the factor is associated with poor
prognosis and the aggressiveness of cancer. Interestingly, XIAP
seems to be a practical therapeutic target in pancreatic cancer (181)
in the study. Yin et al. show that M2 macrophage-derived exosomes
promote pancreatic cancer by transmitting long non-coding RNA
SBF2-AS1 that suppresses MiR-122-5p and upregulates XIAP.
Suppression of XIAP restrains the tumor from growing, helping
treat the disease (182). Similarly, Yin et al., revealed that exosomes
in M2 TAMs consist of miR-501-3p to advance PDAC via targeting
the suppression gene TGFBR3. This downregulation, in turn,
activates the TGF-P signaling pathway that will foster tumor
growth and metastasis. Depletion of miR-501-3p in these
exosomes acted to suppress tumorigenesis and metastasis,
together with their upstream TGF-} signaling pathway, might be
viable therapeutic targets for PDAC treatment (56). Macrophage-
derived exosomal miR-365 silenced the effect of gemcitabine by
interfering with nucleotide metabolism in PDAC, and miR-501-3p
and IncRNA SBF2-AS1 changed TGF-f and XIAP to promote
chemoresistance (94). These results reveal MDE cargoes as potent
drug resistance mediators and promising therapeutic targets tested
in in vivo xenograft studies.

5.6 Colorectal cancer

CRC is a type of cancer that develops in the colon or rectum. It
is often preceded by the growth of benign polyps, which may later
become malignant. It is the third most common cancer and the
second leading cause of cancer mortality globally (183). The
common symptoms experienced are changes in defecation
rhythm, bloody stool, and abdominal pain. CRC is monitored by
colonoscopy, and when detected, early survival rates are high (184).
It is treated with surgery, chemotherapy, and radiation, often in
combination. The incidence rates of CRC are third in the most often
diagnosed cancers and second in terms of deaths worldwide, with
higher rates in the more developed areas, particularly North
America, Europe, and Australia (185). There are numerous risk
factors, such as age, family history, diet, smoking and alcohol
consumption, obesity, and inflammatory bowel diseases. There
has been a downward trend in the mortality rates associated with
CRC directly linked to the implementation of screening programs,
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as the introduction of early detection methods has been
decisive (186).

MiRNAs play an essential role in CRC by controlling the expression
of genes. These genes are responsible for the growth, metastasis, and
response to treatment of the tumor. When miRNAs are not functioning
properly, they can become oncogenic or mutated (187). Undeveloped
miRNAs have attracted consideration as potential indicators for the first
detection of CRC. They are additionally appealing targets for therapeutic
intervention and TSR catalysts. There has been an observation that miR-
15a and miR-16 are significantly under-expressed in CRC tissues in
contrast to the normal mucosa (188). According to the research study of
Xiao et al., the low expression of these miRNAs is dependent on the
advanced disease degree, poor histological evaluation, and the presence
of nodes. The cumulative low level of these two miRNAs can securely
guarantee a deficient general and disease-free existence of CRC patients.
On this note, the delivery of these miRNAs, which are not well
controlled, to the agitated tumors through exosomes may be difficult.
The miR-15a and miR-16 are often used as markers for treatment and
recovery (189).

The p53 protein is a key player in the mechanism of colon cancer as
a tumor suppressor, orchestrating the arrest of the cell cycle, DNA
repair, or apoptosis, when necessary, in response to cellular stress or
damage to DNA. However, the TP53 gene, which encodes the p53
protein, is mutated in numerous cases of colon cancer, thus losing its
function of suppressing tumors (190). In their studies, Cooks et al. found
that colon cancer cells with gain-of-function mutp5-3 secrete exosomes
containing a high concentration of miR-1246. These exosomes
reprogram the TAMs into an anti-inflammatory and cancer-
promoting state in CRC through the action of miR-1246. Thus, miR-
1246 sustains the immunosuppression, as well as the activity of TGF-,
thus promoting the inflammatory state, as well as the progression of
cancer, and poor survival of patients with CRC (191). One of the
proteins is ZC3H12B, which is a tumor suppressor in colon cancer,
regulating inflammation and cell proliferation (192). The
downregulation or loss of ZC3H12B in colon cancer cells results in a
more aggressive tumor, increased growth, invasion, and worse
prognosis. Such a suppression degrades pro-inflammatory mRNAs,
reducing the inflammatory environment that allows cancer to progress
(193). Another protein that was identified by Ma et al. is M2
macrophage-derived exosomal miR-155-5p. It fosters immune escape
in CRC, interacting with ZC3H12B, degrading its expression, and
raising IL-6 levels. As a result, CRC proliferation and anti-apoptotic
were supported, and immune escape was achieved. It is possible to
regard that such a miR-155-5p in exosomes might be one of the CRC
progressors and an anti-cancer target (96). MDE-mediated miR-155-5p
and miR-1246 drive immune escape and pro-inflammatory signaling in
CRC by regulating ZC3H12B and TGF-B cascade (194). Their
consistent detection in patient exosomes underscores their value as
liquid biopsy biomarkers and targets to re-sensitize tumors to therapy.

5.7 Other cancers

MDEs have shown potential to be a great inducer in numerous
cancers other than lung, pancreatic, colorectal, ovarian, and breast
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cancers. These exosomes promote tumorigenesis by promoting
disease progression. Moreover, MDEs transfer oncogenic miRNAs
and proteins that have implications for the upregulation of TME
alteration-related genes (195). The upregulated genes promote
glioblastoma (GBM) due to the interaction and alteration of the
molecular pathways conducive to GBM growth and enhancement
of therapy resistance. These exosomes were shown to promote
gastric cancer (GC) by activating new metastasis-related genes
(196). It seems that MDEs promote cancer progression and
metastasis in all organs of a living cell, although they have not
been isolated from all organs to date. In EC, miRNAs seem to play a
significant role in shifting gene equilibrium to produce changes in
the rate of cancer development (197).

Moreover, the altered miRNAs may act as oncogenes or tumor
suppressors. Changes in the pathway characteristic of these types of
miRNAs, such as cell proliferation, apoptosis, and invasion, have
made the miRNAs popular in the hunt for diagnostic biomarkers
and treatments (198). Mi et al. showed that M2 macrophage-
derived exosomes are involved in the migration and invasion of
EC. The exosomes contained the long non-coding RNA AFAP1-
ASI1 that inhibited miR-26a and promoted ATF2. EC was found to
be able to migrate and invade due to the expression of ATF2 alone
or together with the miRNA. The results showed that a therapeutic
strategy could be initiated by targeting this signaling pathway,
supporting more advanced EC (62). MDEs are involved in GC via
the transfer of miRNAs that regulate tumor growth, invasion,
and metastasis.

As the miRNAs act on the gene expression of the TME, they are
one target for cancer therapeutic approaches (199). Zheng et al.
discovered that TAMs activate the migration of GC through
exosomes by polarizing into M2 macrophages. This exosome
transfer not only involves lipid transfer but also the transfer of
Apolipoprotein E (ApoE) and specific miRNAs. After the delivery
of the M2-derived exosomes into the cancer cells, their migration
ability is enhanced by the PI3K-AKT signaling pathway. The cancer
cells from Apoe-/- mice lacked the effect of the exosomes on their
migration ability, and this indicates the importance of ApoE and
miRNAs in driving the exosomal transfer by TAMs in the
progression of cancer (200). Li et al. found that miR-16-5p loaded
into exosomes derived from M1 macrophages suppresses the
development of GC via the activation of T-cell-dependent
immunity by targeting programmed death-ligand 1 expression in
GC cells. The delivery of miR-16-5p from M1 macrophages to GC
cells induced an immune response against the tumor in vitro and in
vivo, specifically. Hence, the authors concluded the proposal that
M1 macrophages could serve as a cellular treatment agent for GC by
facilitating miR-16-5p delivery in exosomes (201). Gao et al.
discovered that macrophage-derived exosomal miR-223 inhibited
tumor-suppressive ubiquitin ligase substrate specificity of F-box
and WD-40 repeat domain-containing 7 to promote doxorubicin
resistance in GC. The transfer of miR-223 from macrophages to GC
cells was found to occur using exosomes, and knockdown of miR-
223 in macrophages appeared to reduce the resistance. As for
clinical settings, the presence of high levels of miR-223 in both
GC tissues and plasma exosomes has been linked to doxorubicin
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resistance. Therefore, due to this link, targeting exosome-mediated
miR-223 transfer is likely to become a helpful therapy for GC
patients (202).

In GBM, miRNAs serve vital functions that facilitate the
regulation of targeted genes, such as gene growth, invasion, and
resistance to therapy. MiRNAs could be oversensitive or work as
inhibitors of these processes, leading to their function as oncogenes
or tumor suppressors that can further control major pathways and
be involved in GBM (203). The role of miRNAs as biomarkers for
early diagnosis, prognosis, and therapeutic targets is promising for
those affected by GBM (204). Moreover, it was emphasized by Qian
et al. that hypoxic glioma-derived exosomes significantly promote
the M2 polarization of macrophages, resulting in enhanced glioma
growth, movements, and aggressive invasion. The microRNA
sequencing identified miR-1246 as the leading miRNA in H-
GDEs, positively correlated with the activity of the STAT3
signaling pathway operated by the targeting recognition of
TERF2IP. It was concluded that miR-1246 levels in the
cerebrospinal fluid of GB patients are novel targeted
chemotherapy antitumor factors (205). In other malignancies, in
GC, GBM, and EC, the MDEs miRNAs, e.g., miR-223, miR-16-5p,
and miR-1246, coordinate metastasis, chemoresistance, and
immune modulation. The fact that they are retained regulators in
a wide variety of tumor types points to their potential in becoming
pan-cancer exosomal biomarkers and pan-cancer targets of
therapeutic interest (206). The dynamic interplay between
macrophages and the tumor microenvironment via macrophage-
derived exosomes was depicted (Figure 4).
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6 Limitations, safety concerns, and
translational barriers of engineered
MDEs

Although MDEs containing therapeutic miRNAs hold enormous
potential, a series of biological and translational limitations need to be
overcome before using these in clinical practice.

First, the problem of off-target effects must stay significant: the
non-target tissues have the potential to absorb exosomal miRNAs,
causing unwanted gene silencing and possibly a change in physiological
or immune functions (207). On the same note, MDEs have inherent
immunomodulatory functions, potentially leading to undesirable
immunosuppression or a balance in cytokines, thus facilitating tumor
immune evasion over regression (208).

In terms of bioengineering, heterogeneity of exosome isolation
and miRNA loading capacity does not help with the reproducibility
and dose standardization in production batches. Moreover, the
large-scale production of exosomes, the absence of potent
purification procedures, and the inconsistency of switching
between the polarization states of the macrophages considerably
affect therapy consistency (209). A further significant roadblock in
the translation is related to biodistribution and clearance: when
injected intravenously, MDEs are quickly taken away by the liver
and the spleen, minimizing their accumulation and therapeutic
efficacy to tumor properties (210, 211).

Besides, the regulatory environment of exosome-based
therapeutics remains to be developed, and there is a lack of agreed
quality control standards, long-term safety evaluation, and
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[llustration of dynamic interplay between macrophages and the tumor microenvironment via macrophage-derived exosomes were depicted. It also
highlights how selected miRNAs are transported within exosomes to specific cancer targets, enabling precision delivery of therapeutic molecules.
Overall, it underscores the translational significance of exosome-based strategies for targeted cancer therapy.
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immunogenicity examination. Therefore, even with the promising
preclinical research, the development of engineered MDE-miRNA
systems into the clinic would demand stringent pharmacokinetic,
toxicological, and immunological studies in a variety of animal
models and controlled early-phase human trials. The standardized
manufacturing protocols, specific surface engineering, and the selection
of the miRNA will play a key role in the implementation of
reproducible, safe, and effective MDE-based cancer therapies. Also,
we have summarized the overview of macrophage-derived exosome
engineering and modification for cancer therapeutics and diagnostics
in Table 2.

7 Conclusion and future prospects

Collectively, these findings support clear near-term
opportunities for translational studies while highlighting specific
avenues for optimization and clinical validation. MDEs have a vital
function in cancer biology by serving as intermediaries for
communication between macrophages and tumor cells. These
exosomes play a crucial role in several processes that are vital for

10.3389/fimmu.2025.1683799

the advancement of cancer, such as stimulating the development of
tumors, aiding in the spread of cancer to other parts of the body,
causing resistance to drugs, and influencing the immune response.
MDEs can greatly modify the behavior of cancer cells and the TME
by transporting specific cargo, especially miRNAs. The results
presented in this context demonstrate that MDEs include
miRNAs that may either facilitate or impede cancer development,
depending on their unique composition. For instance, the
introduction of cancer-causing miRNAs via MDEs may amplify
the development, invasion, and resistance to the treatment of
tumors. In contrast, miRNAs that decrease tumor growth can
hinder these processes. The ability to manipulate MDEs for the
specific administration of therapeutic miRNAs presents new
opportunities for precision medicine in the field of cancer,
providing enhanced and individualized therapy alternatives.
Advances in the MDE-miRNA regimens rely on standardized
work on the isolation and characterization of exosomes. Spike-in
controls, cross-platform reproducibility, appropriate normalization,
and common QC standards for miRNA profiling should be
implemented. To be delivered safely, engineered MDEs need
constructive evaluation of biodistribution, immunogenicity,

TABLE 2 Overview of macrophage-derived exosome engineering and modification for cancer applications.

Resources M1/ Surface Loading @ Loading Application Study model Reference
engineering molecular method

Lung Cancer M1/M2 Exosome miR-30d-5p, Exosome Treatment of NSCLC, Sepsis- in vitro (A549 NSCLC (111)
engineering let-7a-5p loading related ALI, Autophagy cells)

induction, Apoptosis regulation

Lung Cancer M1 Exosome miR-21, miR- Exosome Diagnostic biomarker for (119)
modification 155 loading recurrent lung cancer

Lung Cancer M1 Exosome miR-30d-5p, Exosome M1 macrophage activation, (116)
engineering SOCSI1/SIRT1 | loading Pyroptosis regulation

Breast Cancer M2 Exosome miR-223 Exosome Promoting breast cancer cell in vitro (macrophage-BC (138)
engineering loading invasion and metastasis co-culture)

Breast Cancer M2 Exosome miR-146a, Exosome Tumor progression, Immune (142)
modification miR-222 loading escape

Ovarian M2 Exosome miR-221-3p Exosome Progression of EOC, Diagnostic in vitro; clinical (serum (57)

Cancer engineering loading serum biomarker exosomes)

Ovarian M2 Exosome miR-29a-3p, Exosome Suppression of T cells, EOC in vitro; clinical (patient (58)

Cancer modification miR-21-5p loading progression plasma exosomes)

Hepatocellular | M2 Exosome miR-125a/b Exosome Regulation of cancer stem cells, in vitro (HCC cell lines) (169)

Carcinoma engineering loading Inhibition of proliferation

(HCC)

Hepatocellular | M2 Exosome miR-142, Exosome Inhibition of proliferation, (171)

Carcinoma modification miR-223 loading Immune defense

Pancreatic M2 Exosome miR-365 Exosome Chemotherapy resistance, Tumor  in vitro only (no in vivo (94)

Cancer modification loading progression xenograft)

Pancreatic M2 Exosome miR-501-3p Exosome Tumor progression, Activation of = in vitro only (no in vivo (182)

Cancer modification loading TGEF-B signaling pathway xenograft)

Colorectal M2 Exosome miR-1246 Exosome Immune escape, Inflammation, (191)

Cancer engineering loading Tumor progression

(Continued)

Frontiers in Immunology

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1683799
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ramalingam et al.

TABLE 2 Continued

10.3389/fimmu.2025.1683799

Resources Surface Loading Loading Application Study model Reference
engineering molecular method

Colorectal M2 Exosome miR-155-5p Exosome Immune escape, Tumor in vitro (CRC cell lines) (96)

Cancer engineering loading progression

Glioblastoma M2 Exosome miR-1246 Exosome Tumor growth, Invasion, (205)
modification loading Therapy resistance

Gastric Cancer = M2 Exosome miR-223 Exosome Drug resistance, Tumor in vitro; clinical (plasma/ (202)
engineering loading progression tissue association with

doxorubicin resistance)

Gastric Cancer | M2 Exosome miR-223 Exosome Tumor progression, Metastasis in vitro; in vivo (Apoe—/— (200)

modification loading mice)
complement activation, thrombogenicity, and off-target effects, Acknowled gme nts

preferably on two vertebrates before clinical translation.
Embracing these standards will make it possible to achieve a
realistic, reproducible, and safe route to clinical testing of MDE-
miRNA-based therapies.

Nevertheless, several critical constraints still need to be addressed
to facilitate clinical translation. These include improving the precision
of miRNA loading into MDEs and enhancing their tumor-specific
delivery while minimizing off-target effects. Future studies should focus
on optimizing ESCRT-dependent and -independent sorting pathways
to enable selective and reproducible miRNA encapsulation. Parallel
efforts should evaluate engineered MDEs functionalized with tumor-
homing ligands or stimuli-responsive coatings in preclinical and early-
phase (Phase I) clinical trials to assess biodistribution, immunogenicity,
and therapeutic efficacy. Moreover, integrating multi-omics analyses
with bioengineering and nanotechnology platforms could allow real-
time monitoring of exosomal cargo loading and release kinetics,
offering a rational framework for precision MDE-based therapeutics.
Addressing these challenges through interdisciplinary strategies will
accelerate the safe and effective translation of MDE-miRNA delivery
systems into personalized cancer care.
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