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Objectives: FAM49B has been shown to promote proliferation and metastasis of

colorectal cancer (CRC) by stabilizing MYC through phosphorylation of NEK9;

however, its role in shaping the immune suppressive tumor microenvironment

(TME), particularly in macrophage polarization, remains unclear.

Methods: We applied multi-omics approaches to study CRC by integrating 33

scRNA-seq samples from 16 CRC patients, 2 paired spatial transcriptomics (ST)

samples, and bulk RNA data to characterize malignant epithelial cells

(High_FAM49B_EP) and tumor-associated macrophages (TAMs). Functional

validation of FAM49B was conducted via knockdown experiments and

proteomics analysis.

Results: A High_FAM49B_EP subpopulation was identified in primary tumors (PT)

and liver metastases (LM), exhibiting elevated MYC signaling and association with

poor prognosis. TAMs showed spatial heterogeneity: M1-like CXCL3+ TAMs

predominated in PT, whereas M2-like SPP1+ TAMs were enriched in LM.

CellChat analysis revealed that High_FAM49B_EP activated macrophage

polarization through the MDK–NCL signaling axis. Pseudotime trajectory

analysis confirmed differentiation from CXCL3+ to SPP1+ TAMs driven by

upregulation of NCL. Spatial mapping showed co-localization of MDK+

epithelial cells with NCL+ TAMs in the immunosuppressive microenvironment.

FAM49B knockdown significantly inhibited MDK expression and disrupted ECM–

receptor interactions.
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Conclusions: FAM49B promotes immunosuppressive TME formation by

mediating TAM polarization via the MDK–NCL axis, suggesting the FAM49B–

MDK–NCL pathway as a potential therapeutic target for CRC metastasis.
KEYWORDS

colorectal cancer, tumor environment (TME), FAM49B, MDK, macrophage
polarization, bioinformatics
Introduction

Colorectal cancer (CRC) ranks as the third most commonly

diagnosed malignancy worldwide and is the second leading cause of

cancer-related deaths, resulting in approximately 900,000 fatalities

annually (1). CRC exhibits high heterogeneity, particularly between

primary tumors and liver metastases, which display marked

molecular differences and divergent therapeutic responses (2, 3).

Liver metastasis remains one of the principal causes of mortality in

CRC patients, making a thorough understanding of the tumor

immune microenvironment (TME) critical for improving

treatment outcomes in patients with distant metastases (4).

In recent years, the advent of single-cell RNA sequencing

(scRNA-seq) and spatial transcriptomics (ST) technologies has

provided unprecedented resolution to study intratumoral

heterogeneity and cellular spatial organization. While scRNA-seq

dissects transcriptional profiles of diverse cell types, ST preserves

the spatial context of cells within tissue architecture. These tools

have been extensively utilized to uncover interactions among

epithelial, immune, and stromal cells, with particular emphasis on

tumor-associated macrophages (TAMs) (5–7). The polarization

states of TAMs in CRC have been implicated in metastasis and

immune suppression (8–12).

FAM49B is a conserved gene that has recently attracted attention

in multiple cancers (13, 14). In CRC, we have demonstrated that

FAM49B promotes cancer cell proliferation and migration by

stabilizing c-Myc through NEK9 phosphorylation and is associated

with poor patient prognosis (15). However, the heterogeneous cellular

distribution of FAM49B, the existence of functional subpopulations,

and its role in modulating the immune microenvironment remain

unexplored systematically. Additionally, the Midkine–Nucleolin

(MDK-NCL) signaling axis has been recognized as a critical

mediator of communication between tumor and immune cells.

MDK, a growth factor overexpressed in various solid tumors,

regulates angiogenesis, cell survival, and immune suppression (16,

17). Its receptor NCL is widely expressed on macrophages and other

immune cells. This signaling axis has been shown to induce regulatory

T cell recruitment and M2 macrophage polarization, thereby

facilitating tumor immune evasion (18).

Based on these insights, this study integrates scRNA-seq and ST

analyses of 33 tumor samples—including primary tumors and liver

metastases—from 16 CRC patients. We identified a malignant
02
epithelial cell subpopulation expressing high levels of FAM49B

(High_FAM49B_EP) and revealed its spatial co-localization and

communication with TAMs, especially the immunosuppressive

SPP1_TAMs, via the MDK-NCL pathway. Pseudotime trajectory

analysis delineated the polarization progression from

CXCL3_TAMs to SPP1_TAMs, and two independent spatial

datasets confirmed their co-expression and functional association

in situ. Finally, in vitro knockdown of FAM49B validated its role in

regulating MDK expression and shaping an immunosuppressive

tumor microenvironment. Collectively, this study not only maps

critical communication networks within the CRC immune

microenvironment but also elucidates functional coupling between

specific epithelial subpopulations and immune cells, highlighting

the FAM49B-MDK-NCL axis as a potential therapeutic target for

metastasis inhibition and immune remodeling.
Materials and methods

Collection of single-cell and spatial
transcriptomics data

Single-cell RNA sequencing (scRNA-seq) datasets of CRC

primary tumors and liver metastases were downloaded from the

Gene Expression Omnibus (GEO) database under accession

number GSE245552 (19). This dataset comprises 39 CRC samples

from 16 patients. For this study, 33 samples were selected for

analysis, including 16 primary tumor samples and 17 liver

metastasis samples. Additionally, spatial transcriptomics (ST) data

of CRC were obtained from the cancerdiversity.asia database

(http://www.cancerdiversity.asia/scCRLM). RNA-Seq data (in

FPKM format) and corresponding clinical data for the TCGA-

COAD project were retrieved from The Cancer Genome Atlas

(TCGA) database. A total of 483 RNA-Seq files from CRC tissues

and 41 RNA-Seq files from normal colorectal tissues were acquired.
Quality control and annotation of single-
cell data

Initially, data objects were created using the CreateSeuratObject

function in Seurat (v4.4.0) with parameters min.cells = 5 and
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min.features = 300 (20). Doublets were filtered using DoubletFinder

(v2.0.4) with a doublet rate set at 5% (21). Subsequent stringent

quality control (QC) criteria were applied: (1) genes detected per

cell ranged from 300 to 8000; (2) mitochondrial gene percentage did

not exceed 50% of total UMIs; (3) ribosomal gene percentage did

not exceed 20% of total UMIs; (4) UMI counts were greater than

1000, with the top 3% of cells by UMI count removed; (5)

erythrocyte gene percentage was less than 3% of total UMIs. After

these steps, 119,276 cells and 26,483 genes were retained for

downstream analysis.

Batch effects across samples were corrected using Harmony

(v1.2.0) (22). Clustering was performed using the FindClusters

function (resolution = 0.5) based on the top 15 principal

components, resulting in 19 clusters. Visualization was conducted

using Uniform Manifold Approximation and Projection (UMAP).

Marker genes for each cluster were identified by the FindAllMarkers

function (logfc.threshold = 1). Clusters were annotated based on

canonical marker genes as follows: T cells (CD3D, CD3E), myeloid

cells (LYZ, CD68, CD163), epithelial cells (EPCAM, KRT20,

CEACAM5), B cells (MS4A1, CD79A), fibroblasts (DCN,

COL1A1, COL1A2), mast cells (TPSAB1, TPSB2, CPA3),

endothelial cells (CDH5, PECAM1, CLDN5), plasma cells

(JCHAIN, IGHA1, IGHA2, IGKC), and cycling cells (TOP2A,

MKI67) (Supplementary Table S1).
Identification of malignant epithelial cells

Copy number variation (CNV) analysis was performed on all

epithelial cells using the inferCNV package (v1.3.3) (https://

github.com/broadinstitute/inferCNV), with myeloid cells as the

reference. Initial CNV scores per cell were calculated and

visualized via heatmaps, where red and blue indicated

chromosomal amplifications and deletions, respectively. The

average CNV scores of myeloid and B cells were set as thresholds

to exclude non-malignant epithelial cells, retaining malignant

epithelial cells for further analysis.

Further clustering divided malignant cells into 14 subclusters.

Cluster-specific highly expressed marker genes were identified using

Seurat’s FindAllMarkers function. Biological functional features of

malignant subclusters were characterized by single-sample gene set

enrichment analysis (ssGSEA) using the GSVA package, based on

MsigDB Hallmark gene sets. Univariate Cox regression was applied

to evaluate the prognostic value of marker genes for each subcluster.
Monocle2 pseudotime and CytoTRACE
analysis

Pseudotime trajectory analysis of CRC myeloid cells was

performed using Monocle (v2.30.1) (23). A single-cell dataset

object was created via newCellDataSet, selecting highly variable

genes based on VariableFeatures. Dimensionality reduction and

trajectory inference were conducted with the DDRTree algorithm.

The orderCells function assigned pseudotime values and delineated
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branching events to elucidate myeloid cell state transitions.

Concurrently, CytoTRACE (v0.3.3) was used to compute cell

stemness scores (ranging 0–1; higher scores indicate stronger

stemness and lower differentiation), which were mapped onto the

pseudotime trajectory to determine developmental origins (24). MK

pathway activity was integrated along the timeline to visualize its

dynamic changes.
Cell–cell communication analysis

To characterize the interaction features of FAM49B-positive

malignant epithelial cells, cell communication networks were

inferred using the CellChat R package (v1.6.1) based on ligand-

receptor interactions (25). Normalized Seurat objects were used to

separately construct CellChat objects for CRC primary tumors (PT)

and liver metastases (LM). Low-abundance subgroup

communications were filtered using the filterCommunication

function (min.cells = 10). Communication probabilities of signaling

pathways were computed via computeCommunProbPathway, and

aggregateNet was employed to generate aggregated communication

networks, enabling comparison of network differences between PT

and LM groups. Significant interactions were visualized using

netVisual_circle() and netVisual_aggregate(), facilitating

identification of key communication hubs. Among these, the

MDK-NCL signaling pathway emerged as a core interaction axis,

specifically enriched between malignant epithelial cells and myeloid

cells, and was selected for subsequent spatial distribution and

functional validation.
GO and KEGG pathway enrichment
analysis

Differentially expressed genes (DEGs) were identified using the

FindMarkers function with parameters logfc.threshold = 1 and

min.pct = 0.1. Functional annotation was performed using gseGO

and gseKEGG functions in the clusterProfiler package (v4.1.0) (26).

Enrichment results were visualized using the GseaVis package

(v0.1.0)(https://github.com/junjunlab/GseaVis), providing an

intuitive display of significantly enriched pathways and

biological processes.
Processing of CRC spatial transcriptomics
data

Spatial transcriptomics data were analyzed using the Seurat

package. Spots with fewer than 10 detected genes were filtered out.

Variance stabilization was performed using SCTransform. Based on

the top 30 principal components from RunPCA, neighborhood

graphs were constructed via FindNeighbors, and spatial domains

were identified using FindClusters (resolution = 0.8). Visualization

was achieved by RunUMAP. To address the multicellular nature of

Visium spots, spatial deconvolution was performed by integrating
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single-cell RNA-seq datasets with SPOTlight (v1.6.7) (27). After

filtering mitochondrial and ribosomal genes, the top 3000 highly

variable genes (HVGs) identified by modelGeneVar were selected.

Genes with average AUC > 0.8 were used in a non-negative matrix

factorization model to resolve dominant cell types per spot. Their

spatial distributions were visualized using SpatialFeaturePlot.

To elucidate intercellular interaction mechanisms, spatial ligand-

receptor co-localization analysis was conducted with the SpaGene

package (v0.1.0) (28). This method calculates Z-scores and false

discovery rates (FDR) for target gene pairs (e.g., MDK-NCL),

assessing their significance relative to random spatial distribution.
Cell lines and cell culture

Human CRC cell lines HCT116 (#FH0027), SW480 (#FH0021),

and SW620 (#FH0021) were purchased from Shanghai Fuheng

Biotechnology Co., Ltd. All cell lines were authenticated by short

tandem repeat (STR) profiling and cultured following the supplier’s

recommendations. Cells were maintained in a humidified incubator

at 37°C with 5% CO2.
Transient transfection and lentiviral
infection

This section of methods were performed as previously

described (15).
RNA isolation and real-time quantitative
polymerase chain reaction

Total RNA was isolated from each tissue and cell sample stored

at -80°C using TRIzol® reagent (Invitrogen, Carlsbad, CA, USA)

and the SteadyPure RNA Isolation Kit (Accurate Biology, Hunan,

China; Catalog Number: AG21024). The concentration and quality

of the isolated RNA were evaluated using the OneDrop OD - 1000

spectrophotometer, ensuring that the A260/A280 ratio fell within

the range of 1.8 - 2.0.

Subsequently, 1000 ng of total RNA was reverse - transcribed

into cDNA in a 20 - mL reaction mixture using Hiscript III Reverse

Transcriptase (Vazyme, Nanjing, China). The reverse -

transcription reaction conditions were set as 50°C for 15 minutes

followed by 85°C for 5 seconds.

In accordance with the manufacturer’s protocols, RT - qPCR was

conducted using the LightCycler 480 Real - Time PCR System (Roche,

Switzerland) and ChamQ Universal SYBR qPCR Master Mix

(Vazyme). The sequences of the gene - specific primers are listed below:

GAPDH - Forward (F): 5′-TCAACGGATTTGGTCGT

ATTG-3′
GAPDH - Reverse (R): 5′-TGGGTGGAATCATATT

GGAAC-3′
MDK - Forward (F): 5′-TGGAGCCGACTGCAAATACAA-3′
MDK - Reverse (R): 5′-GGCTTAGTCACGCGGATGG-3′
Frontiers in Immunology 04
DIA proteomics

HCT116 cell samples infected with either the negative control

(NC) or FAM49B - KD lentivirus were separately collected. These

samples were then lysed using 200 mL of an 8 M urea solution

containing a protease inhibitor (Catalog Number: S8830, Sigma -

Aldrich). Subsequently, the protein concentration was measured.

The extracted proteins underwent a series of sequential

treatments: reduction, alkylation, and enzymatic digestion.

Specifically, reduction was carried out using dithiothreitol (DTT).

This was followed by alkylation modification with iodoacetamide

(IAM). Finally, trypsin was added, and the mixture was incubated at

37°C overnight to complete the enzymatic digestion reaction.

The peptides obtained after digestion were desalted using a

SoLAm HRP 2 mg/mL 96 - well desalting plate (Catalog Number:

60209 - 001, Thermo Fisher Scientific). After desalting, the peptides

were dried by vacuum centrifugation for subsequent analysis.

LC - MS/MS analysis was conducted on a platform that

integrated the UltimateTM 3000 RSLC liquid chromatography

system (Thermo Fisher Scientific) and the Q Exactive HF - X

mass spectrometer (Thermo Fisher Scientific), operating in the

data - independent acquisition (DIA) mode. Peptide separation

was achieved through a 160 - minute gradient elution program. The

mobile phase B (0.1% formic acid in 80% acetonitrile) increased

from 1% to 8% within 0–4 minutes, from 8% to 30% during 4–145

minutes, from 30% to 90% in 145–150 minutes, decreased from 90%

to 1% in 150–151 minutes, and was maintained at 1% for 9 minutes.

The full - scan range of the mass spectrometer was set from m/z 350

to 1200, and 80 DIA windows were established for data collection.

The rawmass spectrometry data were imported into the DIA - NN

software (Version 1.8.0). Targeted data extraction was performed based

on a predicted human proteome database. Except for specific

parameter settings, the remaining parameters were set to their

default values to ensure that the false discovery rate (FDR) at both

the peptide and protein levels was controlled below 1%. The protein

expression intensity was finally calculated by the DIA - NN software,

taking the mean of the intensities of the top three peptides.

The protein expression intensity data mentioned above were

imported into the Perseus and MetaboAnalyst platforms (https://

www.metaboanalyst.ca/) for statistical analysis. Initially, protein

data with a missing value proportion exceeding 50% were

removed. For the missing values in the remaining data, the K -

nearest neighbor (KNN) algorithm was employed for imputation.

All protein expression values were log2 - transformed for statistical

comparison. Proteins were considered differentially expressed if they

met the criteria of |log2 fold change (FC)| > 1.5 and an adjusted p -

value (FDR) < 0.05 after multiple hypothesis testing corrections.

Finally, gene set enrichment analysis (GSEA) was performed on the

identified differentially expressed proteins to uncover their potential

biological functions and associated pathways.
Statistical analysis

All statistical analyses and data processing in this study were

performed using R (v4.3.2), Python (v3.7), and GraphPad Prism
frontiersin.org

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://doi.org/10.3389/fimmu.2025.1682637
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1682637
9.0. Continuous variables with a normal distribution are presented

as mean ± standard deviation (Mean ± SD), while those with non-

normal (skewed) distributions are described using median and

interquartile range (Median [IQR]). Statistical methods employed

include independent samples t-test and Wilcoxon rank-sum test. A

significance threshold of P < 0.05 was applied, with notation as

follows: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
Result

scRNA-seq analysis and cell type
identification in CRC

We collected single-cell RNA sequencing (scRNA-seq) data from

33 tumor samples derived from 16 CRC patients, including 16 primary

tumor (PT) samples and 17 liver metastasis (LM) samples (Figure 1A).

After stringent quality control and doublet removal, a total of 119,276

high-quality CRC cells were retained for downstream gene expression

analysis. To correct for batch effects and integrate cells across patients,

we appliedHarmony based on patient ID, resulting in the identification

of 19 distinct cell clusters (Figure 1C).

Based on canonical cell markers (Figures 1B, C), we identified nine

major cell types (Figure 1D): epithelial cells (34,876 cells), B cells (4,040

cells), proliferating cells (1,183 cells), endothelial cells (1,747 cells),

fibroblasts (7,208 cells), mast cells (1,644 cells), plasma cells (13,745

cells), myeloid cells (15,309 cells), and T cells (39,524 cells). The

expression levels of representative marker genes for each cell type are

shown in Figure 1E. The proportions of these cell types across samples

are displayed in Figure 1F, the absolute cell counts in Figure 1G, and

detailed transcript counts for each cell type in Figure 1H.
Identification of FAM49B-associated
malignant epithelial cells

To identify malignant epithelial cells characterized by FAM49B

expression, we applied InferCNV to calculate copy number

variation (CNV) scores for each epithelial cell, using myeloid and

B cells as reference populations (Figure 2A). The resulting

chromosomal alteration heatmap, annotated by tissue origin,

revealed distinct CNV patterns between primary tumors (PT) and

liver metastases (LM). Notably, CNV scores were higher in PT-

derived epithelial cells than in those from LM, indicating substantial

epithelial heterogeneity between the two sites (Figure 2B).

We used themean CNV score of themyeloid and B cell populations

as a threshold to classify epithelial cells into malignant (22,780 cells) and

non-malignant (12,096 cells) categories. Among these, 7,293 malignant

epithelial cells originated from PT samples, while 15,487 were from LM

samples (Figure 2C). Further clustering analysis identified 11 malignant

epithelial subpopulations (Figures 2D, E).
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To explore the heterogeneity among these malignant epithelial

subgroups, we performed Gene Set Variation Analysis (GSVA)

using the Hallmark gene sets (Figure 2F). Among all clusters, EP_10

exhibited the highest enrichment score for the MYC_targets_v2

pathway, consistent with our previous findings. We also examined

the expression patterns of FAM49B and NEK9 across malignant

epithelial subtypes and found that both genes were significantly co-

localized in EP_08 and EP_10 clusters (Figures 2G, H), further

supporting our earlier conclusions. These two clusters were defined

as the High_FAM49B_EP subpopulation. Finally, univariate Cox

regression analysis identified prognostically unfavorable genes

within the High_FAM49B_EP group (Figure 2I).
Identification of macrophage
subpopulations

We performed subclustering analysis on myeloid cells

(Figure 3A), resulting in the identification of nine distinct

subpopulations (Figure 3B). Among these, macrophage clusters

were annotated based on their predominant marker gene

expression, including SPP1_TAMs, SELENOP_TAMs,

MKI67_TAMs, FCN1_TAMs, FBP1_TAMs, and CXCL3_TAMs

(Figures 3C, F).

Comparative analysis revealed compositional differences in

macrophage subtypes between primary tumors (PT) and liver

metastases (LM). CXCL3_TAMs were predominant in PT

samples but markedly reduced in LM, whereas SPP1_TAMs and

FBP1_TAMs were more abundant in LM (Figure 3D).

To further explore pathway-level characteristics of each myeloid

subpopulation, we conducted Gene Set Variation Analysis (GSVA)

using the Hallmark gene sets (Figure 3E). FBP1_TAMs exhibited

enrichment in Hypoxia, Bile Acid Metabolism, and Angiogenesis

pathways, which are closely associated with tumor immune

suppression. SPP1_TAMs were significantly enriched in pathways

such as KRAS signaling up, Coagulation, and Hedgehog

signaling, suggesting a potential role in promoting tumor

vascularization. In contrast, CXCL3_TAMs showed elevated

scores in the Inflammatory Response pathway.

These enrichment profiles suggest that SPP1_TAMs and

FBP1_TAMs may correspond to M2-like macrophages, whereas

CXCL3_TAMs are more aligned with M1-like phenotypes. To

further quantify the polarization states of these macrophage

subtypes, we curated gene sets associated with M1 and M2

macrophage phenotypes and calculated signature scores for each

subpopulation (Supplementary Table S2). The results showed that

CXCL3_TAMs had significantly higher scores for the M1-

associated gene set, while SPP1_TAMs and FBP1_TAMs were

more enriched in the M2-associated gene set, further validating

the GSVA-based findings.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1682637
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1682637
The MK signaling pathway could drive
macrophage polarization

To further investigate how High_FAM49B_EP cells regulate

macrophages within the tumor microenvironment (TME), we

employed the Cel lChat tool to analyze interce l lu lar

communication. The results revealed that both the number and

strength of interactions among major cell types were generally

higher in primary tumors (PT) than in liver metastases (LM),

although the differences were relatively modest (Figures 4A–D).

Differential interaction heatmaps between PT and LM indicated

that CXCL3_TAMs exhibited the most pronounced changes in both
Frontiers in Immunology 06
the number and strength of interactions. In comparison with other

epithelial subpopulations, High_FAM49B_EP cells also showed

more prominent changes in interaction patterns (Figures 4E, F).

We next evaluated the outgoing and incoming signaling

intensities for each myeloid subcluster. CXCL3_TAMs showed

stronger outgoing and incoming signaling activity in PT.

High_FAM49B_EP cells exhibited increased outgoing signals

specifically in PT, while FBP1_TAMs received more signals in

LM. SPP1_TAMs displayed active signaling behavior in both PT

and LM (Figure 4G).

Notably, High_FAM49B_EP cells primarily communicated

with macrophages through the MK (midkine) signaling pathway,
FIGURE 1

Single-cell transcriptomics atlas of CRC with PT and LM. (A) The UMAP plot of single - cell data colored according to the sources of 16 patients shows
no significant batch effect. (B) The UMAP plot of transcript counts in the single - cell data set. (C) The Seurat clustering results for single - cell data are
shown, yielding a total of 19 clusters. (D) Cell type annotation was performed based on the expression of marker genes, and the UMAP plots were
colored according to nine major cell types. (E) Expression profiles of representative markers for ten distinct cell types. (F) The bar graph presents the
distribution of the proportions of diverse cell types among different patients. (G) Total cell count for each identified cell type. (H) The log-transformed
values of transcript counts for each cell type reflect the transcriptional activity at the single - cell level.
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with this interaction being more pronounced in PT samples. As

shown in Figure 4H, the MK pathway signaling network revealed

High_FAM49B_EP as the main sender population and myeloid

cells as the predominant receivers. Within this pathway, MDK was

highly expressed in malignant epithelial cells, whereas NCL was

broadly expressed in macrophages (Figure 4I).
Frontiers in Immunology 07
We further analyzed the MDK–NCL interaction between

malignant epithelial cells and macrophages, which revealed a

significantly strong interaction (Figure 4J). These findings highlight

the critical role of the MDK–NCL axis in shaping the tumor

microenvironment and suggest a potential mechanism by which

High_FAM49B_EP cells could drive macrophage polarization.
FIGURE 2

Identification of malignant epithelial cells. (A) Chromosomal heatmaps of CNVs in epithelial cells were inferred with reference to myeloid cells and
B cells, where red indicates amplification and blue indicates deletion. (B) Boxplot for CNV Scores (PT, LM myeloid cells and B cells). *p < 0.05,
**p < 0.01, and ***p < 0.001, Student’s t-test. (C) UMAP plots of malignant epithelial cells colored by sample origin (PT and LM). (D) UMAP plots
of malignant epithelial cells, with 14 clusters. (E) The UMAP plot shows that malignant epithelial cells are divided into 14 subgroups. (F) Heatmap
showing GSVA scores of hallmarker gene sets for 14 malignant epithelial cell subtypes. (G) The UMAP plot shows the main distribution areas of
the FAM49B gene. (H) The UMAP plot shows the main distribution areas of the NEK9 gene. (I) Univariate Cox analysis of key marker genes in the
High_FAM49B_EP group showed their prognostic significance through hazard ratios, confidence intervals, and P values.
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Polarization trajectory from CXCL3_TAMs
to SPP1_TAMs

To delineate the evolutionary dynamics of macrophages in

CRC, we constructed a pseudotime developmental trajectory

based on single-cell RNA-seq data (Figure 5A). This trajectory
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classified macrophages into five developmental states (Figure 5B),

thereby outlining their differentiation path within the CRC

tumor microenvironment.

By integrating CytoTRACE scores to assess differentiation

potential, we observed that the CXCL3_TAMs cluster—positioned

at the bottom right of the trajectory—exhibited the lowest
FIGURE 3

Phenotypic identification of myeloid cells. (A) UMAP plots of myeloid cells colored by patient ID. (B) UMAP plots of myeloid cells colored according
to Seurat clusters. (C) UMAP plots of myeloid cells colored by cell type. (D) Bar chart depicting the differences in myeloid cell proportions between
the PT and LM groups. (E) Heatmap displaying GSVA scores of hallmark gene sets across nine myeloid cell subtypes. (F) Bar plots presenting the top
three upregulated and downregulated genes in nine myeloid cell subsets. (G) Box plots illustrating gene set scores for M1 and M2 polarization in nine
myeloid cell subtypes.
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FIGURE 4

Intercellular communication of myeloid cells and malignant EPs. (A, B) Bar graphs depict the quantity and intensity of intercellular interactions
within PT and LM. (C, D) Illustrations of the quantity (C) and intensity (D) of intercellular interactions are presented. Herein, the size of each
dot is proportional to the cell number, and the thickness of each line corresponds proportionally to the quantity or intensity of the interactions.
(E, F) Heatmaps unveil the alterations in the quantity (E) and intensity (F) of intercellular interactions between PT and LM. (G) The communication
signal strength between myeloid cells and malignant EPs in the PT and LM groups was analyzed via CellChat. (H) A circular plot depicts the
inferred MK signaling network in PT and LM. (I) A violin plot presents the expression levels of nine genes associated with the MK signaling network.
(J) A bubble plot illustrates the communication status of MK pathway-specific ligand–receptor pairs between malignant epithelial cells and myeloid
cells at different FAM49B expression levels in PT and LM. The size of each dot indicates the P - value, while the color represents the communication
probability.
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differentiation potential, identifying it as the likely origin of the

macrophage developmental path (Figures 5C, D). Furthermore, two

distinct differentiation trajectories (designated as cellfate1 and

cellfate2) were identified. The CXCL3_TAMs cluster ,

characterized as M1-like macrophages, served as the starting

point for differentiation towards M2-like macrophages. This shift

towards a more immunosuppressive and tumor-promoting

macrophage phenotype significantly contributes to the

establishment of an immunosuppressive tumor microenvironment.

Further analysis of CytoTRACE scores revealed that NCL, the

receptor of the MK signaling pathway, was predominantly enriched

in M2-like macrophages (Figure 5E). Differential gene expression

analysis at Branch Point 1 indicated significantly higher expression

of SPP1 in CellFate1, suggesting a transition trajectory from

CXCL3_TAMs toward SPP1_TAMs (Figure 5F).

Lastly, we examined the expression dynamics of MK pathway-

related genes along the pseudotime trajectory. The results showed a

progressive increase in NCL expression as pseudotime advanced

(Figure 5G), further supporting its role in driving the polarization of

CXCL3_TAMs toward the M2-like SPP1_TAM phenotype.

Consistently, survival analysis also demonstrated that high

expression levels of both MDK and SPP1 were significantly

associated with poorer overall survival (OS) and relapse-free survival

(RFS) (Figure 5H), indicating that MDK-driven macrophage

polar izat ion promotes an immunosuppress ive tumor

microenvironment and is closely linked to adverse clinical outcomes.
Spatial distribution characteristics of
CXCL3_TAMs and SPP1_TAMs

To elucidate the spatial organization of High_FAM49B_EP,

CXCL3_TAMs, and SPP1_TAMs, we conducted a study based on

spatial transcriptomics (ST) data from two CRC liver metastasis

patients. In the first sample, tissue spots were clustered into 0–8

spatial clusters using Louvain clustering (Figure 6A), and the cell-

type signatures defined by scRNA-seq were projected onto the ST spots

using the SPOTlight tool (Figures 6B–D). The results revealed that

CXCL3_TAMs and SPP1_TAMs co-localized within cluster 3.

Concurrently, SpaGene detected high expression of the ligand MDK

and receptor NCL in this region, confirming that these two cell types

form a spatial interaction network via the MDK-NCL signaling axis

(Figure 6E). In the paired liver metastasis samples, tissue spots were

clustered into 0–11 spatial clusters(Figure 6G). The results of

SPOTlight deconvolution analysis indicated that CXCL3_TAMs and

SPP1_TAMswere significantly enriched in clusters 4, 5, and 9, showing

a high degree of consistency with the spatial localization of

High_FAM49B_EP (Figures 6H–J). Additionally, SpaGene confirmed

the co - localization of MDK and NCL within these enriched regions,

further corroborating the role of the MDK - NCL signaling axis in

spatial interactions (Figures 6K, L).

We performed a similar analysis on a second sample to validate

our findings. Following Louvain clustering of tissue spots into 0–12

clusters, SPOTlight deconvolution revealed significant enrichment

of CXCL3_TAMs and SPP1_TAMs in clusters 4, 5, 8, 10, and 11
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(Supplementary Figures S1A–D). SpaGene further confirmed the

co-localization of MDK and NCL within these regions

(Supplementary Figures S1E, F). Comparable patterns were

detected in the liver metastatic foci of this sample (Supplementary

Figures S1G–L). The cross-sample consistency supports the

conclusion that High_FAM49B_EP drives the differentiation of

CXCL3_TAMs into SPP1_TAMs via the MDK-NCL signaling

pathway, thereby contributing to the remodeling of the

immunosuppressive tumor microenvironment. These findings

were independently validated in two paired samples.
Validation of MDK expression after
FAM49B knockdown

To investigate the function of FAM49B, we knocked down its

expression in the human CRC cell line HCT116 using specific

siRNA. After establishing a stable knockdown model (si_FAM49B),

proteomic analysis was performed on both si_FAM49B and control

si_NC cells (Supplementary Table S3). PCA analysis and sample

correlation heatmaps confirmed significant differences between the

si_FAM49B and si_NC groups(Figures 7A, B). Differential protein

screening (|Log2FC| > 1.5 and p < 0.05) revealed that MDK

expression was significantly downregulated following FAM49B

knockdown, which was corroborated by both the volcano plot

and the top 15 differential protein heatmap (Figures 7C, D).

GSEA analysis of differential proteins indicated that, in KEGG

enrichment, ribosome biogenesis, N-glycan biosynthesis, and fatty

acid metabolism pathways were significantly upregulated, while

ECM-receptor interaction, cytokine-cytokine receptor interaction,

SNARE interactions, and pathways involving cell adhesion

molecules were markedly downregulated (Figure 7E). In GO

enrichment, phospholipid-related biosynthetic and metabolic

pathways, including glycerophospholipid and phosphatidylinositol

biosynthesis, were significantly upregulated, whereas pathways

associated with cell adhesion, such as intercellular and

homophilic adhesion mediated by plasma membrane adhesion

molecules, were significantly downregulated (Figure 7F).

These proteomic results indicate that knockdown of FAM49B

significantly suppresses MDK expression and affects multiple lipid

metabolism and biosynthesis pathways. Moreover, the critical

downregulation of ECM-receptor interaction and cell adhesion

molecule pathways suggests a potential weakening of tumor cell

interactions with the extracellular matrix (ECM) and intercellular

communication. Furthermore, in three CRC-derived cell models—

HCT116, SW480, and SW620—FAM49B gene knockdown

significantly inhibited MDK mRNA expression (p < 0.001),

indicating that this regulatory relationship is consistent across

different cell lines (Figure 7G).
Discussion

In this study, we systematically investigated the role of

High_FAM49B_EP in promoting macrophage polarization
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FIGURE 5

Pseudotime analysis was employed to delineate the differentiation trajectory from CXCL3_TAMs to SPP1_TAMs. (A) Pseudotime trajectory
analysis reveals the differentiation trajectories of six cell types. (B) Pseudotime trajectory analysis reveals five distinct cellular differentiation states.
(C) Projection of CytoTRACE scores onto the Pseudotime trajectory. (D) Pseudotime scores are mapped along the cellular differentiation trajectory.
(E) CytoTRACE-reconstructed differentiation trajectories of TAMs (left to right): CytoTRACE scores, distribution of six TAM subsets, and NCL
expression. (F) The heatmap shows the relative expression changes of differentially expressed genes driving differentiation toward cell fates 1
and 2 in TAMs clusters classified into three groups based on pseudo-temporal clustering. (G) Expression dynamics of MK pathway genes along
the pseudotime trajectory. (H) Kaplan-Meier curves illustrate the impact of MDK and SPP1 expression on CRC patient OS and RFS.
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through the MDK-NCL signaling axis in CRC by integrating

single-cel l RNA sequencing (scRNA-seq) and spatia l

transcriptomics. Our findings reveal that the MDK-NCL

pathway contributes to immunosuppression and tumor immune
Frontiers in Immunology 12
evasion mechanisms, providing novel insights into the potential of

targeting this axis as a therapeutic strategy. This work deepens our

understanding of tumor microenvironment (TME) remodeling

in CRC.
FIGURE 6

Spatial transcriptomic slices of primary colorectal cancer lesions. (A) Cluster plot of 0–8 subgroups clustered by Seurat. (B–D) Spatial plot showing
the expression of CXCL3_TAMs, SPP1_TAMs, and High_FAM49B_EP in PT predicted by SPOTlight. (E, F) Spatial mapping of the MDK ligand, NCL
receptor, and their binding score in the MDK-NCL ligand-receptor interaction analysis in PT. (G) Cluster plot of 0–11 subgroups clustered by Seurat.
(H–J) Spatial plot showing the expression of CXCL3_TAMs, SPP1_TAMs, and High_FAM49B_EP in LM predicted by SPOTlight. (K, L) Spatial mapping
of the MDK ligand, NCL receptor, and their binding score in the MDK-NCL ligand-receptor interaction analysis in LM.
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In our previous research, FAM49B was shown to activate NEK9

phosphorylation, stabilize and activate c-Myc, and its expression

correlated closely with patient prognosis (15). However, the

mechanisms by which FAM49B shapes the immune

microenvironment in CRC remained unclear. Our current study

identifies the MDK-NCL signaling axis as a central mediator in the

interaction between High_FAM49B_EP and tumor-associated

macrophages (TAMs). MDK, a multifunctional growth factor, is

highly expressed in High_FAM49B_EP cells, while its receptor NCL

is broadly distributed on macrophage surfaces (29–31). This ligand-

receptor specificity forms the molecular basis for intercellular

communication. Notably, NCL expression is significantly higher

in SPP1_TAMs compared to CXCL3_TAMs, which may be a key
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driver of macrophage phenotypic transition. Upon MDK binding to

NCL, macrophages are induced to polarize from an M1 toward an

immunosuppressive M2 phenotype (32). This finding echoes the

work of Yu Fu et al., whose single-cell and spatial transcriptomics

analyses also revealed that MDK-NCL promotes the formation of

an immunosuppressive microenvironment in lung adenocarcinoma

(LUAD), with high MDK-NCL expression associated with

increased infiltration of myeloid-derived suppressor cells

(MDSCs) and M2-like macrophages (18, 33, 34).

Accumulating studies have demonstrated that MDK signaling

promotes the polarization of tumor-associated macrophages

(TAMs) toward an immunosuppressive M2 phenotype. In glioma,

MDK secreted by GBM cells drives macrophage polarization
FIGURE 7

FAM49B knockdown suppresses MDK expression. (A) PCA was performed on si_FAM49B and si_NC in the HCT116 cell line. (B) Heatmap of
correlations between si_FAM49B and si_NC samples. (C) Volcano plot of differentially expressed genes between si_FAM49B and si_NC. (D) Heatmap
of the top 15 differentially expressed genes between si_FAM49B and si_NC. (E) GSEA KEGG enrichment analysis of differentially expressed genes
between si_FAM49B and si_NC. (F) GSEA GO enrichment analysis of differentially expressed genes between si_FAM49B and si_NC. (G) The relative
expression of MDK mRNA was analyzed via RT-qPCR in CRC cells transfected with LV_FAM49B and LV_NC lentiviruses.
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toward the M2 phenotype by activating receptors on macrophages,

leading to the secretion of cytokines such as CXCL1 and thereby

fostering an immunosuppressive environment (35). Similarly, in

gallbladder cancer, upregulation of MDK enhances its interaction

with LRP1—expressed by tumor-infiltrating macrophages—

promoting the differentiation of immunosuppressive macrophages

(31). The MDK-NCL axis has been recognized as a promising

therapeutic target, as it can be targeted by monoclonal antibodies or

small molecule inhibitors to reverse immunosuppression (36).

Strategies aimed at reprogramming immunosuppressive myeloid

cells, including macrophages influenced by MDK, can shift the

TME from an immunosuppressive to an immunostimulatory state

(37). Studies in melanoma models have demonstrated that

genetically targeting MDK can overcome resistance to PD-1/PD-

L1 inhibitors and enhance therapeutic efficacy (38). Targeting this

axis is thus identified as a potential strategy to reprogram the TME,

suppress macrophage-mediated immunosuppression, and synergize

with immune checkpoint inhibitors.

A major innovation of this study is the linkage of FAM49B

expression to MDK secretion. Proteomic data demonstrate that

FAM49B knockdown significantly inhibits MDK expression,

suggesting that FAM49B may regulate MDK synthesis at the

transcriptional or post-transcriptional level. We propose the

existence of a FAM49B-MDK-NCL regulatory cascade. This

pathway potentially explains why High_FAM49B_EP exhibits

stronger immunomodulatory capacity. In liver metastatic lesions,

although the proportion of High_FAM49B_EP cells is low,

SPP1_TAMs are significantly increased, likely due to the specific

selective pressures of the metastatic microenvironment—

characterized by hypoxia, elevated lactate, and bile acid—which

favor M2 macrophage polarization, consistent with the enrichment

of FBP1_TAMs in bile acid metabolic pathways (39–41).

The critical role of SPP1+ macrophages in CRC progression has

been highlighted in multiple studies (42–46). Here, we observed

significant enrichment of SPP1_TAMs in liver metastases and the

highest scores within M2 polarization gene sets. These macrophages

directly promote tumor metastasis by secreting immunosuppressive

factors (e.g., IL-10, TGF-b) and pro-angiogenic factors (e.g., VEGF)

(47, 48). Importantly, spatial analysis revealed that SPP1_TAMs are

spatially adjacent to malignant cells, forming a microenvironment

conducive to tumor invasion and survival. This spatial distribution

correlates with poor prognosis in patients with liver metastases and

aligns with previous findings that SPP1+ macrophage enrichment

significantly associates with reduced survival in CRC patients

(49–51).

Despite comprehensively delineating the role of the FAM49B-

MDK-NCL axis in the CRC immune microenvironment, several

limitations and future directions remain. First, sample heterogeneity

is a constraint: although we integrated 33 samples from 16 patients,

spatial transcriptomics was performed only on two liver metastasis

cases. Expanding sample size is needed to validate the generalizability

of this signaling pathway. Moreover, incorporating a broader range of
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clinical stages and molecular subtypes will allow exploration of axis

activity variations across subtypes (52).

In summary, through integrated multi-omics analysis, this

study is the first to elucidate the complete mechanism by which

FAM49B-positive epithelial cells promote macrophage M2

polarization via the MDK-NCL signaling axis. This discovery not

only advances understanding of the heterogeneity formation

mechanisms within the CRC immune microenvironment but also

offers a novel therapeutic target to overcome immune therapy

resistance. Future studies should validate the universality of this

axis in larger clinical cohorts and further investigate its interplay

with tumor metabolic microenvironment. Targeting the FAM49B-

MDK-NCL pathway, particularly in combination with existing

immune checkpoint inhibitors, holds promise as a new avenue

for precision immunotherapy in CRC, ultimately improving

survival outcomes for patients with metastatic disease.
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