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Background: The COVID-19 pandemic highlighted challenges in managing
patients with multiple sclerosis (PwMS), as disease-modifying therapies (DMTs)
can interfere with immune responses to infections and vaccines.

Objective: This study investigates the spike-specific T-cell response after the
third dose of mMRNA COVID-19 vaccines in PwMS undergoing DMTs, evaluating
different cytokines, beyond IFN-vy, and exploring their potential association with
SARS-CoV-2 breakthrough infections (BI).

Methods: We prospectively enrolled 31 PwMS and 27 healthcare workers (HCWs).
The spike-specific T-cell response was evaluated by measuring Thl cytokines (IFN-y,
IL-2, TNF-0) and IP-10 using an easy-to-use whole-blood assay.

Results: Most PwMS mounted a Wuhan spike-specific T-cell response by
releasing Thl cytokines (IFN-vy, IL-2, TNF-o) and IP-10, albeit with significantly
reduced Thl cytokine levels compared to HCWs. Fingolimod-treated patients
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showed the weakest response with significantly reduced IFN-y and IL-2 levels
compared to HCWs (both p<0.0001), as well as to ocrelizumab (p=0.0018 and
p=0.0002, respectively) and cladribine/IFN-B-treated patients (p=0.041 and
p<0.0001, respectively). Moreover, a cell-mediated response was observed
against the Delta spike variant, and all cytokines correlated with each other. Bl
occurred in 38.7% of PwWMS, with predominantly mild COVID-19 cases. Male sex
(IRR: 4.05, p=0.017) and primary progressive MS (IRR: 3.65, p=0.052) were
associated with a higher Bl incidence rate. Spike-specific T-cell response did
not associate with a higher protection against Bl.

Conclusions: This study provides an in-depth immunological characterization of
the spike-specific T-cell response in PwMS under DMTs, evaluating
immunological biomarkers whose relevance may extend beyond COVID-19 for
studying immune responses to other infections and vaccinations.

multiple sclerosis, Thl cytokines, mRNA vaccines, SARS-CoV-2 infection, T-cell
response, disease-modifying therapies

1 Introduction

Multiple sclerosis (MS) is an immune-mediated disease that
affects the central nervous system, causing demyelination (1). A
major breakthrough in the management of MS has been the advent
of disease-modifying therapies (DMTs), such as ocrelizumab,
fingolimod, cladribine, and interferon (IFN)-B. These therapies
target the immune system at different levels, thus potentially
compromising the immune response to both infections and
vaccinations (2-4).

Consequently, during COronaVIrus Disease 2019 (COVID-19)
pandemic, the management of patients with MS (PwMS) raised
significant concerns (5). Key issues included the potential increased
susceptibility to SARS-CoV-2 infection and the risk of severe
COVID-19 outcomes, which vary depending on the DMT used
(6, 7). In particular, a more severe outcome of COVID-19 has been
reported in PwMS treated with anti-CD20 therapies (8, 9).

The vaccination campaign launched in early 2021 was an
effective measure to mitigate the public health impact of COVID-
19 by reducing the severity of the disease and hospitalization rates
(10-12). Although vaccination against COVID-19 has proven
effective, breakthrough infections (BI) have continued to occur
due to the progressive weakening of vaccine-induced immunity
(13-16) and the emergence of SARS-CoV-2 variants, likely favored
by the viral replication in immunocompromised subjects, who are
more susceptible to developing persistent infections (17).

However, vaccination continues to be the primary defense against
COVID-19 in vulnerable individuals such as PwWMS. Several studies,
including ours, have demonstrated the immunogenicity of anti-
SARS-CoV-2 vaccines in both healthy individuals (18-21) and
PwMS (13, 22-27). The collective evidence indicates that most
PwMS develop humoral and/or IEN-y-specific T-cell responses to
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SARS-CoV-2 spike peptides. Nevertheless, the overall magnitude of
these immune responses is reduced in PWMS compared with healthy
individuals, and varies depending on the DMTs administered (13,
28-30). Specifically, fingolimod, a sphingosine-1 phosphate receptor
modulator, predominantly impairs IFN-y-specific T-cell response
(31-33), while the B-cell-depleting anti-CD20 monoclonal
antibody, ocrelizumab, is mostly associated with reduced anti-
receptor binding domain (RBD) and neutralizing antibody
production after COVID-19 vaccination (34-37). Moreover, the
presence of both antibody and cell-mediated immune responses
has been associated with a more rapid swab negativization in
PwMS; indeed fingolimod-treated patients, who have a
compromised IFN-y-specific T-cell response, tend to require more
time to achieve swab-negative status (38).

These results underscore the importance of studying the
immune response to SARS-CoV-2 in PwMS, with a focus on the
T-cell response (39, 40). In particular, T helper 1 (Th1) lymphocytes
are known to play a fundamental role in the immune response
against viral infections through the release of key cytokines such as
IFN-y, interleukin (IL)-2, and tumor necrosis factor (TNF)-a, also
known as Thl cytokines (41, 42). IP-10/CXCL-10 (Interferon
gamma-induced protein 10) is a chemokine induced by IFN-y,
which plays a pivotal role in the activation and chemoattraction of
immune cells, especially T cells, to the sites of inflammation (43).

To date, most studies have primarily assessed the spike-specific
T-cell response in terms of IFN-y production (13, 18, 32, 36, 44),
whereas some studies have evaluated the functional spike-specific
CD4" and CD8" T cell responses by flow cytometry in PWMS after
three doses of SARS-CoV-2 vaccines (22, 45-47). To the best of our
knowledge, only one study conducted by Al Rahbani (48) evaluated,
beyond IFN-v, the SARS-CoV-2-specific immune cytokine profile
in plasma supernatant of PwMS. However, this analysis did not
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compare the cytokine response with healthy controls nor correlate it
with the risk of BI (48).

Our study aims to investigate additional biomarkers for a more
complete evaluation of the cell-mediated immune response to COVID-
19 vaccination. This study specifically examined the spike-specific
immune response following a third dose of mRNA COVID-19
vaccines by assessing Thl cytokines (IFN-y, IL-2, and TNF-0) and
IP-10 production using an easy-to-use whole-blood assay in PwMS
undergoing various DMTs. Additionally, these responses were
compared to those observed in healthcare workers (HCWs),
alongside an evaluation of the risk of BI. Moreover, demographic
and clinical variables were evaluated for their potential impact on
cytokine production.

2 Materials and methods

2.1 Study cohort

This prospective, longitudinal, single-center study included a
cohort of patients diagnosed with MS (PwMS) according to the
2017 revisions of McDonald criteria (49), along with an age- and
sex-matched control group of healthcare workers (HCWs).

PwMS were recruited from patients regularly followed at the
outpatient clinic at the MS Centre of the Department of
Neurosciences of San Camillo Forlanini Hospital (Rome, Italy).
Eligibility criteria included receiving three doses of COVID-19
mRNA vaccines (BNT162b2 or mRNA-1273) and ongoing
treatment with ocrelizumab, fingolimod, cladribine, or IFN-f.

Healthy controls were recruited among HCWs without
immune-suppressive conditions who had received three doses of
COVID-19 mRNA vaccines at the National Institute for Infectious
Diseases (INMI) - Lazzaro Spallanzani (Rome, Italy).

Enrolled PWMS were followed until either a confirmed SARS-
CoV-2 infection or the administration of the fourth vaccine dose.
Confirmed SARS-CoV-2 BI were classified by severity as mild,
moderate, or severe (50). The enrolment began in March 2021 and
was completed with the conclusion of the follow-up in December 2022.

Exclusion criteria for both cohorts included HIV infection, age
below 18 years, and prior SARS-CoV-2 infection, defined by a
positive antigenic or molecular test and/or detectable anti-
nucleoprotein antibodies (anti-N IgG) at baseline.

The study was approved by the Ethical Committee of National
Institute of Infectious Diseases “L. Spallanzani” (INMI)-IRCCS
(approval numbers 319/2021, 443/2021, 297/2021) and performed in
accordance with the ethical standards laid down in the 1964
Declaration of Helsinki and its later amendments. All participants
signed a written informed consent before their inclusion in the study.

2.2 Sample collection
Blood samples from PwMS were collected in BD Vacutainer tubes

containing lithium heparin (Becton Dickinson, Florence, Italy, Cat.
367526) 4-6 weeks after the third dose of COVID-19 mRNA vaccines.
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Samples obtained at the MS Center of San Camillo Forlanini Hospital
were transported to INMI and processed within 2 hours of collection.
Blood samples from both PWMS and HCWs were handled according
to a standardized protocol routinely used (13, 23, 51).

2.3 Antibody testing

The enrolled cohort was screened for prior SARS-CoV-2 infection
by assessing anti-N-IgG as per the manufacturer’s instructions
(Architect® i2000sr, Abbott Diagnostics, Chicago, IL, USA). Anti-N
IgG were considered positive when index values, calculated as the ratio
of sample (S) to cut-off (CO), were >1.4. The anti-SARS-CoV-2
antibody response to COVID-19 vaccination was assessed in terms
of anti-receptor-binding domain (RBD) antibodies (anti-RBD Abs)
and neutralizing ones. Anti-RBD IgG levels, expressed as binding
antibody units (BAU)/mL, were measured according to the
manufacturer’s instructions (Architect® i2000sr, Abbott Diagnostics,
Chicago, IL, USA), and identify a positive response when >7.1 BAU/
mL. Neutralising antibodies were assessed by the micro-neutralization
assay previously reported (52), using the SARS-CoV-2/Human/ITA/
PAVIA10734/2020 (provided by Fausto Baldanti, Pavia, Italy). A
neutralizing titre 210, corresponding to the first dilution tested, was
considered positive.

2.4 Spike-specific cell response

A whole blood assay was used to assess the spike-specific T-cell
response. Specifically, 600 uL of blood was stimulated in a 48-well plate
with peptide pools covering the spike protein sequence derived from
SARS-CoV-2 Wuhan-Hu-1 (Wuhan spike) and the Delta variant
(Delta spike). The Wuhan spike pool consisted of equal amounts of
three peptide pools (PepTivator® Prot_S1, Prot_S, and Prot_S+,
Miltenyi Biotec, Bergisch Gladbach, Germany, Cat. 130-127-048,
Cat. 130-126-701, and Cat. 130-127-312) used at a final
concentration of 0.1 pg/mL. The Delta spike pool, consisting of
overlapping 15-mer peptides, was designed based on the GISAID ID:
EPI_ISL_2020950, and used at 0.1 pg/mL. To verify the
immunocompetence of the enrolled subjects, Staphylococcal
enterotoxin B (SEB) (Merck Life Science, Milan, Italy, Cat. S4881)
was used at 200 ng/mL. Following overnight incubation, the stimulated
plasma was collected and stored at -80 °C until further analysis. Thl
cytokines (IFN-y, TNF-o,, IL-2) and IP-10 were quantified using the
ELLA Simple Plex Human Assay (Bio-Techne, Minneapolis, MN,
USA, Cat. SPCKC-PS-003978 customized kit). The detection limits
for IP-10, IFN-y, IL-2 and TNF-0o. were 0.60 pg/mL, 0.17 pg/mL, 0.54
pg/mL, and 0.3 pg/mL, respectively. Data were reported after
subtracting the unstimulated value.

2.5 Statistical analysis

Statistical analyses were performed using GraphPad Prism
software (version 8, Dotmatics, Boston, MA 02110) and Stata
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(StataCorp. 2021. Stata Statistical Software: Release 17. TX:
StataCorp LLC, College Station, TX, USA). Categorical variables
were reported as absolute values and relative percentages, whereas
the continuous ones were expressed as medians and interquartile
ranges (IQR). Mann-Whitney U and Kruskal-Wallis tests, followed
by Dunn’s multiple comparisons test, were performed for pairwise
and multiple comparisons, respectively. Wilcoxon signed-rank test
was used to analyze paired data. For categorical variables, the
Fisher’s Exact test was used. Correlations among immunological
parameters were assessed by the non-parametric Spearman’s rank
test (p coefficient).

To account for potential demographic and clinical confounders
of cytokine production, a quantile regression analysis was
performed. In the analysis, dependent variables (i.e., IFN-y, IL-2,
TNF-o. and IP-10) and the following covariates were included: age,
sex, body mass index (BMI), type of DMT, disease and treatment
duration, lymphocyte count, Expanded Disability Status Scale
(EDSS) score, presence of comorbidities, MS disease phenotype,
and time from the third vaccine dose to sample collection.
Covariates with p < 0.05 were entered in the stepwise regression
model to identify the most influential factors.

To determine the incidence rate ratio (IRR) of SARS-CoV-2
infection based on demographic, clinical, and immunological
parameters, an univariable Poisson regression model was applied.
Two-tailed p values were considered statistically significant if <0.05.

3 Results
3.1 Characteristics of the enrolled cohort
From established cohorts of 167 HCWs and 134 PwMS

previously evaluated for immune response to COVID-19
vaccination in related studies (13, 23, 38, 53), a subgroup of 27

10.3389/fimmu.2025.1682049

HCWs and 31 PwMS, who completed blood sampling at all
established time points, was selected for an in-depth analysis of
the immunological response 4-6 weeks after the third vaccine
dose (Figure 1).

The characteristics of the study cohort are described in Table 1.
The two groups were matched for age and sex; both cohorts showed
a female predominance exceeding 75%, reflecting the approximately
3:1 female-to-male ratio in MS, and the higher proportion of
women among HCWs in Italy. Among the enrolled PWMS, 10
(32.2%) subjects were treated with ocrelizumab, 13 (41.9%) with
fingolimod, 3 (9.7%) with cladribine, and 5 (16.1%) with IFN-f.
Most PWMS (87.1%) had a relapsing-remitting MS, and the median
duration of the disease was 16 years. The median MS treatment
duration at the sample collection was 1.8 years (IQR: 1.0-2.3) for
ocrelizumab, 7.4 years (IQR: 5.1-8.5) for fingolimod, 1.6 years
(IQR: 0.8-1.9) for cladribine and 9.5 years (IQR: 7.6-18.7) for
IFN-B. Only a few subjects reported comorbidities such as
cardiovascular and metabolic diseases. Lymphocyte counts
significantly differed among DMTs (p=0.003), with fingolimod-
treated patients showing the lowest counts. Regarding the other
blood cell subsets, no significant differences were found among the
different DMTs as reported in Table 1. The median time from the
third vaccine dose to the blood sample collection in PwMS was 48
days (IQR 43-51), with no differences among treatment subgroups.

3.2 Profile of cytokines induced by SARS-
CoV-2 vaccination

The spike-specific cell response was assessed by measuring Th1
cytokines (IFN-y, IL-2, and TNF-0) as well as IP-10, an IFN-y-
induced protein, in response to the Wuhan spike peptides. All
HCWs responded to Wuhan spike stimulation by producing IFN-y,
IL-2 and TNF-o,, while only 25/27 (92.6%) HCWs released IP-10

6 months
| 2-4 weeks |
| —
First dose Second dose
of COVID-19 of COVID-19 T0 T1
vaccine vaccine

& &
.

Enrolled
cohorts

FIGURE 1

|HCWS N=167|—>| HCWs N=89 | _— | HCWs N=38 |—> | HCWs N=27 |

4-6 weeks
| ——
Third dose Until
of COVID-19 T2 December
vaccine 2022

| | | |
;;)g e

|PWMS N=134|—>| PWMS N=1 05| _— | PwWMS N=64 I e | PwMS N=31 |

In-depth
immunological
analysis

Timeline of COVID-19 vaccination and blood sample collection. The flow chart displays the enrolment and sample collection at TO (2—4 weeks after
the second dose), T1 (6 months after the first dose) and T2 (4-6 weeks after the third dose), excluding subjects lost to follow-up. Out of 64 PWMS
and 38 HCWs who completed blood sampling at all designated time points, a convenience sample consisting of 31 PwWMS and 27 HCWs was
selected for an in-depth immunological characterization. COVID-19, COronaVlrus Disease 2019; HCWs, healthcare workers; PwWMS, patients with

multiple sclerosis. Created in https://BioRender.com.
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TABLE 1 Demographic and clinical characteristics of the 58 subjects enrolled after the third dose of COVID-19 vaccination.

Characteristics PwMS HCWs P value
n (%) 31 (53.5) 27 (46.5)
Age median (IQR) 49 (45-55) 47 (35-54) 0.440*
Female n (%) 24 (77.4) 22 (81.5) 0.755°
Origin n (%) West Europe 31 (100) 27 (100)
BMI (kg/mz), median (IQR) 23.7 (20.8-26.1) NA
Presence of comorbidities 5(16.1) NA
MS disease duration (years), median
16 (6-22) -
(IQR)
MS Course n (%) Relapsing-remitting 27 (87.1) -
Primary-progressive 4 (12.9) -
EDSS score, median (IQR) 3 (1-4.5) -
MS treatment duration (years),
4.7 (1.8-8.0 -
median (IQR) ( )
Multiple Sclerosis Treatment n (%) Ocrelizumab 10 (32.2) -
Fingolimod 13 (41.9) -
Cladribine 3(9.7) -
IEN-B 5(16.2) -
Lymphocytes count Ocrelizumab 1.6 (1.4-1.9) -
Median x10%/uL (IQR)*
Fingolimod 0.7 (0.6-1.0) -
0.003 **
Cladribine 0.9 (0.8-1.4) -
IFN-B 1.6 (1.5-1.8) -
Neutrophils count Ocrelizumab 3.5 (2.9-4.6)
Median x10%/uL (IQR)”
Fingolimod 3.1 (2.4-4.6)
0.094 **
Cladribine 2.4 (1.8-2.5)
IFN-B 3.9 (2.9-5.2)
Ocrelizumab 0.5 (0.4-0.6)
Monocytes count Fingolimod 0.5 (0.4-0.6) o175
. 3 # 8
Median x107/uL (IQR) Cladribine 0.3 (0.3-0.4)
IFN-B 0.7 (0.5-0.9)
Eosinophils count Ocrelizumab 0.16 (0.08-0.24)
Median x10%/uL (IQR)”
Fingolimod 0.08 (0.02-0.12)
0.123 **
Cladribine 0.08 (0.07-0.13)
IFN-B 0.09 (0.06-0.11)
Basophils count Ocrelizumab 0.04 (0.03-0.06)
Median x10*/uL (IQR)”
Fingolimod 0.03 (0.01-0.03)
0.05 **
Cladribine 0.04 (0.00-0.06)
IFN-B 0.01 (0.00-0.02)
Time from third dose to sample, 48 (43-51) 31 (29-32) <0.0001*
median days (IQR) :
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1682049

Characteristics PwMS HCWs P value
Among PwMS with SARS-CoV-2 breakthrough infection

SARS-CoV-2 breakthrough infection 12 (38.7) NA
Days from 3rd dose to infection 135 (100-249) NA
Days to negative swab, m(c;((i)l;x; 13 (10-15) NA
COVID-19 severity n (%) Mild 10 (83.4) NA
Moderate 1(8.3) NA
Severe 1(8.3) NA
Antiviral 3(27.3) NA
COVID-19 therapy n (%) Monoclonal 6 (54.5) NA
Non-steroidal inflammatory drugs 2 (18.2) NA

HCWs, healthcare workers; PwMS, patients with multiple sclerosis; BMI, body mass index; EDSS, Expanded Disability Status Scale; IQR, Interquartile range; n, Number; NA, not available.”
Blood cell counts available for 28 out of 31 PwMS; * Mann-Whitney U-statistic test; S Fisher’s Exact test; ** Kruskal-Wallis test.

(Figure 2A). Compared with HCWs, PWMS showed a significantly
reduced cytokine response to Wuhan spike peptides with a 6-fold
decreased IFN-ylevel (HCWs median: 525 pg/mL, IQR: 226-852 vs.
PwMS median: 86 pg/mL, IQR: 1.5-476.5, p<0.0001) and TNF-o
production (HCWs median: 98 pg/mL, IQR: 44.6-270 vs. PWMS
median: 15.4 pg/mL, IQR: 3.7-38.7, p<0.0001), and an
approximately 3-fold reduction in IL-2 production (HCWs
median: 234 pg/mL, IQR: 96-447 vs. PWMS median: 81 pg/mL,
IQR: 3.3-325, p=0.042). By contrast, no significant differences were
observed for IP-10, between the two groups (Figure 2A).
Although most PWMS showed a T-cell specific response, the
quantitative response to Wuhan spike significantly varied among
DMTs. In particular, patients receiving fingolimod showed an
impaired immune response characterized by a significantly reduced
production of both IFN-y, IL-2, and TNF-o. compared to HCWs
(p<0.0001 for all Th1 cytokines) (Figure 2B). The significant differences
in IEN-y and IL-2 production observed between PWMS treated with
fingolimod and HCWs persisted even after adjusting for the time
interval between the third vaccine dose and sample collection (Table 2).
Within the PWMS cohort, fingolimod-treated patients exhibited
significantly lower levels of IFN-y and IL-2 compared to patients
treated with ocrelizumab (p=0.0018 and p=0.0002, respectively) or
cladribine/IFN-B (p=0.041 and p<0.0001, respectively). Moreover, a
significant difference was observed in the IP-10 production between
patients receiving ocrelizumab and fingolimod (p=0.0013). In
contrast, no significant differences were reported for TNF-o
production among PwMS stratified based on DMTs (Figure 2B).
To evaluate the impact of demographic and clinical variables on
spike-specific responses in PWMS, a quantile regression analysis was
conducted. While various covariates were initially identified as potential
influencers depending on the cytokine or chemokine assessed, only
some variables remained significant following stepwise regression
(Table 3). The differences in Thl cytokine and IP-10 levels among
patients treated with fingolimod, as compared to those receiving
alternative therapies, were validated through stepwise regression
analysis (Table 3). The MS treatment emerged as the main variable
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that explained the differences observed in the MS cohort for IFN-y, IL-2
and IP-10, (p=0.062, p<0.001, p<0.001, respectively). Moreover, the
gender was identified as a variable affecting the specific-immune
response, with male patients showing higher levels of IFN-y and
TNF-o (p=0.003 and p=0.010) (Table 3). Instead, the duration of MS
treatment did not appear to influence the cytokine response.

To assess the immune competence of the enrolled subjects, we
analyzed the cytokine production in response to SEB, a non-specific
stimulus used as a positive control (Figures 2C, D). All HCWs and
PwMS demonstrated a robust response to SEB, thus confirming their
preserved immune functionality (Figure 2C). However, significant
differences were observed in the magnitude of IFN-y, IL-2, and IP-10
production, thus indicating a dysregulated cytokine response in PWMS
compared to HCWs. Particularly, PWMS showed a 2-fold reduction in
IFN-y (HCWs median: 6212 pg/mL, IQR: 2995-11663 vs. PWMS
median: 2704 pg/mL, IQR: 2001-6830, p=0.011) and IL-2 production
(HCWs median: 8433 pg/mL, IQR: 2648-12138 vs. PwMS median:
4050 pg/mL, IQR: 928-7904, p=0.014), while higher IP-10 levels were
observed in PwMS than in HCWs (approximately 3-fold increase,
p<0.0001). Consistent with the results of the spike-specific response,
patients receiving fingolimod showed a more pronounced impairment
of the immune response to SEB compared to HCWs, particularly
regarding IFN-y and IL-2 production (p=0.048 and p=0.0001).
Nonetheless, the extent of impairment in fingolimod-treated patients
is markedly lower than that observed in response to Wuhan spike
peptides (IFN-y SEB: 2.5-fold decrease vs. IFN-y Wuhan spike: 300-
fold decrease; IL-2 SEB: 9-fold decrease vs. IL-2 Wuhan spike: 500-fold
decrease) (Figure 2D).

3.3 Profile of cytokines induced by Delta
variant peptides of the spike protein

To investigate whether COVID-19 vaccination elicited an

immune response against SARS-CoV-2 variants of concern, we
evaluated cytokine production after stimulation with peptides
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FIGURE 2

Cytokine/chemokine response to SARS-CoV-2 Wuhan spike peptides and SEB in HCWs and PwMS after 4-6 weeks from the third vaccine dose.
Comparison of the cytokine response to Wuhan spike (A, B) and SEB (C, D) between HCWs and PwMS. (B, D) PwMS were stratified by the current
therapy into three groups: ocrelizumab (n=10), fingolimod (n=13) and cladribine/IFN-B (n=8). IFN-y, IL-2, TNF-a and IP-10 concentrations were
expressed in pg/mL with median values indicated by red lines. For the statistical analysis, Mann-Whitney U test was performed to compare HCWs
and PwMS (A, C), while for the comparison among groups the Kruskal-Wallis test followed by the Dunn’s multiple comparisons test was used (B, D).
Differences with p values < 0.05 were considered significant. HCWs, healthcare workers; PwMS, patients with multiple sclerosis; SEB, Staphylococcal
enterotoxin B; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; IP-10, interferon gamma-induced protein 10.

derived from the SARS-CoV-2 Delta variant (B.1.617.2) in a
subgroup of PWMS (n=14). As shown in Figure 3A, the T-cell
response to Delta variant significantly differed among DMTs.
Specifically, most PwMS treated with ocrelizumab, cladribine, or
IFN-f mounted a T-cell response to Delta spike with production of
both Th1 cytokines and IP-10. On the other hand, patients treated
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with fingolimod showed a markedly reduced response compared to
other DMTs (IFN-y: p=0.003; IL-2: p=0.0003; TNF-a, p=0.0016; IP-
10, p=0.003). There is no response to Delta spike peptides in
fingolimod-treated patients; only one to IFN-y, three to TNF-a,
and one to IP-10. Compared to the response induced by the Wuhan
spike peptides, the magnitude of the T-cell response to the Delta
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TABLE 2 Comparison between PwMS and HCWs for each cytokine/chemokine in response to the in vitro specific stimulation with Wuhan spike-
peptides after the third dose of COVID-19 vaccination.

Quantile regression analysis (median)

Adjusted for time (days) from third

Cytokines/ chemokines Univariable vaccine dose to sample collection
Coefficient 95% Cl P Coefficient 95% Cl P
PwMS_Fing No vs HCWs -155 -432; 121 0.265 -140 -504; 225 0.446
Spike-induced IFN-y .
PwMS_Fing Y
wYS_tlng_tes vs 523 -830; 216 0.001 516 -906; 126 0.010
HCWs
PwMS_Fing No vs HCWs 74 -67; 214 0.297 93 -82; 269 0.292
Spike-induced IL-2 PwMS Fing Yes vs
—-Hing- 234 -389; -78 0.004 -207 -394; -19 0.032
HCWs
PwMS_Fing No vs HCWs 71 -147; 5 0.066 -68 -169; 32 0.177
Spike-induced TNFou PwMS_Fing_Yes vs
- -88 -172; -4 0.041 -87 -194; 20 0.111
HCWs
PwMS_Fing No vs HCWs 3267 -727; 7261 0.107 4214 -1020; 9449 0.112
Spike-induced IP-10 PwMS Fing Yes vs
HOW 8- 2298 -6728; 2133 0.303 -1202 -6800; 4397 0.669

PwMS, patients with multiple sclerosis; HCWs, healthcare workers; CI, confidence interval; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; IP-10, interferon-gamma-induced protein
10. PWMS_Fing_No, are PWMS undergoing ocrelizumab, cladribine and IFN-B. PwMS_Fing_Yes are PWMS undergoing fingolimod. In bold are reported the significant values.

variant peptides was significantly lower (IFN-y: p=0.0002; IL-2:  correlations with IP-10, IL-2, and TNF-a-specific responses
p=0.001; TNF-at, p=0.0015; IP-10, p=0.001) (Figure 3B). (p=0.709, p<0.001; p=0.882, p<0.001; p=0.764, p<0.001,
respectively). Moreover, IL-2-spike-specific response positively
correlated with both IP-10 and TNF-o (p=0.708; p<0.001;
p=0.650, p<0.001, respectively), and TNEF-o-spike-specific
production correlated with IP-10 levels (p=0.515, p<0.01)
A coordinated cytokine response was observed in both cohorts.  (Figure 4A). Spike-specific responses in PwMS also correlated

3.4 Correlations between immunological
parameters

In PwMS, spike-specific IEN-y production showed strong positive ~ with those elicited by SEB stimulation. Particularly, IL-2-spike-

TABLE 3 Quantile and stepwise regression models for demographic and clinical factors affecting the Wuhan spike-specific immune response after the
third dose of COVID-19 vaccination.

Spike-induced IFN-y Spike-induced IL-2 Spike-induced TNF-o Spike-induced IP-10

Variables . o . o . 5 . o

Coefficient 95% Cl Coefficient 95% Cl Coefficient 95% Cl Coefficient 95% Cl
Univariable results
Age, years -8 -22;6 0.234 -13 -22;-3 0.010 0 -2;2 0.930 -153 -447; 142 0.298
Gender, male 471 198; 745 0.001 279 33; 525 0.027 47 26; 69 <0.001 4068 -1396; 9532 0.139
Presence of comorbidities 107 -368; 582 0.647 156 -202; 514 0.379 -1 -50; 47 0.956 -1050 -8315; 6215 0.770
BMI -9 -52; 34 0.668 -17 -47; 12 0.237 -1 -5 4 0.767 -447 -988; 94 0.102
MS duration, years -5 -20; 10 0.474 -9 -20; 3 0.130 0 -1 1 0.891 -180 -412; 53 0.124
MS treatment: -368 -559; -177 <0.001 -308 -394; -222 <0.001 -17 -42; 8 0.177 -5565 -8630; 0.001
Fingolimod -2499
MS treatment duration, -16 -45; 13 0.269 -26 -51; -2 0.036 0 -3;3 0911 -94 -597; 410 0.706
years
EDSS score > 3 -147 -439; 146 0.313 -242 -445; -39 0.021 -1 -28; 26 0.921 -2338 -8962; 4286 0.476
Lymphocyte count x 10%/ 104 9; 199 0.034 122 32;213 0.010 -2 -15; 11 0.751 878 -941; 2697 0.332
uL
MS phenotype, Primary- 347 -109; 802 0.130 203 -136; 541 0.231 46 -14; 106 0.131 3456 -2454; 9367 0.241
progressive (PP)
Time elapsed from third 6 -10; 22 0.468 6 -6; 17 0.305 0 -2 0.594 -39 -266; 188 0.729
dose and sample

(Continued)
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TABLE 3 Continued

Spike-induced IFN-y Spike-induced IL-2 Spike-induced TNF-o Spike-induced IP-10

Variables Coefficient 95% Cl Coefficient 95% Cl Coefficient 95% Cl Coefficient 95% Cl

Variables in the model after stepwise regression*

Gender, male 371 ‘ 131; 609 0.003 _ _ ‘ _ 34 ‘ 9; 59 0.010 _ _ ‘ _
MS treatment: -190 -391; 10 0.062 -300 -372; -226 <0.001 — _ — -5415 -7836; <0.001
Fingolimod -2996

Time elapsed from third 5 -4;13 0.256 -2 =552 0.373 0 -1 0.744 -72 -189; 44 0.212
dose and sample

collection

PwMS, patients with multiple sclerosis; BMI, body mass index; EDSS, Expanded Disability Status Scale; CI, confidence interval; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; IP-10,
interferon-gamma-induced protein 10. In bold are reported the significant values. * Variables in the model were adjusted for time elapsed from third dose and sample collection.

specific response was positively associated with SEB-induced IFN-y,  counts, attributable to the administration of DMTs, which affect
IL-2, and TNF-a levels (p=0.367, p<0.05; p=0.730, p<0.001;  the magnitude of the specific T-cell response.

p=0.472, p<0.01, respectively), but negatively correlated with SEB- Interestingly, neutralizing antibody titers, in addition to
induced IP-10 levels (p=-0.370, p<0.05). Moreover, positive  correlating with anti-RBD antibody levels (p=0.870, p<0.001),
correlations were observed between spike-specific IFN-y and IP-  also showed a positive association with IL-2 production in
10 productions and SEB-induced IL-2 levels (p=0.598, p<0.001;  response to Wuhan spike peptides (p=0.415, p<0.05).

p=0.389, p<0.05). These correlations likely emerged within the In HCWs , cytokine responses elicited by SEB stimulation positively

PwMS cohort due to the greater heterogeneity in lymphocyte  correlated with each other (Figure 4B). As for the Wuhan-spike specific
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Cytokine/chemokine response to SARS-CoV-2 Delta variant of the spike peptides in PwMS. (A) PwMS (n=14) were stratified into two groups:
fingolimod (n=8) and others, which includes PwMS treated with ocrelizumab (n=2), cladribine (n=2) and IFN-B (n=2). (B) Comparison between the T-
cell response induced by the Wuhan spike peptides and that induced by the Delta variant. IFN-y, IL-2, TNF-o and IP-10 concentrations were
expressed in pg/mL with median values indicated by black lines. For the statistical analysis, the Mann-Whitney U test (A) and Wilcoxon signed-rank
test (B) were used and p values < 0.05 were considered significant. PwMS, patients with multiple sclerosis; IFN, interferon; IL, interleukin; TNF, tumor
necrosis factor; IP-10, interferon gamma-induced protein 10.
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response, positive correlations were observed between IFN-y
production and both IL-2 and TNF-a levels (p=0.390, p<0.05;
p=0.590, p<0.01), and between spike-specific IP-10 response and IL-
2 levels (p=0.549, p<0.01). In contrast, spike-specific IP-10 production
negatively correlated with TNF-o. levels (p=-0.771, p<0.001). Unlike
PwMS, in HCW s no significant correlations were observed between
spike-specific responses and those induced by SEB stimulation, except
for IP-10 levels (p=0.594, p<0.01). Furthermore, there was a significant
positive correlation between neutralizing antibody titers and spike-
induced IP-10 levels (p = 0.491, p < 0.01).

3.5 SARS-CoV-2 breakthrough infection
and immune response

Within the PwWMS cohort, 12 patients (38.7%) experienced
SARS-CoV-2 breakthrough infections (BIs) during the study
period, with a median time of 135 days from administration of
the third vaccine dose to BI onset (Table 1). Most PWMS (83.4%)
developed mild COVID-19, with a median time to nasopharyngeal
swab negativization of 13 days (IQR; 10-15), and were treated
with antiviral agents or monoclonal antibodies. Among the BI, 50%
(6/12) occurred in ocrelizumab-treated patients, 33.3% (4/12) in
those receiving fingolimod, and the remaining 16.7% (2/12)
in patients treated with IFN-3 and cladribine (Table 4).

Interestingly, among the demographic and clinical factors,
Poisson regression analysis identified sex as a significant factor
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associated with the risk of BI in PWMS. Male sex was significantly
associated with a higher incidence rate of BI compared to female sex
(IRR: 4.05, 95%CI:1.29-12.76, p=0.017). Moreover, PWMS with a
primary progressive disease showed a higher incidence rate of BI
(IRR: 3.65, 95%CI: 0.99-13.49, p=0.052) compared to those with
relapsing-remitting MS.

Moreover, we evaluated whether the cell-mediated immunity
induced after the third vaccine dose influenced the risk of subsequent
SARS-CoV-2 infections in PwMS. As shown in Supplementary
Figure 1 and supported by the Poisson regression analysis
(Table 4), the spike-specific response was not associated with
increased protection against BI. In contrast, a significant association
was observed between antibody response and a reduced risk of BI
(IRR: 0.27, IQR: 0.09-0.83, p = 0.022) (Table 4). This association
explains the higher susceptibility of ocrelizumab-treated patients to
SARS-CoV-2 infection, as ocrelizumab treatment significantly
impairs the antibody response, as shown in previous studies
(13, 23). By contrast, most fingolimod-treated patients induced an
antibody response, although its magnitude was lower compared to
that observed in healthy controls, while cladribine and IFN-f did not
significantly affect the humoral response.

4 Discussion

This prospective study provides an in-depth immunological
characterization of the spike-specific response following the third
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Correlations among the immunological parameters. Correlation matrices in PwMS (A) and HCWs (B) include the following variables: cytokine/
chemokine (IFN-v, IL-2, TNF-a and IP-10) response to SARS-CoV-2 Wuhan spike peptides and SEB, as well as antibody response measured as anti-
RBD and neutralizing antibodies. For the analysis, the non-parametric Spearman’s rank test was performed. Positive (blue) and negative (red)
correlations are indicated according to the colour-grade scale, and the colour intensity depends on the strength of the correlation coefficient (p).
The significance level threshold used is the following: *p<0.05, **p<0.01, ***p<0.001.
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TABLE 4 Demographic, clinical, and immunological factors affecting the incidence of SARS-CoV-2 breakthrough infection in PwMS after the third
dose of COVID-19 vaccination.

. . Poisson
SARS-CoV-2 infection Total :
regression
Patient’s characteristics
No BI BI
n=31; 100% IRR (95% ClI
(n=19, 61.3%)  (n=12, 38.7%) 3 o)
Age in years, median (IQR) 49 (37-56) 50 (45-55) 49 (45-55) 1.05 (0.61-1.80)* 0.859
23-49 10 (52.6) 6 (50.0) 16 (51.6) Ref.
50-66 9 (47.4) 6 (50.0) 15 (48.4) 0.98 (0.32-3.04) 0.971
Female 17 (89.5) 7 (58.3) 24 (77.4) Ref.
Gender, n (%)
Male 2 (10.5) 5(41.7) 7 (22.6) 4.05 (1.29-12.76) 0.017
No 14 (73.7) 12 (100) 26 (83.9) -
Presence of comorbidities, n (%)
Yes 5(26.3) 0 (0) 5(16.1) -
BMI (kg/mz), median (IQR) 24 (20-27) 24 (22-25) 24 (21-26) 1.02 (0.89 - 1.16) 0.816
<237 10 (52.6) 7 (58.3) 17 (54.8) Ref.
>23.7 9 (47.4) 5(41.7) 14 (45.2) 0.78 (0.25-2.44) 0.664
MS duration in years, median
16 (8-22) 14 (5-23) 16 (6-22) 1.00 (0.94-1.05) 0.942
(IQR)
< 16 years 9 (47.4) 6 (50.0) 15 (48.4) Ref.
> 16 years 10 (52.6) 6 (50.0) 16 (51.6) 1.03 (0.33-3.19) 0.961
Fingolimod 9 (47.4) 4(33.3) 13 (41.9) Ref.
MS treatment, n (%) Cladribine/IFN-B 6 (31.6) 2 (16.7) 8 (25.8) 0.7 (0.13-3.83) 0.682
Ocrelizumab 4(21.1) 6 (50.0) 10 (32.3) 2.6 (0.73-9.22) 0.139
MS treatment duration, medi
reatment duration, median 7 (2-9) 3(2:8) 5(2-8) 0.90 (0.76-1.06) 0.195
(IQR)
< 5 years 8 (42.1) 8 (66.7) 16 (51.6) Ref.
> 5 years 11 (57.9) 4 (33.3) 15 (48.4) 0.45 (0.14-1.50) 0.193
<3 7 (36.8) 8 (66.7) 15 (48.4) Ref.
EDSS score, n (%)
>3 12 (63.2) 4 (33.3) 16 (51.6) 0.34 (0.10-1.12) 0.076
Pri 3 .
rimary ngrez?; 1(53) 3(25.0) 4(12.9) 3.65 (0.99-13.49) 0.052
MS phenotype, n (%)
Relapsing-Remitting
18 (94.7) 9 (75.0) 27 (87.1) Ref.
(RR)
Lymphocyte count
1.28 (0.70-1.51 1.28 (0.73-1.56 1.28 (0.70-1.51 0.87 (0.52-1.47 0.610
X 103/pL, median (IQR) ( ) ( ) ( ) ( )
Linf _p50 =0 9 (52.9) 5 (45.5) 14 (50.0) Ref.
Linf_p50 = 1 8 (47.1) 6 (54.5) 14 (50.0) 1.18 (0.36-3.87) 0.784
Immune response
Anti-RBD Ab,
n l, 249 (16-4895) 50 (0.7-314) (0.8-1027) 1.00 (1.00-1.00) 0.167
median (IQR)
< 7.1 BAU/mL 3 (15.8) 6 (50.0) 9 (29.0) Ref.
Anti-RBD Ab score, n (%)
>7.1 BAU/mL 16 (84.2) 6 (50.0) 22 (71.0) 0.27 (0.09-0.83) 0.022
Spike IFN-y,
P‘ € ¥ 39 (2-385) 127 (2-533) 86 (1-476) 1.00 (1.00-1.00) 0.545
median (IQR)
(Continued)
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TABLE 4 Continued
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SARS-CoV-2 infection Total repg?'léssggn
Patient’s characteristics No B Bl
— . o, o,
(=19, 61.3%) (n=12, 38.7%) (n=31; 100%) IRR (95% ClI)

Spike IL-2,
median (IQR) 32 (3-398) 227 (2-310) 81 (3-325) 1.00 (1.00-1.00) 0.442
Spike TNFo,
median (IQR) 15 (4-60) 17 (5-28) 15 (4-39) 0.99 (0.98-1.01) 0.373

Sp,ike 1P-10, 3425 (817-8704) 6215 (933-7032) 4347 (817-7183) 1.00 (1.00-1.00) 0.620
median (IQR)

BI, breakthrough infection; PWMS, patients with multiple sclerosis; IQR, interquartile range; BMI, body mass index; EDSS, Expanded Disability Status Scale; RBD, receptor-binding domain; Ab,
antibodies; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; IP-10, interferon-gamma-induced protein 10. IRR: incidence rate ratio estimated with Poisson regression; CI: confidence
interval; n, Number; Ref: reference category. *For 10-year increment. In bold are reported the significant values.

dose of COVID-19 vaccination in PwMS undergoing different
DMTs by evaluating soluble biomarkers beyond IFN-y, including
IL-2, TNF-o. and IP-10, as surrogate markers of the cell-mediated
response. Moreover, the immune response was compared with that
of a cohort of HCWs matched for age and sex, and the potential
association between these immune factors and the risk of BI
was investigated.

To date, most studies have focused on the evaluation of the
spike-specific T-cell response, selectively assessing IFN-y response
(13, 18, 32, 36, 44). The identification of additional immunological
biomarkers may be important to gain a more comprehensive view
of the cell-mediated response induced by COVID-19 vaccination.
Data on the vaccine-induced response, evaluated as production of
both Th1 cytokines (IFN-v, IL-2, TNF-o) as well as IP-10, are scarce
(48, 54). Few studies have examined the functional spike-specific
CD4" and CD8" T cell responses by evaluating IFN-y-, IL-2, or
TNEF-a-producing T cells by flow cytometry in PwMS after the third
dose of COVID-19 mRNA-vaccines (22, 45-47). In this study, we
employed a user-friendly whole-blood assay to measure Thl
cytokines and IP-10, serving as surrogate markers for the cell-
mediated immune response following COVID-19 vaccination.

We demonstrated that PWMS receiving DMT's have an immune
system capable of responding to a nonspecific stimulus such as SEB.
However, their cytokine response appears dysregulated compared
to that observed in HCWs. This difference becomes even more
significant when evaluating antigen-specific immune responses,
such as those elicited in response to SARS-CoV-2 spike antigens
after COVID-19 vaccination. In this case, most PwMS mounted a
T-cell response by releasing Th1 cytokines (IFN-v, IL-2, TNF-o.) as
well as IP-10. This data aligns with a recent study showing that the
immune response to SARS-CoV-2 vaccines in PwMS is unbalanced
towards a Th1 phenotype, predominantly characterized by IL-2 and
IFN-y (48).

Nonetheless, the magnitude of the Th1 response to the Wuhan
spike peptides was significantly lower than that observed in HCWs,
with IFN-y and TNF-a. levels reduced by six-fold, and IL-2 levels
decreased by approximately three-fold. Notably, significant
variations in the immune response were observed according to
the ongoing DMTs, with fingolimod-treated patients presenting the
most immunocompromised response, especially in terms of both
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IFN-y and IL-2 production. These results confirm previous studies
showing reduced IFN-y levels (13, 48) or frequencies of IFN-y and
IL-2-producing T cells in fingolimod-treated patients (22, 46).

These findings are consistent with the fingolimod’s mechanism
of action. Fingolimod acts as a sphingosine 1-phosphate (S1P)
receptor modulator and hinders lymphocyte egress from lymph
nodes, thereby leading to a reduced lymphocyte count in the
peripheral blood (3) and a diminished capacity to mount an
effective immune response (55). In addition to MS treatment,
male sex was identified as an independent factor influencing the
spike-specific immune response, particularly affecting TNE-
o production.

Despite widespread vaccination efforts, the emergence of SARS-
CoV-2 VOCs has reduced the protective efficacy of existing
COVID-19 vaccines (56). However, whereas it has been shown
that the antibody responses against VOCs are markedly reduced,
because these variants have acquired the ability to evade the
antibody recognition (57, 58), the T-cell response appears to be
more heterogeneous (59, 60). Consistent with earlier findings (59,
61), we found that COVID-19 vaccines based on the original
Wuhan spike protein induce T-cell responses that also cross-react
with the Delta variant, as shown by various immunological
biomarkers. In this context, PWMS generated a Delta spike-
specific response by producing Thl cytokines and IP-10, though
certain DMTs, such as fingolimod, may impair this response,
confirming results generated with the Wuhan spike antigen.

Although the cross-reactivity was maintained, the magnitude of
the T-cell response to the Delta variant peptides in PwMS was
significantly lower than that induced by the Wuhan spike peptides.
This result is expected, considering that the antigen used in the first
mRNA vaccines was based on the spike protein derived from the
original Wuhan strain.

In the PWMS cohort, and to a lesser extent in HCWs, spike-
specific cytokine levels showed positive correlations with one
another, indicating that the immunological parameters analyzed
reflect immune responsiveness. Interestingly, in addition to the
already known correlation with anti-RBD antibodies (20, 23), we
demonstrated a positive association between neutralizing antibody
titers and the levels of IL-2 in PwMS. Altogether, this evidence
supports the use of IL-2 as a valuable biomarker for assessing both
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the cell-mediated and antibody response to COVID-19 vaccination
in PWMS.

IL-2, as well as IFN-y and TNF-a, are cytokines mainly produced
by Thl lymphocytes. IFN-y contributes to macrophage activation and
controls the differentiation of naive CD4" T cells into Th1 effectors,
which in turn mediate cellular immunity against viral and intracellular
bacterial infections (41). TNF-a is involved in various processes,
including cell survival, cell death, inflammation, and immune cell
activation (42). IL-2 indirectly favors antibody response by promoting
T-cell activation and proliferation as well as the differentiation of T
follicular helper cells, which are important for B cell maturation (62).
Moreover, IL-2 contributes to the generation of plasma cells
responsible for antibody production (63, 64).

In HCWs, the neutralizing titer positively correlated with the
levels of IP-10. The latter is a chemokine, induced by IFN-y, that
promotes the chemotaxis of activated T and B lymphocytes to the
sites of inflammation (65, 66). Moreover, IP-10 drives activated B
cells to differentiate into plasma cells (67).

Regarding the incidence of BI, 38.7% (12/31) of PWMS in our
cohort experienced SARS-CoV-2 infection after three doses of
COVID-19 vaccines. Most of them reported a mild COVID-19,
likely explained also by the lower pathogenicity of the Omicron
variant (68, 69), which was the predominant variant circulating in
Italy during the follow-up period of this present study (70).

Among the demographic and clinical factors analyzed, sex emerged
as a significant variable associated with the risk of BI in PwMS.
Specifically, male patients exhibited a 4-fold increased risk of BI
compared to females. This finding is consistent with previously
reported sex-related differences in vaccine-induced response, wherein
females mount a more robust immune compared to males (71, 72).
Moreover, the relapsing-remitting phenotype of MS disease was
associated with a greater protection compared to the primary
progressive form, thus confirming previous data (38, 73).

Among DMTs, patients receiving ocrelizumab showed the
highest incidence rate of BI, followed by those treated with
fingolimod and, finally, patients with cladribine/TFN-B. These
results are consistent with data from other studies, identifying
patients on ocrelizumab and fingolimod as those at greatest risk
of BI (74-77).

.Furthermore, this finding is consistent with the known
mechanism of action of ocrelizumab, which acts as CD20-depleting
B cell agent (3), underscoring the pivotal role of the antibody response
(78). In our PwMS cohort, we confirmed that mounting an antibody
response confers protection against infection with an estimated 70%
reduction in BI risk, as previously demonstrated (38). To note, SARS-
CoV-2 infection occurred approximately 5 months after the
administration of the third dose, a time frame that corresponds to
the decline of the vaccine-induced antibody response, as widely
reported in vary longitudinal studies (13-16).

Unlike the antibody response (79), we did not find any
association between the spike-specific cell-mediated response and
the protection against SARS-CoV-2 infection for any of the soluble
factors evaluated. However, although the lack of a proper T-cell
response does not imply an increased BI risk, we have previously
showed that a reduced IFN-y T-cell response adversely affects the
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time to have a swab negativization by increasing the time required
to achieve viral clearance (38). Indeed, fingolimod-treated patients
require approximately 7 additional days to test negative. A
prolonged persistence of the virus may promote its replication,
increasing the likelihood of the emergence of new variants in the
individual and spread the infection to the community (17).

Some limitations of the study are acknowledged. Firstly, the small
sample size may have limited the ability to perform more in-depth
analyses; however, the cohort was thoroughly characterized both
immunologically and clinically. Secondly, among the SARS-CoV-2
VOC, only the immune response to Delta variant was evaluated, and a
direct comparison with the corresponding response in HCWs
is lacking.

On the other hand, a major strength of this study is the
comprehensive characterization of the spike-specific immune
response. In addition to assessing the IFN-y production, this study
also measured IL-2, TNF-o. and IP-10 levels, thus providing a broader
overview of the T-cell functionality and cytokine response. Moreover,
as far as we know, this is the first study evaluating the association
between these immunological biomarkers and the risk of BIL In
addition, our immunological data were obtained using a friendly-to-
use whole blood standardized method that has been thoroughly
validated in previous studies in COVID-19 (51, 80) or in other
diseases as tuberculosis (81). However, we cannot rule out that
advanced techniques directly measuring the T-cell responses, such as
intracellular cytokine staining, rather than using surrogate markers,
may provide different results. To our knowledge, a recent flow
cytometry study corroborated our findings by demonstrating lower
percentages of responding and triple-positive (IFN-y, IL-2, TNF-ar) T
cells in PwMS compared to healthy controls, particularly within the
depleting/sequestering-out subgroup, such as patients treated with
fingolimod (45). Unfortunately, the study did not examine the
association between the T-cell response and the risk of SARS-CoV-2
breakthrough infections.

As a clinical implication of our findings, this study contributes
to refining the stratification of SARS-CoV-2 infection risk in PwMS
treated with DMTs, particularly highlighting patients treated with
ocrelizumab and fingolimod as higher-risk groups. These results
support the consideration of tailored vaccination approaches,
including adjusted booster timing or additional prophylactic
interventions. While our data focus on specific DMTs, this
framework may be extended to other DMTs and warrants further
investigation. Among the immunological biomarkers analyzed, IL-2
emerged as a promising complementary marker of vaccine-induced
immunity, showing correlations with both humoral and cell-
mediated responses. Nevertheless, additional studies are necessary
to confirm its clinical utility and establish thresholds.

In conclusion, this study provides evidence of the spike-specific
cytokine and chemokine response in PwMS undergoing DMTs
following the third dose of COVID-19 vaccination. Our findings
showed that PWwMS mount a Thl-type immune response, broadly
resembling that observed in HCWs, albeit with significantly reduced
levels of IFN-y and IL-2. Notably, this impaired Thl response is not
associated with a risk of SARS-CoV-2 infection. Importantly, our
results identify immunological biomarkers beyond IFN-y, particularly
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IL-2, as additional tools to assess the cell-mediated immune response to
COVID-19 vaccination. The relevance of these immunological
biomarkers may extend beyond COVID-19, for offering insight into
host immune responses to other infectious agents and vaccinations.
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