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Background: Sepsis is a life-threatening syndrome characterized by
dysregulated host immune responses, yet the metabolic drivers of immune
dysfunction remain poorly understood.

Methods: Here we systematically profiled metabolism-related genes (MRGs) in
sepsis using bulk transcriptomic data and stratified patients into two subgroups
with distinct immune infiltration profiles by MRGs, as assessed by CIBERSORT
and single-cell RNA-seq integration. Machine learning identified five hub
metabolic genes for constructing a metabolic risk score, whose prognostic
relevance was robustly validated in an external cohort. Single cell analyses,
cell-cell communication, and cell-type-specific differential expression analyses
were performed to dissect the immunological context. Finally, in vivo validation
was conducted using an LPS-induced sepsis mouse model.

Results: Patients in the high metabolic risk group exhibited a neutrophil-
dominant and lymphocyte-suppressed immune landscape, consistent across
bulk and single-cell analyses. Among the five hub genes (ALPL, CYP1B1, GYGL,
OLAH, VNN1), GYG1 demonstrated the strongest predictive performance and
was highly expressed in monocytes, neutrophils, and proliferating myeloid cells.
High-risk patients displayed intensified monocyte—dendritic cell interactions and
transcriptional programs enriched in neutrophil degranulation pathways. In vivo,
Gygl was markedly upregulated in septic mice, and LNP-mediated siRNA
knockdown of Gygl significantly improved survival in the LPS model.
Mechanistically, Gygl knockdown significantly reduced glycogen content in
myeloid cells, attenuated IL-6 and TNF-o production, alleviated LPS-induced
neutrophil, and modestly decreased CD40 expression in monocytes and
dendritic cells. These results collectively suggest that Gygl regulates metabolic
fueling of inflammatory activation and intercellular communication during sepsis.
Conclusions: This integrative multi-omics study established a robust immune—
metabolic risk score system to predict sepsis patient outcomes and identified
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GYGL1 as a metabolic driver of innate immune hyperactivation. Targeting GYG1 via
LNP—siRNA delivery reduces glycogen availability and inflammatory output in
myeloid cells, mitigating immune overactivation and improving disease
outcomes in vivo, thereby highlighting its potential as a novel therapeutic

target for sepsis.

sepsis, metabolism, immune infiltration, risk score, lipid nanoparticles, GYG1

Introduction

Sepsis is a life-threatening syndrome characterized by
dysregulated host responses to infection, leading to life-
threatening organ dysfunction and high mortality worldwide (1-
3). Despite advances in supportive care, effective targeted therapies
remain elusive, largely due to the substantial biological
heterogeneity of the disease. This heterogeneity is driven by
complex interactions between immune and metabolic pathways,
which together determine the trajectory from infection to systemic
inflammation, immune suppression, and multi-organ failure (4).

Metabolic reprogramming is now recognized as a hallmark of
immune cell activation and function during sepsis (5-7). Innate
immune cells, such as neutrophils and monocytes, rapidly shift their
metabolic profiles to meet the energy demands of pathogen
clearance, whereas adaptive immune cells undergo distinct
metabolic adaptations that influence survival and effector function
(8, 9). Disruption of these tightly regulated metabolic-immune
interactions can exacerbate inflammation or promote immune
paralysis, both of which contribute to poor clinical outcomes.
However, the precise metabolic drivers of immune dysregulation
in sepsis remain incompletely understood.

High-throughput transcriptomic profiling has enabled
comprehensive interrogation of gene expression programs
underlying sepsis pathophysiology (10-12). While previous
studies have examined immune-related genes or signaling
pathways, few have systematically explored metabolism-related
genes (MRGs) in the context of sepsis, particularly in relation
to immune cell composition, intercellular communication, and
patient prognosis (13-15). Furthermore, integration of bulk
transcriptomics with single-cell RNA sequencing (scRNA-seq)
offers an unprecedented opportunity to link transcriptional
alterations to specific immune cell populations and to identify
cell-type-specific therapeutic targets.

In this study, we performed an integrative multi-omics analysis
of MRGs in sepsis, combining bulk RNA-seq, external cohort
validation, and single-cell transcriptomic datasets. We established
a robust immune-metabolic risk score system that stratifies patients
into distinct metabolic-immune subtypes with divergent immune
infiltration patterns and predicted outcomes. Through machine
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learning-based feature selection, we identified five hub genes
driving this stratification and validated their prognostic
performance in an independent dataset. Among them, GYGI
emerged as a key gene associated with innate immune
hyperactivation, predominantly expressed in neutrophils and
monocytes. Functional validation in an LPS-induced sepsis mouse
model demonstrated that lipid nanoparticle (LNP)-mediated
siRNA silencing of Gygl significantly ameliorated disease severity.
Our findings provide new insights into the metabolic-immune
heterogeneity of sepsis and highlight GYG1 as a promising
therapeutic target.

Materials and methods

Bulk RNA-seq data acquisition and
processing

Gene expression data of sepsis patients were retrieved from the
GEO database (GSE57065) (16) and normalized using the Robust
Multi-array Average (RMA) algorithm in R. Differentially expressed
genes (DEGs) at 24 h and 48 h post-disease onset were identified
relative to baseline (0 h) using the “limma” package (17), with |log2
fold change| > 1 and adjusted p < 0.05 as cutoffs. A list of
metabolism-related genes (MRGs) was compiled from MSigDB
metabolic gene sets and relevant literature (18), and the
intersection between DEGs and MRGs was calculated. Heatmaps
of intersected MRGs were generated using the “pheatmap” package
with hierarchical clustering (19).

Consensus clustering and immune
infiltration analysis

Patients were classified into metabolic subgroups based on the
expression of intersected MRGs using consensus clustering
(ConsensusClusterPlus) (20). Immune cell composition was
estimated via the CIBERSORT algorithm (21), and differences
between subgroups were assessed by Wilcoxon rank-sum test.
Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO)
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enrichment were performed to explore functional differences
between clusters (22, 23). Volcano plots and functional
enrichment bubble charts were created in R.

Machine learning and construction of the
metabolic risk score

Least Absolute Shrinkage and Selection Operator (LASSO)
regression was applied to DEGs between metabolic clusters to
identify hub genes using the “glmnet” package (24). The
metabolic risk score was calculated as a weighted sum of hub
gene expression, with coefficients derived from LASSO regression.
The predictive performance of each gene was evaluated by receiver
operating characteristic (ROC) curve analysis in the external dataset
GSE95233 (25).

Single-cell RNA-seq data processing and
annotation

Single-cell transcriptomic data of peripheral blood
mononuclear cells from sepsis patients and healthy controls were
obtained from published datasets GSE167363 (26). Data were
processed using Seurat in R (27), including quality filtering,
normalization, scaling, and principal component analysis. Cells
were clustered via graph-based methods and visualized using
Uniform Manifold Approximation and Projection (UMAP) (28).
Cell types were annotated with canonical marker genes, and
platelet/erythroid lineages were excluded from downstream
analyses. The distribution of immune subsets was compared
between high- and low-risk groups. Cell clusters were annotated
based on the expression of canonical marker genes. Clusters
exhibiting dominant expression of platelet markers (PPBP, PF4)
or erythroid markers (HBB) were excluded from subsequent
analysis to focus on nucleated immune cell populations. Hub
gene expression patterns across immune cell subsets were
assessed using violin plots.

Cell-cell communication analysis

Cell-cell interaction networks were inferred using the CellChat
package (29). Ligand-receptor interaction frequencies and
strengths were compared between high- and low-risk groups.
Differential communication patterns were visualized via heatmaps
and network diagrams, with a focus on monocyte-dendritic
cell interactions.

In vivo validation and LNP—-siRNA delivery
Eight-week-old female C57BL/6 mice were used for an LPS-

induced sepsis model. Mice were randomly assigned to control,
LNP-control siRNA, and LNP-siGygl groups (n = 10 per group).
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Lipid nanoparticles (LNPs) containing siRNA targeting Gygl were
formulated using DLin-MC3-DMA as the cationic lipid component
(30). LNP-siGygl was administered intravenously 24 hours prior to
LPS injection (10 mg/kg, intraperitoneal) and repeated every 24 h.
SiRNA targeting Gygl was acquired from Thermo Fisher. qPCR
was performed on peripheral blood samples to measure hub gene
expression. All gPCR analyses in this study were normalized to -
actin, which served as the internal reference gene. The relative
mRNA expression levels were calculated using the 2A-AACt
method. Total leukocytes (RBC-lysed peripheral blood cells) were
collected from mice treated with either control LNPs or LNP-
siGygl. Flow cytometric sorting was subsequently performed to
purify monocytes (CD11b*"Ly6G~) and neutrophils (Ly6G™) from
the same samples. Survival was monitored for every 40 hours post-
LPS injection, and differences were analyzed by Kaplan-Meier
curves. All mice were obtained from The Jackson Laboratory and
housed under specific pathogen-free conditions at the Zunyi
Medical University animal facility. All animal procedures were
approved by the Zunyi Medical University ethics committee with
the approved number (2024) 1-068.

Flow cytometry, glycogen quantification,
serum cytokine ELISA and cell migration
assay

Peripheral blood cells were collected into heparinized tubes and
subjected to red blood cell lysis (ACK buffer, Thermo Fisher). Total
leukocytes were stained with fluorescent antibodies against CD45,
CD11b, Ly6G, CDI11lc, MHC-II, CD4, CD8, NK1.1, and B220
(BioLegend). The markers are as follows: Neutrophils (CD11b"
Ly6G"), Monocytes (CD11b" Ly6G~), Dendritic cells (CD11c"), T
cells (CD4" or CD8"), B/NK cells (B220" or NK1.1"). Flow
cytometry and sorting were performed on BD FACSAria III. Data
were analyzed with FlowJo v10.

As for glycogen quantification, Sorted neutrophils and
monocytes were lysed, and glycogen content was determined
using a Glycogen Assay Kit (Sigma-Aldrich, MAK016) following
the manufacturer’s instructions. Absorbance was measured at 570
nm, and results were normalized to cell number and expressed as
pg/ul glycogen. Serum levels of IL-6, TNF-0, and IL-1B were
quantified 6h after LPS treatment using mouse ELISA kits (R&D
Systems) according to the manufacturer’s protocol. Cytokine
concentrations were determined by standard curves and
expressed in pg/mL.

To assess the migratory capacity of immune cells after Gygl
knockdown, neutrophils and monocytes were isolated from
peripheral blood of LNP-siGygl- or LNP-ctrl-treated mice using
FACS sorting. Migration assays were performed using 24-well
Transwell chambers with 5-um pore polycarbonate membranes
(Corning, 3421). Cells (1 million per insert) were suspended in
serum-free RPMI-1640 medium and placed in the upper chamber,
while the lower chamber contained medium supplemented with
CCL2 (100 ng/mL) for monocytes or CXCL1 (100 ng/mL) for
neutrophils (PeproTech). After incubation for 30 min or 3 hours at
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37 °C, cells that migrated to the lower chamber were collected and
counted using a hemocytometer or flow cytometry. Migration
efficiency was expressed as the percentage of input cells migrated.
All experiments were performed in triplicate.

Statistical analysis

Statistical analyses were performed using R (v4.1.2) and Python
(v3.8). Data are expressed as mean * standard deviation (SD). Two-
group comparisons were conducted with Wilcoxon rank-sum tests,
while multi-group comparisons used one-way ANOVA followed by
Tukey’s post hoc test. Survival differences were assessed by log-rank
test. A p-value < 0.05 was considered statistically significant.

Results

Identification and characterization of
metabolism-related genes in sepsis

To systematically explore the role of metabolism-related genes
(MRGs) in sepsis, we first analyzed transcriptional changes at three
time points—0 h, 24 h, and 48 h—using the whole blood
transcriptomic dataset GSE57065. Differential expression analysis
was conducted by comparing patient samples to healthy samples
(Figure 1A-C). A total of 70 differentially expressed genes (DEGs)
were identified across all time points, indicating a dynamic
transcriptomic response during the early progression of sepsis. To
specifically evaluate the contribution of metabolic pathways, we
intersected these DEGs with a curated list of metabolism-related
genes, yielding a panel of metabolic DEGs with potential relevance
to sepsis pathophysiology (Figure 1D). Notably, many of these
genes are involved in key processes such as mitochondrial function,
glycolysis, and amino acid metabolism. We next visualized the
expression of these metabolic DEGs across all patient samples
(Figure 1E). Heatmap clustering analysis revealed that several
genes exhibited consistent temporal trends, suggesting potential
regulatory programs associated with metabolic reprogramming in
sepsis (Figure 1F). These genes may serve as candidate biomarkers
or therapeutic targets, warranting further validation.

Metabolism-related gene expression
stratifies sepsis patients into distinct
immunological subgroups

To determine whether metabolism-related genes (MRGs) could
distinguish biologically distinct subgroups of sepsis patients, we
performed unsupervised hierarchical clustering based on the
expression of previously identified MRGs. This approach
stratified patients into two major clusters, designated Cluster 1
and Cluster 2 (Figure 2A). The clustering revealed substantial
transcriptional heterogeneity, suggesting differential metabolic
states among patients. We then identified differentially expressed
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genes (DEGs) between the two clusters to investigate their
molecular differences. A large number of DEGs were observed,
with both significantly upregulated and downregulated genes
distinguishing the two groups (Figure 2B). Subsequent Gene
Ontology (GO) enrichment analysis of the DEGs revealed that
Cluster 1 was characterized by enrichment in a neutrophil-
dominant immune response state (Figure 2C). Furthermore, Gene
Set Enrichment Analysis (GSEA) reinforced these findings: Cluster
1 showed significant enrichment in neutrophil responses and
defense against pathogens (Figure 2D), whereas Cluster 2 was
more enriched in T cell responses (Figure 2E). Together, these
findings suggest that metabolism-based clustering captures
biologically meaningful immunological differences and may help
explain the variable clinical outcomes observed in sepsis.

Identification of hub genes and
construction of a metabolic risk score
model in sepsis

To further refine clinically relevant metabolic signatures in sepsis,
we applied a machine learning approach to the 11 differentially
expressed genes (DEGs) identified between Cluster 1 and Cluster 2.
Least absolute shrinkage and selection operator (LASSO) regression was
performed to reduce feature redundancy and select the most
informative genes (Figures 3A, B). Five hub genes—ALPL, CYP1B1,
GYGI, OLAH, and VNNI were identified as optimal predictors based
on the minimum binomial deviance criteria. We then constructed a
metabolic risk score model based on the expression levels of these five
genes. The risk score formula was defined as: Risk score = 0.231 x ALPL
+ 0.218 x CYPIBI + 1.930 x GYGI + 0.0829 x OLAH + 0.277 x
VNNI. This score effectively stratified patients from Cluster 1 and
Cluster 2, with significantly higher scores observed in patients from the
neutrophil-dominant Cluster 1 (Figure 3C), indicating that the hub gene
signature captures cluster-specific immunometabolic phenotypes. To
further examine the expression patterns of the hub genes, we visualized
their expression in all samples (Figure 3D). Notably, all five hub genes
were significantly upregulated in Cluster 1 compared to Cluster 2
(Figures 3E-I), suggesting that elevated expression of these genes is
associated with the hyperinflammatory metabolic state seen in
neutrophil-dominant sepsis subtypes.

Hub genes demonstrate robust and
accurate diagnostic performance in an
independent validation cohort

To validate the diagnostic potential of the five identified hub genes,
we applied the model to an independent external dataset (GSE95233,
Supplementary Table 1), which includes peripheral blood samples from
septic patients and healthy controls. All five hub genes—ALPL,
CYP1B1, GYGI, OLAH, and VNNI—were significantly upregulated
in septic patients compared to healthy individuals (Figure 4A),
consistent with findings from the discovery cohort. We further
evaluated the predictive performance of each gene using receiver
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FIGURE 1

Identification and characterization of metabolism-related genes in sepsis. (A—C) Volcano plots showing differentially expressed genes (DEGs)
between sepsis samples at Oh, 24 h and 48 h. Significantly upregulated and downregulated genes are highlighted. (D) Venn diagram showing the
intersection between DEGs and metabolism-related genes (MRGs) curated from public databases and literature. (E) Boxplot showing the average
expression of the 11 DEGs between patients and healthy controls. (F) Heatmaps showing the expression of intersected MRGs across sepsis samples
at 0 h, 24 h, and 48 h. Each column represents a patient sample, and each row represents a gene. Hierarchical clustering was applied to both genes
and samples. The symbol "“****" represents a p-value < 0.0001, indicating a highly statistically significant difference.

operating characteristic (ROC) curve analysis. Strikingly, all five genes
demonstrated excellent discriminative power, with area under the curve
(AUC) values of 0.981 for ALPL, 0.951 for CYP1BI1, 1.000 for GYGI,
0.978 for OLAH, and 0.994 for VNNI, respectively (Figure 4B). The
consistently high AUC values suggest that this metabolic gene signature
may serve as a robust biomarker panel for sepsis detection. It is worth
noting that the perfect classification performance of GYG1 (AUC = 1.0)
in the validation cohort may be partly attributed to the limited sample
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size and needs to be interpreted with caution. Nonetheless, these
findings support the strong diagnostic relevance of the identified hub
genes. Our model also achieved an AUC of 0.673 (Day 1) and 0.722
(Day 3) in predicting the survival of the sepsis patients in the external
validation cohort (new Figure 4C). This performance is comparable to
the reported efficacy of gold-standard clinical scores like SOFA and
APACHE II from large-scale studies, which typically show AUCs in the
range of 0.65-0.75 for survival prediction (31, 32).
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FIGURE 2
Metabolism-related gene expression stratifies sepsis patients into distinct immunological subgroups. (A) Hierarchical clustering of sepsis patients based
on metabolism-related gene (MRG) expression, revealing two clusters (Cluster 1 and Cluster 2). (B) Volcano plot showing differentially expressed
genes (DEGs) between Cluster 1 and Cluster 2. Red and blue dots represent significantly upregulated and downregulated genes, respectively. (C) GO
biological process enrichment analysis of DEGs, showing neutrophil-associated immune responses enriched in Cluster 1. (D, E) Gene Set Enrichment
Analysis (GSEA) of hallmark or GO terms between the two clusters. Cluster 1 shows enrichment in neutrophil activation and antibacterial responses
(D), while Cluster 2 is associated with T cell-mediated immune pathways (E).

High metabolic risk score in sepsis is
associated with neutrophil and monocyte-
dominant and lymphocyte-suppressed
immune infiltration

To explore the immunological differences between metabolic
subgroups of sepsis, we investigated the immune cell infiltration
landscape of high- and low-risk patients defined by our five-gene
risk score model. Using the CIBERSORT deconvolution algorithm,
we estimated the relative proportions of 22 immune cell types across
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all patients. Significant differences in immune infiltration were
observed between the two groups (Figure 5A). High-risk patients
exhibited markedly elevated levels of neutrophils and monocytes,
alongside reduced proportions of natural killer (NK) cells and
multiple T cell subpopulations, including CD4+ and CD8+ T
cells. These findings suggest that high metabolic risk in sepsis is
associated with a neutrophil-dominant, lymphocyte-suppressed
immune landscape. To further elucidate the immunological
relevance of each hub gene, we performed Pearson correlation
analysis between gene expression levels and estimated immune
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FIGURE 3
Identification of hub genes and construction of a metabolic risk score model. (A, B) LASSO regression and cross-validation plots based on 11 DEGs
between Cluster 1 and Cluster 2. Five hub genes were selected based on the optimal lambda value. (C) Distribution of the calculated risk score
across patients from Cluster 1 and Cluster 2, showing higher scores in neutrophil-dominant Cluster 1. (D) Heatmap showing expression patterns of
the five hub genes (ALPL, CYP1B1, GYG1, OLAH, VNN1) across all sepsis samples. (E-1) Box plots showing significantly higher expression levels of
ALPL (E), CYP1B1 (F), GYGL (G), OLAH (H), and VNNL1 (1) in Cluster 1 compared to Cluster 2. P-values are indicated above each comparison.

cell fractions (Figure 5B). All five risk genes—ALPL, CYPIBI,
GYGI, OLAH, and VNNI—showed strong positive correlations
with neutrophils, monocytes, and macrophages, and consistent
negative correlations with T cells and NK cells. These results
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dominated profile.

suggest that the severity of sepsis may be linked to an imbalance
between innate and adaptive immune responses, with high-risk
patients exhibiting a shift toward an innate immunity-
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expression levels of the five hub genes—ALPL, CYP1B1, GYGL, OLAH, and VNN1—in septic patients compared to healthy controls. (B) ROC curve
analysis demonstrating the diagnostic performance of each gene in distinguishing sepsis from healthy controls. All five genes exhibited high
predictive accuracy, with AUC values exceeding 0.95. (C) ROC curve of the metabolic risk score model in predicting the survival of sepsis patients

based on the blood samples of day 1(left) or day 3(right).

Single-cell analysis of immune cell
composition in septic patients

To further validate the association between metabolic risk and
immune cell remodeling in sepsis, we performed integrative single-
cell transcriptomic analysis using published peripheral blood
mononuclear cell (PBMC) datasets. After standard quality
control, normalization, and dimensionality reduction, immune
cells were clustered and visualized using UMAP (Figures 6A, B).
Cell identities were annotated based on canonical marker genes, and
platelet/erythroid lineage cells were excluded to focus on
immunologically relevant populations (Figure 6C). Comparative
analysis of cell composition across clinical groups revealed that
non-surviving septic patients exhibited a markedly higher
proportion of neutrophils compared to both healthy controls and
survivors (Figure 6D). This observation is consistent with our
earlier findings based on CIBERSORT deconvolution of bulk
transcriptomic data, reinforcing the association between
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neutrophil and innate immune dominance and poor clinical
outcome in sepsis. To further investigate the cellular origin of the
risk score components, we analyzed the expression patterns of the
five hub genes across different immune subsets (Figure 6E). Three of
the five genes—ALPL, CYP1B1, and GYG1—were predominantly
expressed in monocytes, neutrophils, and proliferating myeloid
cells, consistent with their potential roles in innate immune
activation. In contrast, OLAH and VNN1 showed low expression
across all major immune cell types, suggesting that these genes may
be expressed in non-immune blood components (e.g., endothelial
cells or platelets) and contribute to sepsis progression through
indirect mechanisms.

To better characterize the immune context of metabolic risk in
sepsis, we compared the single-cell distribution patterns between
high- and low-risk patients. Immune cells were first annotated
based on canonical marker expression (Figure 6F). Density
estimation maps revealed that high-risk patients showed marked
expansion of monocytes, along with a notable reduction in T cells
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High metabolic risk score in sepsis is associated with neutrophil and monocyte-dominant and lymphocyte-suppressed immune infiltration.
(A) CIBERSORT-based estimation of immune cell infiltration in high-risk versus low-risk patients. Neutrophils were significantly increased in high-risk

patients, while NK cells, CD4+ T cells, and CD8+ T cells were significant

ly decreased. (B) Pearson correlation analysis between expression levels of

the five hub genes and immune cell fractions. All five genes were positively correlated with neutrophils, monocytes, and macrophages, and

negatively correlated with T cells and NK cells. The symbols represent th
***: p < 0.001; ****: p < 0.0001.

e following levels of statistical significance: *: p < 0.05; **: p < 0.01;

compared to the low-risk group (Figures 6G, H). These findings
reinforce the hypothesis that severe sepsis is associated with a shift
toward innate immunity dominance, coupled with adaptive
immune suppression. These results suggest that innate immune
hyperactivation, particularly neutrophil and monocyte expansion,
may play a critical role in driving sepsis severity and mortality.
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Single-cell communication analysis reveals
intensified monocyte—DC interactions in
high-risk sepsis patients

To investigate potential alterations in intercellular communication
associated with metabolic risk, we performed ligand-receptor
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Single-cell analysis of immune cell composition in septic patients. (A, B) UMAP visualization of integrated single-cell RNA-seq data from septic
patients and healthy controls. Cells were clustered and annotated based on canonical immune markers. Platelet and erythroid cells were excluded
from downstream analysis. (C) Heatmap of representative marker gene expression used for immune cell type annotation. (D) Cell composition
comparison across clinical groups shows a significantly increased neutrophil fraction in non-surviving sepsis patients relative to survivors and healthy
controls. (E) Violin plots showing expression of hub genes (ALPL, CYP1B1, GYG1, OLAH, VNN1) across immune cell subsets in high- and low-risk
patients. Three genes were enriched in innate immune cells, while two showed minimal expression in immune lineages. (F) UMAP plot showing
immune cell type annotations used in downstream comparison. (G, H) Density maps illustrating differences in immune cell distributions between
low-risk (G) and high-risk (H) patients. Monocytes were expanded in high-risk patients, while T cell density was reduced.

interaction inference based on single-cell expression profiles in high-
and low-risk sepsis patients. A total of 608 inferred interactions were
detected in the high-risk group, compared to 526 in the low-risk group
(Figure 7A), indicating a globally enhanced signaling environment in
high-risk patients. Relative information flow analysis revealed that high-
risk patients exhibited greater activity across a range of signaling
pathways (Figures 7B, C), particularly those associated with

Frontiers in Immunology

inflammation and antigen presentation (e.g, CD40, MIF, SELPLG).
In contrast, several homeostatic or regulatory pathways (e.g., CCL,
CD46) were more active in the low-risk group. Heatmap visualization of
outgoing signaling patterns further demonstrated that high-risk patients
had enhanced pathway activity originating from monocytes and
dendritic cells (DCs) (Figures 7D, E). Network topology analysis
revealed a dense interaction hub centered around these two cell types
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Monocyte

DC

in high-risk patients, with significantly elevated communication
frequency and intensity compared to low-risk individuals (Figure 7F).
Notably, focused cell-cell interaction mapping confirmed that
monocyte-DC signaling was markedly stronger in the high-risk
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group (Figures 7G-I). These findings suggest that increased
monocyte-DC crosstalk may contribute to the hyperinflammatory
immune environment and disease progression in metabolically high-
risk sepsis patients.
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GYGlL is highly expressed in innate immune
cells and associated with pro-inflammatory
transcriptional programs in high-risk
patients

Given the substantial differences in dendritic cells (DCs),
monocytes, and neutrophils between high- and low-risk patients,
we examined the expression of the five hub genes across these three
cell types. Among them, GYG1 was consistently expressed in all
three cell populations and showed significantly higher expression in
the high-risk group (Figure 8A), suggesting that it may play a key
role in orchestrating innate immune activation in metabolically
high-risk patients. We next performed differential gene expression
(DEG) analysis between high- and low-risk patients within each of
the three cell types. The volcano plots revealed a large number of
upregulated genes in high-risk DCs (Figure 8B), monocytes
(Figure 8C), and neutrophils (Figure 8D), many of which are
associated with innate immune functions. Gene Ontology
enrichment analyses of the upregulated DEGs in each cell type
showed consistent results: neutrophil degranulation and activation-
related pathways were significantly enriched in all three cell
populations (Figures 8E-G). These findings suggest that GYGI
may be involved in driving pro-inflammatory transcriptional
programs in key innate immune subsets, potentially contributing
to disease severity in high-risk sepsis patients.

LNP-mediated Gygl silencing improves
survival in LPS-induced sepsis mouse
model

To validate the in vivo relevance of the hub genes identified in our
computational analyses, we first measured their expression in
peripheral blood from an LPS-induced sepsis mouse model using
qPCR. Among the five hub genes (Alpl, Cyp1bl, Gygl, Olah, Vnnl),
all except Olah and Vnnl were significantly upregulated in septic
mice compared to controls, with Gygl showing the most pronounced
increase (Figures 9A-E). Given the strong predictive performance of
Gygl and its association with pro-inflammatory innate immune
programs, we next investigated whether targeting Gygl could
ameliorate sepsis outcomes. We formulated lipid nanoparticles
(LNPs) encapsulating siRNA specific to Gygl (LNP-SiGygl) and
administered them intravenously 24 hours prior to LPS injection (10
mg/kg) and at 24-hour intervals thereafter (Figure 9F). To confirm
the cellular specificity and efficiency of LNP-siGygl delivery, we
evaluated GYGI protein expression in distinct peripheral immune
subsets. Western blot analysis demonstrated a marked reduction of
GYG1 protein in both monocytes and neutrophils following LNP-
siGygl treatment, whereas total leukocytes also exhibited an overall
decrease, confirming effective knockdown of Gygl in circulating
myeloid cells (Figure 9G). Kaplan-Meier survival analysis revealed
that Gygl silencing markedly improved survival compared to both
untreated and LNP-control siRNA-treated groups (Figure 9H),
suggesting that metabolic targeting of Gygl may offer therapeutic
benefit in sepsis.
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GYGL1 knockdown reduces glycogen
content and inflammatory activation in
myeloid cells in vivo

To further explore the mechanisms of Gygl knockdown’s
impact on immune metabolism and inflammation, we examined
glycogen levels and inflammatory responses in myeloid cells from
LPS-induced septic mice treated with LNP-siGygl. Quantification
of glycogen content revealed that Gygl silencing significantly
reduced intracellular glycogen levels in both neutrophils and
monocytes compared with control LNPs (Figure 10A), confirming
the metabolic efficacy of our knockdown strategy. Next, we
evaluated the transcriptional and systemic inflammatory response
following Gygl inhibition. qPCR analysis showed that Gygl
knockdown markedly decreased the mRNA expression of IL-6,
TNF-0, and IL-1f in peripheral monocytes and neutrophils from
LPS-challenged mice (Figure 10B). Consistently, ELISA of serum
samples demonstrated reduced protein levels of IL-6 and TNF-a,
whereas IL-1[3 levels were not significantly affected (Figure 10C).

To further investigate immune cellular changes, we performed
flow cytometry profiling of major leukocyte subsets. Gygl
knockdown strongly attenuated the LPS-induced expansion of
neutrophils, while the decreased proportions of T and B/NK cells
were partially rescued (Figure 10D). Moreover, Gygl silencing
slightly reduced CD40 expression in both monocytes and dendritic
cells (Figure 10E), suggesting that diminished glycogen metabolism
may suppress pro-inflammatory activation and antigen-presenting
potential in myeloid populations. Together, these data demonstrate
that Gygl depletion alleviates hyperinflammation in sepsis
by reducing metabolic fuel availability and dampening
myeloid activation.

Discussion

In this study, we performed a comprehensive analysis of
metabolism-related genes (MRGs) in sepsis and developed an
immune-metabolic risk score capable of stratifying patients into
distinct subgroups with divergent immune landscapes and
predicted outcomes. Through machine learning-based feature
selection, we identified five hub genes—ALPL, CYP1B1, GYGI,
OLAH, and VNN1—that exhibited strong predictive performance,
both in the discovery and independent validation cohorts. Single-
cell transcriptomic analyses further demonstrated the immune cell-
specific distribution of these genes and their correlation with innate
and adaptive immune components, providing mechanistic insights
into the metabolic-immune heterogeneity observed in sepsis.

Among these genes, GYGI emerged as a particularly notable
candidate. GYGI encodes glycogenin 1, a core enzyme in glycogen
biosynthesis, catalyzing the attachment of glucose residues to a
protein primer to initiate glycogen polymerization (33). Beyond its
canonical metabolic role, glycogen metabolism has been
increasingly recognized as a regulator of immune cell activation,
particularly in myeloid cells (34). Our single-cell analysis revealed
high expression of GYG1 in monocytes, neutrophils, and
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FIGURE 8
GYGL is highly expressed in innate immune cells and associated with pro-inflammatory transcriptional programs in high-risk patients. (A) Box
plots showing expression of five hub genes in dendritic cells (DCs), monocytes, and neutrophils from high- and low-risk sepsis patients. GYGL is
consistently expressed and upregulated across all three cell types. (B—D) Volcano plots of differentially expressed genes in DCs (B), monocytes (C),
and neutrophils (D) between high- and low-risk patients. (E—-G) GO enrichment analysis of genes upregulated in the high-risk group in DCs (E),
monocytes (F), and neutrophils (G), showing shared enrichment in neutrophil degranulation and innate immune activation pathways.

proliferating myeloid cells—cell populations that dominate the
high-risk, innate immunity-driven sepsis subtype. Functional
enrichment analysis of high-risk innate immune cells consistently
identified neutrophil degranulation and activation pathways,
suggesting that GYG1 may facilitate rapid energy supply to fuel
hyperinflammatory responses. The observation that GYGI1

Frontiers in Immunology

knockdown via LNP-siRNA delivery ameliorated disease severity
in an LPS-induced sepsis model supports its potential as a metabolic
driver of immune dysregulation. Previous studies have established
that glycogen metabolism modulates inflammatory signaling during
sepsis largely through GSK3B activity, which integrates upstream
signals to regulate transcriptional responses via NF-kB and CREB
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FIGURE 9

LNP-mediated Gygl silencing improves survival in an LPS-induced sepsis mouse model. (A—E) gPCR analysis of hub gene expression in peripheral
blood from control and LPS-induced sepsis mice. Gygl exhibited the most pronounced upregulation among the five hub genes. (F) Schematic of
LNP formulation and dosing strategy for Gygl siRNA delivery in the LPS sepsis model. LNPs were administered intravenously 24 h before and every
24 h after LPS injection (10 mg/kg). (G, H) Kaplan—Meier survival curves showing improved survival in the LNP-SiGygl group compared to control

and LNP-control siRNA groups.

pathways (35, 36). In contrast, GYG1 functions at a distinct metabolic
level by catalyzing the priming step of glycogen synthesis, thereby
determining the cellular glycogen reserve available for rapid glycolytic
activation. Our results indicate that Gygl depletion reduces
intracellular glycogen content and dampens cytokine production
without altering canonical signaling molecules such as GSK3p.
Thus, GYG1 complements GSK3[3-mediated immune regulation by
controlling the metabolic substrate pool that sustains pro-
inflammatory effector functions. This distinction highlights GYG1
as a unique upstream regulator of immunometabolic homeostasis
and a potentially novel therapeutic target in sepsis.
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The other four hub genes also have plausible roles in shaping
immune responses. ALPL (alkaline phosphatase, tissue-nonspecific
isozyme) has been implicated in detoxifying lipopolysaccharide and
modulating inflammatory signaling (37). CYP1BI, a cytochrome
P450 enzyme, can influence oxidative stress and lipid mediator
metabolism, thereby affecting immune cell activation (38). OLAH
(oleoyl-ACP hydrolase) is involved in fatty acid metabolism, and
altered lipid handling has been linked to immune suppression in
late-stage sepsis (39). VNNI1 (vanin-1) participates in pantothenic
acid metabolism and oxidative stress regulation, and its activity may
influence leukocyte recruitment (40). Collectively, these genes
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GYG1 knockdown reduces glycogen metabolism and inflammatory activation in myeloid cells in vivo. (A) Quantification of glycogen content in
sorted neutrophils and monocytes from mice treated with LNP—-siGygl or control LNPs. GYG1 knockdown significantly decreased intracellular
glycogen levels in both cell types. (B) Relative mRNA expression of IL6, TNFA, and IL1B in peripheral monocytes and neutrophils from LPS-challenged
mice (6h post LPS inject) with or without GYG1 silencing. Data were normalized to B-actin. (C) Serum concentrations of IL-6, TNF-o, and IL-1B
measured by ELISA (6h post LPS inject). GYG1 knockdown markedly reduced IL-6 and TNF-a. levels, with minor effects on IL-1B. (D) Flow cytometry
profiling of major immune subsets (T cells, B/NK cells, neutrophils/monocytes, and dendritic cells) in septic mice treated with control or GYG1-
targeting LNPs. GYGL1 silencing attenuated LPS-induced neutrophil expansion. (E) Flow cytometric analysis of CD40 expression in monocytes and
dendritic cells. GYG1 knockdown decreased CD40 expression, suggesting reduced pro-inflammatory activation. Data represent mean + SD from
three independent mice per group. p < 0.05, p < 0.01, p < 0.001 by one-way ANOVA with Tukey's post hoc test.
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represent interconnected metabolic nodes that can modulate both
innate and adaptive immune functions during sepsis.

Our findings align with and expand current understanding of
sepsis pathophysiology. Traditionally, sepsis has been
conceptualized as a biphasic process, beginning with systemic
hyperinflammation driven by innate immune activation, followed
by a phase of immune suppression dominated by lymphocyte
exhaustion. Our work highlights metabolic heterogeneity as a
determinant of these immune states, with high-risk patients
showing pronounced neutrophil dominance and T/NK cell
suppression. Notably, our single-cell data also revealed increased
platelet abundance in high-risk patients, consistent with earlier
hypotheses that coagulopathy and platelet activation contribute to
sepsis-related mortality. While this observation was not a primary
focus of our study, it reinforces the multifaceted nature of sepsis
pathobiology, in which coagulation, metabolism, and immunity are
intricately interconnected.

Therapeutically, sepsis management remains largely supportive,
relying on timely antibiotics, hemodynamic stabilization, and organ
support. Targeted immunomodulatory therapies have had limited
success, in part due to patient heterogeneity. Our immune-
metabolic risk score provides a framework for patient
stratification, which could inform more personalized therapeutic
approaches. Recent studies have also emphasized the translational
potential of biomarkers and transcriptomic risk models for patient
stratification, further supporting our findings (41-44). The proof-
of-concept intervention targeting GYG1 via LNP-siRNA delivery
represents a novel strategy to modulate immune metabolism in
sepsis. Although further preclinical optimization is required, such
approaches may complement existing therapies by selectively
dampening hyperactive innate immune responses without broadly
suppressing immunity.

This study has several limitations. First, although we integrated
bulk and single-cell transcriptomic datasets from multiple cohorts,
the patient sample size for some analyses was modest, and the
external validation was limited to available public datasets. Second,
our in vivo functional validation was performed in an LPS-induced
model, which recapitulates aspects of hyperinflammation but does
not fully capture the complexity of clinical sepsis. Additionally,
dissecting the upstream regulatory networks and detailed
downstream effectors of GYG1 in immune cells may reveal
broader therapeutic opportunities.

Conclusion

In conclusion, our integrative multi-omics approach uncovered
metabolic-immune heterogeneity in sepsis, established a robust
immune-metabolic risk score system, and identified GYGI as a
potential metabolic driver of innate immune hyperactivation. These
findings advance our understanding of the metabolic
underpinnings of sepsis pathophysiology and open avenues for
metabolism-targeted interventions in this complex and
deadly syndrome.
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