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The transcription factor c-Maf, a member of the Maf family characterized by its

basic domain and b-Zip DNA-bindingmotif, is a pivotal regulator of immune cells

development and function. It governs immune cells growth, differentiation,

function, and immune responses. This review explores the mechanistic role of

c-Maf and its associated signaling networks in modulating autoimmunity and

inflammation. We highlight its dual function as an immune checkpoint that

suppresses pathological inflammation while promoting protective immunity,

underscoring its therapeutic potential in autoimmune diseases.
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1 Introduction

The Maf (Musculoaponeurotic fibrosarcoma) family originates from the AS42 virus,

where it was first identified as a viral oncogene (1). Maf proteins are characterized by a

conserved basic leucine zipper (b-Zip) motif, which mediates DNA binding via a leucine

zipper structure that promotes homodimerization. This structural feature facilitates Maf

proteins to recognize Maf recognition elements (MARE) and function as nuclear

transcription factors (2). Maf family proteins can be categorized into two primary

groups based on their molecular weight: large Maf proteins and small Maf proteins (3).

As a large Maf transcription factor, c-Maf contains multiple functional domains, including

an N-terminal acidic transactivation domain, a histidine/glycine repeat region, an extended

homology domain, and a C-terminal b-Zip domain. The leucine zipper, evolutionarily

conserved across species, facilitates dimerization with other b-Zip-containing transcription

factors. c-Maf binds selectively to MARE and Maf half-sites that are enriched in 5-AT

motifs, thereby regulating cellular processes such as proliferation, differentiation, and

immune function.
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As a transcription factor, c-Maf plays an oncogenic role in

various cancers, which drives tumorigenesis through multiple

mechanisms, including promoting cancer cell proliferation,

adhesion and migration, angiogenesis and immune evasion (4–6).

It also serves as a key regulator of intestinal cell differentiation and

function, modulating intestinal villus division, nutrient absorption,

and the maintenance of intestinal immunity and microbial

homeostasis (7–9). Research has demonstrated that c-Maf plays a

pivotal role in T and B lymphocytes differentiation and M2

polarization by regulating cytokine expression, particularly IL-4

and IL-10, which are essential for maintaining immune homeostasis

(10). In inflammatory responses, c-Maf inhibits pro-inflammatory

signaling pathways while promoting inflammation resolution

through the modulation of anti-inflammatory mediators, such as

IL-10. Furthermore, c-Maf is involved in the regulation of immune

cells differentiation and function, contributing to immune balance

and homeostasis. Dysregulation of c-Maf has been closely linked to

chronic inflammation and autoimmune disorders. This review

provides a comprehensive understanding of c-Maf in multiple

immune disorders, underscoring the regulatory mechanisms and

functions of c-Maf. Its mechanistic and functional contributions to

the protective effects in autoimmune conditions provide future

directions for the exploration of therapeutic applications of c-Maf

in autoimmune diseases. Lastly, the review outlines prospective

research avenues and practical implications for the integration of c-

Maf into therapeutic strategies for autoimmune diseases.
2 The immune regulatory function of
c-Maf

Accumulated studies have implicated that c-Maf is widely

involved in the regulation of immune cells differentiation,

function and the maintenance of tissue homeostasis. It plays

critical roles in mediating adaptive immunity and innate

immunity by regulating cytokine expression, metabolic

reprogramming and epigenetic modifications. Increasing studies

have revealed the regulatory network of c-Maf in immune cells,

providing updated insight into understanding the pathogenesis of

immune diseases and the exploration of new targeted therapies.
2.1 c-Maf and T cells

2.1.1 c-Maf and CD8+ T cells
c-Maf is a key transcriptional regulator of CD8+ T cell function,

with context-dependent roles in immune homeostasis and

pathology. In skin-resident IL-17-producing CD8+ TRM

(TRM17) cells, the ICOS-c-Maf-IL-7 axis promotes tissue

residency and contributes to local inflammation control and

tissue repair (11). Conversely, in the tumor microenvironment,

IL-27-induced c-Maf cooperates with PRDM1 to drive the

e xp r e s s i on o f c o - i nh i b i t o r y r e c ep t o r s , e nhan c i n g

immunosuppressive signals, which helps prevent excessive

immune activation (12–14). Besides, it also promotes CD8+ T cell
Frontiers in Immunology 02
dysfunction and exhaustion, facilitating tumor immune escape.

Furthermore, c-Maf activates the caspase 6, increasing CD8+ T

cells susceptibility to apoptosis (15). Thus, c-Maf exerts pleiotropic

effects on CD8+ T cells via modulating their functional

differentiation, immune suppression, and apoptotic sensitivity

with outcomes shaped by specific physiological or disease settings.

2.1.2 c-Maf and Tregs
c-Maf is a key transcription factor involved in the subset-

specific differentiation and functional specialization of regulatory

T cells (Tregs). Tregs themselves comprise multiple phenotypically

and functionally distinct subsets, each shaped by specific lineage-

defining transcription factors. For instance, RORgt+ Tregs are

predominant in the colon and help restrain intestinal

inflammation, whereas Bcl-6-expressing T follicular regulatory

(Tfr) cells localize to lymphoid follicles and modulate antibody

production by B cells (16). It has been shown that c-Maf is a key

transcription factor driving the differentiation of Tregs

subpopulations (17). In intestinal RORgt+ Tregs, c-Maf not only

drives their terminal differentiation but also helps maintain gut

homeostasis by promoting IL-10 secretion, curbing excessive PI3K/

Akt/mTORC1 activation, and suppressing microbiota-induced

Th17 cells responses and IgA production (18). c-Maf serves as a

key transcription factor for host immune tolerance by driving the

differentiation and function of inducible regulatory T cells (iTregs)

to specifically suppress pathogenic Th17 cells (19). Meanwhile, the

enhanced expression of c-Maf promotes IL-10 production in iTregs,

thereby augmenting their immunosuppressive activity (20).

Similarly, c-Maf is essential for the development and functional

maturation of type 1 regulatory T (Tr1) cells, where it facilitates

their characteristic IL-10 production (21–23). Thus, through its

subset-specific roles, c-Maf fine-tunes Tregs differentiation and

regulatory function across multiple tissue and immune contexts.

2.1.3 c-Maf and Th2 cells
T helper 2 (Th2) cells are a specialized subset of CD4+ T cells

involved in Th2-associated immunity through the secretion of key

cytokines, including IL-4, IL-5, and IL-10 (24). The differentiation

of Th2 cells is tightly regulated by the transcription factor c-Maf,

which governs the initiation of Th2 cells differentiation and its

function through complex mechanisms. Research indicates that

naïve CD4+ T cells commence their differentiation in response to

IL-4, with c-Maf serving as a Th2-specific transcription factor

essential for CD25 expression during Th2 cells development (25).

The regulation of c-Maf expression is orchestrated by various

signaling pathways. IL-2 activates the STAT5 signaling pathway,

which directly binds to specific promoter regions of the c-Maf gene

to promote its expression (26). IL-6 increases c-Maf expression in

TCR-activated T cells (26). STAT6 further integrates upstream

signals, forming a regulatory cascade with GATA-3 and c-Maf

(27). Furthermore, the post-translational modifications (PTMs) of

c-Maf are vital for its functional activity. Specifically, tyrosine

phosphorylation at residues Tyr21, Tyr92, and Tyr131 is essential

for c-Maf’s recruitment to the IL-4 gene promoter, serving as a

“molecular switch” for cytokine secretion (28). Additionally,
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SUMOylation at Lys33 represents a significant PTM event for c-

Maf in Th cells, as it diminishes its transcriptional activity. Notably,

the removal of the SUMO site does not affect the stability or

localization of c-Maf but enhances its binding to IL-4

promoter (29).

Furthermore, the abnormal expression of c-Maf exerts influence

beyond Th2 cells by activating nuclear factors such as NFATc1,

which triggers endogenous IL-4 transcription in B cells and non-

lymphoid cells, establishing localized immunoregulatory circuits

(30). During Th2 cells activation, the rapidly upregulated SATB1

protein anchors the gene loci for IL-5, IL-4, and IL-13, facilitating

the recruitment of GATA3, STAT6, and c-Maf to form

transcriptional complexes (31). These complexes collaborate with

chromatin remodeling factors to regulate cytokine expression. In

addition to its direct role in Th2 cells differentiation, c-Maf plays a

crucial role in maintaining Th1/Th2 cells homeostasis through dual

mechanisms, including directly binding to the promoters of Th2

signature genes (e.g., IL-4) and indirectly suppressing Th1 cells-

associated genes (e.g., IFN-g) (32, 33). By influencing cytokine

secretion and chromatin accessibility, c-Maf affects immune

response. Overall, this study elucidates the multifaceted roles of c-

Maf as an immunoregulatory hub, offering a foundation for

transcription factor-targeted immune interventions.

2.1.4 c-Maf and Th17 cells
T helper 17 (Th17) cells, a specialized subset of CD4+T cells that

differentiate from naïve CD4+ T cells under the synergistic influence of

IL-6, IL-21, TGF-b, and IL-23, are pivotal in the secretion of pro-

inflammatory cytokines, such as IL-17 and IL-22. This process is

mediated by the STAT3-mediated activation of RORgt, a

transcriptional factor essential for the pathogenesis of autoimmune

disorders (34). Recent studies have elucidated that the SRY-box

transcription factor 5 (Sox5) interacts with c-Maf via the high

mobility group (HMG) domain and the DNA-binding domain of c-

Maf, thereby directly activating the RORgt promoter in CD4+ T cells to

promote Th17 cells differentiation. However, c-Maf exhibits functional

plasticity in Th17 cells. Under high concentrations of IL-6 and TGF-b,
c-Maf binds the IL-22 promoter to inhibit its transcription (35). In

inflammatory contexts, it is selectively upregulated to enhance the

secretion of the anti-inflammatory cytokine IL-10 (36, 37).

Importantly, c-Maf is indispensable for the development of intestinal

regulatory Th17 cells, which attenuate effector T cells activity through

IL-10 and co-inhibitory receptors, thus maintaining mucosal

homeostasis (38). This dual role underscores c-Maf as an

environmental sensor, balancing pro-inflammatory Th17 cells

differentiation with tissue-specific anti-inflammatory responses. Such

mechanistic insights highlight its potential as a therapeutic target for

autoimmune diseases.

2.1.5 c-Maf and Follicular Helper T Cells
Follicular helper T (Tfh) cells, a specialized subset of CD4+ T

cells, migrate to germinal centers (GCs) within lymphoid follicles,

where they interact with antigen-specific B cells to facilitate T cell-

dependent antibody responses (39). Their differentiation is
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cell lymphoma 6 (Bcl6), which enhances the expression of

chemokine receptors CCR7 and CXCR5, thereby guiding Tfh cells

migration along CXCL13 gradients into the GCs. Notably, Tfh cells

exhibit uniquely high c-Maf expression compared to other CD4+

subsets, underscoring its pivotal role in Tfh lineage commitment

(40). Mechanistically, c-Maf activation by TGF-b drives CXCR5

and Bcl6 expressions, while chromatin remodeling and

transcriptomic reprogramming further reinforce Tfh cells

differentiation (41). This process is amplified by NF-kB (an

upstream c-Maf regulator) and Thpok, which collaboratively

establish a pro-differentiation transcriptional network (42, 43).

Functional studies reveal that c-Maf and Bcl6 are co-expressed in

early Tfh precursors, while the conditional deletion of c-Maf

disrupts Tfh cells differentiation, GC B cells responses, and the

production of high-affinity antibodies, highlighting its essential role

in humoral immunity (44). Additionally, c-Maf governs the pre-Tfh

to GC-Tfh via the Foxo1-Plekho1 axis, demonstrating its

autonomous regulatory capacity over Tfh cells lineage

commitment (45). Collectively, these findings demonstrate c-Maf

as a central regulator of Tfh cells differentiation and T cell-

dependent antibody responses (46).

While Th cell subsets employ distinct effector mechanisms, all

subsets utilize IL-10 to mitigate excessive immune activation. c-Maf

serves as a conserved regulator of IL-10 across subsets (e.g., Th2

cells, Th17 cells), influencing their differentiation, proliferation, and

functions to maintain immune homeostasis and shape disease

outcomes (32).
2.2 c-Maf and B Cells

B cells primarily mediate immune regulation through the

presentation of antigens and the production of antibodies (47).

Emerging evidence suggests that c-Maf negatively regulates B cells

proliferation by influencing cellular metabolism, transporter

activity, and mitochondrial proteins expression, ultimately

impairing late-stage B cells differentiation and the formation of

GC (48). Beyond its metabolic role, c-Maf also governs IL-10

expression in B cells. Upon LPS stimulation, c-Maf upregulation

enhances its binding to the IL-10 promoter, driving dose-dependent

IL-10 production (49–51). Recent studies highlight the critical role

of regulatory B cells (Bregs), a B cell subset that produces IL-10 or

TGF-b1, in maintaining immune tolerance by suppressing excessive

inflammation (52). Bregs are pivotal in modulating chronic

inflammatory diseases, such as colitis, rheumatoid arthritis,

experimental autoimmune encephalomyelitis, and multiple

sclerosis, as well as in infections and tumors (53). c-Maf signaling

is essential for Bregs proliferation, with its deficiency leading to a

notable decrease in pancreatic Bregs (54). Moreover, c-Maf

regulates immunoglobulin-related genes and the production of

tumor-specific antibodies (55). Therefore, c-Maf plays a vital role

in balancing B cells homeostasis, integrating metabolic and cytokine

signaling to balance activation and tolerance.
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2.3 c-Maf and innate lymphoid cells

Innate lymphoid cells (ILCs) are a specialized subset of

lymphocytes that function independently of T and B cells, playing

vital roles in innate immune responses, tissue homeostasis, and

infection recovery (56). ILCs are categorized into three primary

groups, namely ILC1s, ILC2s, and ILC3s, based on their cytokine

profiles, transcription factors expression, and surface receptor

signatures (57). ILC1s are defined by transcription factor T-bet

expression and produce pro-inflammatory cytokines, such as IFN-g
and TNF-a (58). ILC2s express GATA3 and drives type 2

inflammation by producing type 2 cytokines, such as IL-4, IL-5,

IL-9, and IL-13 (59). ILC3s depend on RORgt and AHR for

development and generate IL-17 and IL-22 to support mucosal

immunity (60). In ILC2s, allergen exposure upregulates c-Maf,

amplifying IL-5/IL-13 production and eosinophil recruitment. In

contrast, c-Maf deficiency impairs type 2 cytokine and memory-like

markers, highlighting its crucial effect for ILC2s function (61).

Additionally, there is a specific subset of ILC2s that produce IL-

10 (ILC210s) in the lungs, where c-Maf-driven IL-10 suppresses

ILC2s-mediated inflammation, mitigating lung pathology (62). In

ILC3s, c-Maf acts as a negative regulator by directly inhibiting T-

bet, preventing the conversion of ILC3s into ILC1s-like cells and

thus preserving ILC3s stability (63, 64). Therefore, c-Maf serves as a

multifunctional modulator of ILCs biology. It enhances type 2

responses in ILC2s, restrains inflammation via ILC210s, and

maintains ILC3s identity by antagonizing ILC1s plasticity. These

findings highlight its potential as a therapeutic target for

inflammatory diseases and immune dysregulation.
2.4 c-Maf and macrophages

Macrophages are pivotal immune cells that maintain homeostasis

through phagocytosis of pathogens and harmful debris. They are

broadly classified into tissue-resident macrophages (self-renewing)

and monocyte-derived macrophages (65). Tissue macrophages exhibit

non-cancerous self-replication via the local proliferation of mature cells.

Strikingly, transient reduction (66), inhibition (67), or depletion (68) of

c-Maf confers stable self-renewal capacity tomacrophages under steady-

state conditions. c-Maf plays a crucial role in the differentiation of

CD206+ lung interstitial macrophage subset (69). In c-Maf-deficient

macrophages, the expressions of the tissuemacrophage-specific receptor

F4/80 (70), and VCAM-1 (71) are significantly decreased. By

influencing the differentiation of perivascular macrophages (VAMs),

c-Maf affects angiogenesis and metabolic syndrome (72). These results

indicate that c-Maf not only influences macrophage types but also

regulates their functional capabilities. When stimulated by LPS, c-Maf

binds to IL-10 promoter to promote its production (73–75). In

microglia, reactive oxygen species (ROS)-induced p53 activation

suppresses c-Maf, exacerbating pro-inflammatory responses (76).

Furthermore, c-Maf orchestrates M2-associated genes expressions,

critically regulating tumor-associated macrophage (TAM) polarization

and function (77–79), solidifying its role as a canonical M2marker (80–

82). Taken together, c-Maf emerges as amaster regulator ofmacrophage
Frontiers in Immunology 04
self-renewal, differentiation, phenotypic plasticity, and anti-

inflammatory responses. Its multifaceted roles underscore its potential

as a therapeutic target in inflammatory diseases, cancer, and metabolic

disorders (Figure 1).

(The figure was created with Biorender.com. Briefly, in CD8+ T

cells, c-Maf supports TRM17 tissue residency via the ICOS-c-Maf-

IL-7 axis and promotes exhaustion through the IL-27-c-Maf-PD-1

pathway. In Th2 cells, c-Maf is upregulated by IL-2/STAT5, IL-6/

TCR, and STAT6, and sustains Th2 identity via SATB1-c-Maf-IL-4

signaling while suppressing IFN-g. In Th17 cells, Sox5 and c-Maf

activate RORgt; with IL-6/TGF-b, c-Maf represses IL-22 and

enhances IL-10. In Tfh cells, c-Maf is induced by TGF-b/NF-kB/
Thpok and promotes differentiation via CXCR5/Bcl6, Plekho1–

Foxo1, and IL-21-TET2-AIM2 pathways. In B cells, the LPS/TLR4-

mTOR-c-Maf axis drives IL-10 production. In ILC2s, c-Maf

upregulates IL-5 and IL-13 upon allergen exposure. In

macrophages, c-Maf enhances F4/80 and VCAM-1 expression. In

microglia, ROS-p53 signaling downregulates c-Maf and

augments inflammation).
3 Regulatory roles and mechanisms of
c-Maf in autoimmune diseases

3.1 c-Maf in inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic inflammatory

disease, including Crohn’s disease (CD) and ulcerative colitis (UC).

Currently available studies have implicated that the pathogenesis of

IBD is associated with genetic factors, environmental influences,

immune dysregulation, impaired intestinal barrier, and dysfunction

of the microbiome (83). IL-10 is a key anti-inflammatory cytokine

maintaining the balance between gut microbes and the immune

system, which plays an important role in controlling the

progression of IBD (84). Previous research has revealed that

Notch/STAT3-induced c-Maf-dependent IL-10 signaling

pathways are disrupted in effector CD4+ T cells, which leads to

reduced IL-10 production and increased pro-inflammatory Th1 and

Th17 cells, resulting in increased infiltration of granulocytes and

myeloid cells, and worsening tissue damage in IBD (85–87). In

mouse models of colitis, c-Maf deficiency inhibits the differentiation

of Tr1 cells, whereas the CCR2/CCR5 dual antagonists (e.g.,

Cenicriviroc) restore c-Maf expression and Tr1 cell development

but restrain the pro-inflammatory cytokines IFN-g and IL-17 (23,

88). Additionally, c-Maf is essential for the differentiation and

function of RORgt+ Tregs and CD4+Foxp3+CD69+ Tregs (CD69+

Tregs), which selectively inhibiting Th17 cells by increasing IL-10

production, while c-Maf loss leads to Tregs dysfunction,

hyperactivation of Th17 cells, and severe colonic inflammation

(89, 90). Overall, by governing immune cells differentiation,

cytokine networks, and inflammatory responses, c-Maf emerges

as a central regulator of intestinal homeostasis. Targeting c-Maf

using small-molecule agonists or pathway modulation represents a

promising strategy for IBD treatment, offering potential to restore

immune balance and mitigate disease progression (Table 1).
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3.2 c-Maf in autoimmune diabetes

Autoimmune diabetes is a progressive disorder characterized by

immune-mediated destruction of pancreatic b-cells, driven by

autoreactive T cells and dysregulated cytokine networks (101).

Emerging evidence highlights SUMOylation, a post-translational

modification involving small ubiquitin-like modifier (SUMO), as a

critical regulator of inflammatory pathways contributing to disease

progression (102). Research has shown that mutations in the c-Maf

protein’s SUMO modification sites (KRc) in NOD mice accelerate

diabetes onset by suppressing the recruitment of the repressive

complex death-associated protein (DAP)/histone deacetylase 2

(HDAC2) and enhancing the activation of IL-21 as well as the

recruitment of coactivators cAMP response element-binding

protein-binding protein (CBP) and p300 to the IL-21 promoter’s

MARE region (91). The PRDM1-encoded Blimp-1 protein inhibits

IL-21 by reducing chromatin accessibility at its promoter and

displacing c-Maf from the IL-21 regulatory area, thus delaying

autoimmune diabetes onset in KRc-transgenic NOD mice (92).

Moreover, c-Maf is essential for the differentiation of Th2 cells,

which may counterbalance autoimmune aggression in transgene-

induced spontaneous diabetes and virus-induced diabetes (93).

It has been well documented that c-Maf is also expressed in

insulin-produced b-cells, influencing b-cells differentiation and

survival (103). Therefore, c-Maf may play a vital role in the

development of autoimmune diabetes by regulating b-cell-specific
genes and immune interactions. Future research is warranted to

explore the tissue-specific mechanisms of c-Maf in b-cells and
Frontiers in Immunology 05
immune cells in autoimmune diabetes, which would provide new

insights into the c-Maf-targeted therapies for this disease (Table 1).
3.3 c-Maf in systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune disease

marked by the excessive activation of T cell and B cell-mediated

disorders (104). Absent in melanoma 2 (AIM2), a member of the

interferon-inducible HIN-200 protein family, binds to cytoplasmic

double-stranded DNA (dsDNA) and forms a complex with

apoptosis associated speck-like protein containing a CARD (ASC)

and caspase-1 to activate the AIM2 inflammasome, which leads to

the release of IL-1b and IL-18 and triggers pyroptosis (105).

Increased expression of AIM2 has been demonstrated in the

peripheral blood and skin lesions of SLE patients. Mechanistically,

IL-21 recruits ten-eleven translocation 2 (TET2) to the AIM2

promoter, resulting in DNA demethylation and subsequent

upregulation of AIM2 transcription. Furthermore, AIM2 regulates

c-Maf expression, which in turn promotes IL-21 production and

facilitates Tfh cells differentiation. This research demonstrates the

dysregulation of the IL-21-TET2-AIM2-c-Maf signaling axis in

lupus pathogenesis, highlighting its potential as a therapeutic

target for SLE (94). Viral infections may exacerbate SLE by

activating STAT3, which promotes IFN-a secretion and Th17 cell

differentiation by suppressing c-Maf expression, leading to Th17/

Tregs imbalance and autoimmune disorders (95). Recent advances

in SLE research underscore the critical role of c-Maf in immune
FIGURE 1

c-Maf-associated signaling pathways.
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dysregulation, offering novel insights for targeted therapeutic

strategies (Table 1).
3.4 c-Maf and multiple sclerosis

Multiple sclerosis (MS) is a chronic inflammatory disorder of

the central nervous system (CNS) characterized by autoimmune-

mediated demyelination (106). Th17 cells are significant

contributors to the autoimmune inflammation and demyelination

in the CNS (107, 108). The transcription factor c-Maf exerts

immunomodulatory effects by binding to the promoter regions of

anti-inflammatory genes, which thus suppresses the activity of Th17

cells and attenuates CNS inflammation and damages in MS (96).

Bregs contribute to MS progression by boosting the production of

IL-10 through the upregulation of c-Maf (54). c-Maf modulates

CD8+ T cell function by promoting PD-1 expression and IL-10
Frontiers in Immunology 06
production, while concurrently suppressing the survival of activated

CD4+ T cells. This regulatory mechanism contributes to the

containment of excessive inflammation and provides protection

to the central nervous system (97). Similarly, c-Maf-high T cells

acquire a regulatory phenotype characterized by IL-4 and IL-10

secretion, which helps inhibit disease progression (98). Overall,

these findings suggest c-Maf as a key anti-inflammatory regulator

that shapes both T cells and B cells responses, offering potential

therapeutic approaches for MS (Table 1).
3.5 c-Maf and immune thrombocytopenia
purpura

Immune thrombocytopenic purpura (ITP) is an antibody-

mediated autoimmune disorder characterized by accelerated

platelet destruction and consequent thrombocytopenia (109).
TABLE 1 Biological roles and molecular regulatory mechanisms of c-Maf in autoimmune diseases.

Disease type Molecular mechanisms Biological roles Origin of species References

IBD Defects in the Notch/STAT3-
Blimp-1/c-Maf-IL-10 axis in
CD4+ T cells

Driving inflammatory Th1/17 cells phenotypes and
Th17 cells overactivation

Human (85)

Defects in Blimp-1/c-Maf-IL-10
axis

Driving Th17 cells expansion and triggers
inflammatory cell infiltration

Human (86)

Activation of TGF-b/c-Maf
pathway

Enhancing Th17 cells differentiation Human (87)

Upregulation of miR-212/132 in
T cells;inhibits c-Maf-IL-10 axis

Promoting Th17 cells differentiation and inhibits Tr1
differentiation

Mouse (23)

Downregulation of c-Maf in
CCR2+/CCR5+CD4+T cells

Suppressing Tr1 cells generation and Th17 cells
skewing

Mouse (88)

Silencing of STAT3/STAT5 Reducing IL-10 and c-Maf expression, impairing anti-
inflammatory responses

Mouse (90)

Autoimmune Diabetes SUMOylation defects in c-Maf Aberrant IL-21 activation via CBP/p300-mediated
histone acetylation, accelerating b-cells destruction,
promotes diabetes progression

Mouse (91)

Reduced Blimp-1 expression Increased IL-21 transcription driving pathogenic T cells
differentiation

Mouse (92)

c-Maf deficiency Decreased IL-4/IL-5/IL-10, weakening protective Th2
cells responses

Mouse (93)

SLE Dysregulation of IL-21-TET2-
AIM2-c-Maf pathway

Tfh cells abnormal expansion Mouse (94)

STAT3-mediated suppression of
c-Maf

Th17 cells differentiation promotion Human and mouse (95)

MS STAT3/c-Maf-mediated
enhancement of Th17 cells
response suppression

Th17 cells response suppression and CNS
inflammation reduction

Mouse (96)

Bregs promote c-Maf expression Increased IL-10 production, improving MS Mouse (54)

Elevated c-Maf expression Increased IL-10, IL-4 and PD-1 production, alleviating
disease severity

Human (97, 98)

ITP Elevated IL-21/IL-6/Bcl-6/c-Maf
mRNA in ITP patients

Abnormal expansion of Tfh cells Human (99)

Abnormal Tfh cells expansion Elevating c-Maf expression Human (100)
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Patients with ITP show significantly elevated mRNA expression of

Bcl-6 and c-Maf transcription factors compared to healthy

individuals, along with expansion in Tfh cells, whereas the

mRNA level of c-Maf is notably reduced after treatment (99,

100). These clinical observations demonstrate that successful

therapeutic intervention correlates with reduced c-Maf

expression. The established association between c-Maf and Tfh

cells activity strongly implicates this transcription factor in ITP

pathogenesis, particularly through its regulation of Tfh-mediated

autoimmune responses. These findings position c-Maf as a

promising novel molecular target for ITP treatment (Table 1).
4 The potential clinical application
value of c-Maf

Targeted inhibition of c-Maf has emerged as a promising

therapeutic strategy in cancer treatment, with current approaches

focusing on indirect suppression of c-Maf expression/activity and

interception of downstream signaling cascades. In MM,

hyperactivation of the MEK/ERK pathway drives c-Maf

overexpression, positioning MEK inhibitors (e.g., trametinib,

cobimetinib) as potential c-Maf modulators (110). The mTOR

signaling pathway is involved in the regulation of c-Maf,

suggesting therapeutic utility for mTOR inhibitors, such as

everolimus (111). Panobinostat, a pan-deacetylase inhibitor

clinically approved for MM treatment, may partially exert its

anti-tumor effects through c-Maf suppression via deacetylase

inhibition (112). Mechanistically, the Bcl6/Maf transcriptional

complex cooperatively upregulates the expression of CXCR4 and

PD-1 , e s t a b l i s h i n g an immuno supp r e s s i v e t umo r

microenvironment (113). Plerixafor, a small-molecule antagonist

of the CXCR4 chemokine receptor, has been utilized in treating

hematologic disorders to disrupt c-Maf-mediated oncogenic

signaling (114). Taken together, these findings highlight the

multifaceted approaches being explored to therapeutically target

c-Maf networks in cancer.

The therapeutic potential of c-Maf modulation has also shed

some light on the treatment of autoimmune diseases, although

significant challenges remain. However, directly targeting c-Maf is

challenging due to its role as a transcription factor. Furthermore, c-

Maf has a dual function in maintaining immune balance. Although

the preclinical studies have demonstrated amelioration of

inflammatory phenotypes through c-Maf intervention in animal

models in autoimmune diseases, the exact mechanisms and long-

term effectiveness still need further investigations. Future research

should focus on developing highly selective c-Maf modulators with

optimized safety profiles, clarifying disease-specific mechanisms of

c-Maf regulation across different autoimmune pathologies,

establishing robust translational frameworks for target validation,

and evaluating clinical feasibility through rigorous preclinical-to-

clinical pipelines. These efforts will advance c-Maf-targeted therapy

from mechanistic insight to therapeutic reality in autoimmunity.
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5 Summary and outlook

Currently available data has suggested the cytokine-STAT

signaling cascade serves as a central regulator of c-Maf

expression, which cooperates with lineage-defining transcription

factors (e.g., GATA3, RORgt) to orchestrate immune response. This

c-Maf-based interaction network plays critical roles in the

regulation of cytokines production, the differentiation of immune

cells, and the maintenance of immune homeostasis. Growing

insights into the immunoregulatory function of c-Maf have

revealed its therapeutic potential for autoimmune disorders. The

unique properties of c-Maf offer multifaceted opportunities for

autoimmune disease interventions. Future studies are encouraged

to explore intervention strategies based on c-Maf expression

patterns in specific diseases, developing combinatorial therapies

that target its upstream regulators and downstream effectors and

utilizing it as a dynamic biomarker through monitoring the

expression and phosphorylation states to assess disease activity.

As mechanistic understanding advances, c-Maf continues to emerge

as a promising diagnostic and therapeutic target in immunology.
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