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Background: Emerging studies have investigated the association between
acetaminophen (APAP) use and clinical outcomes in cancer patients receiving
immune checkpoint inhibitors (ICls), but their findings remain inconsistent. This
meta-analysis aims to systematically synthesize available evidence to clarify this
relationship and provide evidence-based guidance for clinical practice.
Methods: A systematic literature search was performed to identify studies
comparing prognostic outcomes between APAP users and non-users among
cancer patients treated with ICls. Eligible studies were required to report hazard
ratios (HRs) for overall survival (OS) and/or progression-free survival (PFS) with
95% confidence intervals (Cls). Meta-analyses were conducted to derive pooled
effect estimates. Funnel plots and Egger’s test were used to assess publication
bias, and sensitivity analyses via a leave-one-out approach were performed to
evaluate the robustness of results.

Results: Five studies encompassing 7 cohorts and 2,349 patients (1,306 APAP
users and 1,043 non-users) were included. Pooled analyses revealed that
concomitant APAP use was significantly associated with shorter OS (HR: 1.29;
95% Cl: 1.16-1.44) and PFS (HR: 1.27; 95% ClI: 1.12-1.43), as well as a trend toward
a lower objective response rate (RR: 0.78; 95% Cl: 0.60-1.00). No significant
publication bias was detected, and sensitivity analyses confirmed the robustness
of these findings.

Conclusion: Current evidence indicates that APAP use is associated with poorer
prognosis in cancer patients treated with ICls. These results may inform clinical
guidelines regarding concomitant APAP and ICI use. Further randomized
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controlled trials are warranted to validate these observations and establish

causal relationships.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,
identifier CRD420251118489.

acetaminophen, cancer, immune checkpoint inhibitors, prognosis, meta-analysis

Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized
cancer treatment by reactivating cytotoxic T-cell responses
against malignant cells (1). By targeting negative regulatory
pathways such as programmed cell death protein 1 (PD-1),
programmed death-ligand 1 (PD-L1), and cytotoxic T-
lymphocyte-associated antigen 4 (CTLA-4), ICIs have
demonstrated durable clinical benefits and survival advantages in
a variety of tumor types (2). Despite these breakthroughs, a
considerable proportion of patients fail to achieve sustained
responses, underscoring the need to identify factors that influence
immunotherapy efficacy.

One increasingly recognized yet underexplored factor is the role
of concomitant medications in modulating ICI outcomes (3-5).
Several classes of non-oncologic agents—including corticosteroids,
antibiotics, and proton pump inhibitors—have been implicated in
dampening ICI efficacy, either through direct immunosuppression
or via disruption of host-microbiota interactions (6-9).
Acetaminophen (APAP), one of the most frequently used
antipyretic and analgesic agents in oncology, is widely regarded as
safe and well-tolerated (10). However, emerging evidence suggests
that APAP may exert unintended immunomodulatory effects,
raising concern about its potential to compromise antitumor
immune responses (11).

Mechanistic studies have shown that APAP can inhibit T-cell
proliferation, suppress interferon-gamma (IFN-y) production, and
promote regulatory T cell (Treg) expansion—features that
collectively impair cytotoxic immunity (11). In addition, APAP
has been reported to elevate levels of immunosuppressive cytokines
such as interleukin-10 (IL-10) and to attenuate antigen-presenting
cell function (11). Clinical observations echo these findings: APAP
exposure has been associated with reduced antibody responses to
viral infections and vaccinations, prompting international health
agencies to advise caution regarding its routine use in
immunologically sensitive contexts (12).

Despite these signals, clinical data on APAP use during ICI
therapy remain limited and inconsistent. Retrospective studies
examining the association between APAP exposure and ICI
outcomes have yielded conflicting results (11, 13). Given the
ubiquity of APAP use in cancer care—and the increasing reliance
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on ICIs as a cornerstone of systemic therapy—clarifying this
relationship is of substantial clinical importance.

To address this gap, we conducted a systematic review and
meta-analysis of studies evaluating the prognostic impact of APAP
use in cancer patients treated with ICIs. By integrating data across
cohorts and tumor types, we aimed to quantify the association
between APAP exposure and survival outcomes, assess potential
biases, and provide evidence-based guidance for the supportive care
of patients undergoing immunotherapy.

Methods
Study registration

This meta-analysis was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement (14). The protocol has been
registered in the International Prospective Register of Systematic
Reviews (PROSPERO) (identifier: CRD420251118489).

Data sources and search strategy

A systematic literature search was conducted using PubMed,
Web of Science, and Embase, covering all records from their
inception to August 2, 2025. The search strategy combined terms
related to acetaminophen (e.g., acetaminophen, paracetamol, N-
acetyl-para-aminophenol) and immune checkpoint inhibitors (e.g.,
immune checkpoint inhibitors, PD-1 inhibitors, PD-L1 inhibitors,
CTLA-4 inhibitors, pembrolizumab, nivolumab, atezolizumab,
ipilimumab), as well as terms pertaining to prognostic outcomes.
The complete search strategies for each database are detailed in
Supplementary Table 1.

Eligibility criteria and study selection
Studies were deemed eligible if they met the following criteria:

(i) assessed the prognostic impact of APAP use in patients receiving
ICIs, with comparator groups comprising patients not receiving
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APAP (concomitant use of other medications permitted); and (ii)
reported hazard ratios (HRs) with corresponding 95% confidence
intervals (CIs) for overall survival (OS) and/or progression-free
survival (PFS). Eligible study designs included randomized
controlled trials (RCTs) and observational cohort studies.
Exclusion criteria encompassed review articles, case reports,
preclinical studies, studies not evaluating APAP in relation to
clinical outcomes, and those comparing high-dose versus low-
dose APAP without a non-APAP control group.

The literature was managed and deduplicated using EndNote.
Two independent reviewers conducted the initial screening based
on titles and abstracts, followed by full-text evaluations for final
inclusion. Any discrepancies were resolved through discussion with
a third reviewer.

Data extraction and quality assessment

Two reviewers independently extracted data using a
standardized data collection form. Any discrepancies were
resolved through consensus or, if necessary, by consultation with
a third reviewer. The following information was extracted:

Study characteristics: First author, publication year, country,
study design, and sample size.

Patient characteristics: Cancer type, ICI regimen, and number
of patients receiving APAP.

Outcome data: HRs with corresponding 95% CIs for OS and
PES, as well as objective response rate (ORR). When both
unadjusted and adjusted HRs were reported, adjusted
estimates controlling for potential confounders
were prioritized.

The methodological quality of the included studies was assessed
using the Newcastle-Ottawa Scale (NOS) for cohort studies, which
evaluates study quality across three domains: selection of study
groups, comparability of groups, and ascertainment of outcomes
(maximum score = 9 stars). Studies with a NOS score > 7 were be
considered high quality (15).

Statistical analysis

Meta-analyses were conducted using R software (version 4.5.1).
Heterogeneity among studies was assessed using the I” statistic and
Cochran’s Q test. An I value greater than 50% along with a Q-test
p-value less than 0.10 was considered indicative of significant
heterogeneity. The DerSimonian-Laird random-effects model was
applied when substantial heterogeneity was present, whereas the
Mantel-Haenszel fixed-effects model was used for homogeneous
data. Pooled effect sizes were calculated for each outcome. HRs with
95% CIs were used for OS and PFS. Odds ratios (OR) with 95% CIs
were used for ORR. Publication bias was assessed using funnel plots
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and Egger’s regression test, with a p-value less than 0.05 indicating
significant bias. Sensitivity analyses were performed by sequentially
excluding each study to evaluate the robustness of the results. All
statistical tests were two-sided, and a p-value less than 0.05 was
considered statistically significant.

Results
Study selection

The systematic literature search initially identified 96
potentially relevant records. After removing duplicates, 84 unique
publications remained for preliminary eligibility assessment. Title
and abstract screening led to the exclusion of 75 articles that were
not relevant to the research objectives. As a result, 9 articles
proceeded to full-text evaluation. Following rigorous application
of the predefined inclusion criteria, 5 studies were deemed eligible
and included in the final quantitative synthesis (11, 13, 16-18). The
complete study selection process is illustrated in Figure 1.

Characteristics of the included studies

All five included studies employed retrospective cohort designs,
collectively comprising seven independent cohorts and a total of
2,349 patients (1,306 APAP users and 1,043 non-users). These
studies were published between 2022 and 2025 and represented
diverse geographic regions, including France (4 cohorts), China
(Hong Kong; 1 cohort), Italy (1 cohort), Japan (1 cohort), and one
multinational cohort. Considerable heterogeneity was observed in
cohort sizes, which ranged from 34 to 753 patients, and in the
prevalence of APAP exposure, which varied from 26.0% to 74.8%.

The included cohorts investigated a range of cancer types. Four
focused exclusively on non-small cell lung cancer (NSCLC), one on
renal cell carcinoma (RCC), and two included patients with various
solid tumors. ICI regimens consisted of anti-PD-1/PD-L1
monotherapy (e.g., nivolumab, pembrolizumab, atezolizumab) or
combination therapy with anti-CTLA-4 agents (e.g., ipilimumab).
Detailed study characteristics are summarized in Table 1.

Methodological quality, as assessed using the NOS, was
uniformly high. Six cohorts received the maximum score of 9 out
of 9, and one cohort received a score of 8, as presented in
Supplementary Table 2.

APAP use and prognosis in patients
receiving ICls

All studies included in this meta-analysis comprehensively
examined the association between APAP use and OS in patients
treated with ICIs, encompassing a total of 2,349 patients (APAP
users: 1,306; non-users: 1,043). Notably, no heterogeneity was
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observed across studies (I’=0%), allowing for the application of a
fixed-effect model to estimate the pooled HR. The analysis
demonstrated that APAP use was significantly associated with a
29% increased risk of death (HR: 1.29; 95%CI: 1.16-1.44;
Figure 2A), suggesting a potential detrimental effect of APAP on
the efficacy of ICIs.

Five cohorts, including 1,387 patients (APAP users: 777; non-
users: 610), assessed the impact of APAP use on PFS (11, 13, 17, 18).
Consistent with OS findings, no heterogeneity was detected
(I’=0%), and a fixed-effect model was utilized. The pooled results
indicated a 27% reduction in PFS among patients receiving APAP
concomitantly with ICIs (HR: 1.27; 95% CI: 1.12-1.43; Figure 2B),
further supporting the notion that APAP use may negatively
influence survival outcomes in this population.

Regarding ORR, data from three cohorts comprising 458
patients (APAP users: 217; non-users: 241) were analyzed (11,
13). The combined OR suggested a non-significant trend toward
reduced ORR with concurrent APAP use compared to non-use
(OR: 0.78; 95% CI: 0.60-1.00; Figure 4C).
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Publication bias and sensitivity analysis

Funnel plots and Egger’s regression tests revealed no significant
publication bias for OS and PFS outcomes (Figure 3). Furthermore,
sensitivity analyses employing a leave-one-out method confirmed
the stability and robustness of the pooled estimates for both OS and
PES (Figure 4).

Discussion

This meta-analysis consolidates evidence from 2,349 patients
across seven cohorts, revealing a consistent association between
APAP use and diminished clinical outcomes in cancer patients
receiving ICIs. The observed HRs—1.29 for OS and 1.27 for PFS—
translate to a nearly 30% increased risk of death or disease
progression among APAP-exposed individuals. These findings
assume critical significance in the context of immuno-oncology,
where ICIs rely on robust T-cell-mediated antitumor responses, and
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FIGURE 2

Forest plots of the prognostic impact of APAP use in patients receiving ICls. Pooled HRs for OS (A) and PFS (B), and pooled OR for ORR (C) are
shown. Squares represent individual study estimates, with size proportional to study weight; horizontal lines indicate 95% Cls. Diamonds represent
pooled estimates derived from random-effects models. HRs greater than 1 or OR less than 1 indicate worse outcomes in APAP users compared with

non-users.

even subtle immune modulation by concomitant medications can
undermine therapeutic efficacy. The homogeneity of effects across
diverse populations (I’=0%) and robustness to sensitivity analyses
further underscore the clinical relevance of this association.
Although no significant statistical heterogeneity was detected,
underlying variability in patient characteristics, tumor type, and
APAP exposure definitions may have contributed to subtle clinical
differences among studies. For example, four included cohorts
exclusively enrolled NSCLC patients, while others involved RCC
or mixed tumor populations, potentially influencing immune
responsiveness. Moreover, some studies quantified plasma APAP
levels, reflecting direct systemic exposure, whereas others relied on
prescription data, which may underestimate biologically relevant
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dosing. Despite these variations, the direction of effect remained
remarkably consistent across cohorts, suggesting a genuine
association rather than a population-specific artifact. Future
prospective analyses with standardized exposure definitions are
warranted to validate this relationship.

The biological plausibility of the detrimental impact of APAP
on ICI efficacy is supported by converging mechanistic evidence
that elucidates how APAP interferes with the immune pathways
targeted by checkpoint blockade. The therapeutic activity of ICIs
depends on restoring cytotoxic CD8" T-cell function and
overcoming immunosuppressive barriers within the tumor
microenvironment. APAP appears to counteract these processes
through several complementary mechanisms. First, APAP fosters
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FIGURE 3

Funnel plots and Egger’s tests for publication bias. Funnel plots for OS (A) and PFS (B) outcomes showing the distribution of study-specific log HRs
against their standard errors. Visual symmetry suggests a low likelihood of publication bias, which was further evaluated using Egger’s regression test

(p-values shown).

an immunosuppressive milieu by promoting regulatory T-cell
(Treg) expansion and elevating interleukin-10 (IL-10) levels (11).
These expanded Tregs further suppress effector T-cell proliferation
and cytotoxic activity, partly through the release of inhibitory
cytokines such as TGF-B (19). This immune shift toward
tolerance has been observed in patients with detectable plasma
APAP at ICI initiation, who exhibited increased circulating Tregs
and IL-10 concentrations correlated with inferior survival outcomes

(11). Second, APAP directly impairs effector T-cell function by
suppressing interferon-gamma (IFN-y) production—a key cytokine
essential for antitumor immunity, antigen presentation, and tumor
cell killing (11, 20). Experimental studies have demonstrated that
APAP reduces IFN-y secretion in anti—-PD-1-stimulated peripheral
blood mononuclear cells, indicating a direct antagonistic effect on
the immune activation intended by PD-1 blockade (11). Beyond
this, emerging evidence suggests that APAP may disrupt

FIGURE 4
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Sensitivity analyses for included studies on OS and PFS. Leave-one-out sensitivity analyses assessing the influence of each individual study on the
pooled HR for OS (A) and PFS (B). The stability of pooled estimates upon sequential exclusion of single studies indicates the robustness of the overall

results.
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mitochondrial function and cellular energy metabolism, potentially
compromising the bioenergetic demands of T-cell activation and
proliferation, though this pathway warrants further investigation in
the context of immunotherapy (21-23). Furthermore, APAP has
been shown to induce neutrophil extracellular trap (NET)
formation (24). These NETs not only hinder T-cell infiltration
and cytotoxic function but may also promote tumor progression
(25). In APAP-induced liver injury models, NETosis has been
associated with AIM2 inflammasome activation and inflammatory
cell death (PANoptosis), potentially exacerbating tissue injury and
reinforcing an immunosuppressive microenvironment (26). This
mechanism, already linked to reduced response to neoadjuvant
chemoimmunotherapy in NSCLC (24), represents a novel physical
and functional barrier through which APAP may diminish
immunotherapy efficacy. Collectively, these findings highlight that
APAP compromises multiple arms of antitumor immunity—
including amplification of immunosuppressive circuits,
suppression of effector T-cell signaling, potential disruption of T-
cell metabolism, and induction of NET-mediated barriers—offering
a coherent and multifaceted biological rationale for the poorer
survival outcomes observed in APAP-exposed patients.

A critical consideration in interpreting these findings is the
potential for confounding by indication. Patients requiring APAP
may have a higher baseline symptom burden, such as pain from
bone metastases or cancer-related fever, which itself reflects more
aggressive disease biology and poorer prognosis. While most
included studies employed multivariate analyses adjusting for key
confounders—such as performance status, tumor burden, and line
of therapy—the possibility of residual confounding from
unmeasured factors (e.g., systemic inflammation or concurrent
infection) cannot be fully excluded. Nevertheless, the consistency
of the detrimental association across multiple independent cohorts,
even after statistical adjustment, supports the likelihood of an
independent effect of APAP. Future prospective studies with
detailed documentation of indication-for-use and concomitant
medications are warranted to further disentangle this relationship.

The dose-response relationship between APAP exposure and
ICI outcomes has begun to emerge, lending further support to a
potential causal link. Although high doses (e.g., 4 g/day) have been
shown to induce Treg expansion in healthy volunteers (11), the
immunologic effects of typical oncologic doses (1-2 g/day) require
further clarification. Clinically, studies stratifying patients by
plasma APAP concentration have demonstrated that higher levels
at ICI initiation are associated with significantly worse survival
outcomes (24, 27). Similarly, in real-world cohorts, high cumulative
APAP exposure (e.g., 260 doses of 1000 mg) was identified as an
independent predictor of shorter PFS and OS in NSCLC patients
receiving ICIs, whereas low or short-term exposure showed no
significant impact (27). Although the precise threshold for clinically
relevant risk remains undefined, these findings suggest that both the
magnitude and timing of APAP exposure—particularly sustained,
high-dose use during early immune activation—may be key
determinants of immunotherapy efficacy.

Notably, studies stratifying patients by APAP plasma
concentration support a potential dose-response gradient, with
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higher levels at ICI initiation linked to significantly worse survival
(24, 27). This implies that not only the presence but also the timing,
dose, and systemic availability of APAP may modulate
immunotherapy efficacy. In real-world settings, high cumulative
APAP exposure (260 doses of 1000 mg) independently predicts
shorter PFS and OS in NSCLC patients on ICIs, whereas low
exposure (<24 hours or <60 doses) shows no significant impact,
offering preliminary guidance for clinical practice (27).

The pooled hazard ratios of 1.29 for OS and 1.27 for PFS
translate to an approximately 30% increase in the risk of death or
disease progression among APAP users. This effect size is not only
statistically significant but also clinically meaningful. In the field of
immuno-oncology, a 30% increase in mortality risk represents a
substantial effect, comparable to the detrimental impact observed
with baseline corticosteroid or antibiotic use in patients receiving
ICIs. This magnitude of risk underscores the need for heightened
awareness and strategic management of concomitant APAP
exposure. These findings also emphasize that even a widely
perceived “safe” medication may compromise immunotherapy
efficacy, highlighting the importance of incorporating medication
review and pharmacovigilance into routine immunotherapy
management to identify and mitigate modifiable risk factors.

Given these complexities, a risk-adapted approach to symptom
management is warranted. For mild symptoms, non-pharmacologic
measures such as physical therapy or cooling should be prioritized.
When analgesia is necessary, short-term APAP use (<72 hours) may
be acceptable in low-risk settings (e.g., during ICI maintenance or
among strong responders), whereas NSAIDs with gastroprotection
or low-dose opioids may be preferable in high-risk contexts (e.g.,
during early ICI cycles or in patients with low PD-L1 expression).
Importantly, symptom control should not be compromised;
analogous to WHO recommendations discouraging prophylactic
APAP before vaccination to preserve immune responses, similar
principles of timing and selective avoidance may apply in
immunotherapy (28). NSAIDs, in particular, have shown
improved OS compared to APAP in NSCLC patients receiving
ICIs, though their use requires caution in those with renal or
gastrointestinal comorbidities (16).

Several limitations of the primary studies merit consideration.
First, retrospective designs risk residual confounding by indication,
as patients requiring APAP may have higher symptom burdens
reflective of aggressive disease. Second, variability in APAP
exposure metrics—from plasma quantification to prescription
records—precludes definitive dose-response conclusions. Third,
insufficient data on concomitant medications (e.g., corticosteroids
or antibiotics) limits assessment of drug-drug interactions. Finally,
the predominance of NSCLC cohorts raises questions about
generalizability to other malignancies.

Future research should address these gaps. Prospective studies
quantifying APAP dose, timing, and indication relative to ICI cycles
could identify vulnerability thresholds (e.g., >3 g/day within 48
hours of infusion). Biomarker-integrated studies measuring Treg or
IL-10 dynamics in response to APAP may identify high-risk
patients. Pragmatic trials comparing APAP-restrictive and
permissive strategies—stratified by cancer type and co-
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medications—are ethically feasible using endpoints like pain
control and ICI response. Regulatory updates, such as requiring
drug labels to highlight APAP-ICI interactions, and documenting
APAP exposure in electronic medical records, could facilitate real-
world risk assessments and guide clinical decision-making.

Conclusion

Current evidence indicates that APAP use is associated with
poorer outcomes in ICI-treated cancer patients, likely via
suppression of antitumor immunity. Clinicians should minimize
unnecessary or prolonged APAP use during critical periods of
immune activation, prioritizing alternative symptom management
strategies when feasible. Further research is needed to establish
causal relationships and define safe thresholds to guide evidence-
based stewardship.
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