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Lupus nephritis (LN), a severe complication of systemic lupus erythematosus

(SLE), is associated with increased morbidity and mortality. The pathogenesis of

LN involves complex immune-mediated mechanisms that alter the biology of

renal resident epithelial cells. Emerging evidence highlights the bidirectional

interactions between immune cells and renal epithelial cells—including

podocytes and tubular epithelial cells(TECs)—as critical contributors to disease

progression. These interactions shape local immune responses, drive

inflammatory injury, and disrupt renal function. However, the molecular and

cellular basis of this crosstalk remains incompletely understood. Recent

advances have uncovered key mechanisms underlying these interactions and

identified potential therapeutic targets that may inform future treatment

strategies. This review summarizes current findings on the immunological roles

of renal epithelial cells in LN and discusses their relevance to the development of

targeted and cell-specific therapeutic interventions.
KEYWORDS

lupus nephritis, podocytes, tubular epithelial cells, immune cells, immune responses
1 Introduction

Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disorder in

which dysregulated immunity drives self-directed attacks on multiple tissues (1).

Worldwide, its incidence ranges from 1 to 8.7 cases per 100 000 person-years and its

prevalence from 8 to 180 cases per 100 000 population (2, 3).

The disease exhibits a striking female predominance, especially among women of

reproductive age, with a female-to-male ratio of 6.1–13.3 : 1 (2, 3). Impaired clearance of

apoptotic cells and loss of tolerance to endogenous antigens, such as double-stranded DNA

(dsDNA), underlie persistent immune activation (4). Consequently, both innate and

adaptive responses are amplified, driving high titers of anti-nuclear autoantibodies,

formation of immune complexes (ICs), and complement activation (5). IC deposition in

glomerular capillary walls provokes robust local inflammation and is a major determinant
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of lupus-related renal dysfunction, underscoring the kidney’s

particular vulnerability in SLE (6–8).

Lupus nephritis (LN) is the most frequent and clinically

devastating complication of SLE (9). It is defined by immune-

complex–driven chronic inflammation that produces multi-

compartmental renal injury (Table 1) (10). Nearly 40 % of

patients develop LN within five years of an SLE diagnosis (11),

and in some individuals the renal syndrome is the initial

presentation that prompts recognition of underlying SLE (12, 13).

LN substantially increases morbidity and mortality; 10–20 % of

affected patients progress to end-stage renal disease (ESRD) within

five years (14). ESRD refers to the stage of kidney disease that

requires dialysis or kidney transplantation, and patients are usually

accompanied by a severe symptom burden and multiple chronic

conditions (MCC) (15). This disease has a particularly profound

impact on patients’ quality of life (QoL) (16, 17). From the initiation

of dialysis, the life expectancy of patients with ESRD is generally less

than 3 years. Therefore, ESRD not only means that patients need

lifelong dependence on renal replacement therapy but also brings a

heavy economic and social burden to individuals and public health

systems (18, 19). It is noteworthy that the prevalence and severity of

LN show significant racial and ethnic differences. Large

epidemiological studies have shown that the risk of disease is

significantly higher in African, Asian, and Hispanic populations

than in white populations (3, 9, 20–24), among which African and

Asian patients also have a significantly increased risk of end-stage

renal disease (25). An international inception cohort study showed
Frontiers in Immunology 02
that the incidence of LN in patients with systemic lupus

erythematosus was 39.9% in African individuals, 49.3% in

Hispanic individuals, 36.8% in Asian individuals, and 20.3% in

white individuals (26). Similarly, a special study on SLE patients in

the United States found that, compared with the white population,

the risks of LN were higher in Black, Asian and Pacific Islander, and

Hispanic populations (24). In addition, male SLE patients and those

with childhood-onset disease are more likely to progress to severe

renal lesions (26–34).

Immune-mediated renal inflammation in LN involves not only

aberrant immune cell responses but also the dysfunction of resident

renal cells, particularly podocytes and renal tubular epithelial cells

(RTECs) (35). These two components together contribute to

glomerular, tubulointerstitial, and vascular injury, ultimately driving

the initiation and progression of LN (8). Podocytes, integral to the

glomerular filtration barrier, express a variety of pattern recognition

receptors—including Toll-like receptors (TLRs)—as well as

complement-associated proteins (36, 37). Upon pathological

stimulation, these receptors activate multiple intracellular pathways

that lead to podocyte injury and disruption of barrier integrity.RTECs

also play an active role in renal inflammation by secreting

proinflammatory mediators and engaging in adaptive immune

responses. For instance, anti-double-stranded DNA (anti-dsDNA)

antibodies can stimulate RTECs to produce tumor necrosis factor-a
(TNF-a), which enhances immune cell recruitment and triggers

downstream inflammatory cascades (38). In parallel, various immune

cell subsets—including neutrophils, T and B lymphocytes, dendritic
TABLE 1 Clinical manifestations of lupus nephritis.

Clinical features Description Ref.

Renal Status The most common abnormalities in LN patients include proteinuria, microscopic hematuria (with or without red
blood cell casts), renal dysfunction, nephrotic-range proteinuria or nephrotic syndrome, and hypertension.

(266–269)

Diagnosis Renal biopsy remains the gold standard for diagnosing LN (typically not performed in patients with urinary
protein excretion <500 mg/day and no significant urinary sediment abnormalities), as it enables determination of
renal involvement characteristics, exclusion of alternative causes of kidney injury, identification of LN
histopathological subtypes, and evaluation of disease activity and chronicity.

(240, 243, 270, 271)

Pathological Findings • Glomerular immune deposits are characterized by predominant IgG staining, together with concurrent
deposition of IgA, IgM, C3, and C1q, a pattern classically described as “full-house” immunofluorescence.

• Immune complex deposits may be observed in mesangial, subendothelial, and subepithelial regions.
• Extraglomerular immune complexes deposit along tubular basement membranes, in the interstitium, and

within vessels. In severe LN (typically ISN/RPS class III and IV, particularly class IV), such extraglomerular
deposits are highly prevalent and widely distributed, whereas in mild LN (class I and II), they are generally
infrequent, restricted, or even absent.

• Tubuloreticular inclusions are present in glomerular endothelial cells.

(271–274)

Histopathological
Classification

• The clinical manifestations of LN are not closely correlated with renal histopathological types; therefore,
accurate determination of renal pathology is essential for guiding subsequent therapeutic strategies. Based on
the International Society of Nephrology/Renal Pathology Society (ISN/RPS) 2004 classification system, SLE-
related glomerular diseases are categorized into six types (273, 275, 276).Lupus podocytopathy and lupus-
associated thrombotic microangiopathy (TMA) represent distinct pathological variants that may significantly
influence treatment strategies and prognosis, and should therefore be recognized as special pathological types
in LN:

• Class I: Minimal mesangial lupus nephritis
• Class II: Mesangial proliferative lupus nephritis
• Class III: Focal lupus nephritis
• Class IV: Diffuse lupus nephritis
• Class V: Lupus membranous nephropathy
• Class VI: Advanced sclerosing lupus nephritis

(273, 275, 276)
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cells, and macrophages—are robustly activated in LN. Through

cytokine secretion, antibody production, and tissue infiltration, they

exacerbate structural damage to the kidney (39). Renal epithelial cells

and immune cells engage in a bidirectional regulatory interplay

mediated by cytokine networks and direct cell–cell contact (40). This

crosstalk cooperatively activates multiple proinflammatory signaling

pathways (Table 2, Figure 1), thereby driving the immunopathological

progression of LN. For instance, in vitro studies have shown that IL-6

secreted by podocytes acts on glomerular endothelial cells (GECs) to

inhibit neutrophil recruitment, whereas neutrophils, in turn,

compromise podocyte function by releasing proteolytic enzymes

and other mediators (41), ultimately contributing to LN progression.

This interplay amplifies renal inflammation and drives the

immunopathogenesis of LN. This review highlights the complex

crosstalk between renal epithelial cells and immune cells within the

kidney and delineates their mechanistic roles in the development and

progression of lupus nephritis.

Renal epithelial cells/immune cells regulate transcription

through various signaling pathways, and the cytokines produced

can affect immune cells/renal epithelial cells.
Frontiers in Immunology 03
2 Basic structure and function of
podocytes

Podocytes are an essential component of the glomerular filtration

barrier, and their highly specialized morphology (see Figure 2) is

critical for preserving filtration function. Interdigitating foot

processes of podocytes form the slit diaphragm (SLD) (42, 43), a

specialized junctional structure composed primarily of nephrin and

podocin. These proteins, in conjunction with the actin cytoskeleton

and adhesion molecules, establish a stable network that preserves the

structural integrity of the filtration barrier (44, 45). Studies have

shown that aberrant IgG glycosylation in patients with SLE

contributes to podocyte injury in LN, leading to cytoskeletal

remodeling, impaired motility, and reduced nephrin production

(46). These alterations accelerate the progression of LN (46).

Nephrin, a transmembrane immunoglobulin-like adhesion

molecule (47), constitutes the structural backbone of the SLD and

is essential for maintaining the mechanical cohesion and selective

permeability between adjacent foot processes (48). Podocin, another

key transmembrane protein, interacts with nephrin to stabilize its
TABLE 2 Signal pathways involved between renal epithelial cells and immune cells.

Signaling
pathway

Role description Significance Ref.

TLR Signaling Pathway TLR4 recognizes extracellular HMGB1, activates AP-1 and
upregulates IRF3/5/7. Signaling via MyD88 and TRIF promotes
NF-kB translocation, regulating pro-inflammatory cytokine gene

expression.

TLRs, particularly TLR4, are widely expressed on
renal epithelial and immune cells. Overactivation
of TLR4 signaling correlates with SLE activity and

LN progression.

(277–281)

JAK-STAT Signaling
Pathway

Aberrant STAT signaling in LN is driven by JAK kinases. IL-6 and
IL-21 stimulate antibody production via STAT3-dependent

pathways. STAT3 activation also enhances IL-6 expression and is
critical for follicular helper T-cell (Tfh) differentiation.

The JAK-STAT pathway plays a pivotal role in
immune cell activation and inflammatory

responses by modulating cytokine expression.

(282, 283)

Notch Signaling
Pathway

Canonical Notch signaling is activated by receptor (Notch1-4) and
ligand (DLL1/3/4, JAG1/2) interactions, leading to nuclear

translocation of the Notch intracellular domain (NICD) to regulate
target genes.

Notch signaling is evolutionarily conserved and
essential for development and homeostasis. In LN,
Notch1 dysregulation may influence podocyte
differentiation and glomerular pathology.

(284–292)

CXCL10-CXCR3 Axis The CXCL10-CXCR3 axis promotes Th1 cell infiltration into the
kidneys, exacerbating inflammation. CXCL10 binding to CXCR3
activates downstream pathways, driving Th1 chemotaxis and

activation.

This axis is a key mediator of CXCR3+T-cell renal
infiltration, contributing to LN progression.

(293, 294)

PI3K/Akt/mTOR
Signaling Pathway

mTOR, a serine/threonine kinase, regulates cell proliferation,
metabolism, and cell cycle progression (G1 to S phase), thereby

modulating T- and B-cell activation.

PI3K/Akt/mTOR activation is critical for anti-
apoptotic signaling, proliferation, and
inflammatory cytokine production.

(295–298)

NLRP3 Signaling
Pathway

The NLRP3 in of NACHT, LRR, and PYD domains, is implicated
in LN pathogenesis.

NLRP3 signaling is central to innate immunity
and is closely linked to inflammatory and immune

responses in LN.

(299–301)

NF-kB Signaling
Pathway

In homeostasis, NF-kB is sequestered in the cytoplasm by IkB.
Upon activation, IkB is phosphorylated and degraded by IKK,
enabling NF-kB nuclear translocation to initiate transcription of

pro-inflammatory genes (e.g., TNF-a, IL-6).

NF-kB is a master regulator of inflammatory
mediators, driving cytokine production in LN.

(279, 302, 303)

TGF-b Signaling
Pathway

TGF-b binds to TGF-bR2, recruits TGF-bR1, and induces Smad2/3
phosphorylation, activating downstream transcriptional programs.

The TGF-b pathway is a core driver of renal
fibrosis in LN, exacerbated by pro-inflammatory

cytokines.

(304, 305)

B7-1/CD28 Signaling
Pathway

B7-1 (CD80) binding to CD28 provides co-stimulatory signals,
promoting T-cell proliferation, Th1/Th2 differentiation, and

antibody production.

Hyperactivation of B7-1/CD28 signaling may
trigger autoimmune responses, contributing to LN

pathogenesis.

(306–310)
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membrane localization (49) and link it to intracellular signaling

pathways, thereby supporting podocyte architecture and function

(50). Deficiency or dysfunction of either protein disrupts the integrity

of the filtration barrier and leads to the development of proteinuria.

Relevant studies have demonstrated that podocyte-associated

proteins, such as nephrin, podocin, and podocalyxin, serve as

important indicators for assessing podocyte injury in human

glomerular diseases (51). Accordingly, the loss or dysfunction of

nephrin and podocin not only disrupts the structural integrity of the

slit diaphragm but also directly compromises the filtration barrier,

ultimately leading to proteinuria.

The structural integrity of podocyte foot processes is primarily

supported by actin, a highly dynamic cytoskeletal element essential for

maintaining cellular morphology, adhesion, and motility (52). The

reorganization of actin filaments is tightly regulated by synaptopodin

(53), an actin-associated protein that reinforces cytoskeletal
Frontiers in Immunology 04
architecture and modulates podocyte migration. Synaptopodin

interacts with a-actinin-4 to stabilize the structure and morphology

of foot processes (54). It also protects the small GTPase RhoA from

proteasomal degradation, thereby promoting stress fiber formation

and regulating cytoskeletal tension and motility (55). For instance,

studies in lupus-pronemouse models have revealed that synaptopodin

expression is upregulated during podocyte apoptosis (56). Therefore,

synaptopodin expression is closely associated with podocyte injury

and may contribute to the progression of LN (56). In addition,

podocytes adhere to the glomerular basement membrane (GBM)

through integrins (such as a3b1) and a-/b-dystroglycans, which
anchor the cells to the GBM and mediate outside-in signaling

critical for maintaining filtration barrier stability (42, 53).

In LN, podocytes serve not only as structural targets but also as

active participants in disease pathogenesis. Within the inflammatory

milieu, cytokines and immune complexes generated by immune
FIGURE 1

Signal pathways involved between renal epithelial cells and immune cells.
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activation trigger reorganization of the actin cytoskeleton, effacement of

foot processes, and disruption of the slit diaphragm, thereby

aggravating proteinuria and impairing renal function. Podocytes in

LN upregulate immune-related molecules such as TLRs, complement

receptors, and MHC class II (57–59), and aberrantly express the

neonatal Fc receptor (FcRn) under inflammatory stress (60–62),

which facilitates immune complex transcytosis and deposition.

Moreover, podocytes produce a range of cytokines (57), contributing

to local immune modulation and amplifying inflammatory responses,

while also possessing potential immunoregulatory functions.

Importantly, podocytes can present antigens (63) and support the

activation of T and B lymphocytes, thereby enhancing autoantibody

production and perpetuating tissue injury (47, 64). The integrity of

podocyte structure—dependent on cytoskeletal organization, slit

diaphragm maintenance, and anchorage to the GBM—is disrupted

by immune-mediated cytoskeletal remodeling, which is considered a

central mechanism of podocyte injury in LN. This process is driven by

a convergence of inflammatory insults, genetic predisposition, toxic

exposures, and metabolic disturbances, ultimately leading to filtration

barrier breakdown and disease progression (65).

A schematic illustration of the basic structure of the podocyte

indicates the structure and important proteins of the podocyte. P,

podocyte; FP, foot process; GBM, glomerular basement membrane;

TLR, Toll like receptors; MHC, major histocompatibility complex;

FcRn, Neonatal Fc receptor.
3 Crosstalk between podocytes and
innate immune cells

Emerging evidence indicates that, beyond their structural role in

preserving glomerular integrity, podocytes actively engage in

reciprocal interactions with innate immune cells—including
Frontiers in Immunology 05
macrophages, neutrophils, and dendritic cells—which collectively

orchestrate local inflammation and contribute to the pathogenesis

of LN (Figure 3A). In this context, podocytes function not only as

passive targets of immune-mediated injury but also as active

regulators of renal inflammation. Upon stimulation, podocytes

secrete various chemokines, such as CCL2, CXCL1, and CXCL13,

which recruit monocytes (66), neutrophils (67), and dendritic cells

(67) into the glomerulus, thereby amplifying inflammatory responses

and promoting renal damage. Of note, dendritic cells represent a

major source of CXCL13 (68), which binds to CXCR5 receptors

expressed on podocytes and activates the ERK signaling pathway,

subsequently inducing the expression of adhesion molecules ICAM-1

and VCAM-1 (69). Through chemotactic gradients, these

chemokines facilitate the recruitment of innate immune cells, such

as macrophages and neutrophils, to sites of inflammation, reinforcing

the local immune response. Notably, blockade of CCL2 or its receptor

CCR2 significantly reduces monocyte/macrophage recruitment to the

kidney and alleviates glomerular and interstitial injury (70, 71). The

infiltrating innate immune cells perform distinct immunological

functions within the renal microenvironment, ultimately shaping

the progression of LN pathology.

Recruited macrophages infiltrate extensively into LN lesions

and release pro-inflammatory cytokines such as TNF-a and IL-1b,
which downregulate the expression of critical podocyte structural

proteins, including nephrin (72). This disruption compromises the

glomerular filtration barrier, ultimately resulting in proteinuria. The

formation of a positive feedback loop between activated podocytes

and infiltrating macrophages plays a pivotal role in sustaining renal

inflammation during LN. Moreover, the synergistic activation of

Toll-like receptors TLR2 and TLR4 further amplifies this

inflammatory circuit. These receptors are broadly expressed on

both podocytes and macrophages and can recognize pathogen-

associated molecular patterns (PAMPs) as well as endogenous
FIGURE 2

Podocyte basic structure.
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damage-associated molecular patterns (DAMPs), leading to

downstream signal transduction and the production of

inflammatory mediators such as TNF-a and IL-1b (73). TLR-

mediated co-activation not only intensifies the pro-inflammatory

capacity of macrophages but also enhances the immunological

responsiveness of podocytes, thereby exacerbating glomerular

inflammation and accelerating LN progression (74). In parallel,

neutrophils are also markedly recruited into the renal tissues of LN

patients (75), where they secrete interferon-a (IFN-a), reactive
oxygen species (ROS), and proteolytic enzymes that contribute to

tissue injury (41). Neutrophils undergoing cell death release

neutrophil extracellular traps (NETs)—web-like structures

composed of decondensed DNA and antimicrobial proteins—

which can bind autoantigens and trigger immune activation. This

process further amplifies the inflammatory cascade and promotes

the pathophysiological progression of LN (41).

In macrophage-mediated podocyte injury, the activation state

of macrophages is a key determinant of renal inflammatory

outcomes. Macrophage phenotypes are largely shaped by cues

from the local microenvironment (76) and are broadly

categorized into pro-inflammatory M1 (classically activated) and

anti-inflammatory M2 (alternatively activated) subsets (77). In LN,

a disruption in the M1/M2 balance is closely linked to disease
Frontiers in Immunology 06
activity (78). The active phase of LN is typically dominated by M1

macrophages (79), which secrete high levels of inflammatory

mediators such as TNF-a and IL-1b .These cytokines

downregulate the expression of essential podocyte structural

proteins, disrupt the glomerular filtration barrier, and exacerbate

both proteinuria and tissue inflammation. In contrast, during

disease remission, the prevalence of M2 macrophages increases

(80). These cells release anti-inflammatory cytokines and tissue-

reparative factors, which contribute to podocyte protection and

restoration of glomerular barrier integrity. Transcriptomic profiling

has revealed a dynamic shift of macrophages from an M1 to M2

phenotype during LN progression, accompanied by suppressed

expression of pro-inflammatory genes (81). This phenotypic

transition exerts protective effects on podocytes by attenuating

inflammatory damage. Collectively, macrophage polarization from

a pro-inflammatory to an anti-inflammatory state appears to

mitigate podocyte injury (72) and may serve as an intrinsic

regulatory mechanism during disease resolution (72, 80).

Consequently, therapeutic strategies aimed at promoting M2

polarization have gained attention as a promising approach to

slowing LN progression and preserving podocyte integrity (82).

In addition to interacting with macrophages and neutrophils,

podocytes engage in dynamic and bidirectional crosstalk with DCs,
FIGURE 3

Disease mechanisms mediated by podocyte-immune cell interactions in lupus nephritis. (A) Podpcytes in the innate immunity. Podocytes recruit
innate immune cells (macrophages, neutrophils, DCs) via chemokine secretion (CCL2/7/8, CXCL1), amplifying inflammation. Macrophage-derived
proinflammatory cytokines drive proteinuria in glomerular diseases. TLRs on macrophages/DCs recognize PAMPs, activating innate immunity.
Neutrophil infiltration and IFN-a release exacerbate renal inflammation in LN. CXCL13-stimulated podocyte media triggers neutrophil activation and
local inflammation. DCs produce CXCL13, binding podocyte CXCR5 to activate ERK signaling and enhance proinflammatory secretion, worsening
LN. DCs phagocytose apoptotic/immune complexes to promote Th17 differentiation.Th17-derived IL-17A directly damages podocytes and induces
NLRP3 inflammasome/IL-1b release, sustaining inflammation. pDCs detect microbial/eukaryotic nucleic acids via TLR9, driving IFN-I production and
systemic immune activation through costimulatory upregulation. (B) Podpcytes in the adaptive immunity. Podocytes activate T cells via MHC I/II and
costimulatory molecule expression; CD80 enhances T-cell proliferation/aggregation. LN podocytes exhibit SIRPa downregulation, promoting Syk
phosphorylation to boost antigen presentation and T-cell responses. IFN-a/g and IL-17 modulate podocyte antigen presentation by targeting
SIRPa.LN IgG enters podocytes via FcRn, inducing CaMK4-CD86 upregulation to amplify T-cell costimulation in a self-reinforcing loop.NLRP3
activation in injured podocytes biases Th17/Th1 differentiation; Th17-derived IL-17A disrupts podocyte cytoskeleton and triggers inflammation.
Podocyte mTORC1 activation drives glomerulopathy via endothelial crosstalk, while T-cell mTORC1 hyperactivity expands Th1/Th17/DN T cells and
suppresses Tregs. B cells directly damage kidneys via autoantibodies; B1 cells accumulate in LN kidneys, differentiating into autoantibody/cytokine-
producing plasma cells.
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actively shaping the local immune microenvironment in LN (83).

DCs recruited to the kidney play a non-redundant role in LN

immunopathogenesis (84, 85). Experimental studies have

demonstrated that, despite persistent glomerular deposition of

immune complexes, either genetic deficiency of Fcg receptors or

selective depletion of DCs can effectively prevent T cell activation

and leukocyte infiltration in renal tissues. DCs contribute to the

differentiation of Th17 cells by phagocytosing apoptotic bodies or

immune complexes (83). In turn, Th17-derived IL-17A not only

exerts direct cytotoxic effects on podocytes but also induces NLRP3

inflammasome activation and promotes IL-1b release, thereby

amplifying the local inflammatory cascade (4). Furthermore, DCs

activate autoreactive T cells through self-antigen presentation,

which facilitates B cell-driven production of pathogenic

autoantibodies, such as anti-dsDNA antibodies. These

autoantibodies can form immune complexes with podocyte

surface antigens, including a-actinin, and upon deposition in the

glomeruli, activate the complement cascade. This leads to

cytoskeletal rearrangement and disruption of the slit diaphragm

architecture in podocytes, thereby exacerbating glomerular

injury (86).
4 Crosstalk between podocytes and
adaptive immune cells

Podocytes, once considered mere passive targets in LN, are now

recognized as active participants in immune modulation. Through

direct interaction with T and B lymphocytes, they shape adaptive

immune responses and contribute to glomerular inflammation and

injury (Figure 3B).
4.1 Podocytes and T lymphocytes

In the pathogenesis of LN, interactions between T cells and

podocytes play a pivotal role in disrupting the glomerular filtration

barrier and propagating inflammation. Inflammatory mediators

released by autoreactive T cells amplify local renal immune

responses, while certain autoantibodies—some of which cross-

react with podocyte antigens such as a-actinin—further

exacerbate renal tissue injury (87, 88). Increasing evidence

highlights the crucial and diverse roles of dysregulated helper T

(Th) cell subsets in mediating podocyte damage. Based on their

cytokine profiles, Th cells are categorized into distinct functional

subsets (89), each contributing differentially to the pathological

processes involved in podocyte injury. Among them, Th17 cells

predominantly produce IL-17A and IL-17F, whose receptors are

broadly expressed across various renal cell types, including

podocytes. These cytokines activate pro-inflammatory and pro-

fibrotic pathways, promoting the release of cytokines and

chemokines that sustain chronic inflammation and maladaptive

tissue repair, ultimately resulting in fibrosis and disruption of renal

architecture (90). IL-17A, in particular, has been shown to alter

podocyte morphology and induce structural injury (91). Moreover,
Frontiers in Immunology 07
in LN, activation of the Th17 lineage and elevated IL-17 levels are

associated with podocyte apoptosis, cytoskeletal rearrangement,

foot process effacement, increased motility, reduced expression of

homeostatic proteins, and heightened oxidative stress, along with

activation of inflammasomes and caspase cascades within

podocytes (92–94). Importantly, IL-17A can also engage surface

receptors on podocytes to trigger NLRP3 inflammasome activation

and subsequent IL-1b release, thereby amplifying local

inflammatory responses (4, 95). The activation of NLRP3

inflammasomes within podocytes not only contributes to

structural cell damage but may also reshape the local immune

milieu, influencing adaptive immune responses. Hutton et al. (96)

proposed that NLRP3 activation in podocytes facilitates the skewing

of helper T cells toward the Th17 phenotype, further promoting

podocyte injury in LN. Beyond Th17 involvement, Th2 cells have

also been implicated in podocyte damage in specific LN

subtypes.Th2-driven immune responses are thought to facilitate

subepithelial immune complex deposition (97–99), leading to

complement activation and formation of the membrane attack

complex (C5b-9), which injures renal epithelial cells. Additionally,

both inflammasomes and mTORC1 signaling pathways have been

shown to regulate Th cell differentiation, thereby contributing to the

immunopathological landscape of LN (100, 101). As a key

component of the innate immune system, the NLRP3

inflammasome can be activated and assembled in response to a

wide array of exogenous and endogenous danger signals (102).

Accumulating evidence has demonstrated that depletion of T

cells or blockade of T cell activation significantly alleviates LN

progression in lupus-prone mice (103, 104). Notably, podocytes

themselves are not merely passive targets but active participants in

modulating T cell responses. They express both MHC class I and

class II molecules (63, 105), thereby possessing antigen-presenting

capacity and directly contributing to the activation of CD4+ and

CD8+T cells during LN pathogenesis. Conditional deletion of MHC

class II in podocytes markedly reduces CD4+T cell activation,

highlighting their immunoregulatory potential (63). In parallel,

CD8+T cells recognizing disease-relevant antigens presented by

podocytes can exert cytotoxic effects, contributing to crescent

formation within glomeruli (106). Crescents—characterized by

the proliferation of parietal epithelial cells and infiltration of

inflammatory cells in Bowman’s space—are histological hallmarks

of severe glomerular injury and are associated with poor clinical

outcomes (106, 107). Furthermore, podocytes can enhance T cell

activation through the expression of costimulatory molecules such

as CD80 (B7-1) and CD86 (B7-2). Inflammatory stimuli, such as

TLR activation, upregulate CD80 expression on podocytes (108,

109), which facilitates T cell proliferation and accumulation within

renal tissue (81). Beyond its immunostimulatory role, CD80 also

compromises slit diaphragm integrity, exacerbating podocyte injury

and impairing glomerular filtration barrier function (110). CD80

and CD86 interact with T cell receptors CD28 or CTLA-4 to deliver

activating or inhibitory signals, thereby fine-tuning the strength and

outcome of T cell responses (111, 112). Elevated B7–1 expression

has been observed in podocytes from LN patients, where its

activation induces redistribution of key slit diaphragm proteins
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such as nephrin and podocin, correlating strongly with proteinuria

severity (109). Moreover, podocytes are capable of internalizing

immune complexes, particularly IgG, and can activate infiltrating

T cells via cross-presentation mechanisms. This activation triggers

the release of proinflammatory cytokines that contribute to

podocyte dysfunction and apoptosis (105). FcRn plays a crucial

role in IgG transcytosis in podocytes, facilitating antigen sampling

and immune modulation. IgG internalization via FcRn induces

the expression of CaMK4 (113), a key mediator downstream of

TCR signaling that is aberrantly activated in T cells from SLE

patients and contributes to immune dysregulation (36). In

podocytes, CaMK4 upregulates CD86 expression (113),

amplifying costimulatory signaling and further exacerbating local

inflammation and tissue injury (62).

In addition to intrinsic immunogenic properties, the ability of

podocytes to activate T cells is further modulated by the

inflammatory milieu. Proinflammatory cytokines such as IFN-g
and IL-17 have been shown to enhance the antigen-presenting

capacity of podocytes, thereby promoting antigen-specific T cell

activation and contributing to podocyte injury and renal

inflammation (114). Mechanistically, signal regulatory protein

alpha (SIRPa), expressed in podocytes, functions as a negative

regulator of antigen presentation. It exerts its inhibitory effect by

suppressing phosphorylation of spleen tyrosine kinase (Syk), a key

molecule in downstream immune signaling (114). However,

proinflammatory cytokines including IFN-a, IFN-g, and IL-17

can downregulate SIRPa expression, thereby relieving this

inhibitory checkpoint and augmenting the ability of podocytes to

activate T cells (115–120). Supporting this, exposure of podocytes to

LN patient serum has been shown to induce T cell proliferation and

increased IFN-g production, suggesting that under inflammatory

condit ions, podocytes can acquire dendrit ic cel l- l ike

immunostimulatory properties (121). Notably, IFN-g not only

promotes T cell activation but also modulates podocyte function

in a feedback manner by suppressing SIRPa expression, further

amplifying local immune activation.
4.2 Podocytes and B lymphocytes

B lymphocytes play a pivotal role in the pathogenesis of LN (7,

122), primarily through the production of autoantibodies and pro-

inflammatory cytokines that contribute to renal injury, particularly

targeting podocytes (123). In LN, aberrantly activated B cells

differentiate into plasma cells that secrete pathogenic

autoantibodies, including anti-dsDNA antibodies (124).

The accumulation of autoantibodies within the kidney is a critical

contributor to renal inflammation and dysfunction in lupus nephritis

(125, 126). These autoantibodies directly target podocyte surface

antigens, such as a-actinin-4, inducing cytoskeletal remodeling that

leads to podocyte injury (124), dedifferentiation, apoptosis, or

detachment (114). Concurrently, antibody binding activates the

complement cascade, compromising the integrity of the podocyte

filtration barrier and resulting in proteinuria (58, 88). ICs formed by
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the interaction of antibodies with glomerular basement membrane or

podocyte antigens deposit in close proximity to podocytes, acting as

principal mediators of podocyte-directed immune injury (127) and

thereby impairing glomerular filtration function (128). Moreover,

anti-nuclear antibodies associate with nucleosomes released from

apoptotic cells to generate proinflammatory complexes localized

within the glomerulus (129). Notably, anti-dsDNA antibodies are

enriched in renal tissues compared to systemic circulation and can

cross-react with podocyte a-actinin, disrupting podocyte stability

(86). Importantly, podocytes actively participate in antibody-

mediated pathology rather than remaining passive targets.

Upregulation of Fc receptors on their surface, particularly FcRn,

facilitates IgG uptake (130). Internalized IgG triggers upregulation

of CaMK4, which modulates downstream signaling pathways

including RhoA. This signaling enhances podocyte motility while

suppressing the expression of key slit diaphragm proteins such as

nephrin and synaptopodin (62, 131, 132). Collectively, these

alterations undermine podocyte structural integrity and barrier

function, thereby exacerbating proteinuria. Furthermore, in lupus

nephritis patients, IgG is transcytosed into podocytes via FcRn (133),

where it not only activates CaMK4 signaling (62, 134) but also

induces CD86 expression (113). This upregulation of CD86

enhances podocyte capacity to form immunological synapses with

T cells, amplifying local immune activation. Clinical studies further

reveal that aberrant glycosylation of IgG in the sera of patients is

closely linked to podocyte injury. Such glycosylation-modified IgGs,

primarily produced by B cells, exacerbate podocyte dysfunction and

contribute to disease progression (57, 62).

Podocyte injury mediated by B cells is not solely dependent on

antibodies but can be exacerbated through synergistic interactions

with T cells. Specifically, T cells can increase the survival,

differentiation, and antibody production of autoreactive B cells

(135) and promote inflammation and tissue damage through

cytokine secretion. Although podocytes are not conventional

antigen-presenting cells, they express MHC class II and

costimulatory molecules in lupus nephritis, enabling them to

activate CD4+T cells (83, 136). Through such crosstalk with T

cells, podocytes can indirectly modulate B cell activation and

subsequent antibody production. Dysregulation of T cell function

disrupts peripheral tolerance, thereby promoting B cell activation

and autoantibody generation. These autoantibodies can either

directly target renal structural components or form immune

complexes that deposit within the glomeruli, triggering local

inflammation and tissue damage (137, 138).
5 Renal tubular epithelial cells

Proximal tubular epithelial cells (PTECs), a metabolically active

and highly polarized subset of RTECs, play a central role in

maintaining renal function. Responsible for reabsorbing

approximately 80% of the glomerular filtrate—including glucose,

electrolytes, and amino acids—PTECs are enriched in mitochondria

and exhibit significantly higher metabolic demands compared to
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other renal cell types (139). In addition, they express multiple iron-

handling proteins, such as transferrin receptor 1 (TfR1) and

divalent metal transporter 1 (DMT1), and contribute to iron

homeostasis via active endocytic pathways (140).

While RTECs have traditionally been recognized for their role

in solute transport, growing evidence highlights their active

involvement in the immunopathogenesis of renal parenchymal

diseases (141, 142), particularly in mediating inflammation and

fibrosis (143). In LN, the structural and metabolic features of

RTECs render them particularly susceptible to immune-mediated

injury. Tubulointerstitial fibrosis is a major contributor to LN

progression toward ESRD (144), often associated with PTEC-

derived pro-inflammatory cytokines that activate immune cells

and initiate epithelial-to-mesenchymal transition (EMT) (145).

Upon injury, RTECs acquire an inflammatory phenotype

characterized by the production of cytokines such as CSF-1,

CCL2, IL-6, TNF-a, IL-1b, and IL-18. These mediators amplify

immune responses through autocrine signaling and promote

leukocyte recruitment by secreting chemokines including CCL2,

CCL5, and CXCL8, thereby exacerbating tubulointerstitial

inflammation and tissue damage (146). Notably, deposition of

immune complexes along the tubular basement membrane—often

accompanied by immune cell infiltration and interstitial fibrosis—is

a common pathological feature in LN (147), underscoring the

immunoregulatory role of RTECs in disease progression.
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5.1 Crosstalk between renal tubular
epithelial cells and innate immune cells

RTECs play an active role in recruiting and activating innate

immune cells, thereby amplifying inflammatory responses within the

kidney (Figure 4A). Monocyte chemoattractant protein-1 (MCP-1/

CCL2) is a well-established chemokine critical for monocyte

recruitment in various inflammatory settings (71). In LN, MCP-1

expression is predominantly localized to the renal tubules rather than

the glomeruli (148, 149), and its levels closely correlate with

macrophage and T cell infiltration, thereby promoting local

inflammation. Osteopontin (OPN), an inflammation-associated

glycoprotein abundantly expressed by RTECs in both proximal and

distal tubules, exhibits a positive correlation with the extent of

monocyte/macrophage infiltration and severity of renal injury.

Upregulated OPN expression has been documented across multiple

glomerulonephritis models, where it facilitates monocyte adhesion

and migration into the tubulointerstitial compartment through

interaction with the CD44 receptor (149–151). Both clinical and

experimental studies confirm that elevated OPN expression associates

with increased tubular monocyte infiltration and tubular damage

(152, 153), with significantly higher OPN levels observed in LN

patients and murine models (154, 155). Moreover, upon stimulation

by proinflammatory cytokines such as TNF-a, RTECs secrete

chemerin, which recruits plasmacytoid dendritic cells (pDCs) to
FIGURE 4

Disease mechanisms mediated by the interaction of renal tubular epithelial cells with immune cells in lupus nephritis. (A) The role of renal tubular
epithelial cells in innate immunity. OPN expressed on RTECs is associated with monocyte infiltration and tubular injury. In LN, monocytes interact
with RTECs through the CD40–CD40L axis to activate inflammatory pathways, while PD-L1 on RTECs suppresses excessive monocyte activation via
PD-1. IL-22 stimulation upregulates CCL2, CXCL10, and pSTAT3 in RTECs. Macrophages are recruited to the tubulointerstitial compartment by CCL2
and CXCL10 secreted by TECs, and their released IL-6 aggravates TEC detachment and apoptosis by inducing fibronectin expression. RTECs recruit
pDCs via TNF-a-induced chemerin-ChemR23 axis in LN. The tubulointerstitial DC3 subset expresses high levels of CXCL16 and CCL17, thereby
exacerbating RTEC inflammatory injury. (B) The role of renal tubular epithelial cells in adaptive immunity. IFN-g and TNF-a stimulation upregulate
CXCL10 and CXCR3 expression in RTECs. In LN kidneys, damaged iPTECs overexpress proinflammatory mediators, promoting the recruitment of
blood-derived DC3 cells to renal tissue. Renal DC3 cells are reprogrammed toward a proinflammatory phenotype within the milieu of tubular injury,
driving Th1/Th17 adaptive immune responses and worsening RTEC inflammation. Injured PTECs upregulate MHC class II and costimulatory
molecules and activate CD4+T cells through antigen presentation. RTECs also activate CD8+T cells via cross-presentation, inducing the release of
GzmB, IL-17A, and IFN-g. Direct contact between CD8+T cells and RTECs enhances caspase-3–mediated apoptosis and tubulointerstitial
inflammation. Overexpression of PD-L1 on RTECs inhibits T-cell activation through PD-1, establishing an immunosuppressive microenvironment that
counterbalances inflammatory injury.
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sites of inflammation via the ChemR23 receptor, thereby promoting

local immune activation (156). RTECs also produce various

chemokines that enhance dendritic cell recruitment and

accumulation at lesion sites (157). Of particular interest is the

infiltration of a distinct myeloid dendritic cell subset—type 3

conventional dendritic cells (DC3s)—within the renal

tubulointerstitium. These DC3s are believed to act as

intermediaries bridging interactions between intrinsic proximal

tubular epithelial cells (iPTECs) and T cells (191). DC3s display

high expression of costimulatory molecules such as CD86 and CD40,

as well as chemokines including CXCL16 and CCL17, endowing

them with potent antigen-presenting capacity. Consequently, they

promote T cell polarization toward Th1 and Th17 phenotypes,

thereby amplifying local inflammatory responses and ultimately

contributing to progressive renal parenchymal injury (158). Beyond

classical chemokines, recent evidence indicates that RTECs can

indirectly modulate immune cell chemotaxis and activation in

response to cytokine stimuli. For example, interleukin-22 (IL-22)

has been shown to facilitate macrophage infiltration into the kidney

in LN, indirectly exacerbating tubular epithelial cell injury and disease

progression (159). In vitro studies demonstrate that recombinant IL-

22 stimulation of primary murine renal tubular epithelial cells

upregulates the expression of CCL2, CXCL10, and phosphorylated

STAT3. Conditioned media from these cells exhibit potent

macrophage chemotactic activity, underscoring the role of IL-22 in

mediating RTEC-driven recruitment and activation of innate

immune cells (159). Furthermore, tubular epithelial cells secrete

additional chemokines such as IL-34 (160), CCL2, and CX3CL1

(161–163), which act synergistically to regulate macrophage

recruitment and activation within the renal microenvironment.

Recruited innate immune cells and RTECs engage in

bidirectional interactions through both direct contact and soluble

mediators, forming an activation loop that perpetuates inflammation

and initiates fibrotic processes. Specifically, RTECs interact with

monocytes via surface costimulatory molecules such as CD40–

CD40L, triggering intrinsic inflammatory signaling pathways

within RTECs (164). This crosstalk not only amplifies the local

inflammatory milieu but also contributes to tubulointerstitial

fibrosis, underpinning the chronic progression of LN. As

inflammation persists, RTECs continuously secrete chemokines

including MCP-1 and OPN, which enhance the recruitment and

accumulation of monocytes, macrophages, and other immune cells

at sites of injury. Recruited macrophages, in turn, release IL-6,

inducing TECs to upregulate fibronectin expression, thereby

accelerating tubular epithelial cell detachment and death (165).

This establishes a self-perpetuating positive feedback loop that

exacerbates inflammation. Under these inflammatory conditions,

TECs also become a primary source of colony-stimulating factor-1

(CSF-1) (166), which promotes macrophage survival, differentiation,

and functional polarization, further driving both immune-

dependent and independent kidney damage in LN (167). Beyond

soluble factors, recent studies highlight that RTECs release

functional exosomes to mediate intercellular communication with
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innate immune cells (168, 169). Zhang et al. (170) demonstrated that

activated macrophages secrete exosomes enriched with miR-155,

which upon uptake by tubular epithelial cells, target suppressor of

cytokine signaling 1 (SOCS-1), a negative regulator of NF-kB
signaling, thereby amplifying inflammation and aggravating TEC

injury (170). Dual-luciferase reporter assays confirmed SOCS-1 as a

direct miR-155 target in these cells (170). Furthermore, in vivo

administration of miR-155-rich exosomes into renal tissue

significantly worsened tubular injury.

Together, these findings underscore that in LN, RTECs orchestrate

immune cell recruitment through multiple chemokines and engage in

complex, bidirectional signaling with innate immune cells via

costimulatory molecules, exosomes, and pro-inflammatory

mediators, collectively amplifying inflammation and promoting

tissue damage.
5.2 Crosstalk between renal tubular
epithelial cells and adaptive immune cells

RTECs, particularly PTECs, are recognized as non-professional

antigen-presenting cells (APCs) (171), capable of presenting antigens

to CD4+T cells via MHC-II–restricted pathways (172). Under

physiological conditions, MHC-II expression on PTECs is minimal

(172–174); however, it is markedly upregulated in inflamed renal

tissues (173, 175–177), along with increased expression of

costimulatory molecules such as CD80 and CD86 (178–180). These

changes collectively facilitate CD4+T cell activation and amplify local

immune responses. Additionally, RTECs possess the machinery for

antigen cross-presentation, enabling them to process internalized

soluble antigens for presentation via MHC-I, thereby activating

CD8+T cells and inducing their secretion of IFN-g, IL-17A, and
granzyme B (GzmB).These cytotoxic mediators contribute to RTEC

apoptosis and drive tubulointerstitial inflammation (171). In LN

murine models, direct contact between CD8+T cells and RTECs

has been associated with increased epithelial cell apoptosis and

elevated caspase-3 activation, underscoring the pathogenic role of

CD8+T cell–mediated cytotoxicity in tubular injury (171).

Importantly, RTECs also modulate T cell responses through

expression of the immune checkpoint ligand PD-L1. By engaging

PD-1 on T cells, PD-L1 transmits inhibitory signals that establish an

immunosuppressive microenvironment, partially restraining disease

progression in LN (181). However, this protective mechanismmay be

compromised under inflammatory stimuli such as IFN-g, which
diminishes PD-L1–mediated suppression and leads to heightened T

cell activation and exacerbation of immune-mediated injury. This

dual function underscores the dynamic role of RTECs in balancing

proinflammatory activation and immune suppression (Figure 4B).

B cells play a central pathogenic role in LN. Studies have shown

that B cell-deficient lupus-prone mice are protected against

nephritis, whereas passive transfer of autoantibodies derived from

lupus models into wild-type mice can induce lupus-like kidney

disease (182, 183). These findings underscore the critical role of B
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cells and the autoantibodies they produce in the pathogenesis of LN.

B cell activating factor (BAFF) is considered a key cytokine essential

for B cell survival and maturation (184). Recognized as a growth

and differentiation factor for B cells, BAFF supports the survival of

autoreactive B cells and enables them to escape peripheral tolerance

(144, 185–187). BAFF is also regarded as a crucial cytokine in LN

(144). In LN, BAFF promotes the further differentiation of B cells

located in the renal interstitial space of patients (137). Notably,

RTECs have been identified as an important source of BAFF (184).

In lupus-prone MRL-Faslpr mice and renal biopsy samples from

LN patients, tubular expression of BAFF correlates with disease

activity (188). Experimental evidence also shows that the

interaction between BAFF and its receptor (BAFF-R) induces the

production of colony-stimulating factor 1 (CSF-1), which in turn

stimulates further expression of BAFF. Additionally, in CSF-1–

pretreated RTECs, BAFF stimulation has been shown to enhance

cytotoxicity (188). These complex BAFF-dependent signaling

pathways in RTECs may therefore contribute to the tubular cell

death and atrophy observed in LN (189). Beyond modulating B cell

function through BAFF signaling, B cells themselves can regulate

the inflammatory response of tubular epithelial cells via co-

stimulatory molecule expression. For example, B cell-expressed

CD40L can engage CD40 on RTECs and myeloid cells, enhancing

the pro-inflammatory activation of these innate cells and further

exacerbating inflammation in the interstitial and glomerular

microenvironments (164). The CD40/CD40L axis plays a specific

role in B cell biology (190), including promoting B cell activation,

proliferation, survival, class switching, germinal center formation,

and memory B cell development (191). Accordingly, blocking this

pathway has been shown to suppress disease progression in rodent

models of systemic lupus nephritis with severe impairment of B cell

tolerance (192, 193).

Collectively, renal structural cells such as podocytes and tubular

epithelial cells function not only as passive targets but also as

immunologically active participants within the inflammatory

milieu of LN (194).

(A)TEC in the innate immunity. OPN on RTECs correlates

with monocyte infiltration and tubular injury. In LN, monocyte-

RTEC interactions via CD40-CD40L activate inflammatory

pathways; RTEC PD-L1 suppresses monocyte overactivation via

PD-1. CD11c+macrophage infiltration correlates with RTEC

damage severity; in vitro, rIL-22-stimulated RTECs secrete CCL2/

CXCL10/pSTAT3 to recruit macrophages. RTEC-derived CXCL10

recruits CXCR3+CD11c+macrophages, whose IL-6 induces

fibronectin-mediated RTEC shedding/apoptosis. Macrophage-

driven IL-6 further promotes RTEC apoptosis, amplifying tubular

injury. RTECs recruit pDCs via TNF-a-induced chemerin-

ChemR23 axis in LN. Tubulointerstitial DC3 subsets express high

CXCL16/CCL17 and enhance immune priming.(B)TEC in the

adaptive immunity. IFN-g/TNF-a stimulation upregulates

CXCL10 and CXCR3 expression in tubular epithelial cells at both

mRNA and protein levels. In LN kidneys, injured iPTECs

overexpress proinflammatory mediators, promoting blood-derived

DC3 recruitment to renal tissues. Renal DC3s reprogram into

proinflammatory phenotypes within the tubular injury
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microenvironment, driving Th1/Th17 adaptive immunity.

Amplified crosstalk between Th1/Th17 and DC3s forms a

proinflammatory feedback loop, synergistically aggravating renal

parenchymal damage. Injured PTECs upregulate MHC-II and co-

stimulatory molecules to activate CD4+T cells via antigen

presentation. RTECs activate CD8+T cells through cross-

presentation, inducing GzmB, IL-17A, and IFN-g release. Direct

CD8+T cell-RTEC contact enhances caspase-3-mediated apoptosis

and tubulointerstitial inflammation.PD-L1 overexpression on

RTECs suppresses T cell activation via PD-1, establishing an

immunosuppressive microenvironment that counterbalances

inflammatory injury.
6 New therapeutic targets and
intervention strategies

6.1 Targeting renal epithelial cells

6.1.1 Podocytes
Podocyte injury is a central pathological event in LN that leads

to glomerular filtration barrier disruption and proteinuria (195). In

recent years, multiple studies have identified several key signaling

pathways and inflammatory mechanisms that regulate podocyte

function, suggesting these as important targets for therapeutic

intervention in LN.

A20–UCH-L1–NF-kB axis. A20, also known as tumor necrosis

factor alpha-induced protein 3 (TNFAIP3), is a cytoplasmic protein

that functions by inhibiting inflammation and immune

responses.UCH-L1, a member of the deubiquitinating enzyme

family, can catalyze the hydrolysis of Lys48-linked ubiquitin

chains (196), and its expression is significantly upregulated in LN

podocytes (197), resulting in podocyte injury. A20 maintains

podocyte structural integrity and alleviates LN progression by

suppressing NF-kB signaling, downregulating UCH-L1

expression, and reducing ubiquitin accumulation (198).

Notch1–NLRP3 pathway. Notch1 signaling is abnormally

activated in LN podocytes and can induce NLRP3 inflammasome

activation, triggering the release of proinflammatory cytokines and

cellular injury. The g-secretase inhibitor DAPT can effectively

suppress NLRP3 activation by blocking the Notch1 pathway

(195), thereby improving tissue pathology, suggesting this axis as

a potential therapeutic target. Considering the complexity of

intracellular signaling networks, targeting upstream regulators of

inflammasome activation may represent a more effective strategy to

prevent podocyte injury in LN (195). Nevertheless, the study has

notable limitations, particularly the absence of validation using

podocyte-specific conditional knockout models (195). Thus, the

proposed mechanism warrants further investigation in rigorous

animal models and clinical settings.

miR-155–SOCS1–JAK1/STAT1 pathway. In both LN patients

and animal models, miR-155 is significantly upregulated and

positively correlates with disease activity.SOCS1 is an important

negative feedback regulator in the JAK/STAT signaling pathway,

modulating inflammatory responses by inhibiting JAK1 activity and
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regulating STAT1 phosphorylation (199).Studies have shown that

miR-155 promotes inflammatory signaling by downregulating

SOCS1, thereby relieving its inhibition of the JAK1/STAT1

pathway, which enhances M1 macrophage polarization and

indirectly exacerbates podocyte injury. In vivo experiments

confirm that silencing miR-155 significantly reduces the

proportion of M1 macrophages and alleviates podocyte structural

damage and renal inflammation. In vitro studies further

demonstrate that miR-155 overexpression not only promotes

M1 polarization but also directly induces podocyte apoptosis

(200). These findings suggest that miR-155 plays a critical role in

podocyte injury and immune dysregulation by modulating the

SOCS1/JAK1–STAT1 pathway, offering a novel molecular target

for LN therapy (200). Although these findings provide a scientific

rationale for targeting miR-155, large-scale clinical investigations

remain scarce. Future multicenter clinical trials are warranted to

validate the translational potential of this pathway in LN

management (200).

NLRP3 Inflammasome. The NLRP3 (NOD-, LRR-, and pyrin

domain–containing protein 3) inflammasome, a member of the

NOD-like receptor (NLR) family, plays a pivotal role in sterile

inflammation (201, 202). In LN, aberrant activation of NLRP3 has

been identified in both podocytes and macrophages, correlating

strongly with disease activity (203). Excessive activation of the

NLRP3 inflammasome promotes the release of proinflammatory

cytokines such as IL-1b and IL-18, thereby amplifying local

glomerular inflammation, accelerating renal fibrosis, and

contributing to podocyte injury (204).

In podocytes, activation of the NLRP3 inflammasome suppresses

the expression of the key slit diaphragm protein nephrin, thereby

disrupting the filtration barrier and inducing proteinuria.

Experimental studies demonstrated that in LN patients and lupus-

prone mouse models, the selective NLRP3 inhibitor MCC950

effectively ameliorated proteinuria, renal histopathological injury,

and podocyte foot process effacement (95), underscoring its

therapeutic potential in podocyte protection. Moreover, fibroblast

growth factor 21 (FGF21) restored podocyte function by upregulating

Irgm1, inhibiting NLRP3 inflammasome activity, and reducing the

expression of pro-inflammatory mediators such as IL-1b and

Caspase-1 (205). Emerging evidence also suggests that metabolic

regulation may exert renoprotective effects throughmodulation of the

NLRP3 pathway. In renal tissues from LN patients and nephritic

MRL/lpr mice, the sodium-glucose cotransporter 2 (SGLT2)

inhibitor empagliflozin attenuated proteinuria by enhancing

autophagy to preserve cellular homeostasis and suppressing NLRP3

inflammasome activation, highlighting the need for further

investigation into the renoprotective mechanisms of SGLT2

inhibitors in LN (206). Recent clinical trials(NCT05748925)further

demonstrated that the addition of empagliflozin to standard therapy

significantly reduced proteinuria in LN patients, suggesting its

clinical potential (207). Thus, large-scale clinical trials are

warranted to validate the renoprotective role of SGLT2 inhibitors

in LN. Collectively, both direct and indirect NLRP3 inhibitors

hold promise as future therapeutic strategies for LN; however,

current evidence remains scarce and is largely limited to animal
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models. Beyond pharmacological interventions, gene-editing

technologies also offer novel therapeutic avenues (208). A recent

study by Xu et al. employed CRISPR/Cas9, a third-generation gene-

editing tool, to directly disrupt NLRP3 in macrophages, thereby

ameliorating various inflammatory conditions. Deletion of NLRP3

inhibited inflammasome activation in vitro and in vivo,

demonstrating therapeutic promise for NLRP3-dependent

inflammatory diseases (209).

6.1.2 Renal tubular epithelial cells
In LN, RTECs serve not only as targets of immune-mediated

injury but also as active contributors to the amplification of

inflammation and the progression of fibrosis. Although glomerular

lesions have been widely investigated, tubulointerstitial damage—

more strongly correlated with adverse clinical outcomes—

has historically received insufficient attention (210). Through a

variety of signaling pathways, RTECs orchestrate local

inflammatory cascades and have emerged as promising targets for

therapeutic intervention.

Interferon Signaling and the Immunoproteasome. RTECs are

highly responsive to IFN-a signaling, which promotes antigen

presentation, immune activation, and inflammatory cytokine

release (211). Activation of this pathway induces the expression

of immunoproteasome subunits , thereby intensi fying

tubulointerstitial inflammation. Notably, inhibition of the type I

interferon axis or its downstream immunoproteasome components

has been shown to significantly mitigate tubular injury in

experimental LN models (211).

mTOR Signaling Pathway. The mammalian target of rapamycin

(mTOR) pathway is a central regulator of cell growth, metabolism,

and immune equilibrium, comprising two functionally distinct

complexes: mTOR complex 1 (mTORC1) and mTOR complex 2

(mTORC2) (212). Among them, mTORC1 drives tubulointerstitial

remodeling by modulating cellular proliferation and protein

biosynthesis and is increasingly recognized as a critical molecular

mechanism underlying both SLE and its renal manifestation, LN

(213). In LN patients, RTECs display persistent activation of both

mTORC1 and mTORC2, with aberrant mTORC1 activation strongly

linked to tubular injury and inflammatory amplification.

Pharmacological inhibition of mTORC1 with rapamycin effectively

suppresses this signaling pathway, reduces immune complex

accumulation, and ameliorates tubular damage, offering a

promising alternative for LN patients refractory to standard

therapies (100). Notably, rapamycin, a selective mTORC1 inhibitor,

effectively suppresses pathway activity, reduces renal immune

complex deposition, alleviates tubular injury, and ameliorates

disease manifestations while prolonging survival in lupus-prone

mice (209, 214, 215). Furthermore, clinical studies have shown that

long-term rapamycin treatment demonstrates acceptable tolerability

and therapeutic efficacy in some patients with proliferative LN (100,

216), thereby highlighting mTORC1 as a promising target for the

development of novel therapeutic strategies.

Vitamin D Receptor (VDR)–NLRP3 Inflammasome Axis. The

vitamin D receptor (VDR) signaling pathway plays a multifaceted

immunoregulatory role in controlling inflammation, including
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suppression of NF-kB activation, enhancement of anti-

inflammatory cytokine production, and regulation of T cell

differentiation (217, 218). In LN, VDR expression is markedly

reduced in renal tissue and inversely correlates with disease

activity and severity, highlighting its potential protective role

(219). The VDR agonist paricalcitol mitigates tubulointerstitial

in jury through inh ib i t ion of NF-kB–dr iven NLRP3

inflammasome activation and attenuation of renal tubular

epithelial cell (RTEC) apoptosis (220). These findings not only

underscore the anti-inflammatory effects of VDR in LN but also

highlight its potential as a therapeutic target. Mechanistically,

nuclear-localized VDR can directly interact with NLRP3, thereby

interfering with inflammasome assembly. Notably, NLRP3

activation is a critical mediator of RTEC pyroptosis, and its

inhibition contributes to the preservation of tubular epithelial

homeostasis. Similarly, the natural compound piperine has been

reported to significantly attenuate RTEC pyroptosis and renal tissue

injury through blockade of NLRP3 activation, offering a promising

therapeutic strategy for LN management (221).

TGF-b–Senescence and Fibrosis Pathway. Transforming

growth factor-b (TGF-b) promotes tubulointerstitial fibrosis in

LN by inducing RTEC senescence and activating fibroblasts (222).

One of its mechanisms is upregulation of the cyclin-dependent

kinase inhibitor p15INK4B, which induces G1 phase cell cycle arrest,

thereby inhibiting cell proliferation and driving RTECs into a

senescent state. In addition, TGF-b can induce senescence-related

phenotypes in various cell types, thereby contributing to persistent

inflammation and tissue remodeling. TGF-b induces or accelerates

cellular senescence and associated phenotypes by upregulating

p15INK4B and causing G1 cell cycle arrest (186, 223).

Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a natural flavonoid

senolytic agent found in various fruits and vegetables (224), and

has been shown to effectively clear senescent cells (225, 226). It

alleviates chronic inflammation and fibrosis by inducing apoptosis

in senescent RTECs (224, 227, 228). Further studies have

demonstrated that fisetin selectively eliminates senescent RTECs

and attenuates TGF-b–driven interstitial fibrosis via inhibition of

anti-apoptotic signaling pathways such as PI3K/AKT/mTOR, in a

Smad-independent manner. These findings suggest that TGF-b–
induced RTEC senescence plays a key role in LN-associated fibrosis,

and senolytic therapies represented by fisetin may serve as a

potential intervention to delay structural kidney damage (222).

Notably, the PI3K/AKT/mTOR signaling pathway functions not

only as a downstream effector offisetin but also as a pivotal driver of

LN pathogenesis in murine models. Aberrant activation of this

pathway amplifies inflammatory and fibrotic responses. Thus,

assessing PI3K/AKT/mTOR activation may yield novel insights

into disease mechanisms and facilitate the development of more

personalized and less toxic therapeutic strategies for LN (209).
6.2 Targeting immune cells

Renal epithelial cells are primary targets of immune-mediated

injury in LN. Additionally, interactions between podocytes and
Frontiers in Immunology 13
infiltrating immune cells aggravate tissue damage, highlighting

immune cells themselves as critical therapeutic targets.

6.2.1 T cells
T cells play a pivotal immunoregulatory role in LN pathogenesis

and represent a major focus in the development of targeted therapies.

While conventional treatment approaches—including nonsteroidal

anti-inflammatory drugs, glucocorticoids, and immunosuppressants

(229)—remain the standard of care, their considerable toxicity and

high relapse rates have driven efforts to develop more selective and

less toxic immunomodulatory strategies (230).

Among numerous potential therapeutic strategies, the

immunomodulatory properties of natural products have garnered

significant attention. Cordyceps sinensis polysaccharide (WCP), a

bioactive complex derived from the parasitic relationship between

Cordyceps sinensis fungus and Lepidoptera larvae, has been shown

to exert immunoregulatory effects. Previous studies indicate that

Cordyceps sinensis possesses therapeutic efficacy in LN by

modulating immune responses (231). Mechanistically, WCP

inhibits key signaling pathways including IL-12–STAT4, IFN-g–
STAT1, and PI3K–AKT, thereby blocking Th1 cell differentiation

and attenuating inflammation. Concurrently, WCP suppresses the

TLR4–MyD88–MAPK signaling cascade, leading to decreased

chemokine expression and reduced T cell recruitment into the

kidney, ultimately conferring renal protection (232).

In addition to Th1 cells, Th17 cells are critically involved in the

pathogenesis of LN. Th17-derived IL-17 activates multiple pro-

inflammatory and pro-fibrotic pathways, contributing to renal

dysfunction and disease progression. Therapeutic approaches

targeting the Th17 axis are rapidly expanding. For instance, CaMK4

inhibitors (e.g., KN-93) can restore the Treg/Th17 balance, reduce IL-

17 secretion, and improve renal function, as evidenced by reduced

proteinuria (36), thereby emerging as a potential therapeutic strategy in

LN. Moreover, monoclonal antibodies against IL-17A (e.g.,

secukinumab) or RORgt inhibitors (e.g., a-mangostin) suppress IL-

17 signaling and alleviate T cell–mediated renal injury. These

therapeutic approaches are currently under clinical investigation to

assess their efficacy, safety, and tolerability in patients with active lupus

nephritis (92). The dysregulation of the Treg/Th17 balance is a key

mechanism underlying LN development. Tregs are essential for

maintaining immune tolerance and suppressing autoimmunity,

while Th17 cells contribute to inflammation and fibrosis through IL-

17 secretion (233, 234). Multiple studies have reported a common

Treg/Th17 imbalance in LN patients. Low-dose interleukin-2 (IL-2)

therapy selectively expands Treg populations, significantly

ameliorating renal pathology and inducing disease remission, with

encouraging results from several clinical trials (233, 234). Additionally,

novel chimeric antigen receptor regulatory T cell (CAR-Treg) therapies

are under investigation to enhance Treg function and restore immune

homeostasis, offering promising precision immunotherapeutic options

for LN (235). Meanwhile, mesenchymal stem cells (MSCs), known for

their dual roles in immunomodulation and tissue repair, represent

another promising strategy for T cell-targeted treatment. Studies

demonstrate that transplantation of umbilical cord-derived MSCs

can increase Treg numbers, suppress Th17 responses (236–238),
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and modulate the balance of TGF-b and TNF-a, thereby improving

the inflammatory microenvironment within the kidney.

Beyond the development of novel therapies, optimizing existing

drugs offers additional strategies for T cell-targeted treatment.

Voclosporin (VOC), a next-generation calcineurin inhibitor,

reduces proteinuria by inhibiting T cell activation and, in part,

through non-immune mechanisms. In phase III clinical trials

(NCT02141672), the combination of VOC with mycophenolate

mofetil (MMF) and low-dose glucocorticoids (GC) achieved

superior renal response rates and facilitated glucocorticoid dose

reduction, leading to its approval by the FDA as the first oral

therapy for lupus nephritis (14, 239, 240). Interleukin-6 (IL-6), a

critical mediator of T cell activation and pro-inflammatory

responses, also plays a pivotal role in LN pathogenesis. Elevated

IL-6 levels in systemic lupus erythematosus patients have been

associated with increased disease activity (241). Tocilizumab, a

humanized monoclonal antibody targeting the IL-6 receptor,

significantly reduces CD4+T cell activation (242) and modulates

multiple immune pathways involved in LN pathology. This agent is

emerging as a valuable adjunct to T cell-directed therapies.

6.2.2 B cells
B cells are central contributors to the pathogenesis of LN and

constitute a key therapeutic target. Their survival and maturation

rely on signaling mediated by surface molecules such as BAFF,

CD19, and CD20 (243), making these molecules attractive targets

for monoclonal antibody–based therapies.

Rituximab is a classic Type I anti-CD20 monoclonal antibody

(RTX) that reduces the generation of autoantibodies by depleting

CD20+B cells, thereby inhibiting immune complex-mediated renal

injury (39, 244). In vitro studies have demonstrated that RTX exerts

its effects through four distinct mechanisms: in the presence of FcgR-
bearing cells, it induces apoptosis, complement-dependent

cytotoxicity (CDC), antibody-dependent cellular cytotoxicity

(ADCC), and antibody-dependent cellular phagocytosis (ADCP)

(245–247). However, these findings have not convinced all

researchers, prompting the re-assessment of RTX therapy

(NCT01773616) in the more controlled, randomized RITUXILUP

study, which investigated rituximab and mycophenolate mofetil

without oral steroids for lupus nephritis treatment. Furthermore,

observational studies and real-world data have shown promising

results in refractory or relapsing LN patients, with an overall response

rate of 50%-80%. Based on this evidence, the KDIGO 2024 guidelines

have recommended rituximab as an option for patients with

insufficient response to initial treatment, rather than as a first-line

therapy (240). Obinutuzumab, a second-generation CD20 antibody,

has a modified Fc region with enhanced glycosylation, increasing its

affinity for FcgRIII and significantly improving ADCC and ADCP

effects (248, 249). In refractory LN, obinutuzumab has demonstrated

superior B-cell depletion efficacy and higher clinical remission rates

(250). Recently, in a phase II, double-blind, randomized controlled

trial (NCT02550652), obinutuzumab, in combination with

mycophenolate mofetil and corticosteroids, showed superior

outcomes compared to placebo (39). Moreover, obinutuzumab has

shown favorable safety, with guidelines suggesting that it may
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overcome some limitations of rituximab by providing more

effective and durable B-cell depletion. However, the long-term

efficacy and safety of obinutuzumab require further validation

through phase III clinical trials to determine its precise role in the

therapeutic landscape of lupus nephritis (240).

BAFF, a member of the TNF superfamily secreted by myeloid

cells, facilitates the transition of immature to mature B cells and

promotes plasma cell survival and sustained autoantibody

production (251). Belimumab, a humanized IgG1l monoclonal

antibody, selectively neutralizes soluble BAFF and blocks receptor

engagement, thereby reducing CD20+B cells and plasma cells,

leading to diminished autoantibody titers (39). In the phase III

BLISS-LN trial (NCT01639339), the addition of belimumab to

standard therapy significantly increased the proportion of patients

achieving primary renal efficacy response at two years compared

with placebo plus standard therapy. Multiple clinical trials have

demonstrated that belimumab confers significant clinical benefits in

LN, including higher remission rates, delayed progression of renal

dysfunction, and reduced relapse rates, while maintaining a

favorable safety profile. On this basis, the KDIGO 2024 guidelines

recommend belimumab as a first-line therapeutic option (240). Its

efficacy is especially pronounced in patients receiving concomitant

MMF therapy (240).

Additionally, phosphoinositide 3-kinase alpha (PI3Ka), a lipid
kinase expressed in multiple tissues, plays a crucial role in B cell

activation, metabolism, and migration (252). Pharmacological

inhibition of PI3Ka has been shown to suppress proinflammatory

cytokine secretion, reduce B cell–mediated immune responses,

attenuate autoantibody production, and mitigate glomerular

complement deposition (253). These findings highlight PI3Ka as

a promising therapeutic target in LN.

6.2.3 Therapeutic targeting of costimulatory
pathways

Effective T cell activation requires not only antigen recognition

via the MHC–antigen complex (signal one) but also a second,

costimulatory signal. Costimulatory molecules CD80 and CD86 on

APCs or B cells engage CD28 on naïve T cells, promoting their

activation and clonal expansion. Cytotoxic T lymphocyte–

associated antigen 4 (CTLA4), expressed on activated T cells,

competes with CD28 for binding to CD80/CD86, thereby

dampening the T cell response. Abatacept, a CTLA4–Ig fusion

protein, acts as a selective costimulatory modulator by binding

CD80/CD86 and inhibiting CD28-mediated T cell activation (14).

Another critical costimulatory pathway involves CD40 and its

ligand CD40L. CD40L is predominantly expressed on activated T

cells, while CD40 is present on B cells, dendritic cells, and intrinsic

renal cells such as proximal tubular epithelial cells (254, 255).

Activation of this axis facilitates autoantibody production,

promotes their deposition in renal tissue, and amplifies local

inflammation through enhanced B cell expansion and activation

of myeloid and epithelial cells. These effects collectively exacerbate

glomerular and tubulointerstitial injury in LN (164). Preclinical

studies have shown marked upregulation of CD40 expression in the

kidneys of LN models, and blockade of the CD40–CD40L
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interaction significantly attenuates renal inflammation and

immunopathology (164). Collectively, these findings underscore

the therapeutic potential of costimulatory blockade in LN.

Targeting early T cell–costimulatory interactions offers a

promising strategy to suppress aberrant immune activation and

prevent immune-mediated renal damage.
7 Future perspectives

Although emerging therapies demonstrate notable short-term

benefits and steroid-sparing effects, their long-term safety remains

to be carefully assessed. For instance, voclosporin (VOC) may

aggravate hypertension and reduce glomerular filtration rate (GFR),

whereas belimumab has been associated with neuropsychiatric

adverse events such as insomnia and anxiety (256–259). Similarly,

the risk of chronic nephrotoxicity from calcineurin inhibitors (CNIs)

and immunosuppression-related infections induced by biologics

highlights the necessity of continuous monitoring of long-term

safety profiles (260–263). These challenges underscore the urgent

need to move toward precision and individualized therapeutic

strategies. By integrating molecular subtyping and biomarkers (e.g.,

anti-dsDNA antibodies and renal transcriptomic signatures) with

artificial intelligence–based algorithms, it may become possible to

more accurately stratify patients and optimize therapeutic decision-

making (264). In parallel, emerging technologies are opening new

avenues for mechanistic exploration. Single-cell RNA sequencing

enables the mapping of interaction networks between immune cells

and renal epithelial cells, while urinary proteomics provides

promising opportunities for noninvasive disease monitoring and

patient stratification (42). Building upon these advances, multitarget

combination strategies may represent a pivotal approach to balancing

efficacy and safety. Combinations such as belimumab with VOC, or

with complement inhibitors, hold potential to broaden the therapeutic

landscape (265). Collectively, these developments not only address the

limitations of single-target therapies but also pave the way for

transitioning lupus nephritis management from conventional

immunosuppression toward precision immunomodulation.
8 Conclusion

LN represents a severe manifestation of systemic lupus

erythematosus, wherein intricate crosstalk between renal epithelial

cells and immune cells plays a pivotal role in disease pathogenesis.

Podocytes, as integral components of the glomerular filtration barrier,

are susceptible to injury by autoantibodies, immune complexes, and

inflammatorymediators. Beyond serving as passive targets, podocytes

actively participate in immune regulation by expressing molecules

such as MHC and costimulatory proteins, thereby contributing to

antigen presentation and activation of T and B lymphocytes, further

amplifying local immune responses and tissue damage. RTECs,

similarly, are not merely victims of immune attack. They actively

secrete cytokines and chemokines that recruit and modulate immune

cells and undergo EMT, promoting tubulointerstitial fibrosis. On the
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immune side, dysregulation of T cell subsets—particularly Th17 cells

—drives podocyte injury via proinflammatory cytokines, while

antigen presentation interactions between T cells and RTECs

exacerbate inflammation. B cells contribute through the production

of pathogenic autoantibodies and engage in direct crosstalk with

RTECs to potentiate immune-mediated injury. Innate immune cells,

including macrophages, dendritic cells, and neutrophils, further

aggravate renal damage through cytokine release, antigen

presentation, and oxidative stress. These cell populations form a

complex and dynamic communication network, mediated by

cytokines, chemokines, and cell-surface interactions. Elucidating

these intercellular mechanisms is essential for identifying novel

therapeutic targets and developing more precise and effective

treatment strategies aimed at improving long-term outcomes in

patients with LN.
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282. Goropevsěk A, Holcar M, Avčin T. The role of STAT signaling pathways in the
pathogenesis of systemic lupus erythematosus. Clin Rev Allergy Immunol. (2017)
52:164–81. doi: 10.1007/s12016-016-8550-y

283. Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F, Rahim F. STATs: an old
story, yet mesmerizing. Cell J. (2015) 17:395–411. doi: 10.22074/cellj.2015.1

284. Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity
and inflammation in health and disease. Protein Cell. (2016) 7:159–74. doi: 10.1007/
s13238-016-0250-0

285. Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling
pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. (2022)
7:95. doi: 10.1038/s41392-022-00934-y

286. Cheng HT, Kopan R. The role of Notch signaling in specification of podocyte
and proximal tubules within the developing mouse kidney. Kidney Int. (2005) 68:1951–
2. doi: 10.1111/j.1523-1755.2005.00627.x

287. Vooijs M, Ong CT, Hadland B, Huppert S, Liu Z, Korving J, et al. Mapping the
consequence of Notch1 proteolysis in vivo with NIP-CRE. Development. (2007)
134:535–44. doi: 10.1242/dev.02733

288. Waters AM, Wu MY, Onay T, Scutaru J, Liu J, Lobe CG, et al. Ectopic notch
activation in developing podocytes causes glomerulosclerosis. J Am Soc Nephrol. (2008)
19:1139–57. doi: 10.1681/ASN.2007050596

289. Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z, et al. Sirt6 deficiency
exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat
Commun. (2017) 8:413. doi: 10.1038/s41467-017-00498-4

290. Guo A, Sun Y, Xu X, Xing Q. MicroRNA-30a targets notch1 to alleviate
podocyte injury in lupus nephritis. Immunol Invest. (2022) 51:1694–706. doi: 10.1080/
08820139.2022.2027440

291. Li LS, Liu ZH. Epidemiologic data of renal diseases from a single unit in China:
analysis based on 13,519 renal biopsies. Kidney Int. (2004) 66:920–3. doi: 10.1111/
j.1523-1755.2004.00837.x
frontiersin.org

https://doi.org/10.1016/j.kint.2023.09.002
https://doi.org/10.1177/0961203315588971
https://doi.org/10.1136/annrheumdis-2012-201310
https://doi.org/10.1136/annrheumdis-2012-201310
https://doi.org/10.1016/j.kint.2021.05.021
https://doi.org/10.1016/j.jaut.2016.12.011
https://doi.org/10.1002/art.10764
https://doi.org/10.1182/blood-2009-06-225979
https://doi.org/10.1182/blood-2014-07-588376
https://doi.org/10.1182/blood-2014-07-588376
https://doi.org/10.1111/bjh.15232
https://doi.org/10.1136/annrheumdis-2021-220920
https://doi.org/10.3390/ijms20102606
https://doi.org/10.2215/CJN.09430915
https://doi.org/10.1038/s41580-019-0129-z
https://doi.org/10.1038/s41580-019-0129-z
https://doi.org/10.1172/JCI176402
https://doi.org/10.1016/j.smim.2009.05.012
https://doi.org/10.1007/PL00000776
https://doi.org/10.1172/JCI147334
https://doi.org/10.3390/ijms25168981
https://doi.org/10.1016/S0140-6736(21)00578-X
https://doi.org/10.1002/art.42657
https://doi.org/10.1002/art.42657
https://doi.org/10.1111/j.1432-2277.2005.00080.x
https://doi.org/10.2215/CJN.04800908
https://doi.org/10.1053/j.ackd.2019.08.006
https://doi.org/10.1101/cshperspect.a035436
https://doi.org/10.1101/cshperspect.a035436
https://doi.org/10.1016/j.kint.2024.10.018
https://doi.org/10.1038/s41584-023-00925-5
https://doi.org/10.2215/CJN.05780616
https://doi.org/10.1177/0961203309358187
https://doi.org/10.1053/j.ajkd.2019.10.017
https://doi.org/10.1681/ASN.2016040415
https://doi.org/10.1093/ckj/sfad055
https://doi.org/10.2215/CJN.01280122
https://doi.org/10.2215/CJN.01280122
https://doi.org/10.1172/JCI117643
https://doi.org/10.1016/j.kint.2017.11.023
https://doi.org/10.1093/rheumatology/keaa381
https://doi.org/10.1111/j.1523-1755.2004.00443.x
https://doi.org/10.1097/00000478-200608000-00015
https://doi.org/10.1016/j.smim.2006.12.004
https://doi.org/10.3389/fimmu.2019.00975
https://doi.org/10.3389/fimmu.2019.00975
https://doi.org/10.1038/nri910
https://doi.org/10.1038/sigtrans.2017.23
https://doi.org/10.1186/s12967-016-0911-z
https://doi.org/10.1007/s12016-016-8550-y
https://doi.org/10.22074/cellj.2015.1
https://doi.org/10.1007/s13238-016-0250-0
https://doi.org/10.1007/s13238-016-0250-0
https://doi.org/10.1038/s41392-022-00934-y
https://doi.org/10.1111/j.1523-1755.2005.00627.x
https://doi.org/10.1242/dev.02733
https://doi.org/10.1681/ASN.2007050596
https://doi.org/10.1038/s41467-017-00498-4
https://doi.org/10.1080/08820139.2022.2027440
https://doi.org/10.1080/08820139.2022.2027440
https://doi.org/10.1111/j.1523-1755.2004.00837.x
https://doi.org/10.1111/j.1523-1755.2004.00837.x
https://doi.org/10.3389/fimmu.2025.1682075
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1682075
292. Quillard T, Charreau B. Impact of notch signaling on inflammatory responses in
cardiovascular disorders. Int J Mol Sci. (2013) 14:6863–88. doi: 10.3390/ijms14046863

293. Zhang Q, Shan Y, Shen L, Ni Q, Wang D, Wen X, et al. Renal remodeling by
CXCL10-CXCR3 axis-recruited mesenchymal stem cells and subsequent IL4I1 secretion
in lupus nephritis. Signal Transduct Target Ther. (2024) 9:325. doi: 10.1038/s41392-024-
02018-5

294. Gao J, Wu L, Wang S, Chen X. Role of chemokine (C-X-C motif) ligand 10
(CXCL10) in renal diseases. Mediators Inflammation. (2020) 2020:6194864.
doi: 10.1155/2020/6194864

295. Reddy PS, Legault HM, Sypek JP, Collins MJ, Goad E, Goldman SJ, et al.
Mapping similarities in mTOR pathway perturbations in mouse lupus nephritis models
and human lupus nephritis. Arthritis Res Ther. (2008) 10:R127. doi: 10.1186/ar2541

296. Henley T, Kovesdi D, Turner M. B-cell responses to B-cell activation factor of
the TNF family (BAFF) are impaired in the absence of PI3K delta. Eur J Immunol.
(2008) 38:3543–8. doi: 10.1002/eji.200838618

297. Shor B, Cavender D, Harris C. A kinase-dead knock-in mutation in mTOR
leads to early embryonic lethality and is dispensable for the immune system in
heterozygous mice. BMC Immunol. (2009) 10:28. doi: 10.1186/1471-2172-10-28

298. Fruman DA. Phosphoinositide 3-kinase and its targets in B-cell and T-cell
signaling. Curr Opin Immunol. (2004) 16:314–20. doi: 10.1016/j.coi.2004.03.014

299. Wu D, Ai L, Sun Y, Yang B, Chen S, Wang Q, et al. Role of NLRP3
inflammasome in lupus nephritis and therapeutic targeting by phytochemicals. Front
Pharmacol. (2021) 12:621300. doi: 10.3389/fphar.2021.621300

300. Zhao Y, Zhang AP, Bao BY, Fan H, Yang XY. Sirt1 protects lupus nephritis by
inhibiting the NLRP3 signaling pathway in human glomerular mesangial cells. Open
Life Sci. (2025) 20:20221038. doi: 10.1515/biol-2022-1038
Frontiers in Immunology 22
301. Ma ZZ, Sun HS, Lv JC, Guo L, Yang QR. Expression and clinical significance of
the NEK7-NLRP3 inflammasome signaling pathway in patients with systemic lupus
erythematosus. J Inflammation (Lond). (2018) 15:16. doi: 10.1186/s12950-018-0192-9

302. Ryge J, Winther O, Wienecke J, Sandelin A, Westerdahl AC, Hultborn H, et al.
Transcriptional regulation of gene expression clusters in motor neurons following
spinal cord injury. BMC Genomics. (2010) 11:365. doi: 10.1186/1471-2164-11-365

303. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. (2004) 18:2195–224.
doi: 10.1101/gad.1228704

304. Doerner AM, Zuraw BL. TGF-beta1 induced epithelial to mesenchymal
transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but
not abrogated by corticosteroids. Respir Res. (2009) 10:100. doi: 10.1186/1465-9921-10-
100

305. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta
signal transduction. J Cell Sci. (2001) 114:4359–69. doi: 10.1242/jcs.114.24.4359

306. Thompson CB. Distinct roles for the costimulatory ligands B7–1 and B7–2 in T
helper cell differentiation? Cell. (1995) 81:979–82. doi: 10.1016/S0092-8674(05)80001-7

307. King CL, Xianli J, June CH, Abe R, Lee KP. CD28-deficient mice generate an
impaired Th2 response to Schistosoma mansoni infection. Eur J Immunol. (1996)
26:2448–55. doi: 10.1002/eji.1830261027

308. Hart DN. Dendritic cells: unique leukocyte populations which control the
primary immune response. Blood. (1997) 90:3245–87. doi: 10.1182/blood.V90.9.3245

309. Zang X, Allison JP. The B7 family and cancer therapy: costimulation and
coinhibition. Clin Cancer Res. (2007) 13:5271–9. doi: 10.1158/1078-0432.CCR-07-1030

310. Howard LM, Kohm AP, Castaneda CL, Miller SD. Therapeutic blockade of
TCR signal transduction and co-stimulation in autoimmune disease. Curr Drug Targets
Inflammation Allergy. (2005) 4:205–16. doi: 10.2174/1568010053586228
frontiersin.org

https://doi.org/10.3390/ijms14046863
https://doi.org/10.1038/s41392-024-02018-5
https://doi.org/10.1038/s41392-024-02018-5
https://doi.org/10.1155/2020/6194864
https://doi.org/10.1186/ar2541
https://doi.org/10.1002/eji.200838618
https://doi.org/10.1186/1471-2172-10-28
https://doi.org/10.1016/j.coi.2004.03.014
https://doi.org/10.3389/fphar.2021.621300
https://doi.org/10.1515/biol-2022-1038
https://doi.org/10.1186/s12950-018-0192-9
https://doi.org/10.1186/1471-2164-11-365
https://doi.org/10.1101/gad.1228704
https://doi.org/10.1186/1465-9921-10-100
https://doi.org/10.1186/1465-9921-10-100
https://doi.org/10.1242/jcs.114.24.4359
https://doi.org/10.1016/S0092-8674(05)80001-7
https://doi.org/10.1002/eji.1830261027
https://doi.org/10.1182/blood.V90.9.3245
https://doi.org/10.1158/1078-0432.CCR-07-1030
https://doi.org/10.2174/1568010053586228
https://doi.org/10.3389/fimmu.2025.1682075
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Podocyte, tubular epithelial-immune cell interplay in the pathogenesis of lupus nephritis
	1 Introduction
	2 Basic structure and function of podocytes
	3 Crosstalk between podocytes and innate immune cells
	4 Crosstalk between podocytes and adaptive immune cells
	4.1 Podocytes and T lymphocytes
	4.2 Podocytes and B lymphocytes

	5 Renal tubular epithelial cells
	5.1 Crosstalk between renal tubular epithelial cells and innate immune cells
	5.2 Crosstalk between renal tubular epithelial cells and adaptive immune cells

	6 New therapeutic targets and intervention strategies
	6.1 Targeting renal epithelial cells
	6.1.1 Podocytes
	6.1.2 Renal tubular epithelial cells

	6.2 Targeting immune cells
	6.2.1 T cells
	6.2.2 B cells
	6.2.3 Therapeutic targeting of costimulatory pathways


	7 Future perspectives
	8 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


