
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yong Ming Yao,
First Affiliated Hospital of Chinese PLA General
Hospital, China

REVIEWED BY

Yoon-Chul Kye,
Harvard Medical School, United States
Guiying Hou,
the 2nd Affiliated Hospital of Harbin Medical
University, China

*CORRESPONDENCE

Kun Yu

yukun770935@163.com

Song Qin

qinsong@zmu.edu.cn

†These authors have contributed
equally to this work

RECEIVED 09 August 2025
ACCEPTED 27 October 2025

PUBLISHED 17 November 2025

CITATION

Zheng J, Qin K, Wang X, Feng B,
Zhang Y, Wang Y, Qin H, Dai Q,
Liu X, Yu K and Qin S (2025) Comprehensive
analysis of metabolism-related genes in
sepsis reveals metabolic–immune
heterogeneity and highlights GYG1 as a
potential therapeutic target.
Front. Immunol. 16:1682846.
doi: 10.3389/fimmu.2025.1682846

COPYRIGHT

© 2025 Zheng, Qin, Wang, Feng, Zhang, Wang,
Qin, Dai, Liu, Yu and Qin. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 17 November 2025

DOI 10.3389/fimmu.2025.1682846
Comprehensive analysis of
metabolism-related genes in
sepsis reveals metabolic–
immune heterogeneity
and highlights GYG1 as a
potential therapeutic target
Jie Zheng1†, Kangjie Qin1†, Xiaoqin Wang2, Banghai Feng3,
Yuting Zhang1, Yiyu Wang1, Han Qin4, Qiuyu Dai1, Xinxin Liu1,
Kun Yu1* and Song Qin1*

1Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi,
Guizhou, China, 2Department of Pediatrics, The Second Affiliated Hospital of Zunyi Medical University,
Zunyi, Guizhou, China, 3Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese
Medicine, Zunyi, Guizhou, China, 4Department of Respiratory and Critical Care Medicine, Kweichow
Moutai Hospital, Renhuai, Guizhou, China
Background: Sepsis is a life-threatening syndrome characterized by

dysregulated host immune responses, yet the metabolic drivers of immune

dysfunction remain poorly understood.

Methods: Here we systematically profiled metabolism-related genes (MRGs) in

sepsis using bulk transcriptomic data and stratified patients into two subgroups

with distinct immune infiltration profiles by MRGs, as assessed by CIBERSORT

and single-cell RNA-seq integration. Machine learning identified five hub

metabolic genes for constructing a metabolic risk score, whose prognostic

relevance was robustly validated in an external cohort. Single cell analyses,

cell–cell communication, and cell-type-specific differential expression analyses

were performed to dissect the immunological context. Finally, in vivo validation

was conducted using an LPS-induced sepsis mouse model.

Results: Patients in the high metabolic risk group exhibited a neutrophil-

dominant and lymphocyte-suppressed immune landscape, consistent across

bulk and single-cell analyses. Among the five hub genes (ALPL, CYP1B1, GYG1,

OLAH, VNN1), GYG1 demonstrated the strongest predictive performance and

was highly expressed in monocytes, neutrophils, and proliferating myeloid cells.

High-risk patients displayed intensified monocyte–dendritic cell interactions and

transcriptional programs enriched in neutrophil degranulation pathways. In vivo,

Gyg1 was markedly upregulated in septic mice, and LNP-mediated siRNA

knockdown of Gyg1 significantly improved survival in the LPS model.

Mechanistically, Gyg1 knockdown significantly reduced glycogen content in

myeloid cells, attenuated IL-6 and TNF-a production, alleviated LPS-induced

neutrophil, and modestly decreased CD40 expression in monocytes and

dendritic cells. These results collectively suggest that Gyg1 regulates metabolic

fueling of inflammatory activation and intercellular communication during sepsis.

Conclusions: This integrative multi-omics study established a robust immune–

metabolic risk score system to predict sepsis patient outcomes and identified
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GYG1 as ametabolic driver of innate immune hyperactivation. Targeting GYG1 via

LNP–siRNA delivery reduces glycogen availability and inflammatory output in

myeloid cells, mitigating immune overactivation and improving disease

outcomes in vivo, thereby highlighting its potential as a novel therapeutic

target for sepsis.
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Introduction

Sepsis is a life-threatening syndrome characterized by

dysregulated host responses to infection, leading to life-

threatening organ dysfunction and high mortality worldwide (1–

3). Despite advances in supportive care, effective targeted therapies

remain elusive, largely due to the substantial biological

heterogeneity of the disease. This heterogeneity is driven by

complex interactions between immune and metabolic pathways,

which together determine the trajectory from infection to systemic

inflammation, immune suppression, and multi-organ failure (4).

Metabolic reprogramming is now recognized as a hallmark of

immune cell activation and function during sepsis (5–7). Innate

immune cells, such as neutrophils and monocytes, rapidly shift their

metabolic profiles to meet the energy demands of pathogen

clearance, whereas adaptive immune cells undergo distinct

metabolic adaptations that influence survival and effector function

(8, 9). Disruption of these tightly regulated metabolic–immune

interactions can exacerbate inflammation or promote immune

paralysis, both of which contribute to poor clinical outcomes.

However, the precise metabolic drivers of immune dysregulation

in sepsis remain incompletely understood.

High-throughput transcriptomic profiling has enabled

comprehensive interrogation of gene expression programs

underlying sepsis pathophysiology (10–12). While previous

studies have examined immune-related genes or signaling

pathways, few have systematically explored metabolism-related

genes (MRGs) in the context of sepsis, particularly in relation

to immune cell composition, intercellular communication, and

patient prognosis (13–15). Furthermore, integration of bulk

transcriptomics with single-cell RNA sequencing (scRNA-seq)

offers an unprecedented opportunity to link transcriptional

alterations to specific immune cell populations and to identify

cell-type-specific therapeutic targets.

In this study, we performed an integrative multi-omics analysis

of MRGs in sepsis, combining bulk RNA-seq, external cohort

validation, and single-cell transcriptomic datasets. We established

a robust immune–metabolic risk score system that stratifies patients

into distinct metabolic–immune subtypes with divergent immune

infiltration patterns and predicted outcomes. Through machine
02
learning–based feature selection, we identified five hub genes

driving this stratification and validated their prognostic

performance in an independent dataset. Among them, GYG1

emerged as a key gene associated with innate immune

hyperactivation, predominantly expressed in neutrophils and

monocytes. Functional validation in an LPS-induced sepsis mouse

model demonstrated that lipid nanoparticle (LNP)–mediated

siRNA silencing of Gyg1 significantly ameliorated disease severity.

Our findings provide new insights into the metabolic–immune

heterogeneity of sepsis and highlight GYG1 as a promising

therapeutic target.
Materials and methods

Bulk RNA-seq data acquisition and
processing

Gene expression data of sepsis patients were retrieved from the

GEO database (GSE57065) (16) and normalized using the Robust

Multi-array Average (RMA) algorithm in R. Differentially expressed

genes (DEGs) at 24 h and 48 h post-disease onset were identified

relative to baseline (0 h) using the “limma” package (17), with |log2

fold change| > 1 and adjusted p < 0.05 as cutoffs. A list of

metabolism-related genes (MRGs) was compiled from MSigDB

metabolic gene sets and relevant literature (18), and the

intersection between DEGs and MRGs was calculated. Heatmaps

of intersected MRGs were generated using the “pheatmap” package

with hierarchical clustering (19).
Consensus clustering and immune
infiltration analysis

Patients were classified into metabolic subgroups based on the

expression of intersected MRGs using consensus clustering

(ConsensusClusterPlus) (20). Immune cell composition was

estimated via the CIBERSORT algorithm (21), and differences

between subgroups were assessed by Wilcoxon rank-sum test.

Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO)
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enrichment were performed to explore functional differences

between clusters (22, 23). Volcano plots and functional

enrichment bubble charts were created in R.
Machine learning and construction of the
metabolic risk score

Least Absolute Shrinkage and Selection Operator (LASSO)

regression was applied to DEGs between metabolic clusters to

identify hub genes using the “glmnet” package (24). The

metabolic risk score was calculated as a weighted sum of hub

gene expression, with coefficients derived from LASSO regression.

The predictive performance of each gene was evaluated by receiver

operating characteristic (ROC) curve analysis in the external dataset

GSE95233 (25).
Single-cell RNA-seq data processing and
annotation

Single-cell transcriptomic data of peripheral blood

mononuclear cells from sepsis patients and healthy controls were

obtained from published datasets GSE167363 (26). Data were

processed using Seurat in R (27), including quality filtering,

normalization, scaling, and principal component analysis. Cells

were clustered via graph-based methods and visualized using

Uniform Manifold Approximation and Projection (UMAP) (28).

Cell types were annotated with canonical marker genes, and

platelet/erythroid lineages were excluded from downstream

analyses. The distribution of immune subsets was compared

between high- and low-risk groups. Cell clusters were annotated

based on the expression of canonical marker genes. Clusters

exhibiting dominant expression of platelet markers (PPBP, PF4)

or erythroid markers (HBB) were excluded from subsequent

analysis to focus on nucleated immune cell populations. Hub

gene expression patterns across immune cell subsets were

assessed using violin plots.
Cell–cell communication analysis

Cell–cell interaction networks were inferred using the CellChat

package (29). Ligand–receptor interaction frequencies and

strengths were compared between high- and low-risk groups.

Differential communication patterns were visualized via heatmaps

and network diagrams, with a focus on monocyte–dendritic

cell interactions.
In vivo validation and LNP–siRNA delivery

Eight-week-old female C57BL/6 mice were used for an LPS-

induced sepsis model. Mice were randomly assigned to control,

LNP-control siRNA, and LNP–siGyg1 groups (n = 10 per group).
Frontiers in Immunology 03
Lipid nanoparticles (LNPs) containing siRNA targeting Gyg1 were

formulated using DLin-MC3-DMA as the cationic lipid component

(30). LNP–siGyg1 was administered intravenously 24 hours prior to

LPS injection (10 mg/kg, intraperitoneal) and repeated every 24 h.

SiRNA targeting Gyg1 was acquired from Thermo Fisher. qPCR

was performed on peripheral blood samples to measure hub gene

expression. All qPCR analyses in this study were normalized to b-
actin, which served as the internal reference gene. The relative

mRNA expression levels were calculated using the 2^–DDCt
method. Total leukocytes (RBC-lysed peripheral blood cells) were

collected from mice treated with either control LNPs or LNP–

siGyg1. Flow cytometric sorting was subsequently performed to

purify monocytes (CD11b+Ly6G−) and neutrophils (Ly6G+) from

the same samples. Survival was monitored for every 40 hours post-

LPS injection, and differences were analyzed by Kaplan–Meier

curves. All mice were obtained from The Jackson Laboratory and

housed under specific pathogen-free conditions at the Zunyi

Medical University animal facility. All animal procedures were

approved by the Zunyi Medical University ethics committee with

the approved number (2024) 1-068.
Flow cytometry, glycogen quantification,
serum cytokine ELISA and cell migration
assay

Peripheral blood cells were collected into heparinized tubes and

subjected to red blood cell lysis (ACK buffer, Thermo Fisher). Total

leukocytes were stained with fluorescent antibodies against CD45,

CD11b, Ly6G, CD11c, MHC-II, CD4, CD8, NK1.1, and B220

(BioLegend). The markers are as follows: Neutrophils (CD11b+

Ly6G+), Monocytes (CD11b+ Ly6G−), Dendritic cells (CD11c+), T

cells (CD4+ or CD8+), B/NK cells (B220+ or NK1.1+). Flow

cytometry and sorting were performed on BD FACSAria III. Data

were analyzed with FlowJo v10.

As for glycogen quantification, Sorted neutrophils and

monocytes were lysed, and glycogen content was determined

using a Glycogen Assay Kit (Sigma-Aldrich, MAK016) following

the manufacturer’s instructions. Absorbance was measured at 570

nm, and results were normalized to cell number and expressed as

µg/µl glycogen. Serum levels of IL-6, TNF-a, and IL-1b were

quantified 6h after LPS treatment using mouse ELISA kits (R&D

Systems) according to the manufacturer’s protocol. Cytokine

concentrations were determined by standard curves and

expressed in pg/mL.

To assess the migratory capacity of immune cells after Gyg1

knockdown, neutrophils and monocytes were isolated from

peripheral blood of LNP–siGyg1– or LNP–ctrl–treated mice using

FACS sorting. Migration assays were performed using 24-well

Transwell chambers with 5-µm pore polycarbonate membranes

(Corning, 3421). Cells (1 million per insert) were suspended in

serum-free RPMI-1640 medium and placed in the upper chamber,

while the lower chamber contained medium supplemented with

CCL2 (100 ng/mL) for monocytes or CXCL1 (100 ng/mL) for

neutrophils (PeproTech). After incubation for 30 min or 3 hours at
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37 °C, cells that migrated to the lower chamber were collected and

counted using a hemocytometer or flow cytometry. Migration

efficiency was expressed as the percentage of input cells migrated.

All experiments were performed in triplicate.
Statistical analysis

Statistical analyses were performed using R (v4.1.2) and Python

(v3.8). Data are expressed as mean ± standard deviation (SD). Two-

group comparisons were conducted with Wilcoxon rank-sum tests,

while multi-group comparisons used one-way ANOVA followed by

Tukey’s post hoc test. Survival differences were assessed by log-rank

test. A p-value < 0.05 was considered statistically significant.
Results

Identification and characterization of
metabolism-related genes in sepsis

To systematically explore the role of metabolism-related genes

(MRGs) in sepsis, we first analyzed transcriptional changes at three

time points—0 h, 24 h, and 48 h—using the whole blood

transcriptomic dataset GSE57065. Differential expression analysis

was conducted by comparing patient samples to healthy samples

(Figure 1A–C). A total of 70 differentially expressed genes (DEGs)

were identified across all time points, indicating a dynamic

transcriptomic response during the early progression of sepsis. To

specifically evaluate the contribution of metabolic pathways, we

intersected these DEGs with a curated list of metabolism-related

genes, yielding a panel of metabolic DEGs with potential relevance

to sepsis pathophysiology (Figure 1D). Notably, many of these

genes are involved in key processes such as mitochondrial function,

glycolysis, and amino acid metabolism. We next visualized the

expression of these metabolic DEGs across all patient samples

(Figure 1E). Heatmap clustering analysis revealed that several

genes exhibited consistent temporal trends, suggesting potential

regulatory programs associated with metabolic reprogramming in

sepsis (Figure 1F). These genes may serve as candidate biomarkers

or therapeutic targets, warranting further validation.
Metabolism-related gene expression
stratifies sepsis patients into distinct
immunological subgroups

To determine whether metabolism-related genes (MRGs) could

distinguish biologically distinct subgroups of sepsis patients, we

performed unsupervised hierarchical clustering based on the

expression of previously identified MRGs. This approach

stratified patients into two major clusters, designated Cluster 1

and Cluster 2 (Figure 2A). The clustering revealed substantial

transcriptional heterogeneity, suggesting differential metabolic

states among patients. We then identified differentially expressed
Frontiers in Immunology 04
genes (DEGs) between the two clusters to investigate their

molecular differences. A large number of DEGs were observed,

with both significantly upregulated and downregulated genes

distinguishing the two groups (Figure 2B). Subsequent Gene

Ontology (GO) enrichment analysis of the DEGs revealed that

Cluster 1 was characterized by enrichment in a neutrophil-

dominant immune response state (Figure 2C). Furthermore, Gene

Set Enrichment Analysis (GSEA) reinforced these findings: Cluster

1 showed significant enrichment in neutrophil responses and

defense against pathogens (Figure 2D), whereas Cluster 2 was

more enriched in T cell responses (Figure 2E). Together, these

findings suggest that metabolism-based clustering captures

biologically meaningful immunological differences and may help

explain the variable clinical outcomes observed in sepsis.
Identification of hub genes and
construction of a metabolic risk score
model in sepsis

To further refine clinically relevant metabolic signatures in sepsis,

we applied a machine learning approach to the 11 differentially

expressed genes (DEGs) identified between Cluster 1 and Cluster 2.

Least absolute shrinkage and selection operator (LASSO) regression was

performed to reduce feature redundancy and select the most

informative genes (Figures 3A, B). Five hub genes—ALPL, CYP1B1,

GYG1, OLAH, and VNN1 were identified as optimal predictors based

on the minimum binomial deviance criteria. We then constructed a

metabolic risk score model based on the expression levels of these five

genes. The risk score formula was defined as: Risk score = 0.231 × ALPL

+ 0.218 × CYP1B1 + 1.930 × GYG1 + 0.0829 × OLAH + 0.277 ×

VNN1. This score effectively stratified patients from Cluster 1 and

Cluster 2, with significantly higher scores observed in patients from the

neutrophil-dominant Cluster 1 (Figure 3C), indicating that the hub gene

signature captures cluster-specific immunometabolic phenotypes. To

further examine the expression patterns of the hub genes, we visualized

their expression in all samples (Figure 3D). Notably, all five hub genes

were significantly upregulated in Cluster 1 compared to Cluster 2

(Figures 3E–I), suggesting that elevated expression of these genes is

associated with the hyperinflammatory metabolic state seen in

neutrophil-dominant sepsis subtypes.
Hub genes demonstrate robust and
accurate diagnostic performance in an
independent validation cohort

To validate the diagnostic potential of the five identified hub genes,

we applied the model to an independent external dataset (GSE95233,

Supplementary Table 1), which includes peripheral blood samples from

septic patients and healthy controls. All five hub genes—ALPL,

CYP1B1, GYG1, OLAH, and VNN1—were significantly upregulated

in septic patients compared to healthy individuals (Figure 4A),

consistent with findings from the discovery cohort. We further

evaluated the predictive performance of each gene using receiver
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https://doi.org/10.3389/fimmu.2025.1682846
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2025.1682846
operating characteristic (ROC) curve analysis. Strikingly, all five genes

demonstrated excellent discriminative power, with area under the curve

(AUC) values of 0.981 for ALPL, 0.951 for CYP1B1, 1.000 for GYG1,

0.978 for OLAH, and 0.994 for VNN1, respectively (Figure 4B). The

consistently high AUC values suggest that this metabolic gene signature

may serve as a robust biomarker panel for sepsis detection. It is worth

noting that the perfect classification performance of GYG1 (AUC = 1.0)

in the validation cohort may be partly attributed to the limited sample
Frontiers in Immunology 05
size and needs to be interpreted with caution. Nonetheless, these

findings support the strong diagnostic relevance of the identified hub

genes. Our model also achieved an AUC of 0.673 (Day 1) and 0.722

(Day 3) in predicting the survival of the sepsis patients in the external

validation cohort (new Figure 4C). This performance is comparable to

the reported efficacy of gold-standard clinical scores like SOFA and

APACHE II from large-scale studies, which typically show AUCs in the

range of 0.65-0.75 for survival prediction (31, 32).
FIGURE 1

Identification and characterization of metabolism-related genes in sepsis. (A–C) Volcano plots showing differentially expressed genes (DEGs)
between sepsis samples at 0h, 24 h and 48 h. Significantly upregulated and downregulated genes are highlighted. (D) Venn diagram showing the
intersection between DEGs and metabolism-related genes (MRGs) curated from public databases and literature. (E) Boxplot showing the average
expression of the 11 DEGs between patients and healthy controls. (F) Heatmaps showing the expression of intersected MRGs across sepsis samples
at 0 h, 24 h, and 48 h. Each column represents a patient sample, and each row represents a gene. Hierarchical clustering was applied to both genes
and samples. The symbol “****” represents a p-value < 0.0001, indicating a highly statistically significant difference.
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High metabolic risk score in sepsis is
associated with neutrophil and monocyte-
dominant and lymphocyte-suppressed
immune infiltration

To explore the immunological differences between metabolic

subgroups of sepsis, we investigated the immune cell infiltration

landscape of high- and low-risk patients defined by our five-gene

risk score model. Using the CIBERSORT deconvolution algorithm,

we estimated the relative proportions of 22 immune cell types across
Frontiers in Immunology 06
all patients. Significant differences in immune infiltration were

observed between the two groups (Figure 5A). High-risk patients

exhibited markedly elevated levels of neutrophils and monocytes,

alongside reduced proportions of natural killer (NK) cells and

multiple T cell subpopulations, including CD4+ and CD8+ T

cells. These findings suggest that high metabolic risk in sepsis is

associated with a neutrophil-dominant, lymphocyte-suppressed

immune landscape. To further elucidate the immunological

relevance of each hub gene, we performed Pearson correlation

analysis between gene expression levels and estimated immune
FIGURE 2

Metabolism-related gene expression stratifies sepsis patients into distinct immunological subgroups. (A) Hierarchical clustering of sepsis patients based
on metabolism-related gene (MRG) expression, revealing two clusters (Cluster 1 and Cluster 2). (B) Volcano plot showing differentially expressed
genes (DEGs) between Cluster 1 and Cluster 2. Red and blue dots represent significantly upregulated and downregulated genes, respectively. (C) GO
biological process enrichment analysis of DEGs, showing neutrophil-associated immune responses enriched in Cluster 1. (D, E) Gene Set Enrichment
Analysis (GSEA) of hallmark or GO terms between the two clusters. Cluster 1 shows enrichment in neutrophil activation and antibacterial responses
(D), while Cluster 2 is associated with T cell-mediated immune pathways (E).
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cell fractions (Figure 5B). All five risk genes—ALPL, CYP1B1,

GYG1, OLAH, and VNN1—showed strong positive correlations

with neutrophils, monocytes, and macrophages, and consistent

negative correlations with T cells and NK cells. These results
Frontiers in Immunology 07
suggest that the severity of sepsis may be linked to an imbalance

between innate and adaptive immune responses, with high-risk

patients exhibiting a shift toward an innate immunity-

dominated profile.
FIGURE 3

Identification of hub genes and construction of a metabolic risk score model. (A, B) LASSO regression and cross-validation plots based on 11 DEGs
between Cluster 1 and Cluster 2. Five hub genes were selected based on the optimal lambda value. (C) Distribution of the calculated risk score
across patients from Cluster 1 and Cluster 2, showing higher scores in neutrophil-dominant Cluster 1. (D) Heatmap showing expression patterns of
the five hub genes (ALPL, CYP1B1, GYG1, OLAH, VNN1) across all sepsis samples. (E–I) Box plots showing significantly higher expression levels of
ALPL (E), CYP1B1 (F), GYG1 (G), OLAH (H), and VNN1 (I) in Cluster 1 compared to Cluster 2. P-values are indicated above each comparison.
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Single-cell analysis of immune cell
composition in septic patients

To further validate the association between metabolic risk and

immune cell remodeling in sepsis, we performed integrative single-

cell transcriptomic analysis using published peripheral blood

mononuclear cell (PBMC) datasets. After standard quality

control, normalization, and dimensionality reduction, immune

cells were clustered and visualized using UMAP (Figures 6A, B).

Cell identities were annotated based on canonical marker genes, and

platelet/erythroid lineage cells were excluded to focus on

immunologically relevant populations (Figure 6C). Comparative

analysis of cell composition across clinical groups revealed that

non-surviving septic patients exhibited a markedly higher

proportion of neutrophils compared to both healthy controls and

survivors (Figure 6D). This observation is consistent with our

earlier findings based on CIBERSORT deconvolution of bulk

transcriptomic data, reinforcing the association between
Frontiers in Immunology 08
neutrophil and innate immune dominance and poor clinical

outcome in sepsis. To further investigate the cellular origin of the

risk score components, we analyzed the expression patterns of the

five hub genes across different immune subsets (Figure 6E). Three of

the five genes—ALPL, CYP1B1, and GYG1—were predominantly

expressed in monocytes, neutrophils, and proliferating myeloid

cells, consistent with their potential roles in innate immune

activation. In contrast, OLAH and VNN1 showed low expression

across all major immune cell types, suggesting that these genes may

be expressed in non-immune blood components (e.g., endothelial

cells or platelets) and contribute to sepsis progression through

indirect mechanisms.

To better characterize the immune context of metabolic risk in

sepsis, we compared the single-cell distribution patterns between

high- and low-risk patients. Immune cells were first annotated

based on canonical marker expression (Figure 6F). Density

estimation maps revealed that high-risk patients showed marked

expansion of monocytes, along with a notable reduction in T cells
FIGURE 4

Hub genes demonstrate robust and accurate diagnostic performance in an independent validation cohort. (A) Box plots showing significantly higher
expression levels of the five hub genes—ALPL, CYP1B1, GYG1, OLAH, and VNN1—in septic patients compared to healthy controls. (B) ROC curve
analysis demonstrating the diagnostic performance of each gene in distinguishing sepsis from healthy controls. All five genes exhibited high
predictive accuracy, with AUC values exceeding 0.95. (C) ROC curve of the metabolic risk score model in predicting the survival of sepsis patients
based on the blood samples of day 1(left) or day 3(right).
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compared to the low-risk group (Figures 6G, H). These findings

reinforce the hypothesis that severe sepsis is associated with a shift

toward innate immunity dominance, coupled with adaptive

immune suppression. These results suggest that innate immune

hyperactivation, particularly neutrophil and monocyte expansion,

may play a critical role in driving sepsis severity and mortality.
Frontiers in Immunology 09
Single-cell communication analysis reveals
intensified monocyte–DC interactions in
high-risk sepsis patients

To investigate potential alterations in intercellular communication

associated with metabolic risk, we performed ligand–receptor
FIGURE 5

High metabolic risk score in sepsis is associated with neutrophil and monocyte-dominant and lymphocyte-suppressed immune infiltration.
(A) CIBERSORT-based estimation of immune cell infiltration in high-risk versus low-risk patients. Neutrophils were significantly increased in high-risk
patients, while NK cells, CD4+ T cells, and CD8+ T cells were significantly decreased. (B) Pearson correlation analysis between expression levels of
the five hub genes and immune cell fractions. All five genes were positively correlated with neutrophils, monocytes, and macrophages, and
negatively correlated with T cells and NK cells. The symbols represent the following levels of statistical significance: *: p < 0.05; **: p < 0.01;
***: p < 0.001; ****: p < 0.0001.
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interaction inference based on single-cell expression profiles in high-

and low-risk sepsis patients. A total of 608 inferred interactions were

detected in the high-risk group, compared to 526 in the low-risk group

(Figure 7A), indicating a globally enhanced signaling environment in

high-risk patients. Relative information flow analysis revealed that high-

risk patients exhibited greater activity across a range of signaling

pathways (Figures 7B, C), particularly those associated with
Frontiers in Immunology 10
inflammation and antigen presentation (e.g., CD40, MIF, SELPLG).

In contrast, several homeostatic or regulatory pathways (e.g., CCL,

CD46) weremore active in the low-risk group. Heatmap visualization of

outgoing signaling patterns further demonstrated that high-risk patients

had enhanced pathway activity originating from monocytes and

dendritic cells (DCs) (Figures 7D, E). Network topology analysis

revealed a dense interaction hub centered around these two cell types
FIGURE 6

Single-cell analysis of immune cell composition in septic patients. (A, B) UMAP visualization of integrated single-cell RNA-seq data from septic
patients and healthy controls. Cells were clustered and annotated based on canonical immune markers. Platelet and erythroid cells were excluded
from downstream analysis. (C) Heatmap of representative marker gene expression used for immune cell type annotation. (D) Cell composition
comparison across clinical groups shows a significantly increased neutrophil fraction in non-surviving sepsis patients relative to survivors and healthy
controls. (E) Violin plots showing expression of hub genes (ALPL, CYP1B1, GYG1, OLAH, VNN1) across immune cell subsets in high- and low-risk
patients. Three genes were enriched in innate immune cells, while two showed minimal expression in immune lineages. (F) UMAP plot showing
immune cell type annotations used in downstream comparison. (G, H) Density maps illustrating differences in immune cell distributions between
low-risk (G) and high-risk (H) patients. Monocytes were expanded in high-risk patients, while T cell density was reduced.
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in high-risk patients, with significantly elevated communication

frequency and intensity compared to low-risk individuals (Figure 7F).

Notably, focused cell–cell interaction mapping confirmed that

monocyte–DC signaling was markedly stronger in the high-risk
Frontiers in Immunology 11
group (Figures 7G–I). These findings suggest that increased

monocyte-DC crosstalk may contribute to the hyperinflammatory

immune environment and disease progression in metabolically high-

risk sepsis patients.
FIGURE 7

Single-cell communication analysis reveals intensified monocyte–DC interactions in high-risk sepsis patients. (A) Total number of predicted ligand–
receptor interactions in high- and low-risk groups. (B, C) Relative and absolute information flow across signaling pathways in both groups. (D, E)
Heatmaps showing outgoing signaling strength from each cell type in low-risk (D) and high-risk (E) patients. (F) Overall cell–cell communication
network based on differential interaction strength. (G–I) Focused visualization of directed intercellular signaling networks, highlighting intensified
monocyte–DC interactions in the high-risk group.
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GYG1 is highly expressed in innate immune
cells and associated with pro-inflammatory
transcriptional programs in high-risk
patients

Given the substantial differences in dendritic cells (DCs),

monocytes, and neutrophils between high- and low-risk patients,

we examined the expression of the five hub genes across these three

cell types. Among them, GYG1 was consistently expressed in all

three cell populations and showed significantly higher expression in

the high-risk group (Figure 8A), suggesting that it may play a key

role in orchestrating innate immune activation in metabolically

high-risk patients. We next performed differential gene expression

(DEG) analysis between high- and low-risk patients within each of

the three cell types. The volcano plots revealed a large number of

upregulated genes in high-risk DCs (Figure 8B), monocytes

(Figure 8C), and neutrophils (Figure 8D), many of which are

associated with innate immune functions. Gene Ontology

enrichment analyses of the upregulated DEGs in each cell type

showed consistent results: neutrophil degranulation and activation-

related pathways were significantly enriched in all three cell

populations (Figures 8E–G). These findings suggest that GYG1

may be involved in driving pro-inflammatory transcriptional

programs in key innate immune subsets, potentially contributing

to disease severity in high-risk sepsis patients.
LNP-mediated Gyg1 silencing improves
survival in LPS-induced sepsis mouse
model

To validate the in vivo relevance of the hub genes identified in our

computational analyses, we first measured their expression in

peripheral blood from an LPS-induced sepsis mouse model using

qPCR. Among the five hub genes (Alpl, Cyp1b1, Gyg1, Olah, Vnn1),

all except Olah and Vnn1 were significantly upregulated in septic

mice compared to controls, with Gyg1 showing the most pronounced

increase (Figures 9A–E). Given the strong predictive performance of

Gyg1 and its association with pro-inflammatory innate immune

programs, we next investigated whether targeting Gyg1 could

ameliorate sepsis outcomes. We formulated lipid nanoparticles

(LNPs) encapsulating siRNA specific to Gyg1 (LNP-SiGyg1) and

administered them intravenously 24 hours prior to LPS injection (10

mg/kg) and at 24-hour intervals thereafter (Figure 9F). To confirm

the cellular specificity and efficiency of LNP–siGyg1 delivery, we

evaluated GYG1 protein expression in distinct peripheral immune

subsets. Western blot analysis demonstrated a marked reduction of

GYG1 protein in both monocytes and neutrophils following LNP–

siGyg1 treatment, whereas total leukocytes also exhibited an overall

decrease, confirming effective knockdown of Gyg1 in circulating

myeloid cells (Figure 9G). Kaplan–Meier survival analysis revealed

that Gyg1 silencing markedly improved survival compared to both

untreated and LNP-control siRNA-treated groups (Figure 9H),

suggesting that metabolic targeting of Gyg1 may offer therapeutic

benefit in sepsis.
Frontiers in Immunology 12
GYG1 knockdown reduces glycogen
content and inflammatory activation in
myeloid cells in vivo

To further explore the mechanisms of Gyg1 knockdown’s

impact on immune metabolism and inflammation, we examined

glycogen levels and inflammatory responses in myeloid cells from

LPS-induced septic mice treated with LNP–siGyg1. Quantification

of glycogen content revealed that Gyg1 silencing significantly

reduced intracellular glycogen levels in both neutrophils and

monocytes compared with control LNPs (Figure 10A), confirming

the metabolic efficacy of our knockdown strategy. Next, we

evaluated the transcriptional and systemic inflammatory response

following Gyg1 inhibition. qPCR analysis showed that Gyg1

knockdown markedly decreased the mRNA expression of IL-6,

TNF-a, and IL-1b in peripheral monocytes and neutrophils from

LPS-challenged mice (Figure 10B). Consistently, ELISA of serum

samples demonstrated reduced protein levels of IL-6 and TNF-a,
whereas IL-1b levels were not significantly affected (Figure 10C).

To further investigate immune cellular changes, we performed

flow cytometry profiling of major leukocyte subsets. Gyg1

knockdown strongly attenuated the LPS-induced expansion of

neutrophils, while the decreased proportions of T and B/NK cells

were partially rescued (Figure 10D). Moreover, Gyg1 silencing

slightly reduced CD40 expression in both monocytes and dendritic

cells (Figure 10E), suggesting that diminished glycogen metabolism

may suppress pro-inflammatory activation and antigen-presenting

potential in myeloid populations. Together, these data demonstrate

that Gyg1 depletion alleviates hyperinflammation in sepsis

by reducing metabolic fuel availability and dampening

myeloid activation.
Discussion

In this study, we performed a comprehensive analysis of

metabolism-related genes (MRGs) in sepsis and developed an

immune–metabolic risk score capable of stratifying patients into

distinct subgroups with divergent immune landscapes and

predicted outcomes. Through machine learning–based feature

selection, we identified five hub genes—ALPL, CYP1B1, GYG1,

OLAH, and VNN1—that exhibited strong predictive performance,

both in the discovery and independent validation cohorts. Single-

cell transcriptomic analyses further demonstrated the immune cell–

specific distribution of these genes and their correlation with innate

and adaptive immune components, providing mechanistic insights

into the metabolic–immune heterogeneity observed in sepsis.

Among these genes, GYG1 emerged as a particularly notable

candidate. GYG1 encodes glycogenin 1, a core enzyme in glycogen

biosynthesis, catalyzing the attachment of glucose residues to a

protein primer to initiate glycogen polymerization (33). Beyond its

canonical metabolic role, glycogen metabolism has been

increasingly recognized as a regulator of immune cell activation,

particularly in myeloid cells (34). Our single-cell analysis revealed

high expression of GYG1 in monocytes, neutrophils, and
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proliferating myeloid cells—cell populations that dominate the

high-risk, innate immunity–driven sepsis subtype. Functional

enrichment analysis of high-risk innate immune cells consistently

identified neutrophil degranulation and activation pathways,

suggesting that GYG1 may facilitate rapid energy supply to fuel

hyperinflammatory responses. The observation that GYG1
Frontiers in Immunology 13
knockdown via LNP–siRNA delivery ameliorated disease severity

in an LPS-induced sepsis model supports its potential as a metabolic

driver of immune dysregulation. Previous studies have established

that glycogen metabolism modulates inflammatory signaling during

sepsis largely through GSK3b activity, which integrates upstream

signals to regulate transcriptional responses via NF-kB and CREB
FIGURE 8

GYG1 is highly expressed in innate immune cells and associated with pro-inflammatory transcriptional programs in high-risk patients. (A) Box
plots showing expression of five hub genes in dendritic cells (DCs), monocytes, and neutrophils from high- and low-risk sepsis patients. GYG1 is
consistently expressed and upregulated across all three cell types. (B–D) Volcano plots of differentially expressed genes in DCs (B), monocytes (C),
and neutrophils (D) between high- and low-risk patients. (E–G) GO enrichment analysis of genes upregulated in the high-risk group in DCs (E),
monocytes (F), and neutrophils (G), showing shared enrichment in neutrophil degranulation and innate immune activation pathways.
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pathways (35, 36). In contrast, GYG1 functions at a distinct metabolic

level by catalyzing the priming step of glycogen synthesis, thereby

determining the cellular glycogen reserve available for rapid glycolytic

activation. Our results indicate that Gyg1 depletion reduces

intracellular glycogen content and dampens cytokine production

without altering canonical signaling molecules such as GSK3b.
Thus, GYG1 complements GSK3b-mediated immune regulation by

controlling the metabolic substrate pool that sustains pro-

inflammatory effector functions. This distinction highlights GYG1

as a unique upstream regulator of immunometabolic homeostasis

and a potentially novel therapeutic target in sepsis.
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The other four hub genes also have plausible roles in shaping

immune responses. ALPL (alkaline phosphatase, tissue-nonspecific

isozyme) has been implicated in detoxifying lipopolysaccharide and

modulating inflammatory signaling (37). CYP1B1, a cytochrome

P450 enzyme, can influence oxidative stress and lipid mediator

metabolism, thereby affecting immune cell activation (38). OLAH

(oleoyl-ACP hydrolase) is involved in fatty acid metabolism, and

altered lipid handling has been linked to immune suppression in

late-stage sepsis (39). VNN1 (vanin-1) participates in pantothenic

acid metabolism and oxidative stress regulation, and its activity may

influence leukocyte recruitment (40). Collectively, these genes
FIGURE 9

LNP-mediated Gyg1 silencing improves survival in an LPS-induced sepsis mouse model. (A–E) qPCR analysis of hub gene expression in peripheral
blood from control and LPS-induced sepsis mice. Gyg1 exhibited the most pronounced upregulation among the five hub genes. (F) Schematic of
LNP formulation and dosing strategy for Gyg1 siRNA delivery in the LPS sepsis model. LNPs were administered intravenously 24 h before and every
24 h after LPS injection (10 mg/kg). (G, H) Kaplan–Meier survival curves showing improved survival in the LNP-SiGyg1 group compared to control
and LNP-control siRNA groups.
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FIGURE 10

GYG1 knockdown reduces glycogen metabolism and inflammatory activation in myeloid cells in vivo. (A) Quantification of glycogen content in
sorted neutrophils and monocytes from mice treated with LNP–siGyg1 or control LNPs. GYG1 knockdown significantly decreased intracellular
glycogen levels in both cell types. (B) Relative mRNA expression of IL6, TNFA, and IL1B in peripheral monocytes and neutrophils from LPS-challenged
mice (6h post LPS inject) with or without GYG1 silencing. Data were normalized to b-actin. (C) Serum concentrations of IL-6, TNF-a, and IL-1b
measured by ELISA (6h post LPS inject). GYG1 knockdown markedly reduced IL-6 and TNF-a levels, with minor effects on IL-1b. (D) Flow cytometry
profiling of major immune subsets (T cells, B/NK cells, neutrophils/monocytes, and dendritic cells) in septic mice treated with control or GYG1-
targeting LNPs. GYG1 silencing attenuated LPS-induced neutrophil expansion. (E) Flow cytometric analysis of CD40 expression in monocytes and
dendritic cells. GYG1 knockdown decreased CD40 expression, suggesting reduced pro-inflammatory activation. Data represent mean ± SD from
three independent mice per group. p < 0.05, p < 0.01, p < 0.001 by one-way ANOVA with Tukey’s post hoc test.
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represent interconnected metabolic nodes that can modulate both

innate and adaptive immune functions during sepsis.

Our findings align with and expand current understanding of

sepsis pathophysiology. Traditionally, sepsis has been

conceptualized as a biphasic process, beginning with systemic

hyperinflammation driven by innate immune activation, followed

by a phase of immune suppression dominated by lymphocyte

exhaustion. Our work highlights metabolic heterogeneity as a

determinant of these immune states, with high-risk patients

showing pronounced neutrophil dominance and T/NK cell

suppression. Notably, our single-cell data also revealed increased

platelet abundance in high-risk patients, consistent with earlier

hypotheses that coagulopathy and platelet activation contribute to

sepsis-related mortality. While this observation was not a primary

focus of our study, it reinforces the multifaceted nature of sepsis

pathobiology, in which coagulation, metabolism, and immunity are

intricately interconnected.

Therapeutically, sepsis management remains largely supportive,

relying on timely antibiotics, hemodynamic stabilization, and organ

support. Targeted immunomodulatory therapies have had limited

success, in part due to patient heterogeneity. Our immune–

metabolic risk score provides a framework for patient

stratification, which could inform more personalized therapeutic

approaches. Recent studies have also emphasized the translational

potential of biomarkers and transcriptomic risk models for patient

stratification, further supporting our findings (41–44). The proof-

of-concept intervention targeting GYG1 via LNP–siRNA delivery

represents a novel strategy to modulate immune metabolism in

sepsis. Although further preclinical optimization is required, such

approaches may complement existing therapies by selectively

dampening hyperactive innate immune responses without broadly

suppressing immunity.

This study has several limitations. First, although we integrated

bulk and single-cell transcriptomic datasets from multiple cohorts,

the patient sample size for some analyses was modest, and the

external validation was limited to available public datasets. Second,

our in vivo functional validation was performed in an LPS-induced

model, which recapitulates aspects of hyperinflammation but does

not fully capture the complexity of clinical sepsis. Additionally,

dissecting the upstream regulatory networks and detailed

downstream effectors of GYG1 in immune cells may reveal

broader therapeutic opportunities.
Conclusion

In conclusion, our integrative multi-omics approach uncovered

metabolic–immune heterogeneity in sepsis, established a robust

immune–metabolic risk score system, and identified GYG1 as a

potential metabolic driver of innate immune hyperactivation. These

findings advance our understanding of the metabolic

underpinnings of sepsis pathophysiology and open avenues for

metabolism-targeted interventions in this complex and

deadly syndrome.
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