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Background: Emerging studies have investigated the association between

acetaminophen (APAP) use and clinical outcomes in cancer patients receiving

immune checkpoint inhibitors (ICIs), but their findings remain inconsistent. This

meta-analysis aims to systematically synthesize available evidence to clarify this

relationship and provide evidence-based guidance for clinical practice.

Methods: A systematic literature search was performed to identify studies

comparing prognostic outcomes between APAP users and non-users among

cancer patients treated with ICIs. Eligible studies were required to report hazard

ratios (HRs) for overall survival (OS) and/or progression-free survival (PFS) with

95% confidence intervals (CIs). Meta-analyses were conducted to derive pooled

effect estimates. Funnel plots and Egger’s test were used to assess publication

bias, and sensitivity analyses via a leave-one-out approach were performed to

evaluate the robustness of results.

Results: Five studies encompassing 7 cohorts and 2,349 patients (1,306 APAP

users and 1,043 non-users) were included. Pooled analyses revealed that

concomitant APAP use was significantly associated with shorter OS (HR: 1.29;

95% CI: 1.16–1.44) and PFS (HR: 1.27; 95% CI: 1.12–1.43), as well as a trend toward

a lower objective response rate (RR: 0.78; 95% CI: 0.60–1.00). No significant

publication bias was detected, and sensitivity analyses confirmed the robustness

of these findings.

Conclusion: Current evidence indicates that APAP use is associated with poorer

prognosis in cancer patients treated with ICIs. These results may inform clinical

guidelines regarding concomitant APAP and ICI use. Further randomized
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controlled trials are warranted to validate these observations and establish

causal relationships.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD420251118489.
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Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized

cancer treatment by reactivating cytotoxic T-cell responses

against malignant cells (1). By targeting negative regulatory

pathways such as programmed cell death protein 1 (PD-1),

programmed death-ligand 1 (PD-L1), and cytotoxic T-

lymphocyte–associated antigen 4 (CTLA-4), ICIs have

demonstrated durable clinical benefits and survival advantages in

a variety of tumor types (2). Despite these breakthroughs, a

considerable proportion of patients fail to achieve sustained

responses, underscoring the need to identify factors that influence

immunotherapy efficacy.

One increasingly recognized yet underexplored factor is the role

of concomitant medications in modulating ICI outcomes (3–5).

Several classes of non-oncologic agents—including corticosteroids,

antibiotics, and proton pump inhibitors—have been implicated in

dampening ICI efficacy, either through direct immunosuppression

or via disruption of host-microbiota interactions (6–9).

Acetaminophen (APAP), one of the most frequently used

antipyretic and analgesic agents in oncology, is widely regarded as

safe and well-tolerated (10). However, emerging evidence suggests

that APAP may exert unintended immunomodulatory effects,

raising concern about its potential to compromise antitumor

immune responses (11).

Mechanistic studies have shown that APAP can inhibit T-cell

proliferation, suppress interferon-gamma (IFN-g) production, and
promote regulatory T cell (Treg) expansion—features that

collectively impair cytotoxic immunity (11). In addition, APAP

has been reported to elevate levels of immunosuppressive cytokines

such as interleukin-10 (IL-10) and to attenuate antigen-presenting

cell function (11). Clinical observations echo these findings: APAP

exposure has been associated with reduced antibody responses to

viral infections and vaccinations, prompting international health

agencies to advise caution regarding its routine use in

immunologically sensitive contexts (12).

Despite these signals, clinical data on APAP use during ICI

therapy remain limited and inconsistent. Retrospective studies

examining the association between APAP exposure and ICI

outcomes have yielded conflicting results (11, 13). Given the

ubiquity of APAP use in cancer care—and the increasing reliance
02
on ICIs as a cornerstone of systemic therapy—clarifying this

relationship is of substantial clinical importance.

To address this gap, we conducted a systematic review and

meta-analysis of studies evaluating the prognostic impact of APAP

use in cancer patients treated with ICIs. By integrating data across

cohorts and tumor types, we aimed to quantify the association

between APAP exposure and survival outcomes, assess potential

biases, and provide evidence-based guidance for the supportive care

of patients undergoing immunotherapy.
Methods

Study registration

This meta-analysis was conducted in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement (14). The protocol has been

registered in the International Prospective Register of Systematic

Reviews (PROSPERO) (identifier: CRD420251118489).
Data sources and search strategy

A systematic literature search was conducted using PubMed,

Web of Science, and Embase, covering all records from their

inception to August 2, 2025. The search strategy combined terms

related to acetaminophen (e.g., acetaminophen, paracetamol, N-

acetyl-para-aminophenol) and immune checkpoint inhibitors (e.g.,

immune checkpoint inhibitors, PD-1 inhibitors, PD-L1 inhibitors,

CTLA-4 inhibitors, pembrolizumab, nivolumab, atezolizumab,

ipilimumab), as well as terms pertaining to prognostic outcomes.

The complete search strategies for each database are detailed in

Supplementary Table 1.
Eligibility criteria and study selection

Studies were deemed eligible if they met the following criteria:

(i) assessed the prognostic impact of APAP use in patients receiving

ICIs, with comparator groups comprising patients not receiving
frontiersin.org
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APAP (concomitant use of other medications permitted); and (ii)

reported hazard ratios (HRs) with corresponding 95% confidence

intervals (CIs) for overall survival (OS) and/or progression-free

survival (PFS). Eligible study designs included randomized

controlled trials (RCTs) and observational cohort studies.

Exclusion criteria encompassed review articles, case reports,

preclinical studies, studies not evaluating APAP in relation to

clinical outcomes, and those comparing high-dose versus low-

dose APAP without a non-APAP control group.

The literature was managed and deduplicated using EndNote.

Two independent reviewers conducted the initial screening based

on titles and abstracts, followed by full-text evaluations for final

inclusion. Any discrepancies were resolved through discussion with

a third reviewer.
Data extraction and quality assessment

Two reviewers independently extracted data using a

standardized data collection form. Any discrepancies were

resolved through consensus or, if necessary, by consultation with

a third reviewer. The following information was extracted:
Fron
Study characteristics: First author, publication year, country,

study design, and sample size.

Patient characteristics: Cancer type, ICI regimen, and number

of patients receiving APAP.

Outcome data: HRs with corresponding 95% CIs for OS and

PFS, as well as objective response rate (ORR). When both

unadjusted and adjusted HRs were reported, adjusted

estimates controlling for potential confounders

were prioritized.
The methodological quality of the included studies was assessed

using the Newcastle–Ottawa Scale (NOS) for cohort studies, which

evaluates study quality across three domains: selection of study

groups, comparability of groups, and ascertainment of outcomes

(maximum score = 9 stars). Studies with a NOS score ≥ 7 were be

considered high quality (15).
Statistical analysis

Meta-analyses were conducted using R software (version 4.5.1).

Heterogeneity among studies was assessed using the I² statistic and

Cochran’s Q test. An I² value greater than 50% along with a Q-test

p-value less than 0.10 was considered indicative of significant

heterogeneity. The DerSimonian–Laird random-effects model was

applied when substantial heterogeneity was present, whereas the

Mantel–Haenszel fixed-effects model was used for homogeneous

data. Pooled effect sizes were calculated for each outcome. HRs with

95% CIs were used for OS and PFS. Odds ratios (OR) with 95% CIs

were used for ORR. Publication bias was assessed using funnel plots
tiers in Immunology 03
and Egger’s regression test, with a p-value less than 0.05 indicating

significant bias. Sensitivity analyses were performed by sequentially

excluding each study to evaluate the robustness of the results. All

statistical tests were two-sided, and a p-value less than 0.05 was

considered statistically significant.
Results

Study selection

The systematic literature search initially identified 96

potentially relevant records. After removing duplicates, 84 unique

publications remained for preliminary eligibility assessment. Title

and abstract screening led to the exclusion of 75 articles that were

not relevant to the research objectives. As a result, 9 articles

proceeded to full-text evaluation. Following rigorous application

of the predefined inclusion criteria, 5 studies were deemed eligible

and included in the final quantitative synthesis (11, 13, 16–18). The

complete study selection process is illustrated in Figure 1.
Characteristics of the included studies

All five included studies employed retrospective cohort designs,

collectively comprising seven independent cohorts and a total of

2,349 patients (1,306 APAP users and 1,043 non-users). These

studies were published between 2022 and 2025 and represented

diverse geographic regions, including France (4 cohorts), China

(Hong Kong; 1 cohort), Italy (1 cohort), Japan (1 cohort), and one

multinational cohort. Considerable heterogeneity was observed in

cohort sizes, which ranged from 34 to 753 patients, and in the

prevalence of APAP exposure, which varied from 26.0% to 74.8%.

The included cohorts investigated a range of cancer types. Four

focused exclusively on non-small cell lung cancer (NSCLC), one on

renal cell carcinoma (RCC), and two included patients with various

solid tumors. ICI regimens consisted of anti-PD-1/PD-L1

monotherapy (e.g., nivolumab, pembrolizumab, atezolizumab) or

combination therapy with anti-CTLA-4 agents (e.g., ipilimumab).

Detailed study characteristics are summarized in Table 1.

Methodological quality, as assessed using the NOS, was

uniformly high. Six cohorts received the maximum score of 9 out

of 9, and one cohort received a score of 8, as presented in

Supplementary Table 2.
APAP use and prognosis in patients
receiving ICIs

All studies included in this meta-analysis comprehensively

examined the association between APAP use and OS in patients

treated with ICIs, encompassing a total of 2,349 patients (APAP

users: 1,306; non-users: 1,043). Notably, no heterogeneity was
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observed across studies (I²=0%), allowing for the application of a

fixed-effect model to estimate the pooled HR. The analysis

demonstrated that APAP use was significantly associated with a

29% increased risk of death (HR: 1.29; 95%CI: 1.16–1.44;

Figure 2A), suggesting a potential detrimental effect of APAP on

the efficacy of ICIs.

Five cohorts, including 1,387 patients (APAP users: 777; non-

users: 610), assessed the impact of APAP use on PFS (11, 13, 17, 18).

Consistent with OS findings, no heterogeneity was detected

(I²=0%), and a fixed-effect model was utilized. The pooled results

indicated a 27% reduction in PFS among patients receiving APAP

concomitantly with ICIs (HR: 1.27; 95% CI: 1.12–1.43; Figure 2B),

further supporting the notion that APAP use may negatively

influence survival outcomes in this population.

Regarding ORR, data from three cohorts comprising 458

patients (APAP users: 217; non-users: 241) were analyzed (11,

13). The combined OR suggested a non-significant trend toward

reduced ORR with concurrent APAP use compared to non-use

(OR: 0.78; 95% CI: 0.60-1.00; Figure 4C).
Frontiers in Immunology 04
Publication bias and sensitivity analysis

Funnel plots and Egger’s regression tests revealed no significant

publication bias for OS and PFS outcomes (Figure 3). Furthermore,

sensitivity analyses employing a leave-one-out method confirmed

the stability and robustness of the pooled estimates for both OS and

PFS (Figure 4).
Discussion

This meta-analysis consolidates evidence from 2,349 patients

across seven cohorts, revealing a consistent association between

APAP use and diminished clinical outcomes in cancer patients

receiving ICIs. The observed HRs—1.29 for OS and 1.27 for PFS—

translate to a nearly 30% increased risk of death or disease

progression among APAP-exposed individuals. These findings

assume critical significance in the context of immuno-oncology,

where ICIs rely on robust T-cell-mediated antitumor responses, and
FIGURE 1

PRISMA flow diagram of study selection. Flowchart summarizing the literature search and selection process according to PRISMA 2020 guidelines.
The diagram shows the number of records identified, screened, excluded (with reasons), and finally included in the meta-analysis.
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TABLE 1 Characteristics of the included studies.

Study APAP user
le size (%)

Cancer
type

ICIs used
HR for OS
(95% CI)

HR for PFS
(95% CI)

ORR (presence
vs. absence)

NOS

92 (25.8) RCC Nivolumab
1.49

(1.14-1.92)
NA NA

94 (50.0)
Multiple solid

tumors
Anti-PD-L1 (monotherapy or
combined with anti-CTLA-4)

1.43
(0.61-3.33)

1.59
(0.76-3.33)

0 vs. 29.4%

97 (56.2)
Multiple solid

tumors
Anti-PD-1, anti-PD-L1, or
combination of immunotherapies

1.78
(1.18-2.86)

1.43
(1.07-1.91)

20.7% vs. 28.9%

72 (74.8) LC NA
1.32

(1.04-1.64)
NA NA 9

76 (29.5) NSCLC Pembrolizumab
1.20

(0.83-1.73)
1.29

(0.91-1.83)
NA 9

27 (26.0) NSCLC
Pembrolizumab, atezolizumab,
nivolumab, and ipilimumab

0.91
(0.46-1.79)

1.23
(0.78-1.95)

60.6% vs. 61.7% 8

53 (67.3) NSCLC Nivolumab
1.19

(1.01-1.40)
1.21

(1.03-1.41)
NA 9

survival; PFS, progression-free survival; ORR, objective response rate; LC, lung cancer; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; NA, not available; PD-1,
mphocyte-associated antigen 4; NOS, Newcastle-Ottawa Scale.
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France 507/
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even subtle immune modulation by concomitant medications can

undermine therapeutic efficacy. The homogeneity of effects across

diverse populations (I²=0%) and robustness to sensitivity analyses

further underscore the clinical relevance of this association.

Although no significant statistical heterogeneity was detected,

underlying variability in patient characteristics, tumor type, and

APAP exposure definitions may have contributed to subtle clinical

differences among studies. For example, four included cohorts

exclusively enrolled NSCLC patients, while others involved RCC

or mixed tumor populations, potentially influencing immune

responsiveness. Moreover, some studies quantified plasma APAP

levels, reflecting direct systemic exposure, whereas others relied on

prescription data, which may underestimate biologically relevant
Frontiers in Immunology 06
dosing. Despite these variations, the direction of effect remained

remarkably consistent across cohorts, suggesting a genuine

association rather than a population-specific artifact. Future

prospective analyses with standardized exposure definitions are

warranted to validate this relationship.

The biological plausibility of the detrimental impact of APAP

on ICI efficacy is supported by converging mechanistic evidence

that elucidates how APAP interferes with the immune pathways

targeted by checkpoint blockade. The therapeutic activity of ICIs

depends on restoring cytotoxic CD8+ T-cell function and

overcoming immunosuppressive barriers within the tumor

microenvironment. APAP appears to counteract these processes

through several complementary mechanisms. First, APAP fosters
FIGURE 2

Forest plots of the prognostic impact of APAP use in patients receiving ICIs. Pooled HRs for OS (A) and PFS (B), and pooled OR for ORR (C) are
shown. Squares represent individual study estimates, with size proportional to study weight; horizontal lines indicate 95% CIs. Diamonds represent
pooled estimates derived from random-effects models. HRs greater than 1 or OR less than 1 indicate worse outcomes in APAP users compared with
non-users.
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an immunosuppressive milieu by promoting regulatory T-cell

(Treg) expansion and elevating interleukin-10 (IL-10) levels (11).

These expanded Tregs further suppress effector T-cell proliferation

and cytotoxic activity, partly through the release of inhibitory

cytokines such as TGF-b (19). This immune shift toward

tolerance has been observed in patients with detectable plasma

APAP at ICI initiation, who exhibited increased circulating Tregs

and IL-10 concentrations correlated with inferior survival outcomes
Frontiers in Immunology 07
(11). Second, APAP directly impairs effector T-cell function by

suppressing interferon-gamma (IFN-g) production—a key cytokine

essential for antitumor immunity, antigen presentation, and tumor

cell killing (11, 20). Experimental studies have demonstrated that

APAP reduces IFN-g secretion in anti–PD-1–stimulated peripheral

blood mononuclear cells, indicating a direct antagonistic effect on

the immune activation intended by PD-1 blockade (11). Beyond

this, emerging evidence suggests that APAP may disrupt
FIGURE 4

Sensitivity analyses for included studies on OS and PFS. Leave-one-out sensitivity analyses assessing the influence of each individual study on the
pooled HR for OS (A) and PFS (B). The stability of pooled estimates upon sequential exclusion of single studies indicates the robustness of the overall
results.
FIGURE 3

Funnel plots and Egger’s tests for publication bias. Funnel plots for OS (A) and PFS (B) outcomes showing the distribution of study-specific log HRs
against their standard errors. Visual symmetry suggests a low likelihood of publication bias, which was further evaluated using Egger’s regression test
(p-values shown).
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mitochondrial function and cellular energy metabolism, potentially

compromising the bioenergetic demands of T-cell activation and

proliferation, though this pathway warrants further investigation in

the context of immunotherapy (21–23). Furthermore, APAP has

been shown to induce neutrophil extracellular trap (NET)

formation (24). These NETs not only hinder T-cell infiltration

and cytotoxic function but may also promote tumor progression

(25). In APAP-induced liver injury models, NETosis has been

associated with AIM2 inflammasome activation and inflammatory

cell death (PANoptosis), potentially exacerbating tissue injury and

reinforcing an immunosuppressive microenvironment (26). This

mechanism, already linked to reduced response to neoadjuvant

chemoimmunotherapy in NSCLC (24), represents a novel physical

and functional barrier through which APAP may diminish

immunotherapy efficacy. Collectively, these findings highlight that

APAP compromises multiple arms of antitumor immunity—

including amplification of immunosuppressive circuits,

suppression of effector T-cell signaling, potential disruption of T-

cell metabolism, and induction of NET-mediated barriers—offering

a coherent and multifaceted biological rationale for the poorer

survival outcomes observed in APAP-exposed patients.

A critical consideration in interpreting these findings is the

potential for confounding by indication. Patients requiring APAP

may have a higher baseline symptom burden, such as pain from

bone metastases or cancer-related fever, which itself reflects more

aggressive disease biology and poorer prognosis. While most

included studies employed multivariate analyses adjusting for key

confounders—such as performance status, tumor burden, and line

of therapy—the possibility of residual confounding from

unmeasured factors (e.g., systemic inflammation or concurrent

infection) cannot be fully excluded. Nevertheless, the consistency

of the detrimental association across multiple independent cohorts,

even after statistical adjustment, supports the likelihood of an

independent effect of APAP. Future prospective studies with

detailed documentation of indication-for-use and concomitant

medications are warranted to further disentangle this relationship.

The dose–response relationship between APAP exposure and

ICI outcomes has begun to emerge, lending further support to a

potential causal link. Although high doses (e.g., 4 g/day) have been

shown to induce Treg expansion in healthy volunteers (11), the

immunologic effects of typical oncologic doses (1–2 g/day) require

further clarification. Clinically, studies stratifying patients by

plasma APAP concentration have demonstrated that higher levels

at ICI initiation are associated with significantly worse survival

outcomes (24, 27). Similarly, in real-world cohorts, high cumulative

APAP exposure (e.g., ≥60 doses of 1000 mg) was identified as an

independent predictor of shorter PFS and OS in NSCLC patients

receiving ICIs, whereas low or short-term exposure showed no

significant impact (27). Although the precise threshold for clinically

relevant risk remains undefined, these findings suggest that both the

magnitude and timing of APAP exposure—particularly sustained,

high-dose use during early immune activation—may be key

determinants of immunotherapy efficacy.

Notably, studies stratifying patients by APAP plasma

concentration support a potential dose-response gradient, with
Frontiers in Immunology 08
higher levels at ICI initiation linked to significantly worse survival

(24, 27). This implies that not only the presence but also the timing,

dose, and systemic availability of APAP may modulate

immunotherapy efficacy. In real-world settings, high cumulative

APAP exposure (≥60 doses of 1000 mg) independently predicts

shorter PFS and OS in NSCLC patients on ICIs, whereas low

exposure (<24 hours or <60 doses) shows no significant impact,

offering preliminary guidance for clinical practice (27).

The pooled hazard ratios of 1.29 for OS and 1.27 for PFS

translate to an approximately 30% increase in the risk of death or

disease progression among APAP users. This effect size is not only

statistically significant but also clinically meaningful. In the field of

immuno-oncology, a 30% increase in mortality risk represents a

substantial effect, comparable to the detrimental impact observed

with baseline corticosteroid or antibiotic use in patients receiving

ICIs. This magnitude of risk underscores the need for heightened

awareness and strategic management of concomitant APAP

exposure. These findings also emphasize that even a widely

perceived “safe” medication may compromise immunotherapy

efficacy, highlighting the importance of incorporating medication

review and pharmacovigilance into routine immunotherapy

management to identify and mitigate modifiable risk factors.

Given these complexities, a risk-adapted approach to symptom

management is warranted. For mild symptoms, non-pharmacologic

measures such as physical therapy or cooling should be prioritized.

When analgesia is necessary, short-term APAP use (<72 hours) may

be acceptable in low-risk settings (e.g., during ICI maintenance or

among strong responders), whereas NSAIDs with gastroprotection

or low-dose opioids may be preferable in high-risk contexts (e.g.,

during early ICI cycles or in patients with low PD-L1 expression).

Importantly, symptom control should not be compromised;

analogous to WHO recommendations discouraging prophylactic

APAP before vaccination to preserve immune responses, similar

principles of timing and selective avoidance may apply in

immunotherapy (28). NSAIDs, in particular, have shown

improved OS compared to APAP in NSCLC patients receiving

ICIs, though their use requires caution in those with renal or

gastrointestinal comorbidities (16).

Several limitations of the primary studies merit consideration.

First, retrospective designs risk residual confounding by indication,

as patients requiring APAP may have higher symptom burdens

reflective of aggressive disease. Second, variability in APAP

exposure metrics—from plasma quantification to prescription

records—precludes definitive dose-response conclusions. Third,

insufficient data on concomitant medications (e.g., corticosteroids

or antibiotics) limits assessment of drug-drug interactions. Finally,

the predominance of NSCLC cohorts raises questions about

generalizability to other malignancies.

Future research should address these gaps. Prospective studies

quantifying APAP dose, timing, and indication relative to ICI cycles

could identify vulnerability thresholds (e.g., >3 g/day within 48

hours of infusion). Biomarker-integrated studies measuring Treg or

IL-10 dynamics in response to APAP may identify high-risk

patients. Pragmatic trials comparing APAP-restrictive and

permissive strategies—stratified by cancer type and co-
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medications—are ethically feasible using endpoints like pain

control and ICI response. Regulatory updates, such as requiring

drug labels to highlight APAP-ICI interactions, and documenting

APAP exposure in electronic medical records, could facilitate real-

world risk assessments and guide clinical decision-making.
Conclusion

Current evidence indicates that APAP use is associated with

poorer outcomes in ICI-treated cancer patients, likely via

suppression of antitumor immunity. Clinicians should minimize

unnecessary or prolonged APAP use during critical periods of

immune activation, prioritizing alternative symptom management

strategies when feasible. Further research is needed to establish

causal relationships and define safe thresholds to guide evidence-

based stewardship.
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