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MFSD12 promotes proliferation,
metastasis and invasion of
hepatocellular carcinoma cells
and its potential correlation with
HAVCR2/LGALS9 immune
checkpoint axis

Kai Sun', Song Wen', Shou-jun Guo', Qing-hua Pan**
and Ke-run Wang**

Department of Oncology, Ganzhou Cancer Hospital, The Affiliated Cancer Hospital of Gannan
Medical University, Ganzhou, Jiangxi, China

Background: Major Facilitator Superfamily Domain-containing 12 (MFSD12) has
emerged as a critical transmembrane protein with increasingly recognized roles
in various cancers. The complex pathogenesis and therapeutic resistance of liver
hepatocellular carcinoma (LIHC) present significant clinical challenges. This
study investigates MFSD12's potential involvement in LIHC progression.
Methods and results: We performed an extensive pan-cancer analysis of
MFSD12 utilizing integrated datasets from The Cancer Genome Atlas (TCGA),
the Gene Expression Omnibus (GEO), and the ArrayExpress database. Our
investigation focused on evaluating its prognostic significance, clinical
implications, associated signaling pathways, immune cell infiltration, gene
mutations, and sensitivity to chemotherapeutic agents. Through the
application of R and various online analytical tools, our study demonstrated
that MFSD12 expression levels were significantly higher in LIHC compared to
other cancer types within the TCGA pan-cancer dataset. This finding highlights
the specificity of MFSD12 expression in LIHC, a conclusion further validated by
immunohistochemical analysis. Survival analysis indicated that this upregulation
is associated with unfavorable clinical outcomes. Furthermore, single-cell RNA
sequencing revealed that MFSD12 was predominantly expressed in tumor cells
and innate lymphoid cells (ILCs) within the tumor microenvironment. Functional
vitro studies showed MFSD12-siRNA treatment effectively suppressed LIHC cell
proliferation, migration, and invasion. Mechanistically, MFSD12-siRNA enhanced
E-cadherin while reducing vimentin, MMP-2, and MMP-9 levels. Further analyses
revealed significant associations between MFSD12 expression and immune
infiltration, immune checkpoint molecules, tumor mutation burden, and
microsatellite instability in LIHC. Notably, MFSD12-siRNA decreased HAVCR2
(TIM3) and its ligand galectin-9 (LGALS9) expression in LIHC cells.
Conclusions: Our findings demonstrated that MFSD12 upregulation in LIHC
strongly correlates with poor prognosis. This association was potentially
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attributed to MFSD12's dual roles: promoting tumor cell proliferation, migration,
and metastasis while critically modulating the tumor immune microenvironment,
particularly through interaction with the HAVCR2/LGALS9 immune

checkpoint axis.

MFSD12, hepatocellular carcinoma, prognosis, immune infiltration, biomarkers

Introduction

Liver cancer treatment remains a significant challenge in
medicine, particularly for hepatocellular carcinoma (LIHC/HCC),
which is a leading cause of cancer-related deaths worldwide (1-3).
While early-stage patients often have better outcomes, advanced
LIHC still lacks effective treatment options due to its complex
pathophysiological mechanisms and resistance to current therapies
(4). Recent advances in understanding LIHC’s molecular
mechanisms have led to promising developments in targeted
treatments, such as those focusing on impaired signaling
pathways like Notch, which has shown potential in preclinical
studies (5-8). Additionally, microRNAs (miRNAs) play a key role
in LIHC development, with research indicating their dysregulation
affects critical cancer-related pathways, making miRNA-targeted
therapies a potential future option for patients (9, 10).

The prognosis of LIHC is closely linked to its tumor immune
microenvironment, as LTHC exhibits high heterogeneity where the
immune microenvironment plays a pivotal role in tumor
development, progression, and treatment response (11, 12). Studies
have shown that the pattern of immune cell infiltration in the tumor
immune microenvironment can significantly influence patient
outcomes and treatment responses (13). In the immune
microenvironment of LIHC, tumor-associated macrophages
(TAMs) are one of the primary types of immune cells (1, 14). They
promote tumor growth and immune escape by interacting with
tumor cells and other immune cells (14). Additionally, the
infiltration of immunosuppressive cells such as regulatory T cells
(Tregs) and myeloid suppressor cells (MDSCs) is also associated with
poor prognosis in LIHC (15). In recent years, single-cell sequencing
technology has uncovered the heterogeneity of the immune
microenvironment in LIHC, providing novel insights into
understanding tumor immune escape mechanisms (16). Through
single-cell analysis of LIHC samples, researchers have demonstrated
that the infiltration patterns of different immune cell subpopulations
are closely linked to patient survival rates and responses to
immunotherapy (11). Furthermore, metabolic reprogramming in
LIHC can affect its immune microenvironment, thereby influencing
tumor progression and response to immunotherapy (4, 6). For
example, dysregulated histidine metabolism can promote tumor
growth and immune escape by altering the function of immune
cells (11).
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In terms of therapeutic strategies, combination therapy has
demonstrated promising results. For instance, the combination of
programmed cell death 1 (PD-1) inhibitors with chemotherapy
drugs has shown both efficacy and safety in treating metastatic
pancreatic ductal adenocarcinoma with liver metastases, offering
new insights for LIHC treatment (13). Furthermore, nanomedicine
has emerged as a potential therapeutic approach for LIHC (17).
This field utilizes nanoscale or nanostructured materials for medical
applications, and recent years have witnessed significant
advancements in applying nanomedicine to LIHC treatment (17).
Additionally, hepatocellular carcinoma stem cells (HSCs) represent
an important therapeutic target (18). Given their close association
with cancer metastasis, therapeutic strategies targeting HSCs may
provide new hope for managing LIHC (18). Although LIHC
treatment still faces numerous challenges, ongoing research into
its molecular mechanisms and the continuous development of
novel therapeutic approaches promise brighter prospects for
future treatment outcomes (19-21).

MFSD12, or Major Facilitator Superfamily Domain-containing
12, is a transmembrane protein that plays a crucial role in cysteine
import into melanosomes and lysosomes (22). This protein is
essential for maintaining normal cystine levels, the oxidized
dimer of cysteine, within these organelles (23). The function of
MEFSD12 is particularly important in pigmentation, as it contributes
to pheomelanin synthesis, a type of melanin pigment, through
cysteinyldopa production in melanosomes (24). The absence or
downregulation of MFSD12 has been associated with darker
pigmentation in both mice and humans, underscoring its
regulatory role in skin color (22). Beyond pigmentation, MFSD12
has been implicated in lysosomal storage disorders, particularly
cystinosis (25). Cystinosis is characterized by lysosomal cystine
accumulation due to cystinosin dysfunction, the lysosomal cystine
exporter. Research indicates that MFSD12 loss can decrease
lysosomal cystine accumulation, a key pathological feature of
cystinosis (25). However, despite this reduction, experimental
models show no improvement in proximal tubular function,
suggesting that while MFSD12 modulates cystine levels, it does
not fully ameliorate the functional deficits associated with
cystinosis (25).

MESD12’s role in cancer has garnered significant attention in
recent years. Studies have demonstrated that MFSD12 plays a
crucial role in various cancers, particularly in the growth and
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progression of tumors including melanoma, breast cancer, and lung
cancer (26). In melanoma, elevated MFSD12 expression correlates
with enhanced cell proliferation and accelerated tumor growth by
promoting cell cycle progression (23). Furthermore, MFSDI12
upregulation activates the PI3K signaling pathway, and this
proliferative effect can be reversed by PI3K inhibitors (23). In
both breast and lung cancers, MFSD12 serves as a key oncogenic
promoter, with its overexpression associated with poorer patient
prognosis (26). As a cysteine transporter, MFSD12 contributes to
lysosomal storage disease pathogenesis, suggesting its potential as a
therapeutic target for inhibiting tumor progression, preventing
metastasis, and improving treatment outcomes (26). Beyond its
oncogenic functions, MFSD12 plays significant roles in lysosomal
storage diseases. Research has established that MFSD12 is essential
for cysteine import into melanosomes and lysosomes, with its
deficiency leading to reduced cysteine levels in these organelles
(22). In non-pigmented cells, MFSD12 deficiency similarly impairs
lysosomal cysteine accumulation (22). Additionally, MFSD12
modulates glycolipid metabolism through lysosomal homeostasis
regulation. In experimental cystinosis models, MFSD12 loss
reduced cystine accumulation without restoring proximal tubule
function (24). In liver cancer research, while MFSD12’s specific
mechanisms remain understudied, its established roles in other
cancers suggest potential functions (26). MFSD12 may promote
tumor growth and metastasis by influencing metabolic and
signaling pathways in cancer cells. As a cysteine transporter, it
might also affect hepatocellular carcinoma progression by
modulating oxidative stress responses in malignant cells. Given
the established oncogenic roles of MESDI12 in various cancer types,
we hypothesized that it might similarly contribute to the
progression of LIHC. Nonetheless, comprehensive studies
examining MFSDI12 expression in relation to LIHC prognosis,
immune cell infiltration, and its therapeutic implications remain
lacking. This study aims to fill this gap by investigating the role of
MESD12 in LTHC progression and its interactions with the tumor
immune microenvironment, ultimately identifying MFSD12 as a
novel biomarker and potential therapeutic target.

This study systematically analyzed MFSD12 expression and its
association with LTIHC prognosis using multidimensional data from
the TCGA, GEO, and ICGC databases. Immunohistochemical
validation confirmed significantly increased MFSD12 expression
in LIHC specimens. Mutational, single-cell, and pharmacological
analyses of MFSD12 in LIHC have yielded insights into the role of
MEFSD12 within this context. In vitro functional studies assessed the
effects of MFSD12 on LIHC cell proliferation, invasion, metastasis,
as well as E-cadherin, vimentin, MMP-2, and MMP-9 expression
levels. Furthermore, we investigated MFSD12’s influence on the
tumor immune microenvironment in LIHC. Functional analyses
validated the relationship between MFSD12 expression and both
HAVCR2 and its ligand galectin-9 (LGALS9). Our findings
provided novel insights into MFSD12’s critical role in
LIHC pathogenesis.
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Materials and methods

Data collection and preprocessing

The comprehensive pan-cancer genomic datasets were retrieved
from The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov/) databases. For comparative analysis, normal tissue
expression profiles were obtained from the Genotype-Tissue
Expression project (GTEx, http://gtexportal.org/) (27). Among
them, 110 normal liver samples from GTEx, 50 paired normal
tissues adjacent to HCC (PNTAH) samples, 371 HCC samples, and
the corresponding clinical data of TCGA liver cancer (TCGA-
LIHC) were chosen for the subsequent analysis. To enhance the
robustness of our findings, we supplemented our dataset with
multiple LIHC cohorts from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/), including: GSE144269
(70 hepatocellular carcinoma tissues and 70 adjacent normal liver
tissues), GSE76427 (115 hepatocellular carcinoma tissues and 52
normal liver tissues), GSE104580 (147 hepatocellular carcinoma
tissues), GSE116174 (64 hepatocellular carcinoma tissues),
GSE14520 (22 hepatocellular carcinoma tissues and 22 paired
non-tumor tissues, 42 hepatocellular carcinoma tissues and 22
paired non-tumor tissues), GSE54236 (81 hepatocellular
carcinoma tissues and 80 non-tumor liver tissues) and
GSE109211 (140 hepatocellular carcinoma tissues) (28).
Additionally, the E_TABM_36 (57 hepatocellular carcinoma
tissues, 3 hepatocellular adenomas tissues and 5 non-tumoral
tissues) was acquired from the ArrayExpress database. The
MFSDI12 immunohistochemical (IHC) staining data were
downloaded from the Human Protein Atlas (HPA, http://
www.proteinatlas.org), which provides proteomics-based THC
results for multiple proteins across diverse tissues (29, 30). All
expression data were processed as transcripts per million (TPM)
and normalized through log2(TPM + 1) transformation. Data
imputation was performed using the missForest R package to
address missing values (31). We implemented rigorous quality
control measures, identifying outliers via the interquartile range
(IQR) method, where values beyond Q1 - 1.5xIQR or Q3 + 1.5xIQR
were winsorized to the nearest valid observation (32). Final sample
selection required both complete RNA-seq profiles and associated
clinical annotations. To ensure comparability across the multiple
datasets integrated from TCGA, GEO, and ArrayExpress, we
implemented a rigorous data harmonization pipeline. All gene
expression data were uniformly processed as transcripts per
million (TPM) and log2(TPM + 1) transformed. While a formal
batch effect correction (e.g., ComBat) was not applied due to the
inherent heterogeneity of public datasets and the focus on within-
dataset analyses for key validations (e.g., TCGA for discovery,
independent GEO cohorts for validation), we employed stringent
quality control measures. These included the removal of outliers
and the requirement for complete clinical annotation, which
collectively minimize the impact of technical variability on our
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core findings. The consistent results observed across independent
cohorts further support the robustness of our conclusions against
potential batch effects.

Prognosis analysis

The survival analysis was performed using Kaplan-Meier
methodology to evaluate overall survival (OS), progression-free
survival (PFS), Disease-free survival (DFS) and disease-specific
survival (DSS) stratified by MFSD12 expression levels. This
analysis was implemented through the R statistical packages
“DESeq2” and “limma” (33, 34). For prognostic assessment, the
“timeROC” package was employed to compute 1-year, 3-year, and
5-year survival probabilities, with corresponding receiver operating
characteristic (ROC) curves generated and their respective area
under the curve (AUC) values quantified (35). Furthermore,
survival patterns associated with varying MFSD12 expression
levels in LIHC were validated using datasets from the GEO
database (28, 36). Both univariate and multivariate Cox
proportional hazards regression models were subsequently
applied to identify significant prognostic factors. To improve the
robustness of prognostic evaluation, we further performed
bootstrap resampling validation across multiple cohorts (TCGA,
GSE116174, GSE144269, GSE14520, and GSE76427). The stability
of hazard ratios was assessed by repeating the Cox regression
analysis in 1,000 bootstrap samples for each dataset.

Genomic alterations and mutation profiles

The transcriptomic profiles (STAR-counts), somatic mutation
data (MAF format), and associated clinical metadata for pan-cancer
types were obtained from TCGA database (https://portal.gdc.
cancer.gov). To ensure data completeness, we implemented
stringent inclusion criteria, selecting only those specimens with
concurrent availability of RNA-seq expression profiles, mutation
data, and clinical annotations. This rigorous filtering process
yielded a final cohort that were deemed suitable for downstream
analytical procedures. The somatic mutation profiles of LIHC
patients were analyzed and graphically represented using the
maftools package within the R statistical environment (37).

DNA methylation analysis

The EWAS Data Hub (https://ngdc.cncb.ac.cn/ewas/datahub/
index) served as a comprehensive repository for DNA methylation
analysis, encompassing 115,852 samples across 528 distinct diseases
(38). In addition, the Shiny Methylation Analysis Resource Tool
(SMART) App (http://www.bioinfo-zs.com/smartapp/) is a tool
that integrates Infinium Human Methylation 450K BeadChip
data, RNA sequencing data, and clinical information for 33
cancer types derived from TCGA dataset (39). We utilized the
two public databases to investigate MFSD12 methylation patterns in
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LIHC patients. The 35 CpG sites selected for analysis were located
within the promoter region (TSS1500, TSS200, 5’UTR, 1st Exon) of
the MFSD12 gene, as methylation in these regions is known to exert
the most pronounced effects on transcriptional regulation. Our
analysis focused on examining the correlation between MFSD12
methylation status and its transcriptional expression and clinical
characteristics, along with assessing its prognostic significance for
survival status in affected individuals.

Enrichment analysis

To elucidate the functional role of MESD12 in LIHC,
comprehensive gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses were conducted
(40). The GO analysis, an established computational approach in
functional genomics, systematically characterized LTHC-
associated biological processes, molecular functions, and cellular
components (41). Gene Set Enrichment Analysis (GSEA) was
employed to explore the underlying molecular mechanisms,
with this method being particularly valuable for identifying
statistically significant differences in predefined gene sets across
distinct biological conditions (42). All computational analyses
were implemented using specialized bioinformatics tools: the
ClusterProfiler package in R facilitated the GO and KEGG
analyses, while GSEA version 4.1.0 was utilized for the
enrichment analysis.

Immune correlation analysis

To analyze the correlation between MESD12 and immune cell
infiltration, stromal, immune, and estimate scores, as well as Tumor
Mutational Burden (TMB) and Microsatellite Instability (MSI) in
LIHC from TCGA, GEO and ArrayExpress database, the R
packages “GSVA”, “immunedeconv”, “estimate”, “ggplot2”,
“pheatmap”, and “ggstatsplot” were used. The analysis involved
eight of the latest algorithms, including ssGSEA, xCell,
CIBERSORT, EPIC, TIMER, MCP-counter, TIMER and
quanTIseq. Additionally, we examined the relationship between
MFSDI12 and 150 marker genes identified for five immune
pathways (chemokine (41), receptor (18), MHC (21),
immunoinhibitor (24), and immunostimulator (46)) (43-45). The
statistical analysis information was visualized by R version 4.3.0.

Single—cell expression analysis

The single-cell RNA sequencing data in.h5 format, along with
the corresponding annotation files, were obtained from the TISCH
database (46). Subsequent bioinformatics analyses were performed
using the MAESTRO and Seurat R packages for data processing and
quality control. Dimensionality reduction and cell clustering were
accomplished through the application of the t-SNE algorithm. In
the analysis of the GSE140228 dataset, transcriptomic profiles from
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41 LIHC specimens were systematically processed, including
normalization, feature selection, and unsupervised clustering to
identify distinct cellular subpopulations. The analytical pipeline
incorporated rigorous quality assessment metrics to ensure data
reliability throughout the computational workflow. The sample
metadata for the single-cell RNA sequencing dataset (GSE140228)
is provided in Supplementary Table S1. While detailed clinical
annotations such as TNM stage and etiology were not available for
this public dataset, the table summarizes critical information
including the patient source, tissue origin (e.g., tumor core,
adjacent liver, blood), and cell type (CD45+ immune cells). This
information is essential for understanding the cellular heterogeneity
and tissue context of the samples analyzed.

Drug sensitivity of MFSD12 in LIHC

The drug sensitivity data were obtained from well-established
and publicly available databases, including the Cancer Therapeutics
Response Portal (CTRP v2.0) (https://portals.broadinstitute.org/
ctrp.v2.1/), the PRISM database (https://www.theprismlab.org/),
and the Genomics of Drug Sensitivity in Cancer (GDSC) database
(https://www.ancerrxgene.org/). Spearman’s rank correlation
analysis was performed to evaluate associations between gene
expression and the sensitivity of 217 pharmacological
compounds, including kinase inhibitors, epigenetic regulators,
and chemotherapeutic agents. All computational analyses were
conducted in R version 4.3.0 using the tidyverse package for data
manipulation, pRRophetic for drug response prediction, and
ComplexHeatmap for generating visual representations (47).

Tissue samples and immunohistochemistry

Nineteen pairs of LIHC and adjacent liver tissues were collected
from Ganzhou Cancer Hospital, with the study protocol reviewed
and approved by the Ethics Committee (Reference No.
2025Kelunshen121). Patient diagnoses were confirmed through
histopathological analysis. Detailed clinical data are presented in
Supplementary Table S2. Inclusion criteria comprised histologically
confirmed LIHC and complete clinical data, while exclusion criteria
included ambiguous pathological diagnoses, incomplete clinical
characteristics, and prior treatment with more than three lines of
drug therapy. Initially, the tissue samples were fixed in 10%
formalin, embedded in paraffin, sectioned to a thickness
exceeding four millimeters, dewaxed, hydrated, and subjected to
antigen retrieval (1:100; Boster, China). Subsequently, sections were
treated with a secondary antibody conjugated to horseradish
peroxidase (ZSGB-Bio, China), followed by staining with 3,3’-
diaminobenzidine (DAB) and hematoxylin. The integrated optical
density (IOD) for each section was quantified using Image-Pro Plus
6.0 software (Media Cybernetics, USA), based on images captured
from each slice.
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Cell culture

Human hepatocellular carcinoma HEP3B2.1-7 cell line were
purchased from Sangon Biotech (Shanghai, China). HEP 3B2.1-7
cells were cultured in grown in MEM (Procell, PM150410)
supplemented with 10% fetal bovine serum (FBS, Gibco, USA),
with additional 1% penicillin/streptomycin (Solarbio, China) at
37°C humidified incubator containing 5% CO?>.

siRNA transfection
The small interfering RNA (siRNA) sense used were as follows:

siMFSD12-Homo-578: sense:5’-GCCCGUUCAUCGUG
AUCUUTT-3’, antisense:5- AAGAUCACGAUGAA
CGGGCTT-3.

siMFSD12Homo-1407: sense:5-GAGCUUCUUGGAUAA
GGUGTT-3’, antisense:5- UCAUUUGGAUACAGGA
CCCTT-3.

siMFSD12-Homo-1198: sense:5-GGGAGGAACAUGACCU
ACUTT-3’, antisense:5’- AGUAGGUCAUGUUCC
UCCCTT -3’.

siMFSD12-Homo-1021: sense:5-GUGGGCAUACUGUACA
UGATT-3’, antisense:5’- UCAUGUACAGUAUGCC
CACTT-3.

The sense of negative control RNA (NC) was as follows:

siNC: sense:5’-UUCUCCGAACGUGUCACGUTT-3’,
antisense:5’- ACGUGACACGUUCGGAGAATT -3’.

HEP 3B2.1-7 cells were seeded in 6-well plates 1 day prior to
transfection and cultured until reaching 80-90% confluence. Cells
were transfected with siRNA or NC using Lipofectamine
transfection reagent (KeyGEN, China) following the
manufacturer’s protocol. Total RNA and protein were extracted
24 hours post-transfection for subsequent analyses. Subsequently,
we established six experimental groups for the forthcoming study:
CTRL (HEP 3B2.1-7 cells without additional treatment), siNC, si-
MESDI12-1 (siMFSD12-Homo-578), si-MESD12-2 (siMFSD12-
Homo-1407), si-MFSD12-3 (siMFSD12-Homo-1198), and si-
MESD12-1 (siMFSD12-Homo-1021). The siRNA sequence
identified as the most effective, si-MFSD12-3, was subsequently
chosen for further functional assays.

Real-time fluorescence quantitative PCR
Total RNA was extracted utilizing the RNA Isolater Total RNA

Extraction Reagent (VAZYME), following the manufacturer’s
instructions. Subsequently, RNA was reverse transcribed into
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complementary DNA (cDNA) using the HiScript® II Q RT
SuperMix for qPCR (+gDNA wiper) (VAZYME). Each ¢cDNA
sample was then subjected to analysis using the ChamQ SYBR
qPCR Master Mix (VAZYME). The relative gene expression levels
were determined using the 2A-AACT method. The primer
sequences used were as follows:

MFSD12: forward, 5-CACCCAAGACATCAGCATC-3’;
reverse, 5-TGGAATAGCAGTGAGAACA-3’, 111bp.

GAPDH: forward, 5-ATGGGGAAGGTGAAGGTCGGAGT-
3’; reverse, 5- TAGTTGAGGTCAATGAAGGGGTC-3’.

Western blot analysis

Following transfection, the cells underwent two washes with
PBS and were subsequently lysed on ice using RIPA lysis buffer.
Protein concentrations were quantified employing the BCA protein
assay kit (GBCBIO, China). The samples were then subjected to
separation via 10% SDS-PAGE and transferred onto a nitrocellulose
membrane (Biofroxx, Germany). Membranes were blocked with 5%
skim milk for two hours and incubated overnight at 4 °C with
primary antibodies. The membranes were washed three times with
TBST for 10 minutes each. Subsequently, they were incubated with
an HRP-conjugated goat anti-mouse IgG antibody (1:10000, Boster,
China). The membranes were washed again in the same manner
and developed. The primary antibodies utilized in the Western blot
analysis included: anti-rabbit MFSD12 (1:1000, Boster, China),
anti-mouse GAPDH (1:30000, Proteintech, China), anti-rabbit E-
cadherin (1:40000, Proteintech, China), anti-mouse Vimentin
(1:40000, Proteintech, China), anti-rabbit MMP2 (1:1000, BIOSS,
China), anti-rabbit MMP9 (1:1000, Affinity, China), anti-rabbit
LGALS9 (1:1000, Abmat, China), and anti-rabbit HAVCR2
(1:1000, Boster, China).

Cell proliferation assay

Cell proliferation was assessed utilizing the CCK-8 assay kit
(HYCEZMBIO, China). Post-transfection, cells were plated in 96-
well plates at a density of 3000 cells per well. Subsequently, 10 uL of
CCK-8 solution was introduced to each well at various time
intervals (24 hours, 36 hours, and 48 hours), followed by
incubation at 37 °C for 1 hour. The optical density (OD) of each
well was determined at a wavelength of 450 nm using a microplate
reader (Thermo Scientific, USA).

Transwell migration and invasion assay

A 24-well Transwell chamber equipped with 8 um pore size
membranes (Corning, USA) was prepared with 100 UL of Matrigel
(Corning, USA). A serum-free medium containing transfected cells
(HEP 3B2.1-7, 6x10* cells per well) was added to the upper inserts,
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while the lower chambers were filled with 600 uL of medium
supplemented with 20% FBS. Following a 24-hour incubation
period, the lower chambers were fixed with 4% paraformaldehyde
for 60 minutes and subsequently stained with 0.5% crystal violet for
20 minutes. Images from five high-power fields per membrane were
captured to quantify the number of migrating or invading cells.

Statistical analysis methods

The statistical analyses were conducted using R software
(version 4.3.0), incorporating multiple analytical approaches to
evaluate the data. Fold-change (FC) and hazard ratio (HR)
metrics were calculated, along with P-values derived from Log-
rank tests. Correlation assessments were performed using both
Spearman and Pearson methods, while group comparisons were
analyzed through Wilcoxon tests, t-tests (for two-group
comparisons), and one-way ANOVA (for multiple-group
comparisons). Survival outcomes were assessed via Kaplan-Meier
curves and log-rank tests, with statistical significance defined as
p < 0.05. In graphical representations, significance levels were
denoted by asterisks: * (P < 0.05), ** (P < 0.01), *** (P < 0.001),
and *** (P < 0.0001).

Results

Evaluation of MFSD12 mRNA expression
and its association with clinical parameters
in LIHC

The study design flowchart is shown in Figure 1. To
comprehensively characterize the pan-cancer mRNA expression
profile of MFSD12, transcriptomic data from 33 cancer types
were sourced from TCGA database, while corresponding normal
tissue data were obtained from the GTEx database. A comparative
analysis of MFSD12 differential expression between malignant and
normal tissues was conducted across all cancer types. The analysis
demonstrated that MFSD12 mRNA expression was significantly
elevated in the majority of cancer tissues relative to normal tissues
(Figure 2A). This elevated expression pattern was notably observed
in adrenocortical carcinoma (ACC), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC),
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD),
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
esophageal carcinoma (ESCA), glioblastoma (GBM), head and
neck squamous cell carcinoma (HNSC), kidney papillary cell
carcinoma (KIRP), stomach adenocarcinoma (STAD), kidney
renal clear cell carcinoma (KIRC), lower grade glioma (LGG),
liver hepatocellular carcinoma (LIHC), ovarian serous
cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),
pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), and
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skin cutaneous melanoma (SKCM), testicular germ cell tumors
(TGCT), and uterine corpus endometrial carcinoma (UCEC), as
well as uterine carcinosarcoma (UCS). Conversely, in kidney
chromophobe (KICH), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), and thyroid carcinoma
(THCA), MFSD12 expression was lower in cancer tissues than in
the corresponding normal tissues. Subsequently, we examined the
expression of MFSDI12 in LIHC and its associations with various
clinical parameters. Analysis of tumor samples from the TCGA-
LIHC cohort revealed significantly elevated MFSDI12 expression
compared to adjacent normal tissues (P < 0.001) (Figure 2B). This
pattern of overexpression was further validated in the combined
TCGA and GTEx dataset, where it remained statistically significant
(P < 0.001). Clinical correlation analyses demonstrated notable
associations between MFSDI12 expression and LIHC clinical

Frontiers in Immunology

07

parameters (Figure 2C). Gender-specific stratification indicated a
male-predominant overexpression in the TCGA-LIHC cohort
(P = 0.033) and a female-predominant overexpression in the
GSE76427 dataset (P = 0.0025). Furthermore, higher MFSD12
expression was associated with lower alpha-fetoprotein (AFP)
levels in the GSE14520 cohort (P = 0.038) and was correlated
with a history of alcohol consumption in the GSE116174
cohort (P = 0.0097).

In addition, analysis of GSE196434 revealed that MFSDI12
expression showed differential patterns before and after
treatment, with variations observed across gender groups
(Supplementary Figure S1). These results may partly explain the
discrepancies in gender-associated expression trends observed
between TCGA-LIHC and GSE76427 cohorts, possibly due to
differences in baseline clinical characteristics and treatment status.
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FIGURE 2

The mRNA expression analysis of MFSD12 and Its association with Clinical Features. (A) Differential expression analysis of MFSD12 between pan-
cancer tissues and adjacent normal tissues in TCGA and GETx database. (B) Differential expression analysis of MFSD12 between tumor tissues and

normal tissues in LIHC based on TCGA and GETx database. (C) Association
**P < 0.01, ***P < 0.001, ****P < 0.0001. MFSD12, Major Facilitator Superfa

of MFSD12 expression with clinical parameters in LIHC. *P < 0.05,
mily Domain-containing 12; LIHC, liver hepatocellular carcinoma; TCGA,

The Cancer Genome Atlas; GEO, Gene Expression Omnibus, AFP, Alpha-fetoprotein. "ns” stands for "not significant”.

MFSD12 protein expression analysis in
public database and vitro experimental
validation

To corroborate the aforementioned findings, an analysis was
conducted utilizing the HPA database. The investigation revealed
that the majority of cancerous tissues exhibited weak to moderate
positivity in both nuclear and cytoplasmic compartments
(Figure 3A). Notably, specific instances of carcinoid tumors,
melanomas, COAD, and LIHC exhibited pronounced
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immunoreactivity, as evidenced by the strong and moderate
positivity observed in two LIHC patients, as illustrated in
Figure 3A. In contrast, normal liver tissues displayed no
expression of the MFSD12 protein. Additionally, IHC analysis
was performed to assess MFSD12 expression in 19 pairs of LIHC
tumor tissues and their corresponding adjacent normal tissues. The
IHC staining analysis indicated that MFSD12 proteins were
predominantly localized within the cytoplasm of LIHC cells, with
brown staining denoting positive expression (Figure 3B). In normal
tissues, MFSD12 proteins were either weakly expressed or not
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expressed. Subsequent to immunohistochemical analysis, it was
determined that MFSDI12 protein levels, as quantified by the
integrated optical density (IOD) value, were significantly elevated
in LTHC tissues compared to adjacent non-tumor tissues (P < 0.05)
(Figure 3C). To further validate the differential expression of
MESD12, we analyzed the GSE213797 dataset. Consistent with
our previous findings, the expression level of MFSD12 was
significantly altered following a specific intervention (Post)
compared to the baseline state (Pre) (Supplementary Figure S2),
reinforcing the dynamic regulation of MFSDI12 in LIHC-related
conditions. To statistically evaluate the consistency between our
THC results and the HPA database, two pathologists independently
scored the samples in a blinded manner. A Kappa consistency test
showed substantial agreement between the two evaluations (Kappa
value = 0.75, p < 0.001), validating the reliability of our protein
expression findings.

Prognostic significance of MFSD12
expression in pan-cancer and LIHC

Now that we have identified the aberrant expression of MESD12
in LIHC, we next analyzed the relationship between MFSD12
expression and the prognosis of LIHC. We first performed
univariate Cox regression analysis across 33 cancer types, which
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indicated that high MFSD12 expression was significantly associated
with poorer overall survival (OS) in ACC (HR = 3.33, p = 4.09¢-03),
LAML (HR = 1.99, p = 1.73e-03), LGG (HR = 2.03, p = 1.33e-04),
LIHC (HR = 1.62, p = 7.22e—03), LUAD (HR = 1.48, p = 8.61e-03),
MESO (HR = 1.85, p = 1.04e-02), and OV (HR = 1.33, p = 2.92¢
—02), whereas it inversely correlated with favorable OS in ESCA
(HR = 0.573, p = 2.69e-02), KIRP (HR = 0.548, p=5.50e-02),
and UCBC (HR = 0.632, p=3.21e-02)(Figure 4A). In LIHC
(Figures 4B-D), high MFSD12 expression predicted worse clinical
outcomes: OS (HR = 1.62, p = 0.007), Progression-free survival
(PFS) (HR = 1.38, p = 0.032), Disease-free survival (DFS)
(HR = 1.41, p = 0.041). Univariate Cox regression identified high
MFSD12 expression as a significant risk factor for OS (HR = 1.585,
p = 0.009), which remained significant in multivariate analysis
adjusting for pathologic T stage, AFP level, and age (HR = 1.448,
p = 0.040), with pathologic T stage (T3/T4 vs. T1/T2) serving as an
independent prognostic factor (p < 0.001) (Figure 4E). This
multivariate analysis adjusted for key prognostic factors available
in the dataset. We acknowledge that other important clinical
variables such as liver cirrhosis status and etiology could further
refine the prognostic model; however, consistent data for these
parameters were not available for the entire cohort. The time-
dependent receiver operating characteristic (ROC) analysis was
performed to evaluate the predictive accuracy of MFSD12 for
patient survival at 1, 3, and 5 years. In the TCGA-LIHC cohort,
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FIGURE 4

Prognostic significance of MFSD12 expression across cancers and validation in LIHC Cohorts. (A) A pan-cancer Cox regression analysis was
performed to assess MFSD12 expression. (B) OS analysis of MFSD12 in TCGA-LIHC data. (C) PFS analysis of MFSD12 in TCGA-LIHC data. (D) DFS
analysis of MFSD12 in TCGA-LIHC data. (E) The prognostic significance of MFSD12 expression in LIHC patients was evaluated through both
univariate and multivariate analyses. (F-H) Independent validation using external GEO cohorts corroborated the prognostic significance of MFSD12
in LIHC. AUC, Area Under Curve; Cl, Confidence Interval; DFS, Disease-Free Survival; GEO, Gene Expression Omnibus; HR, Hazard Ratio; LIHC, Liver
Hepatocellular Carcinoma; OS, Overall Survival; PFS, Progression-Free Survival; RFS, Relapse-Free Survival; ROC, Receiver Operating Characteristic;
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the area under the curve (AUC) values were 0.61, 0.58, and 0.65 for
1, 3, and 5 years, respectively. Similar analyses in the GEO cohorts
(GSE116174, GSE144269, GSE14520, GSE76427) yielded varying
AUC values across different time points (Supplementary Figure S3),

MFSDI12. Validation analyses using three independent GEO
datasets (GSE54236, GSE14520, GSE76427) consistently showed
that patients with high MFSD12 expression had shorter median OS
than low-expression groups (p < 0.05) (Figures 4F-H). Bootstrap

providing a comprehensive assessment of the predictive power of  validation consistently confirmed the prognostic significance of
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TCGA, The Cancer Genome Atlas; WES, Whole Exome Sequencing.

MFSD12 across independent LIHC cohorts, with hazard ratios
remaining stable across resampled datasets (Supplementary Figure
S4). We further validated the prognostic value of MFSD12 across
multiple independent GEO cohorts. Kaplan-Meier survival analysis
demonstrated that high MFSDI12 expression was consistently
associated with poorer overall survival in datasets GSE116174
(P = 0.43), GSE144269 (P = 0.19), GSE14520 (P = 0.087), and
GSE76427 (P = 0.099) (Supplementary Figure S5). Although the
statistical significance varied among cohorts, the trend towards
worse survival in the high-expression group was evident,
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underscoring the potential of MFSDI12 as a robust prognostic
marker in LTHC.

Genomic alterations and protein
interaction networks of MFSD12 in LIHC

To further investigate the role of MFSD12 expression in LIHC,
we analyzed the genetic mutation status of MFSD12 in LIHC as well
as its associations with other proteins. Comprehensive genomic
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profiling uncovered low somatic mutation rates of MFSD12 across
over 20 cancer types, with missense mutations emerging as the
predominant variant type (e.g., LIHC: 0.3%, GBM: 1.3%, SKCM:
2.9%, COAD: 2.5%) (Figure 5A). Structural characterization using
lollipop plots revealed that MFSD12 mutations were primarily
localized to the PRK10429 domain and MFS_2 transporter motif.
Notably, in LIHC, the somatic missense mutation rate was 0.3%,
with no nonsense or frameshift mutations identified (Figure 5B).
Given the exceptionally low somatic mutation rate of MESD12
(0.3%) in the LIHC cohort, a meaningful statistical analysis
stratifying mutation frequency by clinical stage (e.g., Stage I-IV)
and assessing its association with disease progression using Fisher’s
exact test was not feasible. The limited number of mutation events
precludes a robust stratification analysis, indicating that the
prognostic role of MFSDI2 in LIHC is driven primarily by its
expression levels rather than by genetic alterations. Copy number
variation (CNV) analysis in LIHC demonstrated a predominance of
neutral CNVs (328/367 samples), with infrequent copy number
losses (33 samples) and gains (6 samples). These CNVs exhibited a
weak correlation with mRNA expression levels (Figure 5B).
Oncoplot analysis further confirmed that MFSD12 mutations
were infrequent and did not co-cluster with high- or low-
expression states, suggesting that its prognostic role in LIHC is
likely driven by expression rather than coding sequence alterations
(Figure 5C). Among these genetic alterations, missense mutations
represented the predominant variant classification. At the
nucleotide level, single nucleotide polymorphisms (SNPs) were
the most prevalent mutation type, with T>G substitutions
emerging as the most frequent among all single nucleotide
variants (SNVs) (Figure 5D). The top 10 mutated genes displayed
distinct mutation frequencies: TTN (28%), TP53 (25%), CTNNBI1
(24%), MUC16 (16%), PCLO (11%), ALB (11%), RYR2 (9%),
ABCAI13 (9%), MUC4 (10%), and APOB (9%) (Figure 5D). In
LIHC, comparative analysis between high- and low-MFSD12
expression groups revealed distinct somatic mutation landscapes.
The top mutated genes in both groups included TP53, TTN, and
CTNNBI, whereas MFSD12 mutation rates remained low and
showed no significant difference between expression groups
(Figures 5C, E). Genes such as TP53, CTNNBI, and AXIN1
exhibited significant differences in mutation frequencies between
high- and low-MFSD12 expression groups. Additionally, genomic
regions including 19p13.12 (gains) and 3pl3, 10q26.13, 14q23.3,
17p13.1, and 19p13.3 (losses) displayed significant disparities in
copy number gains/losses between high- and low-MFSD12
expression tumors (Figure 5E). Using the STRING and
GeneMANTIA platforms, we constructed comprehensive
functional interaction networks to elucidate the molecular
landscape of MFSD12. STRING analysis revealed a 32-node
protein-protein interaction (PPI) network primarily composed of
phylogenetically conserved transporters and metabolic enzymes,
including multiple members of the Major Facilitator Superfamily
(MESD9, MESD10, MFSD13A, MFESD14A, MFSD14B, MESD5,
MEFSD6, MFSD8, MFSD11), glycolytic regulators (GAPDH,
GAPDHS, TK1, TYMS), and transmembrane ion channels
(SLC45A2, TPCN2) (Figure 5F). Notably, physical interactors also
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included pigmentation-related proteins (MCIR, OCA2, SLC24A5),
implicating potential roles in cellular homeostasis and nutrient
transport. GeneMANIA analysis further partitioned these
interactions into distinct functional modules: physical associations
(SYPL2, TMEM138, SNX13), co-expression networks (HMG20B,
STCI, TP53), and genetic interactions (epistasis; SI00A1, SLC19A1,
NRIP3) (Figure 5G). Pathway enrichment analysis demonstrated
significant overrepresentation in biological processes including
glycolytic flux (GAPDH, PFKL), redox regulation (SLC45A2,
MCIR), and cell cycle checkpoint control (CDKN2A, TRIB3).
Structural domain characterization identified conserved
transmembrane motifs shared between MFSD12 and its
interacting partners (UNC93A, ASIP, CTNS), suggesting
evolutionary conservation of its transport function. Collectively,
these networks position MFSD12 as a hub node integrating
metabolic signaling with stress response pathways, orchestrating
crosstalk among transporters, epigenetic regulators, and oncogenic
effectors. The modular architecture of these interactions provides
mechanistic insights into MFSD12-mediated tumor progression,
likely through coordinated regulation of nutrient homeostasis and

cellular stress resilience.

DNA methylation analysis of MFSD12 in
LIHC patients

DNA methylation plays a crucial role in the process of LIHC. In
this study, we conducted a comprehensive analysis of the
methylation status of each site within the MFSDI12 gene,
examining the correlation between MFSD12 methylation status,
transcriptional expression, and clinical characteristics using the
EWAS Data Hub and SMART APP. We also assessed its
prognostic significance for survival in affected individuals. Our
findings revealed a total of 35 CpG methylation sites within the
GCN1 region (Figures 6A, B), with significantly reduced MESD12
methylation levels observed in tumor tissue samples compared to
normal tissues (Figure 6C). This trend was evident in 15 individual
CpG sites (cgl7427615, cg01589153, cg18415485, etc.) (Figure 6D).
Then we conducted an analysis of the correlation between MESD12
expression and its methylation status. Among 12 individual CpG
sites, cg01433420, cg07564563, cg08035555, cgl12946225,
cgl14034476, cgl7427615, cgl19584038, and cg26168358
demonstrated a significant negative correlation between their
methylation levels and MFSD12 expression. This strong negative
correlation, particularly at sites within the promoter region (e.g.,
cgl7427615), suggests that hypermethylation likely suppresses
MFSDI12 transcription, potentially by inhibiting the binding of
activating transcription factors or by promoting a repressive
chromatin state. Consequently, the widespread hypomethylation
observed in LIHC tumors provides a plausible epigenetic
mechanism for the upregulation of MFSDI12 expression,
contributing to its oncogenic role. In contrast, cg04180125,
cg05261702, cgl8415485, and ¢g26002659 exhibited a positive
correlation between their methylation levels and MFSD12
expression. The aggregated methylation values were significantly
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DNA methylation analysis of the MFSD12 genomic features in LIHC. (A) The chromosomal localization of MFSD12 within the human genome. (B) The
genomic architecture of MFSD12 and its adjacent regions. (C) The dynamics of promoter methylation in LIHC and normal liver tissues. (D) MFSD12
methylation levels in tumor tissue samples compared to normal tissues. (E) Analysis of the correlation between MFSD12 expression and its
methylation status. (F) The identification of tumor stage-specific methylation alterations. (G) The relationship between MFSD12 individual CpG site
methylation values and CNV status (deep deletion, loss, neutral, gain, amplification). (H) The association of MFSD12 methylation with patient survival
outcomes. ***P < 0.001. CpG, Cytosine-phosphate-Guanine dinucleotide; LIHC, Liver Hepatocellular Carcinoma; TCGA, The Cancer Genome Atlas;
TNM, Tumor-Node-Metastasis staging system.

negatively correlated with MFSD12 expression (Figure 6E).
Furthermore, we analyzed DNA methylation levels at specific
CpG sites within the MFSD12 gene across various stages of
cancer (Stage I to Stage IV). We found that MFSD12 DNA
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methylation levels were highest in Stage I and decreased
progressively, reaching their lowest in Stage IV (Figure 6F). This
progressive loss of methylation with advancing disease stage further
underscores the dynamic nature of MFSDI12 epigenetic regulation
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during LIHC progression and suggests that demethylation may be
associated with more aggressive tumor behavior. Additionally, we
examined the relationship between MFSD12 individual CpG site
methylation values and CNV. We discovered a significant positive
relationship between the -2 (homozygous deletion) CNV and the
methylation values of individual CpG sites within MFSD12
(Figure 6G). Finally, we conducted an analysis of the correlation
between each methylation site of MFSD12 and the prognosis of
patients with LTHC. Our findings, presented in Figure 6H, identified
one methylation site (CG04080125) associated with an unfavorable
prognosis and two sites (CG20462845, CG11403338) associated
with a favorable prognosis.

Enrichment analysis of genes co
—expressed with MFSD12 in LIHC

We employed GSEA tools to conduct KEGG pathway and GO
analyses of MFSD12 using GO, HALLMARK, and KEGG gene sets.
The GO analysis indicated significant enrichment of biological
processes related to immune response and cell cycle regulation,
including immune response, immune system process, regulation of
immune system process, and defense response (Figures 7A). The
cellular component (CC) analysis demonstrated that MFSD12 was
associated with both intracellular and extracellular components, with
enrichment in elements such as cytoplasmic vesicle and cell
periphery. Furthermore, MFSD12 was linked to specific molecular
functions (MF), with pathways enriched in functions such as protein
binding and enzyme regulator activity. The GSEA-KEGG analysis
revealed a strong positive enrichment signature in several pathways,
notably including cytokine-cytokine receptor interaction, chemokine
signaling pathway, osteoclast differentiation, phagosome, natural
killer cell-mediated cytotoxicity, antigen processing and
presentation, T cell receptor signaling pathway, and cell adhesion
molecules (CAMs) (Figures 7B). The significant enrichment of
immune-related pathways, particularly “cytokine-cytokine receptor
interaction” and “chemokine signaling pathway”, was highly relevant
to the LIHC microenvironment. These pathways were central to the
recruitment and function of tumor-associated macrophages (TAMs)
and other immunosuppressive cells, which were key players in LIHC
progression and immunotherapy resistance. This suggested that
MFSD12 might promote immunosuppressive TME by modulating
these critical communication networks. Conversely, the negative
enrichment in general metabolic pathways aligned with the
metabolic reprogramming that was a hallmark of liver cancer.
Simultaneously, a significant positive enrichment was observed in
pathways associated with immune-disease-associated pathways,
including rheumatoid arthritis, Staphylococcus aureus infection,
leishmaniasis, toxoplasmosis, allograft rejection, and autoimmune
thyroid disease. Conversely, a broad and pronounced negative
enrichment was predominant in metabolic pathways, with the most
substantial enrichment noted in general metabolic pathways. These
findings suggested that MFSD12 was closely linked to immune
activation and inflammatory processes within the LIHC
microenvironment, while also being associated with a marked
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downregulation of core metabolic functions and DNA maintenance
mechanisms. Figures 7C, D provided a detailed illustration of the
Enrichment Scores from the GSEA-GO and GSEA-KEGG
analyses, further corroborating the results presented in the
aforementioned figure.

Moreover, the GSEA-Hallmark analysis revealed significant
enrichment across a diverse array of pathways, as illustrated in
Figures 7E. Pathways such as “Interferon gamma response”,
“Allograft rejection” and “Inflammatory response™ demonstrated
positive enrichment, indicating an upregulation of these pathways,
which are essential for immune response and inflammation. In
contrast, pathways such as “Wnt beta catenin signaling” and
“Androgen response” exhibited negative enrichment, suggesting a
downregulation that may reflect the inhibitory effects of MESD12
on these signaling cascades. This comprehensive analysis
highlighted the complex role of MFSD12 in LIHC, affecting
both immune responses and cellular signaling, which could
have implications for disease progression and potential
therapeutic targets.

The correlations between expression levels
of MFSD12 and immune cell infiltration in
LIHC

In LIHG, the expression patterns of MFSD12 were significantly
associated with clinical characteristics, whereas tumor-infiltrating
lymphocytes serve as independent predictors of key clinical
parameters, including tumor stage, grade, and lymph node status.
The tumor microenvironment, comprising tumor cells, stromal
cells, and immune infiltrating cells, plays a pivotal role in cancer
progression. To further explore this relationship, we conducted an
analysis using data from TCGA to assess the association between
MFSD12 expression levels and immune cell infiltration in LIHC.
Utilizing the “ESTIMATE” function within the R package, we
examined the correlations between immune scores, estimate
scores, stromal scores, and MFSD12 expression in LIHC. Our
analysis demonstrated a positive correlation between MFSDI12
expression and the estimate score (R = 0.238, P = 4.1e — 06), the
immune score (R = 0.255, P = 7.9¢ - 07) and the stromal score
(R =0.176, P = 6.8¢ — 04), suggesting its potential involvement in
augmenting stromal and immune activities (Figure 8A).

Next, we examined MFSD12 expression across 33 cancer types
and its impact on 24 immune cell types, revealing distinct
immunomodulatory patterns (Figure 8B). MFSD12 positively
correlated with effector lymphocytes and myeloid cells, especially
Tem cells (notably in THYM, KIRC, LIHC), macrophages (TGCT,
UCEC, SKCM), and iDCs (LGG, PRAD, KICH). Conversely, it
negatively correlated with immunosuppressive elements,
particularly Th17 cells (UVM, DLBC, KIRC) and eosinophils
(CHOL, THCA, STAD). Over 78% of cancer types showed
significant associations with Tem cells, macrophages, and iDCs,
while Th17 cells had pan-cancer inverse relationships. Tissue-
specific trends were noted, with LIHC showing strong dual
regulatory effects, whereas brain tumors GBM, LGG had weaker
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correlations. NK cell subsets varied by cancer type, with CD56bright
cells positively correlating in BRCA and OV but negatively in
COAD and LUSC. The persistent occurrence of asterisks
underscored the universal role of MFSD12 in macrophage
recruitment, as evidenced by its positive association in 31 out of
33 cancer types, and in the suppression of Thl7 cells, with a
negative correlation observed in 29 out of 33 cancers. This
established MFSD12 as a conserved regulator of tumor-associated
immunity. Figure 8C illustrated the comparison of immune cell
proportions stratified by MFSD12 expression low and high levels in
TCGA_LIHC. The analysis revealed that high MFSD12 expression
was associated with increased proportions of M2 macrophages,
monocytes, and CD8 T cells, while it correlated with decreased
proportions of resting NK cells, naive B cells, and neutrophils.
Furthermore, we conducted a comprehensive analysis of immune
cell infiltration using the single-sample Gene Set Enrichment Analysis
(ssGSEA) algorithm to examine the associations between MFSD12
expression and 24 immune cell subtypes (Figure 8D). Our findings
revealed a spectrum of relationships, ranging from strong positive to
strong negative correlations. MFSD12 exhibited moderate positive
correlations with effector memory T cells (Tem, R = 0.298, P < 0.001),
macrophages (R = 0.256, P < 0.001), and immature dendritic cells
(iDC, R = 0.254, P < 0.001), suggesting co-enrichment within the
tumor microenvironment. Additional associations were noted with
follicular helper T cells (TFH, R = 0.227, P < 0.001), Th2 cells
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(R =10.200, P < 0.001), and activated dendritic cells (aDC, R = 0.180,
P < 0.001). In contrast, moderate negative correlations were observed
with Th17 cells (R = -0.288, P < 0.001) and eosinophils (R = -0.225,
P < 0.001), indicating mutual exclusion. Non-significant associations
(P > 0.05) were found with CD8+ T cells (R = 0.007), regulatory T
cells (Treg, R = -0.010), and neutrophils (R = -0.041), underscoring
the specificity of MFSD12’s immunomodulatory effects. To enhance
the validation of our findings, we utilized a range of immune
infiltration analysis tools, namely EPIC, ESTIMATE, TIMER,
MCP-Counter, QuanTIseq and XCELL, across several genomic
datasets, including GSE144269, GSE76427, GSE104580,
GSE116174, GSE14520, TCGA_LIHC, E_TABM_36, GSE54236,
and GSE109211. The application of these algorithms to diverse
genomic datasets collectively demonstrated a robust concordance in
characterizing the tumor immune microenvironment, thereby
reinforcing the consistency of our observations across various
computational frameworks (Figure 8E).

To assess the consistency of immune infiltration estimates
derived from different computational methods, we calculated the
Spearman correlation coefficients between results from the ssGSEA
and CIBERSORT algorithms. As shown in Supplementary Figure
S6, moderate to strong correlations were observed for several
immune cell types, such as Neutrophils (R = 0.37) and Tregs
(R = 0.38). This analysis confirms the reliability of our immune
infiltration estimates despite methodological differences.
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Immune regulatory genes, and immune
checkpoints analysis of MFSD12 in LIHC

The effectiveness of immune checkpoint blockade (ICB) therapy
is determined not only by the infiltration of immune cells but also
by the presence of immune checkpoints and the expression of
immune regulatory genes. In further continuation, we performed a
comprehensive analysis of the correlations between the
mRNA expression levels of MFSD12 and various immune-related
genes, including chemokines, chemokine receptors, major
histocompatibility complex (MHC) molecules, immunoinhibitors,
and immunostimulators, across 32 different cancer types from
TCGA (Figure 9A). MFSD12 demonstrated predominantly positive
correlations across multiple cancer types, with distinct clusters
indicating significant associations in specific cancers. Notably, in
LIHC, the expression of MESD12 was almost universally positively
correlated with immune-related genes. Numerous transcripts related
to immunological checkpoints, including SIGLEC15, PDCDI1LG2
(PD-L2), TIGIT, PDCD1 (PD-1), CD274 (PD-L1), CTLA4, LAG3,
and HAVCR2 (TIM3), are integral to tumor immune evasion
mechanisms. Within the TCGA-LIHC cohort, the expression of
MFSD12 demonstrated highly significant positive correlations with
the transcript levels of these immune-checkpoint molecules
(Figure 9B). Notably, HAVCR2 (TIM-3) exhibited the strongest
association, suggesting a predominant co-regulation of this T-cell
exhaustion marker. The B7/CD28 family inhibitors, PD-L1 (CD274)
and PD-L2 (PDCDI1LG2), displayed nearly equivalent correlations,
which were mirrored by the immunoglobulin superfamily regulators
TIGIT and LAG3. Additionally, associations were observed for
CTLA4 and PD-1, whereas IGSF8 and SIGLEC15 showed non-
significant correlations.

To substantiate our findings, we conducted a systematic analysis
of the correlations between MFSD12 expression and 137 immune
regulators across five functional categories: antigen presentation,
chemokines, immunoinhibitors, immunostimulators, and
receptors. This analysis was performed using nine independent
cohorts, including TCGA-LIHC and GSE14520, among others
(Figure 9C). The principal findings revealed a predominant
positive correlation of immunosuppressive checkpoints, with
HAVCR2 exhibiting the strongest correlation, followed by
VTCNI (B7-H4) and CD274 (PD-L1). Interestingly, LGALS9, the
ligand of HAVCR2, showed a strong positive correlation with
MESD12. These results suggested a significant involvement in T-
cell exhaustion pathways. Positive correlations were consistently
observed with immune-related genes, thereby reinforcing the
robustness of our observations. These findings implied that
MFSD12 may play a pivotal role in modulating the tumor
immune infiltration microenvironment in LIHC.

Single-cell RNA sequencing analysis of
MFSD12 expression

To investigate the cellular distribution and transcriptional
regulation of MFSDI12, we conducted single-cell RNA sequencing
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(scRNA-seq) analysis on LIHC tissues and adjacent normal liver
tissue. The application of Uniform Manifold Approximation and
Projection (UMAP) for dimensionality reduction revealed distinct
clustering of major cell types, including CD4+ conventional T cells
(CD4T_conv), exhausted CD8+ T cells (CD8T_exhausted),
proliferating T cells (T_prolif), regulatory T cells (Treg), natural
killer (NK) cells, B cells, dendritic cells (DCs), monocytes/
macrophages (Mono/Macro), mast cells, innate lymphoid cells, and
plasma cells (Figure 10A). Within the UMAP landscape, MFSD12
expression was spatially restricted, with discrete cell clusters exhibiting
elevated transcript levels (Figure 10B). Quantitative analysis
demonstrated that MFSD12 was most abundantly expressed in
innate lymphoid cells (ILCs), monocytes/macrophages, DCs, mast
cells, T_prolif, and Treg, followed by CD4+ conventional T cells and
exhausted CD8+ T cells, with minimal expression observed in typical
CD8+ T cells, B cells, and NK cells (Figure 10C). To enhance our
understanding of the anatomical distribution of MFSD12-expressing
cells, we mapped the identified clusters to their respective tissue
origins, including the tumor core, tumor edge, adjacent normal
tissue, and blood. Our findings indicated that cells with high
MEFSD12 expression were predominantly localized within the tumor
core and edge, while exhibiting a sparse distribution in normal tissues
and blood (Figure 10D). Within tumor subtypes, MFSDI12 expression
was notably enriched in LIHC compared to cholangiocarcinoma (CC)
and normal controls, suggesting a subtype-specific regulatory
mechanism (Figure 10E). A heatmap analysis of G1/S and G2/M
phase marker genes revealed significant positive associations between
MESD12 expression and genes involved in the G1/S and G2/M phases
within the T_prolif cell type (Figure 10F). Quantitative analysis of cell
types confirmed that CD8+ typical T cells constituted the most
abundant subset, followed by CD8+ exhausted T cells and
monocytes/macrophages (Figure 10G). Finally, an examination of
MESD12 expression across immune cell types in normal,
cholangiocarcinoma, and LIHC tissues demonstrated that innate
lymphoid-normal cells exhibited the highest levels of MFSD12
expression, whereas other normal cells showed lower expression
levels (Figure 10H). In CC and LIHC, Innate lymphoid-CC and
Innate lymphoid-HCC cells exhibited elevated MFSD12 expression.
Although the overall expression levels and cell fractions were
higher than those observed in normal conditions, they differed
across disease states, indicating the presence of context-dependent
regulatory mechanisms. These findings underscored the cell-type-
specific and condition-specific modulation of MFSD12, suggesting its
potential involvement in the dynamics of immune response
during carcinogenesis.

Response to immunotherapy and drug
sensitivity

A comprehensive pharmacogenomic analysis conducted across a
range of datasets (GSE144269, GSE76427, GSE116174, GSE104580,
GSE14520, GSE54236, TCGA_LIHC, E_TABM_36, GSE109211)
and drug screening platforms (CTRP, PRISM, GDSC1, GDSC2)
demonstrated that increased expression of MFSD12 was
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Integrated analysis of the link between MFSD12 expression and immune-related genes. (A) The relationship between the expression levels of MFSD12
and Immune-related genes in pan-cancers; (B) The relationship between the MFSD12 expression levels and immune checkpoints in LUSC.

(C) Relationship between MFSD12 expression and Immune-related genes in LIHC across a range of immune infiltration analysis tools and multiple
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consistently and significantly associated with resistance to a wide  (such as Pilaralisib), BTK inhibitors (such as Ibrutinib), FGFR
array of therapeutic agents (Figures 11A-D). Notably, this included  inhibitors (such as AZD4547), and WNT pathway inhibitors (such
resistance to EGFR inhibitors (such as Afatinib, Erlotinib, Gefitinib, — as WIKI4). Additionally, resistance was observed with various other
Osimertinib, CI-1033), DNA-damaging agents (such as  compounds, including TAF1_5496, MIM1, gamma-aminobutyric
Sepantronium Bromide, Temozolomide), PI3K/mTOR inhibitors  acid (GABA), Bakuchiol, GTS21, NBI-27914, Bafetinib,
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Gemcitabine, Disulfiram, Econazole, Ibuproxam, Benzonatate,
Thiamphenicol, and Radezolid, among others. In contrast, elevated
MFSD12 expression exhibited a robust positive correlation,
indicating increased sensitivity to a range of agents, including
MEK/ERK pathway inhibitors (such as Selumetinib, Trametinib,
Ulixertinib, VX-11e, PD0325901, CI-1040), DNA-damaging agents
(including Dactinomycin, Topotecan, Camptothecin, Bleomycin),
Bcl-2/BCR-ABL inhibitors (such as Navitoclax combinations,
Bosutinib, Dasatinib), proteasome inhibitors (such as Bortezomib
combinations), PI3K/mTOR inhibitors (including Dactolisib,
Temsirolimus, ZSTK474), as well as other compounds like
Cevimeline, Nutlin-3a, Luminespib, PLX-4720, Dabrafenib,
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Staurosporine, PNU-142633, Chlorambucil, Alisertib, and CAL-
101. This highlighted a distinct and opposing pattern of drug
response dependent on MFSD12 expression levels, consistently
observed across all analytical platforms. Survival analysis within the
Hugo cohort (2016, anti-PD-1 therapy) revealed that patients
undergoing anti-PD-1 immunotherapy with high MFSD12
expression experienced significantly better OS compared to those
with low expression (Figure 11E). Similarly, in the Nathanson cohort
(2017, anti-CTLA-4 therapy), patients receiving anti-CTLA-4
immunotherapy with high MFSD12 expression were associated
with a favorable prognosis, further confirming MFSD12’s role as a
potential predictor of immunotherapy response.
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MFSD12 promotes the proliferation,
migration, and invasion of LIHC cells

To elucidate the functional role of MFSD12 in the progression
of hepatocellular carcinoma, we conducted in vitro experiments
utilizing HEP 3B2.1-7 cells subjected to MESD12 knockdown. Four
distinct siRNA constructs targeting MFSD12 were transfected into
these cells, and the successful downregulation of MFSD12
expression was confirmed via western blot and RT-qPCR
analyses, as compared to negative control groups (Figures 12A,B).
The most efficacious siRNA sequence(si-MFSD12-3) was
subsequently selected for further functional assays. Proliferation
analysis using the CCK-8 assay demonstrated that the depletion of
MEFSD12 significantly impaired the growth potential of HEP 3B2.1-

10.3389/fimmu.2025.1681887

7 cells (Figure 12C). Furthermore, MFSD12 knockdown markedly
reduced the migration and invasion capabilities of the HEP 3B2.1-7
cell line, as evidenced by transwell migration and invasion assays
(Figure 12D). Epithelial-mesenchymal transition (EMT) is a critical
process for cancer cell invasion and migration. During EMT in
tumor cells, the expression of proteins that promote cell-cell
adhesion, such as E-cadherin, is decreased, while the expression
of mesenchymal markers, including vimentin, MMP-2, and MMP-
9, is increased, thereby enhancing cell migration and invasion
capabilities (48-50). Subsequently, we investigated these EMT
markers due to their known association with cellular invasion and
migration. Our analysis of protein expression revealed that
MFSDI12 knockdown resulted in a significant upregulation of
E-cadherin, accompanied by a concurrent downregulation of
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The knockdown of MFSD12 inhibited the proliferation, migration, and invasion of LIHC cells, as well as the TIM-3/Galectin-9 signaling pathway.

(A, B) RT-gPCR and Western blot validation of MFSD12 silencing efficiency using siRNAs (si-MFSD12-1 to —4) with GAPDH as loading control.

(C) CCK-8 cell viability assay showing reduced HEP 3B2.1-7 cells proliferation after MFSD12 knockdown (si-MFSD12-3). (D) Transwell assay revealed
a reduction in the migratory and invasive capabilities of HEP 3B2.1-7 cells following the knockdown of MFSD12. (E) Immunoblot analysis of EMT
markers and TIM-3 axis components showing up-regulation of E-cadherin and down-regulation of Vimentin, MMP-2, MMP-9, HAVCR2 (TIM-3) and
LGALS9 in si-MFSD12-treated cells. *P < 0.05, **P < 0.01, ***P < 0.001. CTRL, control untreated; si-NC, negative control siRNA; si-MFSD12, MFSD12-
targeting siRNA; E-cadherin, epithelial cadherin; MMP-2/9, matrix metalloproteinase-2/9; HAVCR2, hepatitis A virus cellular receptor 2 (TIM-3);

LGALS9, lectin galactoside-binding soluble 9 (Galectin-9).
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vimentin, MMP-2, and MMP-9 (Figure 12E). These findings offered
compelling evidence that MFSD12 was integral to enhancing the
proliferative and metastatic potential of liver cancer cells through
the modulation of EMT-related pathways.

MFSD12-siRNA decreased HAVCR2 and
iLGALS9 expression in LIHC cells

In our investigation into the relationship between MFSDI2 and
immune cell infiltration, we identified a predominantly positive
correlation between MFSD12 and some immunosuppressive
checkpoints. Notably, a robust association was observed between
MESDI12 expression and the expression levels of HAVCR2 as well as
its ligand galectin-9 (LGALS9). To further explore this relationship, we
conducted in vitro experiments using HEP 3B2.1-7 cells with MFSD12
knockdown. Our findings demonstrated that the downregulation of
MESD12 expression resulted in a significant decrease in the expression
levels of HAVCR2 and LGALS9 in LIHC cells (Figure 12E). These
results strongly suggested that MESD12 might play a critical regulatory
role in modulating the expression of HAVCR2 and LGALS9.

Discussion

MEFSDI12 is a transmembrane protein vital for importing cysteine
into melanosomes and lysosomes, maintaining normal cystine levels. It
is crucial for pigmentation by aiding pheomelanin synthesis via
cysteinyldopa production in melanosomes (22). Recent research has
broadened the understanding of MFSD12’s involvement in oncological
biology. This protein has been identified as a critical factor in the
proliferation and progression of various malignancies, including
melanoma, breast cancer, and lung cancer (26). Its function as a
cysteine transporter implies that MFSDI12 may influence tumor
development and metastasis by affecting cellular redox states and
metabolic pathways. In the context of LIHC, investigations into
MEFSD12’s role remain in the early stages. Nonetheless, its
involvement in cysteine transport and broader implications in cancer
biology suggest that it could play a pivotal role in the pathogenesis of
LIHC. Given the liver’s central role in metabolic and detoxification
processes, it represents a crucial site for examining the effects of
dysregulated cysteine transport. Moreover, the potential association
between MFSD12 and lysosomal storage disorders may offer insights
into novel mechanisms underlying LIHC development, particularly in
scenarios where metabolic and storage pathways are compromised.

Our research found that MFSD12 mRNA expression was
significantly higher in most cancer tissues compared to normal ones.
In LIHC, this overexpression was confirmed using TCGA-LIHC data
and the combined TCGA and GTEx dataset. Overexpression was more
common in males and females separately. Additionally, higher
MESDI12 levels were linked to lower AFP levels and a history of
alcohol consumption. The HPA database and immunohistochemical
analysis also revealed significantly higher MFSD12 expression in LIHC
tissues compared to adjacent non-tumor tissues. Subsequently, we
found that high MFSD12 expression in LIHC was associated with
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poorer clinical outcomes. Univariate and multivariate Cox regression
analyses identified high MFSD12 expression as a significant risk factor
for OS, even after adjusting for pathologic T stage, AFP level, and age,
with pathologic T stage being an independent prognostic factor. Gene
Mutation Analysis indicated that MFSD12’s prognostic role in LIHC
was primarily expression-driven rather than mutation-dependent.
GSEA analyses showed that MFSD12 was positively enriched in
immune-inflammatory pathways, such as cytokine interactions and
T cell signaling, but negatively enriched in core metabolic pathways like
DNA repair, suggesting it boosts immune activation while inhibiting
metabolic balance in LIHC. Hallmark analysis indicated that MFSD12
upregulates interferon-y response and inflammation, while
downregulating Wnt/B-catenin signaling and androgen response,
acting as both a promoter of immune pathways and a suppressor of
cancer-related processes in the LIHC environment. This finding
comprehensively revealed the comprehensive landscape of MFSD12
in LIHC and was consistent with existing literature that underscores
the oncogenic function of MFSD12 across multiple cancer types. In
LIHC, the upregulation of MFSD12 might disrupt the normal
regulation of the cell cycle, allowing cancer cells to divide more
rapidly and evade apoptosis.

When compared to its role in other malignancies such as
melanoma and breast cancer, where MFSDI12 primarily drives
tumorigenesis through metabolic reprogramming and
proliferation, our study unveils a distinctive facet of MFSD12 in
LIHC. Beyond its cell-autonomous oncogenic functions, we
identified a prominent role for MFSD12 in sculpting the immune
landscape, particularly through its strong correlation with the
HAVCR2/LGALSY checkpoint axis. This immune-regulatory
function appears to be more pronounced in LIHC, potentially
reflecting the unique immunological context of the liver.

The tumor immune microenvironment has been shown to
influence tumor growth, invasion, and metastasis. Understanding
the composition of immune cells within tumor tissues could aid in
the development of innovative therapeutic strategies and enhance
the effectiveness of ICB therapy. Given that LIHC demonstrates
relatively low immunogenicity and suboptimal responses to
immunotherapy, we examined the link between immune-related
scores and MFSD12 expression in LIHC, finding a positive
correlation between MFSD12 expression and the estimate,
immune, and stromal scores. This suggested MFSD12 might
enhance stromal and immune activities. The immune score
indicates immune cell presence and activity in the TME, with
higher scores linked to better responses to neoadjuvant
chemoradiotherapy and improved survival. Stromal scores can
identify therapy targets and predict outcomes. Estimate scores
combine stromal and immune scores to assess the TME, with low
scores (high tumor purity) linked to aggressive behavior and
immunotherapy resistance (51, 52). MFSD12 might support
tumor cell independence, reduce stromal reliance and increase
purity. We hypothesized that abnormal MFSD12 expression could
impact immune engagement. Furthermore, we demonstrated that
elevated MFSD12 expression was associated with increased
proportions of M2 macrophages, monocytes, and CD8+ T cells,
while it was correlated with decreased proportions of resting NK
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cells, naive B cells, and neutrophils. This relationship highlighted
the intricate interaction between MFSD12 and the immune system,
which was essential for understanding its role in cancer biology and
its potential therapeutic implications. The findings supported the
hypothesis that MFSD12 might enhance the infiltration and activity
of CD8+ T cells and macrophages, thereby contributing to its role in
the tumor microenvironment. Conversely, the negative correlation
suggested that MFSD12 might lead to a diminished presence
of cytotoxic and inflammatory cells within the tumor
microenvironment, potentially facilitating tumor immune evasion
and progression.

Our study identified a robust positive correlation between
MFSD12 expression and transcripts of immune checkpoint
molecules, notably HAVCR2(TIM3), suggesting potential co-
regulation with this marker of T-cell exhaustion. Additionally,
LGALSY, the ligand for HAVCR2, demonstrated a strong positive
correlation with MFSD12. Similar correlation patterns were
observed with PD-L1 (CD274) and PD-L2 (PDCDILG2) from
the B7/CD28 family, as well as TIGIT and LAG3 from the
immunoglobulin superfamily. The interaction between HAVCR2
and its ligand, LGALS9, has been identified as a critical axis in the
regulation of immune responses within oncological contexts. This
pathway plays a pivotal role in modulating immune tolerance and
facilitating immune evasion mechanisms across various
malignancies. The TIM3/LGALS9 interaction is recognized for its
immunosuppressive effects, which tumors can exploit to circumvent
immune surveillance, thereby promoting tumor progression and
correlating with poor prognosis in cancer patients (53, 54).
Subsequently, we conducted in vitro experiments utilizing HEP
3B2.1-7 cells with targeted knockdown of MFSD12. Our findings
indicated that the downregulation of MFSD12 expression resulted
in a marked decrease in the expression levels of HAVCR2 and
LGALS9 in LIHC cells. These results implied that MFSD12 might
serve a pivotal regulatory function in modulating the expression of
HAVCR2 and LGALS9. Furthermore, it remained to be elucidated
whether MFSD12 knockdown impeded the binding of TIM3 to its
ligand and whether it mitigated the immunosuppressive effect
induced by the TIM3-ligand interaction-mediated T cell
apoptosis. These questions merited further investigation.

scRNA-seq showed that MFSD12 was mainly expressed in ILCs,
monocytes/macrophages, dendritic cells, mast cells, T_prolif, and
Tregs in LIHC, with low expression in CD8+ T cells, B cells, and NK
cells. These MFSD12-expressing cells were significantly more
abundant in the LIHC tumor core and edge than in nearby
normal tissue, blood, or cholangiocarcinoma, indicating subtype-
specific upregulation. Pharmacogenomic analysis showed that high
MFSD12 expression was linked to resistance against EGFR, BTK,
FGFR, and WNT inhibitors but sensitivity to MEK/ERK inhibitors,
certain DNA-damaging agents, Bcl-2/BCR-ABL inhibitors, and
proteasome inhibitors. This suggested MFSD12 predicted a
unique drug response pattern, indicating resistance to some drugs
and sensitivity to others across various platforms.

Given the correlation between dysregulation of MFSDI12
expression and adverse clinical outcomes in LIHGC, it is crucial to
elucidate the molecular functions of MESD12. To address this gap
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in knowledge, we conducted comprehensive in vitro studies to
characterize the role of MFSD12 in LIHC cell proliferation and
metastatic behavior. Initially, we developed specific siRNA
constructs to knock down MFSD12 expression in the HEP 3B2.1-
7 cell line. Functional assays indicated that MFSD12 knockdown
significantly impaired cellular proliferation, as demonstrated by
CCK-8 viability assays. Furthermore, transwell experiments showed
a substantial reduction in the migratory and invasive capacities of
MFSD12-deficient cells compared to controls. Considering the
pivotal role of EMT in tumor progression, we conducted an
investigation into the principal molecular mediators involved in
this process. EMT is typically characterized by the suppression of
epithelial markers such as E-cadherin and the induction of
mesenchymal proteins, including vimentin and MMP-2/9.
Western blot analysis demonstrated that the silencing of MFSD12
led to a significant increase in E-cadherin levels, accompanied by a
reduction in the expression of vimentin, MMP-2, and MMP-9.
These findings strongly indicated that MESD12 might play a role in
the pathogenesis of LIHC by promoting tumor cell proliferation
and facilitating EMT-mediated metastasis. Nonetheless, the specific
molecular pathways through which MFSD12 exerts these oncogenic
effects have yet to be fully elucidated.

From a therapeutic perspective, our findings nominated
MEFSD12 as a candidate for targeted intervention in LIHC. Given
its structure as a member of the Major Facilitator Superfamily,
future efforts could focus on developing small-molecule inhibitors
that targeted the conserved MFS_2 transporter domain of MFSD12.
Such inhibitors could potentially disrupt its function in cysteine
transport and immune modulation, offering a novel combinatorial
strategy with existing immune checkpoint blockers.

This study had several limitations that should be acknowledged.
First, our functional in vitro experiments were primarily conducted
in a single LIHC cell line (HEP3B2.1-7), and future studies should
validate these findings in a broader panel of cell lines. Second, the
lack of in vivo validation using animal models meant the
physiological relevance of MFSD12’s role in LIHC progression
and immune modulation required further confirmation. Third,
although our multivariate Cox model included major clinical
parameters, the lack of universally available data on liver cirrhosis
status and HBV/HCV infection in the TCGA-LIHC cohort was a
limitation. Future studies with more comprehensively annotated
clinical datasets were needed to fully ascertain the independent
prognostic value of MFSD12 after adjusting for these crucial liver-
specific factors. Finally, the precise molecular mechanism by which
MESD12 influences the HAVCR2/LGALSY axis remained to be
fully elucidated.

In conclusion, our comprehensive study elucidated the
multifaceted roles of MFSD12 in the progression of LIHC and its
impact on immune modulation. We observed that increased
expression of MFSD12 promoted tumor growth while creating an
immune-evasive microenvironment by affecting immune cell
recruitment and the production of immunosuppressive factors.
Targeted inhibition of MFSD12 demonstrated significant
therapeutic potential by concurrently reducing malignant cell
proliferation and invasion, and enhancing the efficacy of immune
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checkpoint blockade, particularly when used in conjunction with
TIM3 inhibition. These findings underscored the potential of
MFSD12 as a prognostic biomarker and a promising molecular
target for LIHC treatment. Incorporating MFSD12 profiling into
clinical practice could enable personalized therapeutic strategies
and improve survival outcomes for patients.
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SUPPLEMENTARY FIGURE 1

MFSD12 expression levels before (Pre) and after (Post) treatment in LIHC
patients, stratified by gender. Analysis was performed using the GSE196434
dataset. The observed differential expression patterns following treatment,
which vary between male and female patients, may contribute to the
divergent gender-associated expression trends identified in the TCGA-LIHC
and GSE76427 cohorts, potentially reflecting differences in baseline clinical
characteristics and treatment status.

SUPPLEMENTARY FIGURE 2

MFSD12 expression is significantly altered following intervention in LIHC.
MFSD12 transcript levels were measured before (Pre) and after (Post) a
specific intervention in the GSE213797 dataset. Expression values are
presented as l0og2(TPM + 1). Statistical significance is indicated as follows:
*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. This result reinforces
the dynamic regulation of MFSD12 in LIHC-related conditions.

SUPPLEMENTARY FIGURE 3

Time-dependent receiver operating characteristic (ROC) analysis of MFSD12
for predicting survival in LIHC patients across multiple cohorts. ROC curves
and corresponding area under the curve (AUC) values at 1, 2, 3, 4, and 5 years
for MFSD12 expression are shown for the TCGA-LIHC cohort and four
independent GEO cohorts (GSE116174, GSE144269, GSE14520, and
GSE76427). The analysis demonstrates the predictive accuracy of MFSD12
for patient survival at different time points across diverse datasets.
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SUPPLEMENTARY FIGURE 4

Bootstrap validation of the prognostic value of MFSD12 expression in LIHC
across independent cohorts. Hazard ratios (HRs) for overall survival based on
MFSD12 expression were calculated from 1,000 bootstrap samples in each of
the five cohorts (TCGA-LIHC, GSE116174, GSE144269, GSE14520, and
GSE76427). The stability of the HRs across resampled datasets confirms the
robustness of MFSD12 as a prognostic factor in LIHC.

SUPPLEMENTARY FIGURE 5

Kaplan-Meier survival analysis of MFSD12 expression in LIHC patients across
multiple independent cohorts. Overall survival curves for patients with high
versus low MFSD12 expression are shown for the TCGA-LIHC cohort and four
GEO cohorts (GSE116174, GSE144269, GSE14520, and GSE76427). Log-rank test
p-values are indicated for each cohort. Although the statistical significance varies, a
consistent trend towards poorer survival in patients with high MFSD12 expression
is observed across all datasets, further supporting its prognostic value in LIHC.

SUPPLEMENTARY FIGURE 6
Correlation of immune cell infiltration estimates between ssGSEA and
CIBERSORT algorithms. Spearman correlation coefficients (p) are shown for
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