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Objectives: FAM49B has been shown to promote proliferation and metastasis of
colorectal cancer (CRC) by stabilizing MYC through phosphorylation of NEK9;
however, its role in shaping the immune suppressive tumor microenvironment
(TME), particularly in macrophage polarization, remains unclear.

Methods: We applied multi-omics approaches to study CRC by integrating 33
scRNA-seq samples from 16 CRC patients, 2 paired spatial transcriptomics (ST)
samples, and bulk RNA data to characterize malignant epithelial cells
(High_FAM49B_EP) and tumor-associated macrophages (TAMs). Functional
validation of FAM49B was conducted via knockdown experiments and
proteomics analysis.

Results: A High_FAM49B_EP subpopulation was identified in primary tumors (PT)
and liver metastases (LM), exhibiting elevated MYC signaling and association with
poor prognosis. TAMs showed spatial heterogeneity: M1-like CXCL3" TAMs
predominated in PT, whereas M2-like SPP1* TAMs were enriched in LM.
CellChat analysis revealed that High_FAM49B_EP activated macrophage
polarization through the MDK-NCL signaling axis. Pseudotime trajectory
analysis confirmed differentiation from CXCL3* to SPP1* TAMs driven by
upregulation of NCL. Spatial mapping showed co-localization of MDK*
epithelial cells with NCL* TAMs in the immunosuppressive microenvironment.
FAM49B knockdown significantly inhibited MDK expression and disrupted ECM—
receptor interactions.
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Conclusions: FAM49B promotes immunosuppressive TME formation by
mediating TAM polarization via the MDK-NCL axis, suggesting the FAM49B—
MDK-NCL pathway as a potential therapeutic target for CRC metastasis.

colorectal cancer, tumor environment (TME), FAM49B, MDK, macrophage
polarization, bioinformatics

Introduction

Colorectal cancer (CRC) ranks as the third most commonly
diagnosed malignancy worldwide and is the second leading cause of
cancer-related deaths, resulting in approximately 900,000 fatalities
annually (1). CRC exhibits high heterogeneity, particularly between
primary tumors and liver metastases, which display marked
molecular differences and divergent therapeutic responses (2, 3).
Liver metastasis remains one of the principal causes of mortality in
CRC patients, making a thorough understanding of the tumor
immune microenvironment (TME) critical for improving
treatment outcomes in patients with distant metastases (4).

In recent years, the advent of single-cell RNA sequencing
(scRNA-seq) and spatial transcriptomics (ST) technologies has
provided unprecedented resolution to study intratumoral
heterogeneity and cellular spatial organization. While scRNA-seq
dissects transcriptional profiles of diverse cell types, ST preserves
the spatial context of cells within tissue architecture. These tools
have been extensively utilized to uncover interactions among
epithelial, immune, and stromal cells, with particular emphasis on
tumor-associated macrophages (TAMs) (5-7). The polarization
states of TAMs in CRC have been implicated in metastasis and
immune suppression (8-12).

FAM49B is a conserved gene that has recently attracted attention
in multiple cancers (13, 14). In CRC, we have demonstrated that
FAM49B promotes cancer cell proliferation and migration by
stabilizing c-Myc through NEK9 phosphorylation and is associated
with poor patient prognosis (15). However, the heterogeneous cellular
distribution of FAM49B, the existence of functional subpopulations,
and its role in modulating the immune microenvironment remain
unexplored systematically. Additionally, the Midkine-Nucleolin
(MDK-NCL) signaling axis has been recognized as a critical
mediator of communication between tumor and immune cells.
MDK, a growth factor overexpressed in various solid tumors,
regulates angiogenesis, cell survival, and immune suppression (16,
17). Tts receptor NCL is widely expressed on macrophages and other
immune cells. This signaling axis has been shown to induce regulatory
T cell recruitment and M2 macrophage polarization, thereby
facilitating tumor immune evasion (18).

Based on these insights, this study integrates scRNA-seq and ST
analyses of 33 tumor samples—including primary tumors and liver
metastases—from 16 CRC patients. We identified a malignant
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epithelial cell subpopulation expressing high levels of FAM49B
(High_FAM49B_EP) and revealed its spatial co-localization and
communication with TAMs, especially the immunosuppressive
SPP1_TAMs, via the MDK-NCL pathway. Pseudotime trajectory
analysis delineated the polarization progression from
CXCL3_TAMs to SPP1_TAMs, and two independent spatial
datasets confirmed their co-expression and functional association
in situ. Finally, in vitro knockdown of FAM49B validated its role in
regulating MDK expression and shaping an immunosuppressive
tumor microenvironment. Collectively, this study not only maps
critical communication networks within the CRC immune
microenvironment but also elucidates functional coupling between
specific epithelial subpopulations and immune cells, highlighting
the FAM49B-MDK-NCL axis as a potential therapeutic target for
metastasis inhibition and immune remodeling.

Materials and methods

Collection of single-cell and spatial
transcriptomics data

Single-cell RNA sequencing (scRNA-seq) datasets of CRC
primary tumors and liver metastases were downloaded from the
Gene Expression Omnibus (GEO) database under accession
number GSE245552 (19). This dataset comprises 39 CRC samples
from 16 patients. For this study, 33 samples were selected for
analysis, including 16 primary tumor samples and 17 liver
metastasis samples. Additionally, spatial transcriptomics (ST) data
of CRC were obtained from the cancerdiversity.asia database
(http://www.cancerdiversity.asia/scCRLM). RNA-Seq data (in
FPKM format) and corresponding clinical data for the TCGA-
COAD project were retrieved from The Cancer Genome Atlas
(TCGA) database. A total of 483 RNA-Seq files from CRC tissues
and 41 RNA-Seq files from normal colorectal tissues were acquired.

Quality control and annotation of single-
cell data
Initially, data objects were created using the CreateSeuratObject

function in Seurat (v4.4.0) with parameters min.cells = 5 and
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min.features = 300 (20). Doublets were filtered using DoubletFinder
(v2.0.4) with a doublet rate set at 5% (21). Subsequent stringent
quality control (QC) criteria were applied: (1) genes detected per
cell ranged from 300 to 8000; (2) mitochondrial gene percentage did
not exceed 50% of total UMISs; (3) ribosomal gene percentage did
not exceed 20% of total UMIs; (4) UMI counts were greater than
1000, with the top 3% of cells by UMI count removed; (5)
erythrocyte gene percentage was less than 3% of total UMIs. After
these steps, 119,276 cells and 26,483 genes were retained for
downstream analysis.

Batch effects across samples were corrected using Harmony
(v1.2.0) (22). Clustering was performed using the FindClusters
function (resolution = 0.5) based on the top 15 principal
components, resulting in 19 clusters. Visualization was conducted
using Uniform Manifold Approximation and Projection (UMAP).
Marker genes for each cluster were identified by the FindAllMarkers
function (logfc.threshold = 1). Clusters were annotated based on
canonical marker genes as follows: T cells (CD3D, CD3E), myeloid
cells (LYZ, CD68, CD163), epithelial cells (EPCAM, KRT20,
CEACAMS5), B cells (MS4A1, CD79A), fibroblasts (DCN,
COL1A1, COL1A2), mast cells (TPSAB1, TPSB2, CPA3),
endothelial cells (CDH5, PECAM1, CLDN5), plasma cells
(JCHAIN, IGHA1, IGHA2, IGKC), and cycling cells (TOP2A,
MKI67) (Supplementary Table S1).

Identification of malignant epithelial cells

Copy number variation (CNV) analysis was performed on all
epithelial cells using the inferCNV package (v1.3.3) (https://
github.com/broadinstitute/inferCNV), with myeloid cells as the
reference. Initial CNV scores per cell were calculated and
visualized via heatmaps, where red and blue indicated
chromosomal amplifications and deletions, respectively. The
average CNV scores of myeloid and B cells were set as thresholds
to exclude non-malignant epithelial cells, retaining malignant
epithelial cells for further analysis.

Further clustering divided malignant cells into 14 subclusters.
Cluster-specific highly expressed marker genes were identified using
Seurat’s FindAllMarkers function. Biological functional features of
malignant subclusters were characterized by single-sample gene set
enrichment analysis (ssGSEA) using the GSVA package, based on
MsigDB Hallmark gene sets. Univariate Cox regression was applied
to evaluate the prognostic value of marker genes for each subcluster.

Monocle2 pseudotime and CytoTRACE
analysis

Pseudotime trajectory analysis of CRC myeloid cells was
performed using Monocle (v2.30.1) (23). A single-cell dataset
object was created via newCellDataSet, selecting highly variable
genes based on VariableFeatures. Dimensionality reduction and
trajectory inference were conducted with the DDRTree algorithm.
The orderCells function assigned pseudotime values and delineated
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branching events to elucidate myeloid cell state transitions.
Concurrently, CytoTRACE (v0.3.3) was used to compute cell
stemness scores (ranging 0-1; higher scores indicate stronger
stemness and lower differentiation), which were mapped onto the
pseudotime trajectory to determine developmental origins (24). MK
pathway activity was integrated along the timeline to visualize its
dynamic changes.

Cell-cell communication analysis

To characterize the interaction features of FAM49B-positive
malignant epithelial cells, cell communication networks were
inferred using the CellChat R package (v1.6.1) based on ligand-
receptor interactions (25). Normalized Seurat objects were used to
separately construct CellChat objects for CRC primary tumors (PT)
and liver metastases (LM). Low-abundance subgroup
communications were filtered using the filterCommunication
function (min.cells = 10). Communication probabilities of signaling
pathways were computed via computeCommunProbPathway, and
aggregateNet was employed to generate aggregated communication
networks, enabling comparison of network differences between PT
and LM groups. Significant interactions were visualized using
netVisual_circle() and netVisual_aggregate(), facilitating
identification of key communication hubs. Among these, the
MDK-NCL signaling pathway emerged as a core interaction axis,
specifically enriched between malignant epithelial cells and myeloid
cells, and was selected for subsequent spatial distribution and
functional validation.

GO and KEGG pathway enrichment
analysis

Differentially expressed genes (DEGs) were identified using the
FindMarkers function with parameters logfc.threshold = 1 and
min.pct = 0.1. Functional annotation was performed using gseGO
and gseKEGG functions in the clusterProfiler package (v4.1.0) (26).
Enrichment results were visualized using the GseaVis package
(v0.1.0)(https://github.com/junjunlab/GseaVis), providing an
intuitive display of significantly enriched pathways and
biological processes.

Processing of CRC spatial transcriptomics
data

Spatial transcriptomics data were analyzed using the Seurat
package. Spots with fewer than 10 detected genes were filtered out.
Variance stabilization was performed using SCTransform. Based on
the top 30 principal components from RunPCA, neighborhood
graphs were constructed via FindNeighbors, and spatial domains
were identified using FindClusters (resolution = 0.8). Visualization
was achieved by RunUMAP. To address the multicellular nature of
Visium spots, spatial deconvolution was performed by integrating
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single-cell RNA-seq datasets with SPOTlight (v1.6.7) (27). After
filtering mitochondrial and ribosomal genes, the top 3000 highly
variable genes (HVGs) identified by modelGeneVar were selected.
Genes with average AUC > 0.8 were used in a non-negative matrix
factorization model to resolve dominant cell types per spot. Their
spatial distributions were visualized using SpatialFeaturePlot.

To elucidate intercellular interaction mechanisms, spatial ligand-
receptor co-localization analysis was conducted with the SpaGene
package (v0.1.0) (28). This method calculates Z-scores and false
discovery rates (FDR) for target gene pairs (e.g, MDK-NCL),
assessing their significance relative to random spatial distribution.

Cell lines and cell culture

Human CRC cell lines HCT116 (#FH0027), SW480 (#FH0021),
and SW620 (#FH0021) were purchased from Shanghai Fuheng
Biotechnology Co., Ltd. All cell lines were authenticated by short
tandem repeat (STR) profiling and cultured following the supplier’s
recommendations. Cells were maintained in a humidified incubator
at 37°C with 5% CO,.

Transient transfection and lentiviral
infection

This section of methods were performed as previously
described (15).

RNA isolation and real-time quantitative
polymerase chain reaction

Total RNA was isolated from each tissue and cell sample stored
at -80°C using TRIzol® reagent (Invitrogen, Carlsbad, CA, USA)
and the SteadyPure RNA Isolation Kit (Accurate Biology, Hunan,
China; Catalog Number: AG21024). The concentration and quality
of the isolated RNA were evaluated using the OneDrop OD - 1000
spectrophotometer, ensuring that the A260/A280 ratio fell within
the range of 1.8 - 2.0.

Subsequently, 1000 ng of total RNA was reverse - transcribed
into cDNA in a 20 - UL reaction mixture using Hiscript III Reverse
Transcriptase (Vazyme, Nanjing, China). The reverse -
transcription reaction conditions were set as 50°C for 15 minutes
followed by 85°C for 5 seconds.

In accordance with the manufacturer’s protocols, RT - qPCR was
conducted using the LightCycler 480 Real - Time PCR System (Roche,
Switzerland) and ChamQ Universal SYBR qPCR Master Mix
(Vazyme). The sequences of the gene - specific primers are listed below:

GAPDH - Forward (F): 5'-TCAACGGATTTGGTCGT
ATTG-3’

GAPDH - Reverse (R): 5'-TGGGTGGAATCATATT
GGAAC-3’

MDK - Forward (F): 5'-TGGAGCCGACTGCAAATACAA-3’

MDK - Reverse (R): 5-GGCTTAGTCACGCGGATGG-3'
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DIA proteomics

HCT116 cell samples infected with either the negative control
(NC) or FAM49B - KD lentivirus were separately collected. These
samples were then lysed using 200 UL of an 8 M urea solution
containing a protease inhibitor (Catalog Number: S8830, Sigma -
Aldrich). Subsequently, the protein concentration was measured.

The extracted proteins underwent a series of sequential
treatments: reduction, alkylation, and enzymatic digestion.
Specifically, reduction was carried out using dithiothreitol (DTT).
This was followed by alkylation modification with iodoacetamide
(TAM). Finally, trypsin was added, and the mixture was incubated at
37°C overnight to complete the enzymatic digestion reaction.

The peptides obtained after digestion were desalted using a
SoLAp HRP 2 mg/mL 96 - well desalting plate (Catalog Number:
60209 - 001, Thermo Fisher Scientific). After desalting, the peptides
were dried by vacuum centrifugation for subsequent analysis.

LC - MS/MS analysis was conducted on a platform that
integrated the UltimateTM 3000 RSLC liquid chromatography
system (Thermo Fisher Scientific) and the Q Exactive HF - X
mass spectrometer (Thermo Fisher Scientific), operating in the
data - independent acquisition (DIA) mode. Peptide separation
was achieved through a 160 - minute gradient elution program. The
mobile phase B (0.1% formic acid in 80% acetonitrile) increased
from 1% to 8% within 0-4 minutes, from 8% to 30% during 4-145
minutes, from 30% to 90% in 145-150 minutes, decreased from 90%
to 1% in 150-151 minutes, and was maintained at 1% for 9 minutes.
The full - scan range of the mass spectrometer was set from m/z 350
to 1200, and 80 DIA windows were established for data collection.

The raw mass spectrometry data were imported into the DIA - NN
software (Version 1.8.0). Targeted data extraction was performed based
on a predicted human proteome database. Except for specific
parameter settings, the remaining parameters were set to their
default values to ensure that the false discovery rate (FDR) at both
the peptide and protein levels was controlled below 1%. The protein
expression intensity was finally calculated by the DIA - NN software,
taking the mean of the intensities of the top three peptides.

The protein expression intensity data mentioned above were
imported into the Perseus and MetaboAnalyst platforms (https://
www.metaboanalyst.ca/) for statistical analysis. Initially, protein
data with a missing value proportion exceeding 50% were
removed. For the missing values in the remaining data, the K -
nearest neighbor (KNN) algorithm was employed for imputation.

All protein expression values were log, - transformed for statistical
comparison. Proteins were considered differentially expressed if they
met the criteria of |log, fold change (FC)| > 1.5 and an adjusted p -
value (FDR) < 0.05 after multiple hypothesis testing corrections.
Finally, gene set enrichment analysis (GSEA) was performed on the
identified differentially expressed proteins to uncover their potential
biological functions and associated pathways.

Statistical analysis

All statistical analyses and data processing in this study were
performed using R (v4.3.2), Python (v3.7), and GraphPad Prism
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9.0. Continuous variables with a normal distribution are presented
as mean + standard deviation (Mean * SD), while those with non-
normal (skewed) distributions are described using median and
interquartile range (Median [IQR]). Statistical methods employed
include independent samples t-test and Wilcoxon rank-sum test. A
significance threshold of P < 0.05 was applied, with notation as
follows: ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

Result

scRNA-seq analysis and cell type
identification in CRC

We collected single-cell RNA sequencing (scRNA-seq) data from
33 tumor samples derived from 16 CRC patients, including 16 primary
tumor (PT) samples and 17 liver metastasis (LM) samples (Figure 1A).
After stringent quality control and doublet removal, a total of 119,276
high-quality CRC cells were retained for downstream gene expression
analysis. To correct for batch effects and integrate cells across patients,
we applied Harmony based on patient ID, resulting in the identification
of 19 distinct cell clusters (Figure 1C).

Based on canonical cell markers (Figures 1B, C), we identified nine
major cell types (Figure 1D): epithelial cells (34,876 cells), B cells (4,040
cells), proliferating cells (1,183 cells), endothelial cells (1,747 cells),
fibroblasts (7,208 cells), mast cells (1,644 cells), plasma cells (13,745
cells), myeloid cells (15,309 cells), and T cells (39,524 cells). The
expression levels of representative marker genes for each cell type are
shown in Figure 1E. The proportions of these cell types across samples
are displayed in Figure 1F, the absolute cell counts in Figure 1G, and
detailed transcript counts for each cell type in Figure 1H.

Identification of FAM49B-associated
malignant epithelial cells

To identify malignant epithelial cells characterized by FAM49B
expression, we applied InferCNV to calculate copy number
variation (CNV) scores for each epithelial cell, using myeloid and
B cells as reference populations (Figure 2A). The resulting
chromosomal alteration heatmap, annotated by tissue origin,
revealed distinct CNV patterns between primary tumors (PT) and
liver metastases (LM). Notably, CNV scores were higher in PT-
derived epithelial cells than in those from LM, indicating substantial
epithelial heterogeneity between the two sites (Figure 2B).

We used the mean CNV score of the myeloid and B cell populations
as a threshold to classify epithelial cells into malignant (22,780 cells) and
non-malignant (12,096 cells) categories. Among these, 7,293 malignant
epithelial cells originated from PT samples, while 15,487 were from LM
samples (Figure 2C). Further clustering analysis identified 11 malignant
epithelial subpopulations (Figures 2D, E).
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To explore the heterogeneity among these malignant epithelial
subgroups, we performed Gene Set Variation Analysis (GSVA)
using the Hallmark gene sets (Figure 2F). Among all clusters, EP_10
exhibited the highest enrichment score for the MYC_targets_v2
pathway, consistent with our previous findings. We also examined
the expression patterns of FAM49B and NEK9 across malignant
epithelial subtypes and found that both genes were significantly co-
localized in EP_08 and EP_10 clusters (Figures 2G, H), further
supporting our earlier conclusions. These two clusters were defined
as the High FAM49B_EP subpopulation. Finally, univariate Cox
regression analysis identified prognostically unfavorable genes
within the High. FAM49B_EP group (Figure 2I).

Identification of macrophage
subpopulations

We performed subclustering analysis on myeloid cells
(Figure 3A), resulting in the identification of nine distinct
subpopulations (Figure 3B). Among these, macrophage clusters
were annotated based on their predominant marker gene
expression, including SPP1_TAMs, SELENOP_TAMs,
MKI67_TAMs, FCN1_TAMs, FBP1_TAMs, and CXCL3_TAMs
(Figures 3C, F).

Comparative analysis revealed compositional differences in
macrophage subtypes between primary tumors (PT) and liver
metastases (LM). CXCL3_TAMs were predominant in PT
samples but markedly reduced in LM, whereas SPP1_TAMs and
FBP1_TAM:s were more abundant in LM (Figure 3D).

To further explore pathway-level characteristics of each myeloid
subpopulation, we conducted Gene Set Variation Analysis (GSVA)
using the Hallmark gene sets (Figure 3E). FBP1_TAMs exhibited
enrichment in Hypoxia, Bile Acid Metabolism, and Angiogenesis
pathways, which are closely associated with tumor immune
suppression. SPP1_TAMs were significantly enriched in pathways
such as KRAS signaling up, Coagulation, and Hedgehog
signaling, suggesting a potential role in promoting tumor
vascularization. In contrast, CXCL3_TAMs showed elevated
scores in the Inflammatory Response pathway.

These enrichment profiles suggest that SPP1_TAMs and
FBP1_TAMs may correspond to M2-like macrophages, whereas
CXCL3_TAMs are more aligned with MI-like phenotypes. To
further quantify the polarization states of these macrophage
subtypes, we curated gene sets associated with M1 and M2
macrophage phenotypes and calculated signature scores for each
subpopulation (Supplementary Table S2). The results showed that
CXCL3_TAMs had significantly higher scores for the MI-
associated gene set, while SPP1_TAMs and FBP1_TAMs were
more enriched in the M2-associated gene set, further validating
the GSVA-based findings.
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FIGURE 1

Single-cell transcriptomics atlas of CRC with PT and LM. (A) The UMAP plot of single - cell data colored according to the sources of 16 patients shows
no significant batch effect. (B) The UMAP plot of transcript counts in the single - cell data set. (C) The Seurat clustering results for single - cell data are
shown, yielding a total of 19 clusters. (D) Cell type annotation was performed based on the expression of marker genes, and the UMAP plots were
colored according to nine major cell types. (E) Expression profiles of representative markers for ten distinct cell types. (F) The bar graph presents the
distribution of the proportions of diverse cell types among different patients. (G) Total cell count for each identified cell type. (H) The log-transformed
values of transcript counts for each cell type reflect the transcriptional activity at the single - cell level.

The MK signaling pathway could drive
macrophage polarization

To further investigate how High  FAM49B_EP cells regulate
macrophages within the tumor microenvironment (TME), we
employed the CellChat tool to analyze intercellular
communication. The results revealed that both the number and
strength of interactions among major cell types were generally
higher in primary tumors (PT) than in liver metastases (LM),
although the differences were relatively modest (Figures 4A-D).

Differential interaction heatmaps between PT and LM indicated
that CXCL3_TAMs exhibited the most pronounced changes in both
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the number and strength of interactions. In comparison with other
epithelial subpopulations, High FAM49B_EP cells also showed
more prominent changes in interaction patterns (Figures 4E, F).

We next evaluated the outgoing and incoming signaling
intensities for each myeloid subcluster. CXCL3_TAMs showed
stronger outgoing and incoming signaling activity in PT.
High FAM49B_EP cells exhibited increased outgoing signals
specifically in PT, while FBP1_TAMs received more signals in
LM. SPP1_TAMs displayed active signaling behavior in both PT
and LM (Figure 4G).

Notably, High. FAM49B_EP cells primarily communicated
with macrophages through the MK (midkine) signaling pathway,
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with this interaction being more pronounced in PT samples. As
shown in Figure 4H, the MK pathway signaling network revealed
High_FAM49B_EP as the main sender population and myeloid
cells as the predominant receivers. Within this pathway, MDK was
highly expressed in malignant epithelial cells, whereas NCL was
broadly expressed in macrophages (Figure 4I).
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We further analyzed the MDK-NCL interaction between
malignant epithelial cells and macrophages, which revealed a
significantly strong interaction (Figure 4]). These findings highlight
the critical role of the MDK-NCL axis in shaping the tumor
microenvironment and suggest a potential mechanism by which
High FAMA49B_EP cells could drive macrophage polarization.
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Polarization trajectory from CXCL3_TAMs
to SPP1_TAMs

To delineate the evolutionary dynamics of macrophages in
CRC, we constructed a pseudotime developmental trajectory
based on single-cell RNA-seq data (Figure 5A). This trajectory
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classified macrophages into five developmental states (Figure 5B),
thereby outlining their differentiation path within the CRC
tumor microenvironment.

By integrating CytoTRACE scores to assess differentiation
potential, we observed that the CXCL3_TAMs cluster—positioned
at the bottom right of the trajectory—exhibited the lowest
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Intercellular communication of myeloid cells and malignant EPs. (A, B) Bar graphs depict the quantity and intensity of intercellular interactions
within PT and LM. (C, D) Illustrations of the quantity (C) and intensity (D) of intercellular interactions are presented. Herein, the size of each

dot is proportional to the cell number, and the thickness of each line corresponds proportionally to the quantity or intensity of the interactions.

(E, F) Heatmaps unveil the alterations in the quantity (E) and intensity (F) of intercellular interactions between PT and LM. (G) The communication
signal strength between myeloid cells and malignant EPs in the PT and LM groups was analyzed via CellChat. (H) A circular plot depicts the

inferred MK signaling network in PT and LM. (1) A violin plot presents the expression levels of nine genes associated with the MK signaling network.
(J) A bubble plot illustrates the communication status of MK pathway-specific ligand—receptor pairs between malignant epithelial cells and myeloid
cells at different FAM49B expression levels in PT and LM. The size of each dot indicates the P - value, while the color represents the communication
probability.
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differentiation potential, identifying it as the likely origin of the
macrophage developmental path (Figures 5C, D). Furthermore, two
distinct differentiation trajectories (designated as cellfatel and
cellfate2) were identified. The CXCL3_TAMs cluster,
characterized as M1-like macrophages, served as the starting
point for differentiation towards M2-like macrophages. This shift
towards a more immunosuppressive and tumor-promoting
macrophage phenotype significantly contributes to the
establishment of an immunosuppressive tumor microenvironment.

Further analysis of CytoTRACE scores revealed that NCL, the
receptor of the MK signaling pathway, was predominantly enriched
in M2-like macrophages (Figure 5E). Differential gene expression
analysis at Branch Point 1 indicated significantly higher expression
of SPP1 in CellFatel, suggesting a transition trajectory from
CXCL3_TAMs toward SPP1_TAMs (Figure 5F).

Lastly, we examined the expression dynamics of MK pathway-
related genes along the pseudotime trajectory. The results showed a
progressive increase in NCL expression as pseudotime advanced
(Figure 5G), further supporting its role in driving the polarization of
CXCL3_TAMs toward the M2-like SPP1_TAM phenotype.

Consistently, survival analysis also demonstrated that high
expression levels of both MDK and SPP1 were significantly
associated with poorer overall survival (OS) and relapse-free survival
(RFS) (Figure 5H), indicating that MDK-driven macrophage
polarization promotes an immunosuppressive tumor
microenvironment and is closely linked to adverse clinical outcomes.

Spatial distribution characteristics of
CXCL3_TAMs and SPP1_TAMs

To elucidate the spatial organization of High FAM49B_EP,
CXCL3_TAMs, and SPP1_TAMs, we conducted a study based on
spatial transcriptomics (ST) data from two CRC liver metastasis
patients. In the first sample, tissue spots were clustered into 0-8
spatial clusters using Louvain clustering (Figure 6A), and the cell-
type signatures defined by scRNA-seq were projected onto the ST spots
using the SPOTlight tool (Figures 6B-D). The results revealed that
CXCL3_TAMs and SPP1_TAMs co-localized within cluster 3.
Concurrently, SpaGene detected high expression of the ligand MDK
and receptor NCL in this region, confirming that these two cell types
form a spatial interaction network via the MDK-NCL signaling axis
(Figure 6E). In the paired liver metastasis samples, tissue spots were
clustered into 0-11 spatial clusters(Figure 6G). The results of
SPOTlight deconvolution analysis indicated that CXCL3_TAMs and
SPP1_TAMs were significantly enriched in clusters 4, 5, and 9, showing
a high degree of consistency with the spatial localization of
High FAM49B_EP (Figures 6H-]). Additionally, SpaGene confirmed
the co - localization of MDK and NCL within these enriched regions,
further corroborating the role of the MDK - NCL signaling axis in
spatial interactions (Figures 6K, L).

We performed a similar analysis on a second sample to validate
our findings. Following Louvain clustering of tissue spots into 0-12
clusters, SPOTIlight deconvolution revealed significant enrichment
of CXCL3_TAMs and SPP1_TAMs in clusters 4, 5, 8, 10, and 11
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(Supplementary Figures S1A-D). SpaGene further confirmed the
co-localization of MDK and NCL within these regions
(Supplementary Figures SIE, F). Comparable patterns were
detected in the liver metastatic foci of this sample (Supplementary
Figures SIG-L). The cross-sample consistency supports the
conclusion that High FAM49B_EP drives the differentiation of
CXCL3_TAMs into SPP1_TAMs via the MDK-NCL signaling
pathway, thereby contributing to the remodeling of the
immunosuppressive tumor microenvironment. These findings
were independently validated in two paired samples.

Validation of MDK expression after
FAM49B knockdown

To investigate the function of FAM49B, we knocked down its
expression in the human CRC cell line HCT116 using specific
siRNA. After establishing a stable knockdown model (si_ FAM49B),
proteomic analysis was performed on both si_FAM49B and control
si_NC cells (Supplementary Table S3). PCA analysis and sample
correlation heatmaps confirmed significant differences between the
si_FAM49B and si_NC groups(Figures 7A, B). Differential protein
screening (|[Log,FC| > 1.5 and p < 0.05) revealed that MDK
expression was significantly downregulated following FAM49B
knockdown, which was corroborated by both the volcano plot
and the top 15 differential protein heatmap (Figures 7C, D).

GSEA analysis of differential proteins indicated that, in KEGG
enrichment, ribosome biogenesis, N-glycan biosynthesis, and fatty
acid metabolism pathways were significantly upregulated, while
ECM-receptor interaction, cytokine-cytokine receptor interaction,
SNARE interactions, and pathways involving cell adhesion
molecules were markedly downregulated (Figure 7E). In GO
enrichment, phospholipid-related biosynthetic and metabolic
pathways, including glycerophospholipid and phosphatidylinositol
biosynthesis, were significantly upregulated, whereas pathways
associated with cell adhesion, such as intercellular and
homophilic adhesion mediated by plasma membrane adhesion
molecules, were significantly downregulated (Figure 7F).

These proteomic results indicate that knockdown of FAM49B
significantly suppresses MDK expression and affects multiple lipid
metabolism and biosynthesis pathways. Moreover, the critical
downregulation of ECM-receptor interaction and cell adhesion
molecule pathways suggests a potential weakening of tumor cell
interactions with the extracellular matrix (ECM) and intercellular
communication. Furthermore, in three CRC-derived cell models—
HCT116, SW480, and SW620—FAM49B gene knockdown
significantly inhibited MDK mRNA expression (p < 0.001),
indicating that this regulatory relationship is consistent across
different cell lines (Figure 7G).

Discussion

In this study, we systematically investigated the role of
High FAM49B_EP in promoting macrophage polarization
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FIGURE 5
Pseudotime analysis was employed to delineate the differentiation trajectory from CXCL3_TAMs to SPP1_TAMs. (A) Pseudotime trajectory
analysis reveals the differentiation trajectories of six cell types. (B) Pseudotime trajectory analysis reveals five distinct cellular differentiation states.
(C) Projection of CytoTRACE scores onto the Pseudotime trajectory. (D) Pseudotime scores are mapped along the cellular differentiation trajectory.
(E) CytoTRACE-reconstructed differentiation trajectories of TAMs (left to right): CytoTRACE scores, distribution of six TAM subsets, and NCL
expression. (F) The heatmap shows the relative expression changes of differentially expressed genes driving differentiation toward cell fates 1
and 2 in TAMs clusters classified into three groups based on pseudo-temporal clustering. (G) Expression dynamics of MK pathway genes along
the pseudotime trajectory. (H) Kaplan-Meier curves illustrate the impact of MDK and SPP1 expression on CRC patient OS and RFS.
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FIGURE 6

Spatial transcriptomic slices of primary colorectal cancer lesions. (A) Cluster plot of 0—8 subgroups clustered by Seurat. (B—D) Spatial plot showing
the expression of CXCL3_TAMs, SPP1_TAMs, and High_FAM49B_EP in PT predicted by SPOTlight. (E, F) Spatial mapping of the MDK ligand, NCL
receptor, and their binding score in the MDK-NCL ligand-receptor interaction analysis in PT. (G) Cluster plot of 0—11 subgroups clustered by Seurat.
(H-J) Spatial plot showing the expression of CXCL3_TAMs, SPP1_TAMs, and High_FAM49B_EP in LM predicted by SPOTlight. (K, L) Spatial mapping
of the MDK ligand, NCL receptor, and their binding score in the MDK-NCL ligand-receptor interaction analysis in LM.

through the MDK-NCL signaling axis in CRC by integrating  evasion mechanisms, providing novel insights into the potential of
single-cell RNA sequencing (scRNA-seq) and spatial targeting this axis as a therapeutic strategy. This work deepens our
transcriptomics. Our findings reveal that the MDK-NCL  understanding of tumor microenvironment (TME) remodeling
pathway contributes to immunosuppression and tumor immune  in CRC.
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FIGURE 7

FAM49B knockdown suppresses MDK expression. (A) PCA was performed on si_FAM49B and si_NC in the HCT116 cell line. (B) Heatmap of
correlations between si_FAM49B and si_NC samples. (C) Volcano plot of differentially expressed genes between si_FAM49B and si_NC. (D) Heatmap
of the top 15 differentially expressed genes between si_FAM49B and si_NC. (E) GSEA KEGG enrichment analysis of differentially expressed genes
between si_FAM49B and si_NC. (F) GSEA GO enrichment analysis of differentially expressed genes between si_FAM49B and si_NC. (G) The relative
expression of MDK mRNA was analyzed via RT-gPCR in CRC cells transfected with LV_FAM49B and LV_NC lentiviruses.

In our previous research, FAM49B was shown to activate NEK9
phosphorylation, stabilize and activate c-Myc, and its expression
correlated closely with patient prognosis (15). However, the
mechanisms by which FAM49B shapes the immune
microenvironment in CRC remained unclear. Our current study
identifies the MDK-NCL signaling axis as a central mediator in the
interaction between High_ FAM49B_EP and tumor-associated
macrophages (TAMs). MDK, a multifunctional growth factor, is
highly expressed in High_ FAM49B_EP cells, while its receptor NCL
is broadly distributed on macrophage surfaces (29-31). This ligand-
receptor specificity forms the molecular basis for intercellular
communication. Notably, NCL expression is significantly higher
in SPP1_TAMs compared to CXCL3_TAMs, which may be a key
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driver of macrophage phenotypic transition. Upon MDK binding to
NCL, macrophages are induced to polarize from an M1 toward an
immunosuppressive M2 phenotype (32). This finding echoes the
work of Yu Fu et al., whose single-cell and spatial transcriptomics
analyses also revealed that MDK-NCL promotes the formation of
an immunosuppressive microenvironment in lung adenocarcinoma
(LUAD), with high MDK-NCL expression associated with
increased infiltration of myeloid-derived suppressor cells
(MDSCs) and M2-like macrophages (18, 33, 34).

Accumulating studies have demonstrated that MDK signaling
promotes the polarization of tumor-associated macrophages
(TAMs) toward an immunosuppressive M2 phenotype. In glioma,
MDK secreted by GBM cells drives macrophage polarization
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toward the M2 phenotype by activating receptors on macrophages,
leading to the secretion of cytokines such as CXCL1 and thereby
fostering an immunosuppressive environment (35). Similarly, in
gallbladder cancer, upregulation of MDK enhances its interaction
with LRP1—expressed by tumor-infiltrating macrophages—
promoting the differentiation of immunosuppressive macrophages
(31). The MDK-NCL axis has been recognized as a promising
therapeutic target, as it can be targeted by monoclonal antibodies or
small molecule inhibitors to reverse immunosuppression (36).
Strategies aimed at reprogramming immunosuppressive myeloid
cells, including macrophages influenced by MDK, can shift the
TME from an immunosuppressive to an immunostimulatory state
(37). Studies in melanoma models have demonstrated that
genetically targeting MDK can overcome resistance to PD-1/PD-
L1 inhibitors and enhance therapeutic efficacy (38). Targeting this
axis is thus identified as a potential strategy to reprogram the TME,
suppress macrophage-mediated immunosuppression, and synergize
with immune checkpoint inhibitors.

A major innovation of this study is the linkage of FAM49B
expression to MDK secretion. Proteomic data demonstrate that
FAMA49B knockdown significantly inhibits MDK expression,
suggesting that FAM49B may regulate MDK synthesis at the
transcriptional or post-transcriptional level. We propose the
existence of a FAM49B-MDK-NCL regulatory cascade. This
pathway potentially explains why High FAM49B_EP exhibits
stronger immunomodulatory capacity. In liver metastatic lesions,
although the proportion of High_FAM49B_EP cells is low,
SPP1_TAMs are significantly increased, likely due to the specific
selective pressures of the metastatic microenvironment—
characterized by hypoxia, elevated lactate, and bile acid—which
favor M2 macrophage polarization, consistent with the enrichment
of FBP1_TAMs in bile acid metabolic pathways (39-41).

The critical role of SPP1+ macrophages in CRC progression has
been highlighted in multiple studies (42-46). Here, we observed
significant enrichment of SPP1_TAMs in liver metastases and the
highest scores within M2 polarization gene sets. These macrophages
directly promote tumor metastasis by secreting immunosuppressive
factors (e.g., IL-10, TGF-) and pro-angiogenic factors (e.g., VEGF)
(47, 48). Importantly, spatial analysis revealed that SPP1_TAMs are
spatially adjacent to malignant cells, forming a microenvironment
conducive to tumor invasion and survival. This spatial distribution
correlates with poor prognosis in patients with liver metastases and
aligns with previous findings that SPP1+ macrophage enrichment
significantly associates with reduced survival in CRC patients
(49-51).

Despite comprehensively delineating the role of the FAM49B-
MDK-NCL axis in the CRC immune microenvironment, several
limitations and future directions remain. First, sample heterogeneity
is a constraint: although we integrated 33 samples from 16 patients,
spatial transcriptomics was performed only on two liver metastasis
cases. Expanding sample size is needed to validate the generalizability
of this signaling pathway. Moreover, incorporating a broader range of
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clinical stages and molecular subtypes will allow exploration of axis
activity variations across subtypes (52).

In summary, through integrated multi-omics analysis, this
study is the first to elucidate the complete mechanism by which
FAM49B-positive epithelial cells promote macrophage M2
polarization via the MDK-NCL signaling axis. This discovery not
only advances understanding of the heterogeneity formation
mechanisms within the CRC immune microenvironment but also
offers a novel therapeutic target to overcome immune therapy
resistance. Future studies should validate the universality of this
axis in larger clinical cohorts and further investigate its interplay
with tumor metabolic microenvironment. Targeting the FAM49B-
MDK-NCL pathway, particularly in combination with existing
immune checkpoint inhibitors, holds promise as a new avenue
for precision immunotherapy in CRC, ultimately improving
survival outcomes for patients with metastatic disease.
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