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Toll-like receptors (TLRs) belong to the family of pattern recognition receptors
(PRRs), playing critical roles in linking innate with adaptive immunity by recognizing
pathogen-associated molecular patterns (PAMPs) and danger-associated
molecular patterns (DAMPs). TLRs and TLR signaling pathways serve as not only
the first line of pulmonary defense against pathogens infection but crucial factors
in maintaining pulmonary immune homeostasis. However, aberrant activation of
TLR signaling leads to inflammation and immune dysregulations, contributing to
various pulmonary diseases, including inflammation, infection, fibrosis, and
malignancy. This review summarizes the updated roles of TLRs and TLR
signaling in lung development and the establishment and regulation of
pulmonary region-specific immunity. We further elucidate the involvement of
TLRs and TLR signaling in the onset and progression of lung diseases, such as
infections, fibrosis, malignancies, and immune disorders. It would provide updated
insights into the exploration of novel diagnostic and therapeutic strategies
targeting TLRs and TLR signaling in pulmonary diseases.

KEYWORDS
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1 Introduction

Toll-like receptors (TLRs) belong to the family of pattern recognition receptors (PRRs)
that primarily recognize pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs) and activate innate immune response. They play
pivotal roles in immune defense, inflammatory response, and the linkage of innate immunity
with adaptive immunity. This receptor family was named due to its structural similarity to the
Drosophila “Toll” protein firstly identified by Eric Wieschaus and Christiane

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1682649/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1682649/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1682649/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1682649/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1682649&domain=pdf&date_stamp=2025-11-10
mailto:dyf813@sina.cn
mailto:xudh@sdsmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1682649
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1682649
https://www.frontiersin.org/journals/immunology

Qu et al.

Niisslein-Volhard during Drosophila developmental research (1).
Subsequently, TLRs have been found to be closely associated with
inflammatory and immune responses (2, 3). The murine genome
encodes a total of 12 functional Tlrs, comprising TIrI through Tir9
along with Tlr11 to TIr13. Notably, the expression of functional TIr10
is absent in mice due to the insertion of retroviral-derived DNA
sequences that disrupt its coding region (4). Among humans, ten
functional TLRs have been identified, designated as TLRI through
TLRI0 (4). Based on their distinct subcellular localization patterns,
TLRs can be categorized into two principal subfamilies including the
cell surface subfamily and the endosomal subfamily (5). The cell
surface subfamily, comprising TLR1, TLR2, TLR4, TLR5, and TLRé6,
is primarily localized to the plasma membrane, where these receptors
recognize lipids, lipoproteins, and other extracellular PAMPs. In
contrast, the endosomal subfamily, which includes TLR3, TLR7,
TLR8, and TLRY, predominantly resides within intracellular
compartments, such as the endoplasmic reticulum, endosomes, and
lysosomes, where they mediate the detection of nucleic acids derived
from intracellular pathogens (5).

From a molecular perspective, TLRs are type I single-pass
transmembrane proteins, ranging from 700 to 1, 100 amino acids in
length, whose extracellular leucine-rich repeat (LRR) domains serve as
sensors for PAMPs, thereby triggering the activation of innate
immunity (6, 7). The intracellular Toll/IL-1 receptor (TIR) domain
is evolutionarily conserved and serves as a signaling platform for the
recruitment of specific adaptor proteins, such as TIR domain-
containing adaptor protein (TIRAP), myeloid differentiation factor
88 (MyD88), TIR-domain-containing adaptor inducing interferon-f3
(TRIF), and TRIF-related adapter molecule (TRAM). This assembly
nucleates distinct signaling complexes that activate nuclear factor-kB
(NF-xB) and interferon regulatory factor (IRF) transcription factors,
leading to the production of proinflammatory cytokines and type I
interferons (IFNs) (8). With the exception of TLR3 and the endosomal
TLRs (TLR7/8/9), select TLRs (TLR2 and TLR4) require the bridging
adaptor TIRAP to recruit MyD88, which in turn activates interleukin-
1 receptor-associated kinases (IRAKs) and downstream NF-kB/
Mitogen-Activated Protein Kinase (MAPK) pathways to induce
proinflammatory cytokines (9). In contrast, TLR3 signals
independently of MyD88 by engaging the adaptor TRIF, which
activates TANK-binding kinase 1 (TBK1) and IxB kinase € (IKKe)
to phosphorylate IRF3, thereby inducing IFNs and contributing to
delayed NF-kB activation (10, 11). TLR4 is unique in its ability to
utilize both the MyD88-TIRAP and TRIF-TRAM axes, enabling it to
orchestrate robust inflammatory responses alongside potent antiviral
interferon production (12). Furthermore, endosomal TLRs, such as
TLR7, TLR8, and TLRY, recognize nucleic acid ligands and can directly
engage MyD88 to recruit and activate IRF7, driving rapid and robust
type I interferon responses (13). Collectively, these specialized
signaling architectures enable precise control of immune cell
activation and effector functions, playing pivotal roles in establishing
pulmonary immunity and shaping the pathogenesis of lung diseases.

TLRs are expressed in various types of immune cells, including
macrophages, dendritic cells (DCs), B lymphocytes, and T
lymphocytes (14). They regulate the expression of pro-
inflammatory cytokines and interferons by activating key
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transcription factors, such as NF-xB and IRFs, thereby aiding the
host in defending against a wide range of pathogenic infections and
adapting to complex microenvironmental changes (15). In the lung,
TLRs are predominantly expressed in immune cells such as alveolar
macrophages, DCs, and lymphocytes, forming the foundation of both
innate and adaptive immune responses in the respiratory system (16).
Studies have shown that TLRs play critical roles in the initiation and
progression of lung diseases. For instance, activation of mucosal
TLRS5 has been demonstrated to delay thymic involution and protect
against pulmonary fibrosis through enhancement of stem cell activity
(17). X-linked recessive TLR7 deficiency in males results in impaired
IFN immunity and severe COVID-19 pneumonia (18). In a house
dust mite-induced murine model of allergic asthma, activation of
TLR3 not only enhanced the antiviral response but alleviated the viral
infection via regulating immunoproteasome dysfunction (19). In
addition to immune cells, TLRs are also expressed in pulmonary
epithelial cells and vascular endothelial cells, which play regulatory
roles in maintaining lung function (20). Therefore, TLRs are essential
for defending against pulmonary infections and maintaining regional
immunity balance. However, excessive activation of TLRs can lead to
pulmonary inflammation and immune dysregulation, contributing to
the development of pneumonia, pulmonary fibrosis, and lung cancer.
It has been shown that TLR4-mediated chronic inflammatory
responses lead to an imbalance in the proportions of alveolar
macrophages and CD163" myeloid-derived monocyte-
macrophages, which represents one of the fatal mechanisms
underlying COVID-19 pathogenesis (21). Air pollutants such as
polystyrene microplastics can induce pulmonary inflammation and
apoptosis of lung cells by activating the TLR2/NF-«B signaling
pathway, ultimately leading to lung injury and fibrosis (22).
Therefore, the TLR family plays a crucial role in the regulation of
pulmonary inflammation and regional immunity, representing a
potential therapeutic target for the intervention of lung diseases.

In this review, we aim to elucidate the regulatory roles and
underlying mechanisms of TLRs in lung physiology, as well as the
immunomodulatory functions of TLRs and their downstream
signaling molecules in pulmonary immunity. Furthermore, we
discuss how aberrant activation of TLR signaling contributes to
the pathogenesis of various lung diseases, including pulmonary
infectious diseases, interstitial lung diseases (ILDs), and
malignancies. We also briefly summarize recent clinical studies
targeting TLR pathways, highlighting their potential for therapeutic
intervention. This work provides a theoretical foundation for the
development of novel strategies targeting TLRs and their signaling
networks in the treatment of pulmonary disorders.

2 Regulatory roles of TLRs in
pulmonary physiology

2.1 TLRs in maintaining pulmonary
homeostasis

As one of the first identified PRRs, TLRs play a pivotal role in
the regulation of innate immunity by recognizing PAMPs and
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DAMPs (23). In the lung, TLRs are expressed not only in immune
cells, such as alveolar macrophages and dendritic cells, but also in
pulmonary epithelial cells, suggesting their critical roles in host
defense against infection and normal lung development (24, 25).
Using a false discovery rate algorithm, researchers have found that
TLR2 was consistently upregulated across distinct stages of fetal
lung development, from the early pseudo-glandular stage to the late
pseudo-glandular and canalicular phases (25). In addition, the
functional expression of TLR2 and TLR4 has been detected in
murine pulmonary epithelial cells (26). Upon recognition of
pathogen-derived molecules, these receptors promote epithelial
cell proliferation (27). Studies utilizing gene knockout technology
have demonstrated that TIr2”~ and Tlr4”" mice exhibit enhanced
pulmonary epithelial cell apoptosis and impaired macrophage
trans-epithelial migration following lung injury (28). These
findings suggest that TLR2 and TLR4 play critical roles in
maintaining epithelial cell integrity and facilitating tissue repair
following lung injury. The protective effects of TLR2 and TLR4 on
epithelial cells are predominantly mediated through the recognition
of intracellular high-molecular-weight hyaluronic acid (HA) (29).
As a critical mediator of tissue repair and remodeling, hyaluronic
acid not only inhibits cellular apoptosis but promotes the
proliferation and regeneration of surfactant protein C-positive
alveolar progenitor cells through TLR4 activation, thereby
inhibiting pulmonary fibrosis in mice (30, 31).

Endothelial cells are essential cells maintaining the pulmonary
homeostasis through the expression of various adhesion molecules
and cytokines (32). Studies have shown that TIr2 deletion in murine
pulmonary endothelial cells leads to a significant reduction in
angiogenesis-associated signaling pathways, including the
phosphorylation activation of extracellular signal-regulated
kinases 1 and 2 (ERK1/2), as well as the secretion of cytokine-
induced neutrophil chemoattractant (CINC) (33). As a TLR2/6
agonist, macrophage-activating lipopeptide 2 kDa (MALP-2) not
only promotes the proliferation and migration of endothelial cells
but upregulates the expression of granulocyte-macrophage colony-
stimulating factor (GM-CSF) essential for angiogenesis (34).
Emerging evidence indicates that the expression of TLR3 is
significantly downregulated in pulmonary endothelial cells from
patients with pulmonary arterial hypertension (PAH). Knockout of
TIr3 enhances the susceptibility of endothelial cells to apoptosis in
Tlr3-deficient (TIr3™") mice, thereby contributing to pulmonary
vascular remodeling (35). Furthermore, the TLR3 agonist
polyinosinic/polycytidylic acid [Poly(I: C)] enhances the binding
of IRF3 to the bone morphogenetic protein receptor II (BMPR2)
promoter, thereby inhibiting clonal proliferation of endothelial cells
and alleviating pulmonary arterial hypertension (PAH) caused by
vascular remodeling (36). Activation of TLR4 suppresses the
expression of p16™ " a senescence-associated protein, via
histone deacetylase 2 (HDAC2)-mediated deacetylation of histone
H4 (37). However, the silencing of Tlr4 in pulmonary endothelial
cells leads to the development of emphysema. Accordingly, TLRs
contribute to the maintenance of pulmonary integrity by regulating
endothelial cells (Figure 1).
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2.2 TLRs and pulmonary microbiome

The lung microbiota is closely associated with the maintenance
of pulmonary homeostasis and the regulation of local alveolar
immune responses, while the pulmonary immunity is crucial for
the maintenance of lung Microbiome (38). In TIr-deficient mice, the
pulmonary microbiota exhibits significant dysbiosis, indicating that
TLRs play a crucial role in regulating lung microbiome (39).
However, selective activation of TLRs does not alter the gut
microbiota in healthy mice, suggesting that under normal
physiological conditions, TLR signaling has limited influence on
microbial community composition (40). It has been shown that the
expression of TLRY in the lung is positively correlated with the
abundance of Staphylococcus and Prevotella, and the interaction
between TLR9 and the microbiota is associated with improved
progression-free survival (PFS) in pulmonary fibrosis (41). These
findings suggest a potential role for TLR9 in modulating the
pulmonary microbiota and its impact on the pathogenesis of
pulmonary fibrosis. Besides, the responsiveness of TLR4 in
alveolar macrophages is reduced in individuals with a
pneumotype characterized by enrichment in upper respiratory
tract-associated microbiota (pneumotype SPT), and this reduction
is associated with attenuated pulmonary inflammatory response
(42). This difference reflects the distinct regulatory mechanisms by
which different pulmonary microbiota modulate immune responses
in the lung. These findings indicate that the activation of TLRs not
only directly influences the composition of the pulmonary
microbiota, but indirectly affects microbiota dynamics by
modulating pulmonary immune and inflammatory responses.

In summary, TLRs play an indispensable role in lung development
and physiological regulation. They contribute to the maintenance of
normal pulmonary function through the modulation of lung epithelial
and vascular endothelial cells, as well as the complicated interactions
with the pulmonary microbiota. TLRs not only contribute to the
maintenance of pulmonary homeostasis, but serve as key foundation
linking both innate and adaptive immune defenses. Moreover, TLRs
and the subsequent activation of downstream signaling pathways can
trigger a range of pathophysiological changes in the lung. The
functional heterogeneity of TLRs provides insight into understanding
the mechanistic roles of TLRs in various pulmonary diseases.

3 Orchestrating immunity and
inflammation: functions of TLR
adaptors in the lung

TLRs play a pivotal role in lung development and homeostasis
through recognition of specific ligands, a process reliant on highly
conserved downstream signaling pathways and specialized adaptor
molecules. Key adaptors, including MyD88, TIRAP, TRIF, and
TRAM, form a core signaling network that not only provides a
first line of defense against pathogens but also ensures immune
homeostasis and prevents excessive inflammation (Table 1).
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Roles of TLRs in pulmonary physiology and pathology. In lung physiological homeostasis, TLR4 senses intracellular HA to promote the proliferation
and renewal of alveolar progenitor cells, while its activation in endothelial cells induces histone H4 deacetylation via HDAC2-mediated mechanisms,
leading to the suppression of the senescence-associated gene p16INK4a and the maintenance of pulmonary integrity (30, 31, 37). The TLR2/6
agonist MALP-2 mediates ERK1/2 phosphorylation and CINC secretion upregulates GM-CSF expression and promotes pulmonary angiogenesis (34).
In contrast, the TLR3 agonist Poly (I: C) suppresses endothelial cell clonogenic proliferation and attenuates vascular remodeling by enhancing IRF3
binding to the BMPR2 promoter (36). In contrast, excessive activation of TLR4 triggers Scr/VE-cadherin pathway activation and promotes alveolar
macrophages and neutrophils through NF-xB hyperactivation (132). TLR2 in endothelial cells exacerbates endothelial injury and coagulation
dysregulation by mediating NETs-STING interactions (130). In addition, TLR7 recognizes miR-146a-5p, leading to impaired endothelial barrier
function and contributing to the development of sepsis-induced ARDS (133), while excessive TLR7/8 activation drives autoimmune vasculitis (134).

3.1 MyD88 and TIRAP

As the central adaptor for most TLRs, MyD88 recruits IRAK1
and IRAK4 via its death domain to form the Myddosome complex,
activating the MAPK and NF-«B signaling pathways. This leads to
the nuclear translocation of NF-xB and AP-1, rapidly inducing the
pro-inflammatory cytokines such as TNF-o and IL-6, which are
essential for bacterial clearance in the lung (9, 43). Within
endosomes, MyD88 is recruited by TLR7, TLR8, and TLRY to
initiate the MyD88-IRF?7 signaling axis, driving the phosphorylation
and nuclear translocation of IRF7, resulting in robust production of
IFN-o critical for antiviral immunity (13).

Studies have shown that MyD88-deficient mice exhibit
significantly higher viral loads in the lungs following SARS-CoV
infection (44), and display increased susceptibility and mortality
during Streptococcus pneumoniae infection (45). These findings
underscore the critical role of MyD88 in pulmonary host defense
against both viral and bacterial pathogens. MyD88 synergizes with
the cyclic GMP-AMP synthase-stimulator of interferon genes
(cGAS-STING)pathway in Ly6C™ monocytes to enhance IFN-y
production during Streptococcus pneumoniae infection (46). TIRAP
facilitates MyD88 recruitment to TLR2/4 complexes (47). Similarly,
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Tirap-deficient mice exhibit increased mortality in bacterial lung
infections. Studies have demonstrated that TIRAP is a critical
mediator in the lung's defense against Klebsiella pneumoniae and
Escherichia coli infections (48, 49).

However, during SARS-CoV-2 infection, aberrant activation of
the MyD88/TIRAP-IRAK-NF-xB signaling axis may drive
macrophage hyperactivation and cytokine storm-mediated acute
lung injury (ALI) (50). Targeting this axis has emerged as a
therapeutic strategy (51, 52). Interestingly, TIRAP-MyD88
inhibition promotes M2 macrophage polarization, underscoring
its context-dependent role (53). MyD88 function also varies by
cell type: in myeloid cells it exacerbates inflammation, whereas in
stromal cells it may exert anti-inflammatory effects (54).

3.2 TRIF and TRAM

TRIF is encoded by the Ticaml gene. The TRIF-dependent
pathway, activated primarily by TLR3/4, induces IFN-f production.
TRIF recruits TBK1 and IKKe, leading to IRF3 phosphorylation,
nuclear translocation, and IFNBI transcription. Ticaml deficiency
impairs this antiviral response (55). TRAM specifically bridges
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TABLE 1 Functions of TLR adaptor proteins in lung immunity.

10.3389/fimmu.2025.1682649

Adaptor Related Downstream signaling Functions in lung immunity
molecules TLRs pathway
MyD88 TLR2, 1.MyD88- IRAK1/4- MAPK /NF-xB Protective Roles: (43)
TLR4, 2. MyD88 - IRAK1 - IRF7
TLR5, «Clearing bacterial infections and inducing proinflammatory cytokines
TLR7/S, (TNF-at, IL-6)
TLRY
«Mounting antiviral defense via IRE7-mediated IFN-o. induction (13)
«Synergizing with cGAS-STING to boost IFNy production in Ly6Chi (46)
monocytes against pneumococcus
Pathogenic Roles: (50)
«Exacerbating ALI by driving macrophage overactivation
TIRAP TLR2, TIRAP - MyD88 - NF-xB Protective Roles: (47)
TLR4
«Serving as a dedicated adaptor for recruiting MyD88 to membrane-
bound TLR2/4
«Mediating Antiviral and Antibacterial Responses in the Lung (48, 49)
TRIF TLR3, TRIF - TBK1/IKKe - IRF3 Protective Roles: (55)
TLR4
«Mediating antiviral responses through IFN-B production
« Contributing to OM-85-induced Treg expansion and suppression of | (56)
type 2 asthma inflammation
Pathogenic Roles: (57)
«Mediating tissue damage via caspase-8/GSDMD pyroptosis pathway
during chronic inflammation
TRAM TLR4 TRAM - TRIF - TBK1/IKKe - IRF3 Protective Roles: (55)

TLR4 to TRIF; its deletion disrupts TLR4-mediated TRIF-TBK1-
IRF3 activation and increases viral susceptibility (55).

Beyond antiviral roles, TRIF signaling has immunomodulatory
functions. The bacterial lysate OM-85 expands Tregs via dendritic
cell MyD88/TRIF signaling, suppressing type 2 inflammation in
asthma and promoting tolerance (56). However, in chronic
inflammation such as cigarette smoke exposure, TLR4 signaling
may shift from MyD88 to TRIF/caspase-8/GSDMD pyroptosis,
releasing DAMPs and perpetuating tissue injury (57). Thus,
MyD88 and TRIF are not simply antagonistic but form a dynamic
network with bidirectional crosstalk, where outcomes depend on
stimulus, cell type, and microenvironment. For instance, in ALI,
TLR4 synergistically activates STING via coordinated MyD88 and
TRIF signaling, amplifying inflammation (58).

Targeting TLR adaptors offers novel therapeutic potential. In
experimental sepsis, TRAM deletion promotes neutrophil
resolution and reprograms monocyte/macrophage function,
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+Guiding TLR4-TRIF pathway activation for antiviral immunity

«Interacting with NLRC3 in Tregs to suppress excessive inflammation | (60)
and pathological vascular remodeling

Pathogenic Roles: (59)

«Converting neutrophils to a pro-inflammatory phenotype,
exacerbating lung injury in experimental sepsis.

alleviating lung injury (59). TRAM also interacts with NLRC3 in
Tregs to suppress excessive inflammation and pathologic vascular
remodeling (60).

Despite advances, key challenges remain. Cell type-specific
functions of adaptors are incompletely defined. In chronic
diseases, precise modulation, such as inhibiting detrimental
MyD88-driven inflammation while preserving beneficial TRIF-
mediated responses, remains a major hurdle. Studies on
downstream adaptor proteins of TLRs in the lung have revealed
that these adaptors are essential mediators of TLR-mediated
immune defense and immunoregulation. Dysregulation of
adaptor function can lead to excessive TLR activation and
contribute to the development of pulmonary pathological
changes. In the following sections, we will discuss the roles of
TLRs in regulating both innate and adaptive immunity in the lung,
as well as the mechanisms by which dysregulation of the TLR
signaling network drives pulmonary disease pathogenesis.
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4 Regulatory network of TLRs in
pulmonary regional immunity

4.1 Regulation of innate immune responses
by TLRs in the lung

The innate immune system in the lungs constitutes the first line of
defense against pathogen invasion through rapid response mediated
by PRRs (61). Among PRRs, TLRs initiate innate immune response
upon recognition of PAMPs. Innate immune cells such as alveolar
macrophages, dendritic cells, and neutrophils establish a defense
network within the pulmonary microenvironment via TLRs
signaling pathway (62).

4.1.1 Regulation of alveolar macrophages by TLRs
As specialized tissue-resident macrophages localized within the
alveolar lumen and interstitium, alveolar macrophages play a central
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role in respiratory immune defense through unique tissue
adaptability and phenotypic plasticity (63). Activation of TLRs is
not only essential for the initiation of phagocytic function in alveolar
macrophages but also facilitates the formation of immunorecognition
complex through synergistic interactions with other PRRs (Figure 2)
(64). It has been well demonstrated that TLR2 recognizes the
influenza virus and mediates the establishment of an antiviral
defense barrier in the upper respiratory tract, thereby significantly
reducing the risk of viral dissemination to the pulmonary
parenchyma (65). In a Mycobacterium tuberculosis (Mtb) infection
model, the activation of TLR2/Radioprotective 105 kDa protein
(RP105) signaling axis in alveolar macrophages promotes the
expansion of the macrophage-rich region at the granuloma core
(66). TLR4 forms a heterodimeric complex with the C-type lectin
receptor CLEC4E, enhancing lysosome biogenesis through the
phosphoinositide 3-kinase(PI3K)-STAT1 signaling pathway while
simultaneously suppressing the secretion of Th2-type cytokines,
such as IL-4 and IL-10, thereby enabling the clearance of

— Anti-infectio

3 —] hypersensitivity pneumonitis

Aspergillus
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{TLR3/4I7/9

e
Type I

Regulation of innate immune responses by TLRs in the lung. In Alveolar macrophages, the co-activation of TLR4 and CLECAE triggers the MyD88/
PtdIns3K/STAT1/NF-«B signaling pathway, enhancing lysosome biogenesis while suppressing IL-10 and IL-4 expression, thereby controlling Mtb
infection (68). LPS-activated TLR4 induces a phenotypic transition from CD11blow to CD11bhigh Alveolar macrophages, modulating their response
to pathogen-associated components (72). TLR7 activation in epithelial barriers promotes monocyte differentiation into AMs, reducing pulmonary viral
load (74). In the tumor microenvironment, endosomal TLR7/8 activation synergizes with MR signaling to drive TAMs toward an M1 anti-tumor
phenotype (82). This enhances T cell recruitment by upregulating chemokines CXCL10 and CCLS5, thereby boosting anti-tumor immunity. During
Aspergillus fumigatus infection, TLR2-CLEC4E co-activation in dendritic cells increases IL-10 production via MyD88, suppressing eosinophil
infiltration and negatively regulating hypersensitivity pneumonitis (69). TLR5 signaling promotes dendritic cell differentiation into CD11b" cDC2
subset, which then releases type | interferons through TLR3/4/7/9 activation, enhancing T cell function (86, 87). Neutrophil-expressed TLR2
recognizes lipoproteins from Prevotella species in airways, inducing TNF-a and IL-10 production (75). TLR1/2 and TLR4 activation triggers NF-kB/
p65/STAT1 signaling, promoting ROS and IFN-y release, which mediate pulmonary antibacterial immunity (91, 92).
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Mtb (67, 68). This synergistic effect is receptor-specific. In allergic
pneumonia caused by Aspergillus fumigatus, the co-activation of
TLR2 and CLEC4E in bone marrow-derived dendritic cells
suppresses inflammation via upregulating IL-10 in a MyD88-
dependent manner (69).

The functional diversity of TLRs is particularly evident in bacterial
pneumonia. During Streptococcus pneumoniae infection, the deficiency
of endosomal TLR-mediated (TLR7/9) nucleic acid sensing pathways
in alveolar macrophages leads to enhanced infection. Notably, a
functional compensation between TLR7 and TLR9 in nucleic acid
recognition has been observed, which plays a role in preventing
S. pneumoniae from immune evasion (70). In addition, alveolar
macrophages undergo phenotypic transition upon TLR activation,
which affects the production of pro-inflammatory cytokines and
chemokines (71). For example, in a lipopolysaccharide (LPS)-induced
murine model of acute respiratory distress syndrome (ARDS), alveolar
macrophages undergo a TLR4-mediated phenotypic transition from
CD11b"" to CD11b"#", thereby enhancing the inflammatory response
to pathogens (72). These findings confirm the central role of TLRs in
the regulation of alveolar macrophages and highlight their
contributions to enhanced pulmonary immune responses through
synergistic interactions with other PRRs.

The immunoregulatory network of TLRs is also essential for the
remodeling of tissue microenvironment. In Legionella pneumonia,
infected alveolar macrophages induce an interleukin-1 (IL-1)-
dependent inflammatory response, which thus stimulates alveolar
epithelial cells to produce GM-CSF (73). GM-CSF signaling
enhances TLR-mediated pathways in alveolar macrophages, leading
to metabolic reprogramming characterized by increased glycolysis,
thereby amplifying the antimicrobial activity and inflammatory
cytokine production of monocytes (73). Moreover, the activation of
TLR7 promotes the differentiation of pulmonary monocytes into
tissue macrophages, significantly reducing pulmonary viral load
(74). Neutrophil-expressed TLR2 plays a crucial role in the
clearance of S. pneumoniae by recognizing lipoproteins of Prevotella
species and enhancing serine protease activity (75). TLR2 agonist
INNA-X activates the TLR2/NF-kB/IFN-A signaling pathway in
airway epithelial cells, thereby enhancing lymphocyte recruitment
and suppressing neutrophils-mediated inflammation (76).
Accordingly, TLRs help to establish a sustained innate immune
response that alleviates pulmonary infections.

Alveolar macrophages exert immunosuppressive effects during
the anti-tumor immune response (77). Emerging evidence indicates
that TLRs enhance the efficacy of cancer immunotherapy by
modulating metabolic reprogramming in alveolar macrophages (78).
It has been demonstrated that HA-mannose-modified nanocapsules
loaded with TLR3 agonist Poly (I: C) and TLR7/8 agonist resiquimod
(R848) could specifically target alveolar macrophages in lung tumor-
bearing mice (79). Activation of TLR3/7/8 induces alveolar
macrophages to an CD86"8"CD206°"Argl'™ MI-like antitumor
phenotype, enhancing the expression of T-cell chemokines CXCL10
and CCL5 and effectively suppressing tumor metastasis (79). SHISA3
functions as a tumor-suppressive protein (80). The combination of the
TLR4 agonist monophosphoryl lipid A (MPLA) and anti-PD-1
antibody promotes SHISA3 expression via the NF-xB pathway,
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thereby promoting antitumor M1 polarization and phagocytic
capacity of alveolar macrophages (81). In addition, the TLR7/8
agonist imiquimod (IMDQ) conjugated to nanobodies regulates the
mannose receptor (MR) and induces MI-like repolarization of
alveolar macrophages, which obviously suppresses tumor
progression (82). Taken together, these findings highlight the critical
role of TLRs in regulating phenotypic transitions of alveolar
macrophages during the antitumor immunity. Targeting TLRs in
alveolar macrophages using agonists holds promise as a novel
therapeutic strategy for pulmonary cancer.

4.1.2 TLRs regulate pulmonary dendritic cells

DCs are pivotal antigen-presenting cells in the immune system,
serving as a bridge between innate and adaptive immunity (83). TLRs
play a crucial role in modulating the phenotype and function of
pulmonary DCs (Figure 2). For instance, TLR2 activation induces
increased reactive oxygen species (ROS) production, which enhances
antigen presentation and immune response in the lung (84). The TLR3
agonist Poly (I: C) activates pulmonary DCs, thereby promoting the
recruitment of natural killer (NK) cells and the activation of CD8" T
cells (85). Besides, the TLR5 agonist flagellin promotes the expression
of maturation markers such as CD40, CD80, and CD86 on lung
conventional DC subsets (CD103* ¢DC1 and CD11b" ¢DC2), and
significantly enhances their migration to mediastinal lymph nodes in
neonatal mice, thereby facilitating the establishment of pulmonary
mucosal immunity (86). In a murine model of respiratory infection,
conventional DC type 2 (cDC2) activates TLR3/4/7/9 and downstream
signaling pathways, leading to elevated type I IFNs and the
inflammatory cDC2s. These inf-cDC2s exhibit a robust capacity to
promote the polarization of CD4"Th cells toward a Th1 bias and the
antigen-presenting capability to CD8"T cells (87).

In tumor-associated DCs, combined applications of TLR7/8
agonists and STATS3 inhibitors effectively enhance the antigen uptake
and presentation by DCs, which thus promotes DC migration to lymph
nodes and augments the antigen-specific cytotoxic activity of CD8" T
cells (88). The activation of TLR9 not only induces the expansion of
tumor-associated DCs, but elicit the antitumor immune response by
synergizing with PD-L1 inhibitors (89). Although studies on TLR-
targeted modulation in pulmonary DCs remain limited, evidence from
current research in other organs suggests that tissue-resident DCs may
influence tumor development and progression by modulating the
balance of the local immune microenvironment. The potential effects
and mechanisms of DCs in pulmonary cancer immunity warrant
further investigations in the future.

Thus, TLRs modulate the phenotype and function of DCs
through distinct signaling pathways, thereby influencing T-cell
activation and the magnitude of immune responses. In infection
and tumor models, TLR activation significantly enhances the
antigen-presenting capacity and immunomodulatory functions of
DCs, providing new insight into the exploration of immunotherapy
approaches in pulmonary cancer.

4.1.3 TLRs modulate lung neutrophils function

Neutrophils are critical effector cells involved in pulmonary
innate immune response. Upon pathogen invasion, neutrophils
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rapidly migrate to the site of infection and recognize PAMPs via
TLRs (90) (Figure 2). In a mouse model of S. pneumoniae-induced
pneumonia, the activation of TLR1/2 and TLR4 and TANK-binding
kinase 1 phosphorylation in neutrophils through the NF-xB/p65/
STAT1 signaling pathway promotes the expression of ROS, IFN-y,
and IL-12p40, mediating pulmonary antibacterial immunity (91, 92).
Studies have also demonstrated that activation of TLR3 and the TLR5
both enhance the early mobilization of neutrophils and pulmonary
antibacterial activity (93, 94). In tumor microenvironment (TME),
pulmonary neutrophils exert both antitumor and protumor effects
(95). Tumor-associated neutrophils (TANs) are a critical component
of the premetastatic niche (PMN) in the lung. Activation of TLR
signaling pathways promotes the recruitment of TANs and their
polarization toward an N2 phenotype (pro-tumorigenic), thereby
accelerating lung cancer metastasis (96). In non-small cell lung cancer
(NSCLC), neutrophils are activated by Annexin A2 via the TLR2-
MyD88 axis, leading to increased expression of arginase 1 (97). This
induction results in severe dysfunction of T cells and compromises
pulmonary antitumor immune responses. However, activation of
TLR7/8 in pulmonary neutrophils enhances their phagocytic capacity
against tumor cells, thereby effectively inhibiting the progression of
lung cancer (98). These findings highlight the potential therapeutic
role of TLRs and TLRs signaling pathways in regulating neutrophils
in lung cancer.

In summary, TLRs serve as the core "immune sentinels" of
pulmonary innate immunity via regulating the functions of alveolar
macrophages, DCs, neutrophils, and other effector cells. TLRs play
vital roles in the rapid recognition and clearance of pathogens,
cascading inflammatory response, and antitumor immunity in the
lung, collectively maintaining pulmonary homeostasis. Most
importantly, the role of TLRs extends beyond innate immunity,
serving as a bridge linking innate immunity with adaptive immunity.

4.2 Regulation of adaptive immunity by
TLRs in the lung

4.2.1 TLRs regulate pulmonary T lymphocytes
TLRs play a central role in pulmonary adaptive immunity by
regulating T-cell functions (99). In an Mtb infection model, the
absence of TLR2 signaling significantly impairs the co-stimulatory
capacity of CD4" and CD8" T cells, resulting in decreased cytokines
production, such as IFN-y, TNF-o, and IL-10 (100). Notably, TLR2
plays a distinctive role in respiratory vaccine immune responses.
Studies on SARS-CoV-2 mucosal vaccines have demonstrated that
co-administration of the spike protein with TLR2 agonist Pam2Cys
significantly increases the proportion of spike-specific T follicular
helper cells, the capacity of CD4" T cells to produce IL-17A and
TNF, and the generation of anti-spike IgA and neutralizing
antibody levels (101). In contrast to TLR2, intranasal subunit
vaccines containing TLR3 agonists in cationic liposomes
effectively induce airway IgA production and pulmonary CD4"
and CD8" T cell responses (102). Besides, the adjuvant system
incorporating the TLR3 agonist NexaVant more efficiently
promotes the expansion of lung tissue-resident memory T cells
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via a type I IFN-dependent pathway (103). Furthermore, the
combination of the MVA-SARS-2-S vaccine with a TLR3 agonist
significantly increases the number of pulmonary CD8" T cells (104).
In contrast, the TLR9 agonist CpG primarily enhances cellular
immune response by promoting pulmonary CD8" cytotoxic T
lymphocytes differentiation and the expression of granzyme B
(105). TLR2 activation induces CD4" T cells to differentiate into
CD4"CD25"FOXP3" Tregs, which leads to increased viral load in
the Aspergillus fumigatus infection model (106). Similarly, in
paracoccidioidomycosis (PCM), TLR3 facilitates fungal immune
evasion by inhibiting the activation and cytotoxic function of IFN-
Y'CD8" T and IL-17"CD8" T cells (107). The TLR2/4 signaling
positively correlates with infection severity due to increased
expression of suppressive factors, such as PD-L1, IL-10, and
nitrotyrosine in myeloid-derived suppressor cells (MDSCs), which
significantly impairs T cell antifungal activity (108). This suggests
TLRs play critical roles in regulating T Lymphocytes during
pulmonary infections.

The functional plasticity of pulmonary T cell responses is
critically shaped by TLRs. For example, histone components within
NETs induce TLR2 activation and STAT3 phosphorylation in T cells,
thereby driving Th17 polarization (109). Similarly, during Mtb
infection, TLR4-MyD88 signaling orchestrates DC maturation and
cytokine production, notably IL-12p70 and IL-23p19, via T-bet
upregulation. This process facilitates the differentiation of CD4™ T
cells into Thl and Thl7 subsets, which are critical for effective
antimicrobial immunity (110). Interestingly, TLR4 agonist
glucopyranosyl lipid adjuvant suppresses the differentiation of
pulmonary CD8" T cells by limiting T cell receptor signaling,
thereby promoting respiratory mucosal immunity via upregulating
memory T cell formation and TH17/TC17 responses (111). In
contrast, TLR9 agonist CpG promote THI1/TCl1 effector cells
expansion but inhibiting TH17 differentiation (111). In NSCLC,
TLR3/TLR7 agonists effectively counteract TGF--mediated
immunosuppression by inducing IFN-y production, thereby
inhibiting Treg expansion (112). Activation of NF-kB and IRF3
signaling pathways enhances CD8" T cell functions, promoting
antitumor immunity. Additionally, in lung adenocarcinoma
models, the efficacy of antitumor drugs is closely related to the
cytotoxic function of CD8" T cells mediated by TLR4 (113).
Treatment with a TLR9 agonist in combination with TGF-B2
inhibitor enhances the antitumor activity of CD8" T cells (114).
Accordingly, TLRs are essential for T cells-mediated tumor immunity
in the lung. All these findings highlight the complex regulatory
networks of TLRs in pulmonary adaptive immunity. Nonetheless,
the specific mechanisms by which TLRs regulate T lymphocytes in
the lungs still require further investigations in future studies.

4.2.2 Regulation of pulmonary B lymphocytes by
TLRs

TLRs regulate B cell-mediated humoral immunity in the lungs
through both B cell-intrinsic signaling and microenvironment-
dependent pathways. TLR4 collaborates with B cell receptor via
the TLR4-TRIF pathway to induce the production of the monocyte
chemoattractant CCL7, a molecule critical for initiating neutrophil
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extravasation and monocyte recruitment in the lungs (115). In a
Brucella infection model, pulmonary B cell TLR2/4 is essential for
the early IgG production, while downstream MYD88 activation is
associated with the production of antigen-specific IgG in the later
stages (116). In antiviral immunity, the TLR7-IRF7-IFNo/y axis
directly affects the efficiency of antiviral antibody production by B
cells. Double-knockout of both Tlr7 and Irf7 leads to reduced IFN-o.
and IFN-y, impaired antibody production, and delayed viral
clearance in the lungs (117). Notably, the combination of TLR7
agonist imiquimod with inactivated viral particles can directly
induce naive B cells to differentiate into plasma cells, highlighting
the critical role of TLR signaling in B cells response (118).
Moreover, the maintenance of glycolytic metabolic activity and
mitochondrial homeostasis in B cells depends on TLRY signaling
and the co-stimulation by helper T cells (119). This regulatory
mechanism not only enhances the anti-apoptotic capacity of B cells,
but promotes their differentiation into effector B cells. Notably, in
the context of autoimmune pathology, abnormal activation of B
cells by TLRs can lead to pathological responses. For instance, small
nuclear RNAs can activate B cell TLR7, driving the production of
anti-dsDNA and anti-Smith antibodies in SLE (120). In patients
with systemic sclerosis (SSc), the intrinsic hyperactivation of TLR9
in B cells contributes to immune dysregulation (121). Aberrant
activation of TLR9 in regulatory B cells (Bregs) further disrupts the
function of the STAT3 and p38 MAPK signaling pathways, leading
to a reduction in Breg and abnormal upregulation of CD19 (122). In
a mouse model of SSc, CD19 deficiency has been shown to
significantly attenuate lung fibrosis and autoantibody production
in response to TLR4 activation (123). Accordingly, targeting TLRs
pathway may represent a novel therapeutic strategy for
autoimmune-mediated lung injury.

It has been well documented that the activation of TLR3 in lung
epithelial cells leads to the release of B cell activating factor, which
effectively promotes the survival of memory B cells and plasma cell
differentiation (124). In contrast, excessive activation of TLR9 exerts
anti-inflammatory effects in the lung by inducing Bregs to secrete
IL-10 (125). Besides, the TLR7/9 signaling pathway has been shown
to play a unique role in adaptive immune response by driving the
IgD"CD21°CD23" age-associated B cells (ABCs) differentiation into
infection-induced ABCs and memory B cells, which are crucial for
defending against influenza A virus infection among elderly
individuals (126). Moreover, in a schistosome infection model,
reduced response of lung B cells to TLR4/9 stimulation leads to
decreased IL-10 and increased CD86 expressions, which alleviates
allergic airway inflammation by suppressing Th2 polarization (127).
These findings have highlighted the environment-dependent
functional plasticity of TLRs in regulating pulmonary
adaptive immunity.

In summary, TLRs play important roles in the regulation of
pulmonary adaptive immunity. They contribute to the activation
and recruitment of immune cells to establish an effective defense
network against pathogens. In pathological states, aberrant TLRs
activation causes excessive inﬂammatory response, chronic
inflammation, tumor immune evasion, and autoimmune
disorders. This functional plasticity of TLRs underscores the
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promising use of TLRs-targeted immunotherapeutic strategies for
pulmonary diseases by controlling TLRs-mediated innate and
adaptive immune responses.

5 Dysregulation of TLR networks in
pulmonary pathologies

TLRs play essential roles in maintaining pulmonary homeostasis
and immune and immune defense; however, their aberrant activation
is implicated in various lung pathophysiological processes (Figure 1).
Endothelial injury and interstitial fibrosis, common features in
pulmonary disorders, are closely linked to dysregulated TLR
signaling (128, 129). For instance, endothelial TLR2 facilitates cell
injury and coagulopathy by mediating neutrophil extracellular trap
(NET)-STING interactions (130). In LPS-induced ARDS, the SP1-
TLR2-NF-xB axis downregulates versican V1 in lung fibroblasts,
amplifying inflammation (131). TLR4 activation by LPS disrupts
endothelial barrier integrity via Src/VE-cadherin signaling (132).
Beyond bacterial ligands, TLR7 recognizes extracellular miR-146a-
5p and aggravates pulmonary endothelial dysfunction in sepsis-
associated ARDS (133). Additionally, TLR7/8 activation promotes
endothelial injury and fibrosis, contributing to autoimmune
vasculopathy (134).

TLR signaling is further influenced by gut microbiota dysbiosis.
Postnatal growth restriction in extremely preterm infants
predisposes to bronchopulmonary dysplasia and pulmonary
hypertension, linked to microbiota-driven TLR4 activation in the
lung (135). Moreover, LPS-induced TLR4 signaling desensitizes
alveolar macrophages, impairing immune defense and promoting
lung structural abnormalities (136).

This section examines the pathological outcomes of
dysregulated TLR activation across pulmonary diseases, including
infectious, allergic, inflammatory, and malignant conditions such as
asthma, COPD, ILD, and lung cancer. The analysis aims to
elucidate underlying molecular mechanisms and inform TLR-
targeted therapeutic strategies.

5.1 TLRs in pulmonary infectious diseases

5.1.1 TLRs in bacterial pneumonia

Infectious pneumonia poses a significant global public health
challenge, with the pathogenesis intricately linked to TLR-mediated
inflammatory cascades. TLRs exhibit complex molecular regulatory
mechanisms that balance host defense and immunopathology
(137-139). In bacterial pneumonia, the TLR family is essential for
pathogen-specific recognition (Table 2). TLR2 recognizes
peptidoglycan (PGN) and lipoproteins derived from Gram-
positive bacteria, driving IL-8 secretion and neutrophil
recruitment in a S. pneumoniae infection (140). This process is
essential for pathogen clearance; however, excessive activation of
TLR2 leads to acute lung injury. Notably, Acinetobacter baumannii
activates the TLR2/NF-kB/IQGAP1 pathway via its outer
membrane protein A, leading to the redistribution of E-cadherin
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in lung epithelial cells and the epithelial barrier dysfunction (141).
As a result, TLR2 plays dual roles in maintaining the epithelial
barrier integrity. TLR4, as the core receptor for LPS from Gram-
negative bacteria, mediates inflammatory storm through activation
of the MyD88/NF-kB-dependent signaling pathway (142, 143).
Pathogen-induced activation of TLR4 often triggers excessive
activation of NF-xB and the subsequent production of
inflammatory cytokines, leading to infiltration of alveolar
macrophages and neutrophils and ultimately pulmonary injury
(144). In a Staphylococcus aureus pneumonia model, the
interaction between aconitate decarboxylase 1 (ACODI1) and
TLR4 exacerbates lung injury by activating NF-xB signaling
(145). Natural compounds such as Anemoside B4 mitigate lung
injury via the TLR4/MyD88 pathway (146), whereas TLR4
activation by monophosphoryl lipid A (MPLA) can synergize
with antibiotics to enhance bactericidal effects (147). Additionally,
other TLR-dependent therapeutic strategies are particularly
noteworthy. For instance, mesenchymal stem cell-derived
microvesicles (MVs) enhance the antimicrobial activity of human
alveolar macrophages through TLR3 pre-activation, thereby
improving the efficacy of MVs (148). TLR5 agonist flagellin
exhibits broad-spectrum anti-inflammatory effects in a dual
infection model of Pseudomonas aeruginosa and S. pneumoniae
by inhibiting NF-kB nuclear translocation (149, 150). In a
Pseudomonas aeruginosa infection model, the absence of TLR7
not only enhances IL-10-mediated anti-inflammatory responses,
but significantly promotes bacterial clearance (151). This suggests
the vital role of TLR7 in infectious pneumonia caused by Gram-
negative bacteria. TLR9 specifically recognizes CpG DNA from
Prevotella and other pathogens, which suppresses neutrophil
phagocytic activity and facilitates bacterial escape from host
defenses by promoting elastase release and downregulating
complement C5a (152). Notably, nanoscale outer membrane
vesicles secreted by Gram-negative bacteria activate lung
macrophages via the TLR4-TRIF pathway (153).

5.1.2 TLRs in viral pneumonia

The TLR regulatory network in viral pneumonia exhibits greater
complexity (Table 2). The binding of the SARS-CoV-2 spike protein
to TLR4 not only enhances angiotensin-converting enzyme 2 (ACE2)
expression and disrupts type II alveolar cells, but induces M1l
polarization via endothelial cell-derived secreted protein acidic and
rich in cysteine-like 1 (SPARCL1) (154). Moreover, TLR4 can be
modulated by extracellular vesicles (EVs)-derived miRNAs in
COVID-19. In the early stage, EVs-delivering miR-146a-5p
suppresses TLR4 activation to limit excessive inflammatory
response. In the later stage, EVs-delivering let-7e-5p leads to more
severe pulmonary inflammation and tissue damage by upregulating
TLR4 expression, thereby inducing ARDS during COVID-19
infection (155). Furthermore, studies on respiratory syncytial virus
and influenza virus further elucidate the dual roles of TLRs. TLR3
activation can induce an antiviral response in lung epithelial cells by
promoting the expression of IFN-A (156). However, excessive TLR3
activation can lead to epithelial barrier damage. Although TLR7-
mediated IFN/ISG antiviral responses inhibit SARS-CoV-2
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replication (157), they exacerbate pulmonary dysfunction in
influenza A virus infection (158). Similarly, TLR9-mediated
clearance of influenza virus occurs alongside tissue damage (159),
suggesting that precise regulation of TLRs signal may be key to
overcoming the therapeutic bottleneck in infectious pneumonia.
Current evidence has supported that the bidirectional
regulation strategy of immune activation and anti-inflammation
with TLR-targeted drugs exhibits unique therapeutic potential
in virus-associated infectious pneumonia. The synergistic
application of TLR2/6/9 agonists Pam2 CSK4 (Pam2) and CpG
oligodeoxynucleotides (ODN) enhances the recruitment of
pulmonary phagocytes and the cytotoxicity of natural killer cells
(160). Flavonoid glycosides achieve the blockade of influenza A
virus (IAV) infection by inhibiting the expression of TLR3/4/7 and
the phosphorylation of NF-kB/p65 in the lung tissues of acute lung
injury (ALI) mice (161). These findings indicate that TLR-targeting
drugs may offer new approaches for complex viral infections.

5.1.3 TLRs in fungal and mycoplasmal pneumonia

TLRs signaling also plays essential role in regulating Fungal
and mycoplasma-associated infectious pneumonia (Table 2).
Cryptococcus neoformans promotes the conversion of macrophages
towards an IL-4-sensitive phenotype utilizing a virulence factor
(CPL1) through the TLR4/STAT3 axis (162). Mycoplasma
pneumonia is demonstrated to induce a sustained low-grade
inflammatory response, characterized by upregulated TNF-o. and
IL-1P expression in macrophages by activating TLR4 and forming an
autophagy-NF-xB positive feedback loop (163). TLR4-induced
persistent inflammation drives the progression of chronic
inflammatory diseases. Besides, elevated TLR2 expression in the
peripheral blood of children with Mycoplasma pneumoniae
pneumonia is positively correlated with neutrophil infiltration (164).

As evidenced above, TLRs play complicated roles in infectious
pneumonia, which are involved in the initiation of host defense by
the recognition of PAMPs, the inflammatory storms, and
pulmonary tissue damages in infectious pneumonia due to
abundant activation of TLRs signaling pathways. Targeting TLRs
and the downstream signaling pathways holds great promise for the
treatment of infectious pneumonia.

5.2 TLRs in non-infectious pulmonary
diseases

5.2.1 Asthma and COPD

Asthma and COPD are both classified as chronic airway
inflammatory disorders, primarily characterized by inflammatory
cell infiltration and the release of pro-inflammatory mediators.
Clinically, patients exhibit not only significant airflow limitation but
also varying degrees of airway hyperresponsiveness (165, 166).
Emerging studies have demonstrated that TLRs play a pivotal role
in modulating chronic airway inflammatory disorders through the
crosstalk between innate and adaptive immunity (167, 168) (Table 2).

A previous study suggests that excessive activation of TLR2/4/7
drove airway inflammation in COPD by enhancing the nuclear
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TABLE 2 Effects of mechanisms of TLRs in immune regulation of different pulmonary diseases.

Lung diseases TLRs Biological effects Molecular mechanisms Refs.
Infectious Pneumonia TLR2 Mediating pneumococcal clearance, neutrophil Recognizing PGN and lipoproteins, triggering (140)
infiltration, and acute lung damage IL-8-mediated inflammation
TLR2 Involving in A. baumannii-induced epithelial Recognizing outer membrane protein A, (141)
barrier dysfunction and bacterial translocation activating NF-kB/IQGAP1 pathway, inducing E-
cadherin redistribution
TLR3 Mediating antiviral response and epithelial Promoting IFN-A expression in lung epithelial (156)
barrier damage cells
TLR4 Mediating inflammatory lung injury in Recognizing ACODI, activating MyD88/NF-xB ~ (145)
Staphylococcus aureus pneumonia pathway
TLR4 Activating antiviral response in lung Activating TLR4-TRIF pathway via Gram- (153)
macrophages negative OMVs
TLR4 Mediating alveolar damage and ARDS in Recognizing spike protein, upregulating ACE2 (154)
COVID-19 and SPARCLI expression, inducing M1
macrophage polarization
TLR4 Facilitating Cryptococcus neoforman's immune Activating TLR4/STATS3 axis, promoting (162)
evasion arginase-1 expression and IL-4 sensitivity in
macrophages
TLR4 Mediating persistent low-grade inflammation in Activating autophagy-NF-kB positive feedback (163)
Mycoplasma pneumoniae infection loop inducing upregulation of TNF-ot and IL-1B
in macrophages
TLR5 Anti-Pseudomonas aeruginosa and Streptococcus | Inhibition of NF-kB nuclear translocation (149, 150)
pneumoniae infections
TLR7 TLR7 deficiency improving Pseudomonas Enhancing IL-10-mediated anti-inflammatory (151)
aeruginosa clearance and mouse survival response
TLR7 Inhibiting viral replication, exacerbate Mediating IFN/ISG antiviral response (157, 158)
inflammatory lung dysfunction
TLR9 Weakening neutrophil phagocytosis aiding E. Recognizing of pathogen DNA promoting (152)
coli to escape host defenses elastase release and complement C5a
downregulation
TLR9 Clearing Influenza virus clearance and tissue (159)
damage
COPD TLR2 Promoting monocyte-mediated airway Recognizing of XPO6, activating of MyD88/NF-  (169)
inflammation KB pathway, increasing expression of TNF-a,
IL-6, and IL-1B
TLR4 Mediating COPD induced by environmental Activating of MyD88/mTOR-autophagy, (171)
particulate matter upregulating of IL-6 and CXCL1/2 in
epithelium
TLR7 Promoting mast cell degranulation Upregulating of MMCP-6 expression (172)
TLR9 Inducing autoimmune persistent airway Recognizing of NETs-DNA, activating of cGAS/  (176)
inflammation TLRY/NF-kB pathway
Asthma TLR2 Promoting Th2 cell polarization Activating of NF-kB and JNK pathways, (170)
upregulating of TSLP expression
TLR3 Promoting differentiation of epithelial stem cells  Activating of moDC/IL-33 axis, increasing IL-13 = (174)
into mucous cells expression
TLR3 Attenuating type 2 immune response in the Inhibiting of ILC2 differentiation via IFN-[3/ (175)
lungs STAT5/GATAS3 axis
TLR4 Mediating asthma induced by environmental Activates MyD88/mTOR-autophagy, (171)
particulate matter upregulates IL-6/CXCL1/2
TLR5 rDCs and Tregs inhibiting asthma development Inhibiting of TH1, TH2, and TH17 responses (180)
TLR7 Upregulating of IFN-0:2a, CCL3, and CCL13 (173)
(Continued)
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TABLE 2 Continued
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Lung diseases Biological effects Molecular mechanisms Refs.
Inducing dysregulation of innate immune
responses in nasal mucosa
IPF TLR2/4 Promoting neutrophil infiltration and Th17 OMVs activating AMs via TLR2/4-MyD88 axis,  (187)
immune response inducing IL-17B/TNF-o network
TLR4 Aberrant AM proliferation and autophagy— Activating TLR4-MyD88-NF-xB pathway (188)
apoptosis imbalance
Driving abnormal proliferation and EMT in eNAMPT acting as DAMP ligand activating (189)
alveolar type II epithelial cells TLR4 signaling
Creating a pro-fibrotic microenvironment, Physically interacting with THBSI, activating (190)
promoting macrophage M2 polarization glycolytic metabolism
TLR9 Promoting fibroblast activation, releasing Recognizing mtDNA, synergizing with TGF-B1; (185)
inflammatory factors, establishing an activating AHR via tryptophan metabolism
"inflammation-fibrosis feedback loop"
Enhancing pulmonary epithelial pyroptosis Binding NLRP3, amplifying caspase-1 activity (186)
CTD-ILD TLR3 Activating of CD4+ T cells in CADM-ILD Recognizing of MDADS, upregulating of IL-6 (197)
expression
TLR4 Promoting collagen synthesis and myofibroblast CXCL4 enhancing TLR4 signaling by inhibiting (195)
differentiation in SSc-ILD fibroblasts FLI1
TLR4 Inducing SLE-associated diffuse alveolar Mediating autophagy and NETSs formation (203)
hemorrhage
TLR5 Inducing EMT in AEC II Recognizing of Anti-CARP, promoting NF-xB (199)
activation
TLR7/8 Mediating vascular remodeling abnormalities in Regulating Th17/Treg balance (134)
autoimmune diseases
TLR7/9 Promoting myofibroblast accumulation in SSc- Recognizing of mtDNA, activating cGAS- (192)
ILD STING, upregulating Type I IFNs and IL-6
expression
TLR7/9 Promoting the development of CADM-ILD Promoting excessive production of IFN-o. via (197, 198)
TLR7/9-IRF7 pathway
Hp TLR2 Exacerbating pulmonary fibrosis Activating TLR2-NF-kB pathway, expanding (204)
MMP14hi macrophages and releasing exosomes
to enhance FMT
TLR9 Activating lung inflammation Activating CD11b"CD11c" dendritic cells via (205)
the TLR9-MyD88 pathway
Silicosis TLR4 Promoting fibroblast and alveolar epithelial cell Activation of the TLR4-NF-kB/MAPK pathway, = (206)
activation inducing pyroptosis in macrophages
Facilitating endothelial-mesenchymal and Galectin-3 binding TGFBR1 and TLR4, (206)
endothelial-immune crosstalk promoting FMT and NLRP3 activation
Accelerating silicosis fibrosis progression LPS/TLR4 signaling inducing lung microbiota (207)
dysbiosis
Lung Tumors TLR2 Enhancing lung cancer cell migration and Activating of cAMP/AMPK/NF-«B pathway, (208)
invasion upregulating of CCL2, IL-6, and MMP-2
TLR2 Tumor cell senescence and myeloid cell Activating of p53-p21 pathway, leading to SASP = (209)
recruitment enhancing antitumor immunity
TLR3 Promoting the formation of a pro-carcinogenic Recognizing of L-MPs, promoting NLRP3 (210)
inflammatory microenvironment activation and IL-1p release
TLR4 Enhancing tumor cell survival and metastasis Activating of TRAF6/BECN1 (214)
TLR4 Recruiting of mo-MDSCs and promoting of lung  Activating of CXCL10-CXCR3 and CCL12 (220)
metastasis
(Continued)
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TABLE 2 Continued

Lung diseases TLRs Biological effects

TLR4 Recruiting of PMN-MDSCs, promoting the
establishment of a pre-metastatic niche in lung
cancer

TLR2/4 Promoting TANSs recruitment during NTHi
infection

TLR3/4 Promoting lung cancer invasion and metastasis

TLR9 Activating CSCs

export of TLR2 mediated by exportin XPO6 in monocytes, which
leads to increased production of TNF-o and IL-6 through the
activation of TLR2/MyD88/NF-«kB pathway (169). TLR2
promotes Th2 cell polarization in asthma by thymic stromal
lymphopoietin (TSLP)-mediated NF-xB and JNK signaling
pathways activation in the airway epithelial cells (170). Air
pollution material (PM) causes airway inflammatory disorders by
inducing increased production of IL-6 and CXCL1/2 in airway
epithelial cells through the TLR4/MyD88 and mTOR-autophagy
signaling pathways (171). Additionally, cigarette smoke activates
mast cell degranulation via TLR7, promoting the release of mast cell
protease-6 (MMCP-6) and exacerbating emphysema in COPD
(172). However, the TLR7 agonist R848 leads to the dysregulation
of the innate immune response in nasal mucosa through the
upregulation of IFN-02a, CCL3, and CCL13 in asthma patients
(173). Notably, TLR3 activation promotes high expression of IL-13
in type 2 innate lymphoid cells (ILC2) and alveolar macrophages,
leading to airway hyperresponsiveness and increased mucus
production (174). However, during the chronic phase, stimulation
with the TLR3 agonist poly (I: C) inhibits ILC2 differentiation
through the IFN-B/STAT5/GATA3 pathway, thereby suppressing
type 2 immune response in the lung (175). In COPD, NET-derived
DNA promotes NF-kB-dependent autoimmunity via the cGAS/
TLR9 pathway, contributing to persistent airway inflammation
(176). Nonetheless, TLR9 agonists have been shown to inhibit
eosinophil infiltration in asthma due to the expansion of Bregs
(177). Additionally, activation of TLR5 has been found to
exacerbate airway inflammation in asthma (178, 179), whereas
the regulatory DCs (rDCs) and Tregs can suppress TH1/TH2/
TH17 responses in a TLR5-dependent manner, thereby inhibiting
the development of experimental asthma (180). These findings have
implicated the complicated roles of TLRs in the regulation of
chronic inflammatory lung diseases, underscoring the significant
challenge of achieving precise immune modulation using TLR-
based therapies in the future.

5.2.2 ILDs

ILDs comprise a heterogeneous group of pulmonary disorders
characterized by interstitial inflammation and fibrosis, often leading
to progressive dyspnea and end-stage respiratory failure. Idiopathic
Pulmonary Fibrosis (IPF) is the most prevalent subtype, accounting
for approximately one-third of ILD cases. Additionally, Connective
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Molecular mechanisms Refs.

Recognizing of HSP70, activating of the Wnt5a/  (221)

CXCL5/G-CSF axis

Upregulating of IL-17C expression in lung
epithelial cells

(216)

Ubiquitinating TRAF6, activating MAPK/NF-xB
pathway

(215)

Recognizing of mtDNA, activating of Notch1/
AMPK axis

(218)

Tissue Disease-associated Interstitial Lung Disease (CTD-ILD) and
hypersensitivity pneumonitis (HP) are common subtypes,
representing 25% and 15% of cases, respectively (181). This
section focuses on elucidating the mechanisms by which TLRs
drive disease initiation and progression in major ILD subtypes,
including IPF, CTD-ILD, hypersensitivity pneumonitis,
and silicosis.

5.2.2.1IPF

IPF is a chronic progressive ILD with unknown etiology,
pathologically defined by aberrant fibroblast activation, alveolar
epithelial cell dysfunction, and macrophage-driven inflammation
(182). Accumulating evidence demonstrates that dysregulated TLR
signaling contributes centrally to IPF pathogenesis through
orchestrating inflammatory cascades, metabolic reprogramming,
and fibrotic remodeling (Table 2).

The genetic polymorphisms of TLR3 (specifically the L412F
variant) are linked to accelerated disease progression and higher
mortality in IPF, underscoring the role of TLRs in phenotypic
modulation (183). Fibroblast-expressed TLRY recognizes
circulating mitochondrial DNA (mtDNA) and acts synergistically
with transforming growth factor-beta 1 (TGF-f1) to promote
fibroblast activation, triggering the release of pro-inflammatory
mediators, such as MCP-1 and IL-6 (184). This establishes a pro-
fibrotic feedback loop culminating in excessive extracellular matrix
(ECM) deposition (184). TLRY also upregulates TDO2 in
fibroblasts, increasing kynurenine production, which activates the
AHR pathway in CD103" dendritic cells and enhances IL-6-driven
inflammation and fibrosis (185). Additionally, epithelial TLR9
engages the NLRP3 inflammasome to promote caspase-1-
mediated pyroptosis, further contributing to IPF pathogenesis
(186). These findings collectively underscore the critical role of
TLR9 in the regulation of pulmonary fibrosis.

Host-microbe interactions also promote fibrotic in IPF via
TLR2/4. Dysbiosis-associated outer membrane vesicles (OMVs),
particularly derived from Bacteroides and Prevotella species, activate
AMs via the TLR2/4-MyD88 signaling axis, thereby inducing a
profibrotic network involving IL-17B and TNF-o (187). This
upregulates neutrophil chemokines (e.g., G-CSF, CXCL1, CXCL2)
and Th17 differentiation genes (e.g., IL-6, Saal/2), fostering
neutrophil infiltration and Th17 responses that accelerate fibrosis
(187). Unlike classical autoimmune ILDs, IPF appears driven
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primarily by DAMPs and microbiota-derived ligands rather than
autoantibody-mediated TLR activation.

In addition, the TLR4 signaling pathway plays multiple roles in
IPF. Activation of the TLR4-MyD88-NF-xB axis in AMs leads to
aberrant AM proliferation and disruption of the "autophagy-
apoptosis" equilibrium, significantly exacerbating disease
progression (188). Elevated eNAMPT-a DAMP and TLR4 ligand
—in IPF patients correlates with severity and drives alveolar type II
cell proliferation and EMT via TLR4, facilitating pathological
remodeling (189). TLR4 also interacts with THBS1 to induce M2
macrophage polarization and glycolytic activation, establishing a
pro-fibrotic microenvironment (190).

In summary, TLRs integrate signals from microorganisms,
DAMPs, and cellular stress through key pathways, including
MyD88, NF-xB, NLRP3, and metabolic reprogramming, forming
a central bridge between innate immunity, chronic inflammation,
and fibrosis in IPF. Targeted inhibition of specific TLRs or
downstream effectors may offer promising therapeutic strategies
for IPF.

5.2.2.2 CTD-ILD

CTD-ILD is a significant complication of systemic autoimmune
disorders, such as rheumatoid arthritis, systemic sclerosis, and
dermatomyositis. The pathogenesis of CTD-ILD is closely linked
to dysfunction of alveolar type II epithelial cells (AEC II),
inflammatory cascade activation, and aberrant fibroblast
activation (191). TLRs play a crucial role in immune activation
and fibrosis progression of CTD-ILD by recognizing DAMPs or
PAMPs (Table 2).

TLR family is dysregulated in lung tissues of patients with
systemic sclerosis-associated interstitial lung disease (SSc-ILD)
(129). Extracellular vesicle-delivered mtDNA can activate the
cGAS/STING pathway via TLR9, promoting the secretion of type
I IFNs and IL-6, thereby driving the accumulation of o-smooth
muscle actin (0.-SMA)* myofibroblasts (192). TLRS is significantly
upregulated in monocytes during the early stage of SSc-ILD (193).
However, declined expression of TLRS8 is well demonstrated in the
late stages of the of SSc-ILD (129). In addition, TLR/CXCL4
signaling exacerbates endothelial cell activation and fibrosis by
inhibiting the transcription factor FLI1 (194). As a small-
molecule inhibitor of TLR4, TAK242 can suppress collagen
synthesis in fibroblasts, offering a potential therapeutic strategy
for SSc-ILD (195). The anti-melanoma differentiation-associated
gene 5 (MDADS) antibody is positively associated with amyopathic
dermatomyositis-associated interstitial lung disease (CADM-ILD)
(196, 197). Overactivation of the TLR7/9-IRF7 axis leads to aberrant
production of IFN-ca, while MDA5 autoantibodies promote IL-6
secretion by activating CD4" T cells via TLR3 (197, 198). The
therapeutic efficacy of anti-CD4 antibodies and IL-6 receptor
antagonists further validates the critical role of TLR7/9-IRF7 axis
(197). Additionally, the interaction between carbamylated TLR5 on
AEC II cells and anti-carbamylated protein (anti-CarP) antibodies
can induce nuclear translocation of NF-kB and promote EMT in
AEC I, thereby accelerating fibrosis (199). Systemic lupus
erythematosus (SLE) is characterized by significant mitochondrial
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dysfunction, where mitochondrial damage releases mtRNA that can
be recognized by TLR7, subsequently triggering type I IFN
responses (200-202). Notably, TLR7/8 can participate in the
vascular remodeling abnormalities seen in autoimmune diseases
by regulating the Th17/Treg balance, a process that is associated
with complications such as pulmonary arterial hypertension (134).
Additionally, TLR4-mediated autophagy and NET formation have
been linked to diffuse alveolar hemorrhage in SLE (203). Therefore,
TLRs play a crucial role in the regulation of CTD-ILD, serving as
potential targets for disease treatment.

In summary, TLRs play a crucial role in the development and
progression of CTD-ILD by regulating fibroblast activation,
inflammatory cytokine release, and autoantibody production.
These findings not only highlight the central role of TLRs in
CTD-ILD, but provide new insights into the mechanisms of
autoimmune diseases and the explanation of targeted therapies.

5.2.2.3 HP and Other ILDs

The pathogenesis and progression of HP and other ILDs are
closely associated with immune and inflammatory responses
mediated by TLR signaling. Although the mechanisms vary
considerably across different etiologies and experimental models,
certain common pathways have emerged (Table 2).

In a model of HP induced by Saccharopolyspora rectivirgula
antigen, activation of the TLR2-NF-xB signaling pathway promotes
the expansion of matrix metalloproteinase-14 (MMP14) high
expressed macrophage subset and the release of exosomes (204).
This subset enhances fibroblast-to-myofibroblast transition (FMT),
thereby exacerbating pulmonary fibrosis (204). In contrast, in
mycobacterium-induced HP, the activation of CD11b*CD11c"
dendritic cells via the TLR9-MyD88 pathway serves as a key
mechanism in the development of lung inflammation. This
process occurs independent of pathogen infectivity, highlighting
the specific role of TLR9 in non-infectious immune responses (205).

In a silica (SiO,)-induced model of silicosis, SiO, particles
activate the TLR4-NF-kB/MAPK signaling pathway in
macrophages, leading to macrophage pyroptosis and fibroblasts
and alveolar epithelial cells activation, significantly amplifying
pulmonary inflammation and fibrosis (206). Galectin-3 (Gal3)
derived from senescent endothelial cells simultaneously engages
TGFBRI1 on fibroblasts and TLR4 on macrophages, thereby
mediating endothelial-mesenchymal and endothelial-immune
crosstalk (206). This interaction synergistically promotes both
FMT and NLRP3 inflammasome activation, contributing to the
progression of interstitial lung pathology (206). Moreover, dysbiosis
of the lung microbiota resulting from LPS/TLR4 activation has also
been found to promote the progression of silica-induced fibrosis
(207), underscoring the key role of microbe-host interactions in
environmentally-related lung diseases.

In summary, TLR-mediated activation of downstream cascades,
including NF-xB, MAPK, and MyD88, orchestrates multicellular
crosstalk among macrophages, dendritic cells, fibroblasts, and
endothelial cells in both hypersensitivity pneumonitis and silicosis,
thereby driving coordinated inflammatory and fibrotic responses.
These insights not only underscore the centrality of TLR signaling
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networks in the pathogenesis of interstitial lung diseases but also
highlight the therapeutic potential of targeting specific TLRs or their
effector pathways to attenuate fibrosis progression.

5.2.3 Lung carcinomas

TLRs exert complex effects on the initiation, progression, and
immune microenvironment of lung cancer. TLR2 enhances lung
cancer cell migration and invasion by promoting the expression of
CCL2, IL-6, and MMP-2 through the cAMP-AMPK-TAKI signaling
axis (208). Nonetheless, TLR2 also exhibits anti-cancer effects under
specific conditions. In NSCLC, TLR2 activation induces tumor cell
senescence by activating the p53-p21 pathway and promoting the
expression of pro-inflammatory senescence-associated secretory
phenotype (SASP) (209). Besides, TLR3 contributes to the
establishment of a pro-tumorigenic inflammatory microenvironment
to promote lung cancer progression via NLRP3 inflammasome
activation and subsequent IL-1[3 release (210). Autophagy promotes
tumor cell survival and migration (211). Accumulated studies have
suggested TLRs are involved in the regulation of autophagy and the
pre-metastatic niche (212, 213). TLR4 can enhance tumor survival and
metastasis by inducing autophagy via the TRAF6-BECN1 axis (214).
TLR3/4 activation results in the upregulation of chemokines CCL2/
MCP-1 and immunosuppressive factors VEGFA and MMP2, which
collectively promotes lung cancer invasion and metastasis through the
adaptor protein TICAMI/TRIF and the activation of downstream
MAPK/NF-xB signaling pathway (215). Nontypeable Haemophilus
influenzae (NTHI) induces lung epithelial cells to secrete IL-17C via
TLR2/4 signaling, thereby promoting lung cancer progression (216).
Moreover, microbial metabolites, such as FFAR, can inhibit lung cancer
progression through functional competition with TLR2/4 (208).
Additionally, the activation of endogenous TLR7 within tumors can
recruit MDSCs, which facilitates EMT and the metastasis of lung

TABLE 3 Overview of clinical studies on TLRs and TLR signaling pathways.

Category Drug Target
TLR CADI-05 TLR2
Agonists
BCG-CWS TLR2/4
Resiquimod(R848) TLR7/8
IMO-2055 TLR9
DV281
CpG ODN(K3)
PF-3512676
TLR CNTO3157 TLR3
Inhibitors
TNFAIP3 (A20) mimetic peptide TLR4
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adenocarcinoma (217). It has been demonstrated that mitophagy-
released mtDNAs activate cancer stem-like cells (CSCs) via the
TLR9-Notch1-AMPK axis, leading to chemoresistance and tumor
recurrence (218). These findings indicate that TLR signaling play
critical roles in tumorigenesis, metastasis, cancer resistance to therapy
and microbial interaction in lung carcinomas (Table 2).

The pre-metastatic niche is a microenvironment created by the
primary tumor in secondary organs and tissues that facilitates
subsequent metastasis (219). TLRs are also involved in lung cancer
metastasis by regulating the pre-metastatic niche. In metastatic lung
cancer, TLR4 in alveolar macrophages promotes pulmonary
metastasis by recruiting monocyte-derived myeloid-derived
suppressor cells (mo-MDSCs) and activating the CXCL10-CXCR3/
CCL12 axis (220). Heat shock protein 70 (HSP70) recruits
polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSCs) through the TLR4-Wnt5a-CXCL5/G-CSF axis,
contributing to the establishment of a pre-metastatic niche and
resistance to immunotherapy in lung cancer (221). Additionally,
the tumor-derived exosomal RNAs promote lung pre-metastatic
niche formation via activating TLR3, driving neutrophil infiltration
and the establishment of a pre-metastatic microenvironment (222).
Accordingly, targeting TLRs and TLR signaling may represent a novel
immunotherapeutic strategy in lung cancer.

6 Overview of clinical studies on
TLRs- and TLRs signaling-based drugs

In recent years, significant advance has been made in
therapeutic drugs targeting TLRs and the TLRs signaling
pathways, which holds promising therapeutic potentials in lung
cancer, asthma, and COPD (Table 3) (223).

Disease Mechanism Refs.
Lung Tumors | Activation of anti-angiogenic phenotype in (230)
TANs improves patient survival
TLR2/4-M@/APC axis induces IL-12/IL-18 (229)
secretion and enhances IFN-y production
Establishment of antiviral immunity in (233)
respiratory mucosa
Combination of Erlotinib and Bevacizumab (203)
enhances antitumor immune response in patients
Combination with Nivolumab enhances (131)
antitumor immune response in patients
Increased IFN-o secretion and expansion of T- (226)
bet+ CD8+ T cells prolong patient FPS
Combination chemotherapy (Paclitaxel/Cisplatin (227, 228)
or Gemcitabine/Cisplatin) leads to immune
exhaustion
COPD Reduction of airway hyperresponsiveness (234)
Asthma Inhibition of TLR4/TRAF6/NF-kB pathway (235)
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6.1 TLR agonists

In clinical trials, the TLR9 agonist IMO-2055 in combination
with erlotinib and bevacizumab (no. NCT00633529), as well as
DV281 combined with nivolumab (no. NCT03326752),
demonstrates favorable tolerability and enhanced antitumor
immune response in patients with advanced NSCLC (224, 225). As
TLRY agonist, CpG ODN (K3) prolongs the survival of lung cancer
patients by inducing IFN-o. secretion and the expansion of T-bet”
CD8" T cells (no. UMIN-000023276) (226). However, targeted TLR
activation aimed at enhancing antitumor or anti-pathogen immunity
inherently may inadvertently aggravate pre-existing inflammatory
conditions. For example, the TLR9 agonist PF-3512676 in
combination with chemotherapy regimens (paclitaxel/carboplatin
or gemcitabine/cisplatin) showed limited efficacy in improving
overall survival in lung cancer patients, accompanied by risks of
immune exhaustion, highlighting the hazards of excessive or non-
specific TLR activation (no. NCT00254891) (227, 228).

TLR2/4 agonists exhibit unique value in reshaping the immune
microenvironment. Bacillus Calmette-Gueérin-cell wall skeleton
(BCG-CWS) leads to tumor regression in lung cancer patients by
inducing the secretion of IL-12 and IL-18 via the TLR2/4-
macrophage (M@)/antigen-presenting cell (APC) axis (229).
Besides, the TLR-2 agonist CADI-05 activates an anti-angiogenic
phenotype in TANs from patients with squamous cell lung
carcinoma (no. NTC00680940) (230). However, the efficacy of
TLR agonists is significantly influenced by diverse factors. In
smokers and COPD patients, the expression of TLR2 in alveolar
macrophage is significantly reduced (231). Nicotine restores TLR2/
9 responsiveness by upregulating CD4"CD25"FoxP3" Tregs (no.
NCT00701207) (232). This variability underscores the risk of failure
inherent in sole reliance on TLR-targeted agonist therapies and
highlights their potential unsafety in non-responsive patient
subpopulations. The central challenge for future research lies in
precisely identifying patient cohorts who benefit from TLR
modulation, defining the therapeutic window, and advancing
biomarker-driven personalized therapy to balance efficacy and
safety. Furthermore, the antiviral immune model established by
the TLR7/8 agonist R848 in the respiratory mucosa offers new
perspectives for combined interventions targeting virus-associated
lung tumors (no. NCT02090374) (233).

6.2 TLR inhibitors and TLRs signaling-
targeted drugs

Significant progress has been made in the development of TLRs
inhibitors. The TLR3 monoclonal antibody CNTO3157 reduces
rhinovirus-induced airway hyperresponsiveness in healthy subjects;
however, it shows limited efficacy in improving symptoms in patients
with COPD (no. NCT01704040) (234). In asthma, TNFAIP3 (A20)
mimetic peptides reduce the frequency of acute exacerbations in
asthmatic children from urban areas by inhibiting the TLR4/TRAF6/
NF-xB pathway (235). These findings suggest that targeting TLRs
and TLR signaling could be an effective method to manage asthma
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symptoms and improve the quality of life in affected populations.
Thus, TLR-targeted therapies are promising in the treatment of
pulmonary diseases. A thorough understanding of the regulatory
immune networks governing TLRs and TLR signaling may provide
novel insight into the exploration of precision medicine strategies in
pulmonary diseases. Chronic pulmonary diseases, such as COPD and
asthma, involve persistent inflammation and immune dysregulation.
In such settings, TLR agonists risk amplifying pathological
inflammation, potentially leading to adverse events and clinical
worsening. Conversely, TLR antagonists may systemically inhibit
essential TLR pathways, compromising anti-infective immunity and
increasing susceptibility to opportunistic infections—particularly in
immunocompromised individuals, including those with cancer or
chronic respiratory conditions.

7 Conclusions and future directions

TLRs are essential for the maintenance of lung homeostasis by
regulating epithelial barrier integrity, endothelial cell activity,
microbial communities balance and immune cells functions. The
well-established immune network by TLRs and TLR signaling
pathways plays a pivotal role in pathogen clearance and the
initiation of adaptive immunity. However, the recognition of
PAMPs/DAMPs by TLRs function as a double-edged sword.
Excessive activation of TLRs signaling can disrupt the immune
balance, leading to pathogen escape, abundant inflammation, tissue
damage, and malignant transformation. Currently, there are
increasing clinical studies investigating the efficacy of TLRs- and
TLRs signaling-based therapies in pulmonary diseases, including
agonists and inhibitors. Most importantly, the functions and roles
of TLRs in lung immunity remain not fully understood. It is of great
importance to elucidate the involvement of TLRs and TLR signaling
network in the onset and progression of lung diseases, including
infections, fibrosis, malignancies, and immune disorders. More future
clinical studies are warranted to explore the optimized therapeutic
strategies targeting TLRs and TLR signaling in pulmonary diseases.
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PRRs
PAMPs
DAMPs
IRFs

™
TIRAP TIR
LRRs
MD2
dsRNA
MyD88
IRAK4
RIP1
TRADD
ERK1/2
CINC
MALP-2
GM-CSF
PAH
BMPR2
PAH
NETs
ARDS
PES
RP105
PI3K
Mtb
MPLA
ROS

NK
TME
TANs
NSCLC
MDSCs
Tregs
SSc
Bregs
CADM

SLE

pattern recognition receptors
pathogen-associated molecular patterns
danger-associated molecular patterns
interferon regulatory factors
transmembrane

domain-containing adaptor protein
leucine-rich repeats

myeloid differentiation factor 2
double-stranded RNA

myeloid differentiation factor 88
interleukin-1 receptor-associated kinase 4
receptor-interacting protein 1

TNFR-associated death domain protein

extracellular signal-regulated kinases 1 and 2

cytokine-induced neutrophil chemoattractant

macrophage-activating lipopeptide 2 kDa

granulocyte-macrophage colony-stimulating factor

pulmonary arterial hypertension

bone morphogenetic protein receptor II
pulmonary arterial hypertension
neutrophil extracellular traps

acute respiratory distress syndrome
progression-free survival
Radioprotective 105 kDa protein
phosphoinositide 3-kinas
Mycobacterium tuberculosis
monophosphoryl lipid A

reactive oxygen species

natural killer

tumor microenvironment
Tumor-associated neutrophils
non-small cell lung cancer
myeloid-derived suppressor cells
regulatory T cells

systemic sclerosis

regulatory B cells

Clinically Amyopathic Dermatomyositis

Systemic Lupus, Erythematosus
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CTD-ILD

SPARCLI1
ACOD1
CPL1
STAT3
mtDNA/RNA
CpG DNA
NE

XPO6
mTOR
CCL3/13
CXCL1/2
CXCR3 C-X-C
cGAS

JNK

TSLP
moDC
GATA3
rDCs
TH1/TH2/TH17
Breg
o-SMA
MDAS5
Anti Carp
EMT
Notchl
CSC
G-CSF
PMN
SASP
L-MPs
TRAF6
MCP-1
VEGFA
BECN1

HSP 70
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Connective Tissue Disease-Associated Interstitial
Lung Disease

Secreted Protein Acidic and Rich in Cysteine-Like 1
Aconitate Decarboxylase 1

Cell Wall Protein 1

Signal Transducer and Activator of Transcription 3
Mitochondrial DNA/RNA
Cytosine-phosphate-Guanine DNA
Neutrophil Elastase

Exportin 6

Mechanistic Target of Rapamycin

C-C Motif Chemokine Ligand 3/13

C-X-C Motif Chemokine Ligand 1/2

Motif Chemokine Receptor 3

Cyclic GMP-AMP Synthase

c-Jun N-terminal Kinase

Thymic Stromal Lymphopoietin
Monocyte-Derived Dendritic Cell

GATA Binding Protein 3

Regulatory Dendritic Cells

T Helper 1/2/17 Cel

Regulatory B Cell

Alpha-Smooth Muscle Actin

Melanoma Differentiation-Associated Protein 5
Anti-Citrullinated Protein Antibody
Epithelial-Mesenchymal Transition
Neurogenic Locus Notch Homolog Protein 1
Cancer Stem Cell

Granulocyte Colony-Stimulating Factor
Polymorphonuclear Leukocyte
Senescence-Associated Secretory Phenotype
Large Membrane Particles

TNF Receptor-Associated Factor 6
Monocyte Chemoattractant Protein-1
Vascular Endothelial Growth Factor A
Beclin 1

Heat Shock Protein 70
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