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MFSD12 promotes proliferation,
metastasis and invasion of
hepatocellular carcinoma cells
and its potential correlation with
HAVCR2/LGALS9 immune
checkpoint axis
Kai Sun †, Song Wen †, Shou-jun Guo †, Qing-hua Pan*‡

and Ke-run Wang*‡

Department of Oncology, Ganzhou Cancer Hospital, The Affiliated Cancer Hospital of Gannan
Medical University, Ganzhou, Jiangxi, China
Background: Major Facilitator Superfamily Domain-containing 12 (MFSD12) has

emerged as a critical transmembrane protein with increasingly recognized roles

in various cancers. The complex pathogenesis and therapeutic resistance of liver

hepatocellular carcinoma (LIHC) present significant clinical challenges. This

study investigates MFSD12’s potential involvement in LIHC progression.

Methods and results: We performed an extensive pan-cancer analysis of

MFSD12 utilizing integrated datasets from The Cancer Genome Atlas (TCGA),

the Gene Expression Omnibus (GEO), and the ArrayExpress database. Our

investigation focused on evaluating its prognostic significance, clinical

implications, associated signaling pathways, immune cell infiltration, gene

mutations, and sensitivity to chemotherapeutic agents. Through the

application of R and various online analytical tools, our study demonstrated

that MFSD12 expression levels were significantly higher in LIHC compared to

other cancer types within the TCGA pan-cancer dataset. This finding highlights

the specificity of MFSD12 expression in LIHC, a conclusion further validated by

immunohistochemical analysis. Survival analysis indicated that this upregulation

is associated with unfavorable clinical outcomes. Furthermore, single-cell RNA

sequencing revealed that MFSD12 was predominantly expressed in tumor cells

and innate lymphoid cells (ILCs) within the tumor microenvironment. Functional

vitro studies showed MFSD12-siRNA treatment effectively suppressed LIHC cell

proliferation, migration, and invasion. Mechanistically, MFSD12-siRNA enhanced

E-cadherin while reducing vimentin, MMP-2, and MMP-9 levels. Further analyses

revealed significant associations between MFSD12 expression and immune

infiltration, immune checkpoint molecules, tumor mutation burden, and

microsatellite instability in LIHC. Notably, MFSD12-siRNA decreased HAVCR2

(TIM3) and its ligand galectin-9 (LGALS9) expression in LIHC cells.

Conclusions: Our findings demonstrated that MFSD12 upregulation in LIHC

strongly correlates with poor prognosis. This association was potentially
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attributed to MFSD12’s dual roles: promoting tumor cell proliferation, migration,

andmetastasis while critically modulating the tumor immunemicroenvironment,

particularly through interaction with the HAVCR2/LGALS9 immune

checkpoint axis.
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Introduction

Liver cancer treatment remains a significant challenge in

medicine, particularly for hepatocellular carcinoma (LIHC/HCC),

which is a leading cause of cancer-related deaths worldwide (1–3).

While early-stage patients often have better outcomes, advanced

LIHC still lacks effective treatment options due to its complex

pathophysiological mechanisms and resistance to current therapies

(4). Recent advances in understanding LIHC’s molecular

mechanisms have led to promising developments in targeted

treatments, such as those focusing on impaired signaling

pathways like Notch, which has shown potential in preclinical

studies (5–8). Additionally, microRNAs (miRNAs) play a key role

in LIHC development, with research indicating their dysregulation

affects critical cancer-related pathways, making miRNA-targeted

therapies a potential future option for patients (9, 10).

The prognosis of LIHC is closely linked to its tumor immune

microenvironment, as LIHC exhibits high heterogeneity where the

immune microenvironment plays a pivotal role in tumor

development, progression, and treatment response (11, 12). Studies

have shown that the pattern of immune cell infiltration in the tumor

immune microenvironment can significantly influence patient

outcomes and treatment responses (13). In the immune

microenvironment of LIHC, tumor-associated macrophages

(TAMs) are one of the primary types of immune cells (1, 14). They

promote tumor growth and immune escape by interacting with

tumor cells and other immune cells (14). Additionally, the

infiltration of immunosuppressive cells such as regulatory T cells

(Tregs) and myeloid suppressor cells (MDSCs) is also associated with

poor prognosis in LIHC (15). In recent years, single-cell sequencing

technology has uncovered the heterogeneity of the immune

microenvironment in LIHC, providing novel insights into

understanding tumor immune escape mechanisms (16). Through

single-cell analysis of LIHC samples, researchers have demonstrated

that the infiltration patterns of different immune cell subpopulations

are closely linked to patient survival rates and responses to

immunotherapy (11). Furthermore, metabolic reprogramming in

LIHC can affect its immune microenvironment, thereby influencing

tumor progression and response to immunotherapy (4, 6). For

example, dysregulated histidine metabolism can promote tumor

growth and immune escape by altering the function of immune

cells (11).
02
In terms of therapeutic strategies, combination therapy has

demonstrated promising results. For instance, the combination of

programmed cell death 1 (PD-1) inhibitors with chemotherapy

drugs has shown both efficacy and safety in treating metastatic

pancreatic ductal adenocarcinoma with liver metastases, offering

new insights for LIHC treatment (13). Furthermore, nanomedicine

has emerged as a potential therapeutic approach for LIHC (17).

This field utilizes nanoscale or nanostructured materials for medical

applications, and recent years have witnessed significant

advancements in applying nanomedicine to LIHC treatment (17).

Additionally, hepatocellular carcinoma stem cells (HSCs) represent

an important therapeutic target (18). Given their close association

with cancer metastasis, therapeutic strategies targeting HSCs may

provide new hope for managing LIHC (18). Although LIHC

treatment still faces numerous challenges, ongoing research into

its molecular mechanisms and the continuous development of

novel therapeutic approaches promise brighter prospects for

future treatment outcomes (19–21).

MFSD12, or Major Facilitator Superfamily Domain-containing

12, is a transmembrane protein that plays a crucial role in cysteine

import into melanosomes and lysosomes (22). This protein is

essential for maintaining normal cystine levels, the oxidized

dimer of cysteine, within these organelles (23). The function of

MFSD12 is particularly important in pigmentation, as it contributes

to pheomelanin synthesis, a type of melanin pigment, through

cysteinyldopa production in melanosomes (24). The absence or

downregulation of MFSD12 has been associated with darker

pigmentation in both mice and humans, underscoring its

regulatory role in skin color (22). Beyond pigmentation, MFSD12

has been implicated in lysosomal storage disorders, particularly

cystinosis (25). Cystinosis is characterized by lysosomal cystine

accumulation due to cystinosin dysfunction, the lysosomal cystine

exporter. Research indicates that MFSD12 loss can decrease

lysosomal cystine accumulation, a key pathological feature of

cystinosis (25). However, despite this reduction, experimental

models show no improvement in proximal tubular function,

suggesting that while MFSD12 modulates cystine levels, it does

not fully ameliorate the functional deficits associated with

cystinosis (25).

MFSD12’s role in cancer has garnered significant attention in

recent years. Studies have demonstrated that MFSD12 plays a

crucial role in various cancers, particularly in the growth and
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1681887
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1681887
progression of tumors including melanoma, breast cancer, and lung

cancer (26). In melanoma, elevated MFSD12 expression correlates

with enhanced cell proliferation and accelerated tumor growth by

promoting cell cycle progression (23). Furthermore, MFSD12

upregulation activates the PI3K signaling pathway, and this

proliferative effect can be reversed by PI3K inhibitors (23). In

both breast and lung cancers, MFSD12 serves as a key oncogenic

promoter, with its overexpression associated with poorer patient

prognosis (26). As a cysteine transporter, MFSD12 contributes to

lysosomal storage disease pathogenesis, suggesting its potential as a

therapeutic target for inhibiting tumor progression, preventing

metastasis, and improving treatment outcomes (26). Beyond its

oncogenic functions, MFSD12 plays significant roles in lysosomal

storage diseases. Research has established that MFSD12 is essential

for cysteine import into melanosomes and lysosomes, with its

deficiency leading to reduced cysteine levels in these organelles

(22). In non-pigmented cells, MFSD12 deficiency similarly impairs

lysosomal cysteine accumulation (22). Additionally, MFSD12

modulates glycolipid metabolism through lysosomal homeostasis

regulation. In experimental cystinosis models, MFSD12 loss

reduced cystine accumulation without restoring proximal tubule

function (24). In liver cancer research, while MFSD12’s specific

mechanisms remain understudied, its established roles in other

cancers suggest potential functions (26). MFSD12 may promote

tumor growth and metastasis by influencing metabolic and

signaling pathways in cancer cells. As a cysteine transporter, it

might also affect hepatocellular carcinoma progression by

modulating oxidative stress responses in malignant cells. Given

the established oncogenic roles of MFSD12 in various cancer types,

we hypothesized that it might similarly contribute to the

progression of LIHC. Nonetheless, comprehensive studies

examining MFSD12 expression in relation to LIHC prognosis,

immune cell infiltration, and its therapeutic implications remain

lacking. This study aims to fill this gap by investigating the role of

MFSD12 in LIHC progression and its interactions with the tumor

immune microenvironment, ultimately identifying MFSD12 as a

novel biomarker and potential therapeutic target.

This study systematically analyzed MFSD12 expression and its

association with LIHC prognosis using multidimensional data from

the TCGA, GEO, and ICGC databases. Immunohistochemical

validation confirmed significantly increased MFSD12 expression

in LIHC specimens. Mutational, single-cell, and pharmacological

analyses of MFSD12 in LIHC have yielded insights into the role of

MFSD12 within this context. In vitro functional studies assessed the

effects of MFSD12 on LIHC cell proliferation, invasion, metastasis,

as well as E-cadherin, vimentin, MMP-2, and MMP-9 expression

levels. Furthermore, we investigated MFSD12’s influence on the

tumor immune microenvironment in LIHC. Functional analyses

validated the relationship between MFSD12 expression and both

HAVCR2 and its ligand galectin-9 (LGALS9). Our findings

provided novel insights into MFSD12 ’s critical role in

LIHC pathogenesis.
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Materials and methods

Data collection and preprocessing

The comprehensive pan-cancer genomic datasets were retrieved

from The Cancer Genome Atlas (TCGA, https://portal.gdc.

cancer.gov/) databases. For comparative analysis, normal tissue

expression profiles were obtained from the Genotype-Tissue

Expression project (GTEx, http://gtexportal.org/) (27). Among

them, 110 normal liver samples from GTEx, 50 paired normal

tissues adjacent to HCC (PNTAH) samples, 371 HCC samples, and

the corresponding clinical data of TCGA liver cancer (TCGA-

LIHC) were chosen for the subsequent analysis. To enhance the

robustness of our findings, we supplemented our dataset with

multiple LIHC cohorts from the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/), including: GSE144269

(70 hepatocellular carcinoma tissues and 70 adjacent normal liver

tissues), GSE76427 (115 hepatocellular carcinoma tissues and 52

normal liver tissues), GSE104580 (147 hepatocellular carcinoma

tissues), GSE116174 (64 hepatocellular carcinoma tissues),

GSE14520 (22 hepatocellular carcinoma tissues and 22 paired

non-tumor tissues, 42 hepatocellular carcinoma tissues and 22

paired non-tumor tissues), GSE54236 (81 hepatocellular

carcinoma tissues and 80 non-tumor liver tissues) and

GSE109211 (140 hepatocellular carcinoma tissues) (28).

Additionally, the E_TABM_36 (57 hepatocellular carcinoma

tissues, 3 hepatocellular adenomas tissues and 5 non-tumoral

tissues) was acquired from the ArrayExpress database. The

MFSD12 immunohistochemical (IHC) staining data were

downloaded from the Human Protein Atlas (HPA, http://

www.proteinatlas.org), which provides proteomics-based IHC

results for multiple proteins across diverse tissues (29, 30). All

expression data were processed as transcripts per million (TPM)

and normalized through log2(TPM + 1) transformation. Data

imputation was performed using the missForest R package to

address missing values (31). We implemented rigorous quality

control measures, identifying outliers via the interquartile range

(IQR) method, where values beyond Q1 - 1.5×IQR or Q3 + 1.5×IQR

were winsorized to the nearest valid observation (32). Final sample

selection required both complete RNA-seq profiles and associated

clinical annotations. To ensure comparability across the multiple

datasets integrated from TCGA, GEO, and ArrayExpress, we

implemented a rigorous data harmonization pipeline. All gene

expression data were uniformly processed as transcripts per

million (TPM) and log2(TPM + 1) transformed. While a formal

batch effect correction (e.g., ComBat) was not applied due to the

inherent heterogeneity of public datasets and the focus on within-

dataset analyses for key validations (e.g., TCGA for discovery,

independent GEO cohorts for validation), we employed stringent

quality control measures. These included the removal of outliers

and the requirement for complete clinical annotation, which

collectively minimize the impact of technical variability on our
frontiersin.org

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://gtexportal.org/
https://www.ncbi.nlm.nih.gov/geo/
http://www.proteinatlas.org
http://www.proteinatlas.org
https://doi.org/10.3389/fimmu.2025.1681887
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1681887
core findings. The consistent results observed across independent

cohorts further support the robustness of our conclusions against

potential batch effects.
Prognosis analysis

The survival analysis was performed using Kaplan-Meier

methodology to evaluate overall survival (OS), progression-free

survival (PFS), Disease-free survival (DFS) and disease-specific

survival (DSS) stratified by MFSD12 expression levels. This

analysis was implemented through the R statistical packages

“DESeq2” and “limma” (33, 34). For prognostic assessment, the

“timeROC” package was employed to compute 1-year, 3-year, and

5-year survival probabilities, with corresponding receiver operating

characteristic (ROC) curves generated and their respective area

under the curve (AUC) values quantified (35). Furthermore,

survival patterns associated with varying MFSD12 expression

levels in LIHC were validated using datasets from the GEO

database (28, 36). Both univariate and multivariate Cox

proportional hazards regression models were subsequently

applied to identify significant prognostic factors. To improve the

robustness of prognostic evaluation, we further performed

bootstrap resampling validation across multiple cohorts (TCGA,

GSE116174, GSE144269, GSE14520, and GSE76427). The stability

of hazard ratios was assessed by repeating the Cox regression

analysis in 1,000 bootstrap samples for each dataset.
Genomic alterations and mutation profiles

The transcriptomic profiles (STAR-counts), somatic mutation

data (MAF format), and associated clinical metadata for pan-cancer

types were obtained from TCGA database (https://portal.gdc.

cancer.gov). To ensure data completeness, we implemented

stringent inclusion criteria, selecting only those specimens with

concurrent availability of RNA-seq expression profiles, mutation

data, and clinical annotations. This rigorous filtering process

yielded a final cohort that were deemed suitable for downstream

analytical procedures. The somatic mutation profiles of LIHC

patients were analyzed and graphically represented using the

maftools package within the R statistical environment (37).
DNA methylation analysis

The EWAS Data Hub (https://ngdc.cncb.ac.cn/ewas/datahub/

index) served as a comprehensive repository for DNA methylation

analysis, encompassing 115,852 samples across 528 distinct diseases

(38). In addition, the Shiny Methylation Analysis Resource Tool

(SMART) App (http://www.bioinfo-zs.com/smartapp/) is a tool

that integrates Infinium Human Methylation 450K BeadChip

data, RNA sequencing data, and clinical information for 33

cancer types derived from TCGA dataset (39). We utilized the

two public databases to investigate MFSD12 methylation patterns in
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LIHC patients. The 35 CpG sites selected for analysis were located

within the promoter region (TSS1500, TSS200, 5’UTR, 1st Exon) of

the MFSD12 gene, as methylation in these regions is known to exert

the most pronounced effects on transcriptional regulation. Our

analysis focused on examining the correlation between MFSD12

methylation status and its transcriptional expression and clinical

characteristics, along with assessing its prognostic significance for

survival status in affected individuals.
Enrichment analysis

To elucidate the functional role of MFSD12 in LIHC,

comprehensive gene ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses were conducted

(40). The GO analysis, an established computational approach in

functional genomics, systematically characterized LIHC-

associated biological processes, molecular functions, and cellular

components (41). Gene Set Enrichment Analysis (GSEA) was

employed to explore the underlying molecular mechanisms,

with this method being particularly valuable for identifying

statistically significant differences in predefined gene sets across

distinct biological conditions (42). All computational analyses

were implemented using specialized bioinformatics tools: the

ClusterProfiler package in R facilitated the GO and KEGG

analyses, while GSEA version 4.1.0 was utilized for the

enrichment analysis.
Immune correlation analysis

To analyze the correlation between MFSD12 and immune cell

infiltration, stromal, immune, and estimate scores, as well as Tumor

Mutational Burden (TMB) and Microsatellite Instability (MSI) in

LIHC from TCGA, GEO and ArrayExpress database, the R

packages “GSVA”, “immunedeconv”, “estimate”, “ggplot2”,

“pheatmap”, and “ggstatsplot” were used. The analysis involved

eight of the latest algorithms, including ssGSEA, xCell,

CIBERSORT, EPIC, TIMER, MCP-counter, TIMER and

quanTIseq. Additionally, we examined the relationship between

MFSD12 and 150 marker genes identified for five immune

pathways (chemokine (41), receptor (18), MHC (21),

immunoinhibitor (24), and immunostimulator (46)) (43–45). The

statistical analysis information was visualized by R version 4.3.0.
Single−cell expression analysis

The single-cell RNA sequencing data in.h5 format, along with

the corresponding annotation files, were obtained from the TISCH

database (46). Subsequent bioinformatics analyses were performed

using the MAESTRO and Seurat R packages for data processing and

quality control. Dimensionality reduction and cell clustering were

accomplished through the application of the t-SNE algorithm. In

the analysis of the GSE140228 dataset, transcriptomic profiles from
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41 LIHC specimens were systematically processed, including

normalization, feature selection, and unsupervised clustering to

identify distinct cellular subpopulations. The analytical pipeline

incorporated rigorous quality assessment metrics to ensure data

reliability throughout the computational workflow. The sample

metadata for the single-cell RNA sequencing dataset (GSE140228)

is provided in Supplementary Table S1. While detailed clinical

annotations such as TNM stage and etiology were not available for

this public dataset, the table summarizes critical information

including the patient source, tissue origin (e.g., tumor core,

adjacent liver, blood), and cell type (CD45+ immune cells). This

information is essential for understanding the cellular heterogeneity

and tissue context of the samples analyzed.
Drug sensitivity of MFSD12 in LIHC

The drug sensitivity data were obtained from well-established

and publicly available databases, including the Cancer Therapeutics

Response Portal (CTRP v2.0) (https://portals.broadinstitute.org/

ctrp.v2.1/), the PRISM database (https://www.theprismlab.org/),

and the Genomics of Drug Sensitivity in Cancer (GDSC) database

(https://www.ancerrxgene.org/). Spearman’s rank correlation

analysis was performed to evaluate associations between gene

expression and the sensitivity of 217 pharmacological

compounds, including kinase inhibitors, epigenetic regulators,

and chemotherapeutic agents. All computational analyses were

conducted in R version 4.3.0 using the tidyverse package for data

manipulation, pRRophetic for drug response prediction, and

ComplexHeatmap for generating visual representations (47).
Tissue samples and immunohistochemistry

Nineteen pairs of LIHC and adjacent liver tissues were collected

from Ganzhou Cancer Hospital, with the study protocol reviewed

and approved by the Ethics Committee (Reference No.

2025Kelunshen121). Patient diagnoses were confirmed through

histopathological analysis. Detailed clinical data are presented in

Supplementary Table S2. Inclusion criteria comprised histologically

confirmed LIHC and complete clinical data, while exclusion criteria

included ambiguous pathological diagnoses, incomplete clinical

characteristics, and prior treatment with more than three lines of

drug therapy. Initially, the tissue samples were fixed in 10%

formalin, embedded in paraffin, sectioned to a thickness

exceeding four millimeters, dewaxed, hydrated, and subjected to

antigen retrieval (1:100; Boster, China). Subsequently, sections were

treated with a secondary antibody conjugated to horseradish

peroxidase (ZSGB-Bio, China), followed by staining with 3,3′-
diaminobenzidine (DAB) and hematoxylin. The integrated optical

density (IOD) for each section was quantified using Image-Pro Plus

6.0 software (Media Cybernetics, USA), based on images captured

from each slice.
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Cell culture

Human hepatocellular carcinoma HEP3B2.1–7 cell line were

purchased from Sangon Biotech (Shanghai, China). HEP 3B2.1–7

cells were cultured in grown in MEM (Procell, PM150410)

supplemented with 10% fetal bovine serum (FBS, Gibco, USA),

with additional 1% penicillin/streptomycin (Solarbio, China) at

37˚C humidified incubator containing 5% CO2.
siRNA transfection

The small interfering RNA (siRNA) sense used were as follows:
siMFSD12-Homo-578: sense:5’-GCCCGUUCAUCGUG

AUCUUTT-3’, antisense:5’- AAGAUCACGAUGAA

CGGGCTT-3’.

siMFSD12Homo-1407: sense:5’-GAGCUUCUUGGAUAA

GGUGTT-3’, antisense:5’- UCAUUUGGAUACAGGA

CCCTT-3’.

siMFSD12-Homo-1198: sense:5’-GGGAGGAACAUGACCU

ACUTT-3 ’ , antisense:5 ’- AGUAGGUCAUGUUCC

UCCCTT -3’.

siMFSD12-Homo-1021: sense:5’-GUGGGCAUACUGUACA

UGATT-3’, antisense:5’- UCAUGUACAGUAUGCC

CACTT-3’.
The sense of negative control RNA (NC) was as follows:
siNC: sense:5 ’-UUCUCCGAACGUGUCACGUTT-3 ’ ,

antisense:5’- ACGUGACACGUUCGGAGAATT -3’.
HEP 3B2.1–7 cells were seeded in 6-well plates 1 day prior to

transfection and cultured until reaching 80-90% confluence. Cells

were transfected with siRNA or NC using Lipofectamine

transfect ion reagent (KeyGEN, China) fol lowing the

manufacturer’s protocol. Total RNA and protein were extracted

24 hours post-transfection for subsequent analyses. Subsequently,

we established six experimental groups for the forthcoming study:

CTRL (HEP 3B2.1–7 cells without additional treatment), siNC, si-

MFSD12-1 (siMFSD12-Homo-578), si-MFSD12-2 (siMFSD12-

Homo-1407), si-MFSD12-3 (siMFSD12-Homo-1198), and si-

MFSD12-1 (siMFSD12-Homo-1021). The siRNA sequence

identified as the most effective, si-MFSD12-3, was subsequently

chosen for further functional assays.
Real−time fluorescence quantitative PCR

Total RNA was extracted utilizing the RNA Isolater Total RNA

Extraction Reagent (VAZYME), following the manufacturer’s

instructions. Subsequently, RNA was reverse transcribed into
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complementary DNA (cDNA) using the HiScript® II Q RT

SuperMix for qPCR (+gDNA wiper) (VAZYME). Each cDNA

sample was then subjected to analysis using the ChamQ SYBR

qPCR Master Mix (VAZYME). The relative gene expression levels

were determined using the 2^-△△CT method. The primer

sequences used were as follows:
Fron
MFSD12: forward, 5’-CACCCAAGACATCAGCATC-3’;

reverse, 5’-TGGAATAGCAGTGAGAACA-3’, 111bp.

GAPDH: forward, 5’-ATGGGGAAGGTGAAGGTCGGAGT-

3’; reverse, 5’- TAGTTGAGGTCAATGAAGGGGTC-3’.
Western blot analysis

Following transfection, the cells underwent two washes with

PBS and were subsequently lysed on ice using RIPA lysis buffer.

Protein concentrations were quantified employing the BCA protein

assay kit (GBCBIO, China). The samples were then subjected to

separation via 10% SDS-PAGE and transferred onto a nitrocellulose

membrane (Biofroxx, Germany). Membranes were blocked with 5%

skim milk for two hours and incubated overnight at 4 °C with

primary antibodies. The membranes were washed three times with

TBST for 10 minutes each. Subsequently, they were incubated with

an HRP-conjugated goat anti-mouse IgG antibody (1:10000, Boster,

China). The membranes were washed again in the same manner

and developed. The primary antibodies utilized in the Western blot

analysis included: anti-rabbit MFSD12 (1:1000, Boster, China),

anti-mouse GAPDH (1:30000, Proteintech, China), anti-rabbit E-

cadherin (1:40000, Proteintech, China), anti-mouse Vimentin

(1:40000, Proteintech, China), anti-rabbit MMP2 (1:1000, BIOSS,

China), anti-rabbit MMP9 (1:1000, Affinity, China), anti-rabbit

LGALS9 (1:1000, Abmat, China), and anti-rabbit HAVCR2

(1:1000, Boster, China).
Cell proliferation assay

Cell proliferation was assessed utilizing the CCK-8 assay kit

(HYCEZMBIO, China). Post-transfection, cells were plated in 96-

well plates at a density of 3000 cells per well. Subsequently, 10 mL of

CCK-8 solution was introduced to each well at various time

intervals (24 hours, 36 hours, and 48 hours), followed by

incubation at 37 °C for 1 hour. The optical density (OD) of each

well was determined at a wavelength of 450 nm using a microplate

reader (Thermo Scientific, USA).
Transwell migration and invasion assay

A 24-well Transwell chamber equipped with 8 µm pore size

membranes (Corning, USA) was prepared with 100 mL of Matrigel

(Corning, USA). A serum-free medium containing transfected cells

(HEP 3B2.1-7, 6×104 cells per well) was added to the upper inserts,
tiers in Immunology 06
while the lower chambers were filled with 600 mL of medium

supplemented with 20% FBS. Following a 24-hour incubation

period, the lower chambers were fixed with 4% paraformaldehyde

for 60 minutes and subsequently stained with 0.5% crystal violet for

20 minutes. Images from five high-power fields per membrane were

captured to quantify the number of migrating or invading cells.
Statistical analysis methods

The statistical analyses were conducted using R software

(version 4.3.0), incorporating multiple analytical approaches to

evaluate the data. Fold-change (FC) and hazard ratio (HR)

metrics were calculated, along with P-values derived from Log-

rank tests. Correlation assessments were performed using both

Spearman and Pearson methods, while group comparisons were

analyzed through Wilcoxon tests, t-tests (for two-group

comparisons), and one-way ANOVA (for multiple-group

comparisons). Survival outcomes were assessed via Kaplan-Meier

curves and log-rank tests, with statistical significance defined as

p < 0.05. In graphical representations, significance levels were

denoted by asterisks: * (P < 0.05), ** (P < 0.01), *** (P < 0.001),

and **** (P < 0.0001).
Results

Evaluation of MFSD12 mRNA expression
and its association with clinical parameters
in LIHC

The study design flowchart is shown in Figure 1. To

comprehensively characterize the pan-cancer mRNA expression

profile of MFSD12, transcriptomic data from 33 cancer types

were sourced from TCGA database, while corresponding normal

tissue data were obtained from the GTEx database. A comparative

analysis of MFSD12 differential expression between malignant and

normal tissues was conducted across all cancer types. The analysis

demonstrated that MFSD12 mRNA expression was significantly

elevated in the majority of cancer tissues relative to normal tissues

(Figure 2A). This elevated expression pattern was notably observed

in adrenocortical carcinoma (ACC), bladder urothelial carcinoma

(BLCA), breast invasive carcinoma (BRCA), cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC),

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD),

lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),

esophageal carcinoma (ESCA), glioblastoma (GBM), head and

neck squamous cell carcinoma (HNSC), kidney papillary cell

carcinoma (KIRP), stomach adenocarcinoma (STAD), kidney

renal clear cell carcinoma (KIRC), lower grade glioma (LGG),

liver hepatocellular carcinoma (LIHC), ovarian serous

cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),

pheochromocytoma and paraganglioma (PCPG), prostate

adenocarcinoma (PRAD), rectum adenocarcinoma (READ), and
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skin cutaneous melanoma (SKCM), testicular germ cell tumors

(TGCT), and uterine corpus endometrial carcinoma (UCEC), as

well as uterine carcinosarcoma (UCS). Conversely, in kidney

chromophobe (KICH), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), and thyroid carcinoma

(THCA), MFSD12 expression was lower in cancer tissues than in

the corresponding normal tissues. Subsequently, we examined the

expression of MFSD12 in LIHC and its associations with various

clinical parameters. Analysis of tumor samples from the TCGA-

LIHC cohort revealed significantly elevated MFSD12 expression

compared to adjacent normal tissues (P < 0.001) (Figure 2B). This

pattern of overexpression was further validated in the combined

TCGA and GTEx dataset, where it remained statistically significant

(P < 0.001). Clinical correlation analyses demonstrated notable

associations between MFSD12 expression and LIHC clinical
Frontiers in Immunology 07
parameters (Figure 2C). Gender-specific stratification indicated a

male-predominant overexpression in the TCGA-LIHC cohort

(P = 0.033) and a female-predominant overexpression in the

GSE76427 dataset (P = 0.0025). Furthermore, higher MFSD12

expression was associated with lower alpha-fetoprotein (AFP)

levels in the GSE14520 cohort (P = 0.038) and was correlated

with a history of alcohol consumption in the GSE116174

cohort (P = 0.0097).

In addition, analysis of GSE196434 revealed that MFSD12

expression showed differential patterns before and after

treatment, with variations observed across gender groups

(Supplementary Figure S1). These results may partly explain the

discrepancies in gender-associated expression trends observed

between TCGA-LIHC and GSE76427 cohorts, possibly due to

differences in baseline clinical characteristics and treatment status.
FIGURE 1

The research flowchart of this study.
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MFSD12 protein expression analysis in
public database and vitro experimental
validation

To corroborate the aforementioned findings, an analysis was

conducted utilizing the HPA database. The investigation revealed

that the majority of cancerous tissues exhibited weak to moderate

positivity in both nuclear and cytoplasmic compartments

(Figure 3A). Notably, specific instances of carcinoid tumors,

melanomas, COAD, and LIHC exhibited pronounced
Frontiers in Immunology 08
immunoreactivity, as evidenced by the strong and moderate

positivity observed in two LIHC patients, as illustrated in

Figure 3A. In contrast, normal liver tissues displayed no

expression of the MFSD12 protein. Additionally, IHC analysis

was performed to assess MFSD12 expression in 19 pairs of LIHC

tumor tissues and their corresponding adjacent normal tissues. The

IHC staining analysis indicated that MFSD12 proteins were

predominantly localized within the cytoplasm of LIHC cells, with

brown staining denoting positive expression (Figure 3B). In normal

tissues, MFSD12 proteins were either weakly expressed or not
FIGURE 2

The mRNA expression analysis of MFSD12 and Its association with Clinical Features. (A) Differential expression analysis of MFSD12 between pan-
cancer tissues and adjacent normal tissues in TCGA and GETx database. (B) Differential expression analysis of MFSD12 between tumor tissues and
normal tissues in LIHC based on TCGA and GETx database. (C) Association of MFSD12 expression with clinical parameters in LIHC. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001. MFSD12, Major Facilitator Superfamily Domain-containing 12; LIHC, liver hepatocellular carcinoma; TCGA,
The Cancer Genome Atlas; GEO, Gene Expression Omnibus, AFP, Alpha-fetoprotein. "ns" stands for "not significant".
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expressed. Subsequent to immunohistochemical analysis, it was

determined that MFSD12 protein levels, as quantified by the

integrated optical density (IOD) value, were significantly elevated

in LIHC tissues compared to adjacent non-tumor tissues (P < 0.05)

(Figure 3C). To further validate the differential expression of

MFSD12, we analyzed the GSE213797 dataset. Consistent with

our previous findings, the expression level of MFSD12 was

significantly altered following a specific intervention (Post)

compared to the baseline state (Pre) (Supplementary Figure S2),

reinforcing the dynamic regulation of MFSD12 in LIHC-related

conditions. To statistically evaluate the consistency between our

IHC results and the HPA database, two pathologists independently

scored the samples in a blinded manner. A Kappa consistency test

showed substantial agreement between the two evaluations (Kappa

value = 0.75, p < 0.001), validating the reliability of our protein

expression findings.
Prognostic significance of MFSD12
expression in pan-cancer and LIHC

Now that we have identified the aberrant expression of MFSD12

in LIHC, we next analyzed the relationship between MFSD12

expression and the prognosis of LIHC. We first performed

univariate Cox regression analysis across 33 cancer types, which
Frontiers in Immunology 09
indicated that high MFSD12 expression was significantly associated

with poorer overall survival (OS) in ACC (HR = 3.33, p = 4.09e−03),

LAML (HR = 1.99, p = 1.73e−03), LGG (HR = 2.03, p = 1.33e−04),

LIHC (HR = 1.62, p = 7.22e−03), LUAD (HR = 1.48, p = 8.61e−03),

MESO (HR = 1.85, p = 1.04e−02), and OV (HR = 1.33, p = 2.92e

−02), whereas it inversely correlated with favorable OS in ESCA

(HR = 0.573, p = 2.69e−02), KIRP (HR = 0.548, p=5.50e−02),

and UCBC (HR = 0.632, p=3.21e−02)(Figure 4A). In LIHC

(Figures 4B–D), high MFSD12 expression predicted worse clinical

outcomes: OS (HR = 1.62, p = 0.007), Progression-free survival

(PFS) (HR = 1.38, p = 0.032), Disease-free survival (DFS)

(HR = 1.41, p = 0.041). Univariate Cox regression identified high

MFSD12 expression as a significant risk factor for OS (HR = 1.585,

p = 0.009), which remained significant in multivariate analysis

adjusting for pathologic T stage, AFP level, and age (HR = 1.448,

p = 0.040), with pathologic T stage (T3/T4 vs. T1/T2) serving as an

independent prognostic factor (p < 0.001) (Figure 4E). This

multivariate analysis adjusted for key prognostic factors available

in the dataset. We acknowledge that other important clinical

variables such as liver cirrhosis status and etiology could further

refine the prognostic model; however, consistent data for these

parameters were not available for the entire cohort. The time-

dependent receiver operating characteristic (ROC) analysis was

performed to evaluate the predictive accuracy of MFSD12 for

patient survival at 1, 3, and 5 years. In the TCGA-LIHC cohort,
FIGURE 3

The protein expression analysis of MFSD12. (A) Pan-cancer protein expression profile of MFSD12 and representative IHC staining of tissue
microarrays in HPA database. (B) IHC analysis of MFSD12 in LIHC tumor tissues and paired adjacent non-tumor liver tissues. (C) Quantification of
immunostains for MFSD12 by IOD analysis. *P < 0.05, **P < 0.01. IHC, immunohistochemistry; HPA, Human Protein Atlas; LIHC, liver hepatocellular
carcinoma; IOD, integrated optical density;.
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the area under the curve (AUC) values were 0.61, 0.58, and 0.65 for

1, 3, and 5 years, respectively. Similar analyses in the GEO cohorts

(GSE116174, GSE144269, GSE14520, GSE76427) yielded varying

AUC values across different time points (Supplementary Figure S3),

providing a comprehensive assessment of the predictive power of
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MFSD12. Validation analyses using three independent GEO

datasets (GSE54236, GSE14520, GSE76427) consistently showed

that patients with high MFSD12 expression had shorter median OS

than low-expression groups (p < 0.05) (Figures 4F–H). Bootstrap

validation consistently confirmed the prognostic significance of
FIGURE 4

Prognostic significance of MFSD12 expression across cancers and validation in LIHC Cohorts. (A) A pan-cancer Cox regression analysis was
performed to assess MFSD12 expression. (B) OS analysis of MFSD12 in TCGA-LIHC data. (C) PFS analysis of MFSD12 in TCGA-LIHC data. (D) DFS
analysis of MFSD12 in TCGA-LIHC data. (E) The prognostic significance of MFSD12 expression in LIHC patients was evaluated through both
univariate and multivariate analyses. (F–H) Independent validation using external GEO cohorts corroborated the prognostic significance of MFSD12
in LIHC. AUC, Area Under Curve; CI, Confidence Interval; DFS, Disease-Free Survival; GEO, Gene Expression Omnibus; HR, Hazard Ratio; LIHC, Liver
Hepatocellular Carcinoma; OS, Overall Survival; PFS, Progression-Free Survival; RFS, Relapse-Free Survival; ROC, Receiver Operating Characteristic;
TCGA, The Cancer Genome Atlas; TPM, Transcripts Per Million.
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MFSD12 across independent LIHC cohorts, with hazard ratios

remaining stable across resampled datasets (Supplementary Figure

S4). We further validated the prognostic value of MFSD12 across

multiple independent GEO cohorts. Kaplan-Meier survival analysis

demonstrated that high MFSD12 expression was consistently

associated with poorer overall survival in datasets GSE116174

(P = 0.43), GSE144269 (P = 0.19), GSE14520 (P = 0.087), and

GSE76427 (P = 0.099) (Supplementary Figure S5). Although the

statistical significance varied among cohorts, the trend towards

worse survival in the high-expression group was evident,
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underscoring the potential of MFSD12 as a robust prognostic

marker in LIHC.
Genomic alterations and protein
interaction networks of MFSD12 in LIHC

To further investigate the role of MFSD12 expression in LIHC,

we analyzed the genetic mutation status of MFSD12 in LIHC as well

as its associations with other proteins. Comprehensive genomic
FIGURE 5

Genomic alteration landscape of MFSD12 in LIHC. (A) Mutation spectrum of MFSD12 in pan-cancer analysis. (B) CNV analysis of MFSD12 in LIHC.
(C) Genomic Landscape of mutations in MFSD12 within LIHC. (D) Classification profile of MFSD12 genetic variants in LIHC. (E) Comparative mutation
profiling in MFSD12 low- and high-expressing subpopulations. (F) Protein-protein interaction network analysis of MFSD12 in LIHC. (G) Gene Co-
Expression Network Correlated with MFSD12 Expression Patterns in LIHC. *P < 0.05, **P < 0.01. CC, Cholangiocarcinoma; CNV, Copy Number
Variation; LIHC, Liver Hepatocellular Carcinoma; MFSD12, Major Facilitator Superfamily Domain Containing 12; SNV, Single Nucleotide Variant;
TCGA, The Cancer Genome Atlas; WES, Whole Exome Sequencing.
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profiling uncovered low somatic mutation rates of MFSD12 across

over 20 cancer types, with missense mutations emerging as the

predominant variant type (e.g., LIHC: 0.3%, GBM: 1.3%, SKCM:

2.9%, COAD: 2.5%) (Figure 5A). Structural characterization using

lollipop plots revealed that MFSD12 mutations were primarily

localized to the PRK10429 domain and MFS_2 transporter motif.

Notably, in LIHC, the somatic missense mutation rate was 0.3%,

with no nonsense or frameshift mutations identified (Figure 5B).

Given the exceptionally low somatic mutation rate of MFSD12

(0.3%) in the LIHC cohort, a meaningful statistical analysis

stratifying mutation frequency by clinical stage (e.g., Stage I-IV)

and assessing its association with disease progression using Fisher’s

exact test was not feasible. The limited number of mutation events

precludes a robust stratification analysis, indicating that the

prognostic role of MFSD12 in LIHC is driven primarily by its

expression levels rather than by genetic alterations. Copy number

variation (CNV) analysis in LIHC demonstrated a predominance of

neutral CNVs (328/367 samples), with infrequent copy number

losses (33 samples) and gains (6 samples). These CNVs exhibited a

weak correlation with mRNA expression levels (Figure 5B).

Oncoplot analysis further confirmed that MFSD12 mutations

were infrequent and did not co-cluster with high- or low-

expression states, suggesting that its prognostic role in LIHC is

likely driven by expression rather than coding sequence alterations

(Figure 5C). Among these genetic alterations, missense mutations

represented the predominant variant classification. At the

nucleotide level, single nucleotide polymorphisms (SNPs) were

the most prevalent mutation type, with T>G substitutions

emerging as the most frequent among all single nucleotide

variants (SNVs) (Figure 5D). The top 10 mutated genes displayed

distinct mutation frequencies: TTN (28%), TP53 (25%), CTNNB1

(24%), MUC16 (16%), PCLO (11%), ALB (11%), RYR2 (9%),

ABCA13 (9%), MUC4 (10%), and APOB (9%) (Figure 5D). In

LIHC, comparative analysis between high- and low-MFSD12

expression groups revealed distinct somatic mutation landscapes.

The top mutated genes in both groups included TP53, TTN, and

CTNNB1, whereas MFSD12 mutation rates remained low and

showed no significant difference between expression groups

(Figures 5C, E). Genes such as TP53, CTNNB1, and AXIN1

exhibited significant differences in mutation frequencies between

high- and low-MFSD12 expression groups. Additionally, genomic

regions including 19p13.12 (gains) and 3p13, 10q26.13, 14q23.3,

17p13.1, and 19p13.3 (losses) displayed significant disparities in

copy number gains/losses between high- and low-MFSD12

expression tumors (Figure 5E). Using the STRING and

GeneMANIA platforms, we constructed comprehensive

functional interaction networks to elucidate the molecular

landscape of MFSD12. STRING analysis revealed a 32-node

protein-protein interaction (PPI) network primarily composed of

phylogenetically conserved transporters and metabolic enzymes,

including multiple members of the Major Facilitator Superfamily

(MFSD9, MFSD10, MFSD13A, MFSD14A, MFSD14B, MFSD5,

MFSD6, MFSD8, MFSD11), glycolytic regulators (GAPDH,

GAPDHS, TK1, TYMS), and transmembrane ion channels

(SLC45A2, TPCN2) (Figure 5F). Notably, physical interactors also
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included pigmentation-related proteins (MC1R, OCA2, SLC24A5),

implicating potential roles in cellular homeostasis and nutrient

transport. GeneMANIA analysis further partitioned these

interactions into distinct functional modules: physical associations

(SYPL2, TMEM138, SNX13), co-expression networks (HMG20B,

STC1, TP53), and genetic interactions (epistasis; S100A1, SLC19A1,

NRIP3) (Figure 5G). Pathway enrichment analysis demonstrated

significant overrepresentation in biological processes including

glycolytic flux (GAPDH, PFKL), redox regulation (SLC45A2,

MC1R), and cell cycle checkpoint control (CDKN2A, TRIB3).

Structural domain characterization identified conserved

transmembrane motifs shared between MFSD12 and its

interacting partners (UNC93A, ASIP, CTNS), suggesting

evolutionary conservation of its transport function. Collectively,

these networks position MFSD12 as a hub node integrating

metabolic signaling with stress response pathways, orchestrating

crosstalk among transporters, epigenetic regulators, and oncogenic

effectors. The modular architecture of these interactions provides

mechanistic insights into MFSD12-mediated tumor progression,

likely through coordinated regulation of nutrient homeostasis and

cellular stress resilience.
DNA methylation analysis of MFSD12 in
LIHC patients

DNAmethylation plays a crucial role in the process of LIHC. In

this study, we conducted a comprehensive analysis of the

methylation status of each site within the MFSD12 gene,

examining the correlation between MFSD12 methylation status,

transcriptional expression, and clinical characteristics using the

EWAS Data Hub and SMART APP. We also assessed its

prognostic significance for survival in affected individuals. Our

findings revealed a total of 35 CpG methylation sites within the

GCN1 region (Figures 6A, B), with significantly reduced MFSD12

methylation levels observed in tumor tissue samples compared to

normal tissues (Figure 6C). This trend was evident in 15 individual

CpG sites (cg17427615, cg01589153, cg18415485, etc.) (Figure 6D).

Then we conducted an analysis of the correlation between MFSD12

expression and its methylation status. Among 12 individual CpG

sites, cg01433420, cg07564563, cg08035555, cg12946225,

cg14034476, cg17427615, cg19584038, and cg26168358

demonstrated a significant negative correlation between their

methylation levels and MFSD12 expression. This strong negative

correlation, particularly at sites within the promoter region (e.g.,

cg17427615), suggests that hypermethylation likely suppresses

MFSD12 transcription, potentially by inhibiting the binding of

activating transcription factors or by promoting a repressive

chromatin state. Consequently, the widespread hypomethylation

observed in LIHC tumors provides a plausible epigenetic

mechanism for the upregulation of MFSD12 expression,

contributing to its oncogenic role. In contrast, cg04180125,

cg05261702, cg18415485, and cg26002659 exhibited a positive

correlation between their methylation levels and MFSD12

expression. The aggregated methylation values were significantly
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negatively correlated with MFSD12 expression (Figure 6E).

Furthermore, we analyzed DNA methylation levels at specific

CpG sites within the MFSD12 gene across various stages of

cancer (Stage I to Stage IV). We found that MFSD12 DNA
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methylation levels were highest in Stage I and decreased

progressively, reaching their lowest in Stage IV (Figure 6F). This

progressive loss of methylation with advancing disease stage further

underscores the dynamic nature of MFSD12 epigenetic regulation
FIGURE 6

DNA methylation analysis of the MFSD12 genomic features in LIHC. (A) The chromosomal localization of MFSD12 within the human genome. (B) The
genomic architecture of MFSD12 and its adjacent regions. (C) The dynamics of promoter methylation in LIHC and normal liver tissues. (D) MFSD12
methylation levels in tumor tissue samples compared to normal tissues. (E) Analysis of the correlation between MFSD12 expression and its
methylation status. (F) The identification of tumor stage-specific methylation alterations. (G) The relationship between MFSD12 individual CpG site
methylation values and CNV status (deep deletion, loss, neutral, gain, amplification). (H) The association of MFSD12 methylation with patient survival
outcomes. ***P < 0.001. CpG, Cytosine-phosphate-Guanine dinucleotide; LIHC, Liver Hepatocellular Carcinoma; TCGA, The Cancer Genome Atlas;
TNM, Tumor-Node-Metastasis staging system.
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during LIHC progression and suggests that demethylation may be

associated with more aggressive tumor behavior. Additionally, we

examined the relationship between MFSD12 individual CpG site

methylation values and CNV. We discovered a significant positive

relationship between the -2 (homozygous deletion) CNV and the

methylation values of individual CpG sites within MFSD12

(Figure 6G). Finally, we conducted an analysis of the correlation

between each methylation site of MFSD12 and the prognosis of

patients with LIHC. Our findings, presented in Figure 6H, identified

one methylation site (CG04080125) associated with an unfavorable

prognosis and two sites (CG20462845, CG11403338) associated

with a favorable prognosis.
Enrichment analysis of genes co
−expressed with MFSD12 in LIHC

We employed GSEA tools to conduct KEGG pathway and GO

analyses of MFSD12 using GO, HALLMARK, and KEGG gene sets.

The GO analysis indicated significant enrichment of biological

processes related to immune response and cell cycle regulation,

including immune response, immune system process, regulation of

immune system process, and defense response (Figures 7A). The

cellular component (CC) analysis demonstrated that MFSD12 was

associated with both intracellular and extracellular components, with

enrichment in elements such as cytoplasmic vesicle and cell

periphery. Furthermore, MFSD12 was linked to specific molecular

functions (MF), with pathways enriched in functions such as protein

binding and enzyme regulator activity. The GSEA-KEGG analysis

revealed a strong positive enrichment signature in several pathways,

notably including cytokine-cytokine receptor interaction, chemokine

signaling pathway, osteoclast differentiation, phagosome, natural

killer cell-mediated cytotoxicity, antigen processing and

presentation, T cell receptor signaling pathway, and cell adhesion

molecules (CAMs) (Figures 7B). The significant enrichment of

immune-related pathways, particularly “cytokine-cytokine receptor

interaction” and “chemokine signaling pathway”, was highly relevant

to the LIHC microenvironment. These pathways were central to the

recruitment and function of tumor-associated macrophages (TAMs)

and other immunosuppressive cells, which were key players in LIHC

progression and immunotherapy resistance. This suggested that

MFSD12 might promote immunosuppressive TME by modulating

these critical communication networks. Conversely, the negative

enrichment in general metabolic pathways aligned with the

metabolic reprogramming that was a hallmark of liver cancer.

Simultaneously, a significant positive enrichment was observed in

pathways associated with immune-disease-associated pathways,

including rheumatoid arthritis, Staphylococcus aureus infection,

leishmaniasis, toxoplasmosis, allograft rejection, and autoimmune

thyroid disease. Conversely, a broad and pronounced negative

enrichment was predominant in metabolic pathways, with the most

substantial enrichment noted in general metabolic pathways. These

findings suggested that MFSD12 was closely linked to immune

activation and inflammatory processes within the LIHC

microenvironment, while also being associated with a marked
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downregulation of core metabolic functions and DNA maintenance

mechanisms. Figures 7C, D provided a detailed illustration of the

Enrichment Scores from the GSEA-GO and GSEA-KEGG

analyses, further corroborating the results presented in the

aforementioned figure.

Moreover, the GSEA-Hallmark analysis revealed significant

enrichment across a diverse array of pathways, as illustrated in

Figures 7E. Pathways such as “Interferon gamma response”,

“Allograft rejection” and “Inflammatory response’” demonstrated

positive enrichment, indicating an upregulation of these pathways,

which are essential for immune response and inflammation. In

contrast, pathways such as “Wnt beta catenin signaling” and

“Androgen response” exhibited negative enrichment, suggesting a

downregulation that may reflect the inhibitory effects of MFSD12

on these signaling cascades. This comprehensive analysis

highlighted the complex role of MFSD12 in LIHC, affecting

both immune responses and cellular signaling, which could

have implications for disease progression and potential

therapeutic targets.
The correlations between expression levels
of MFSD12 and immune cell infiltration in
LIHC

In LIHC, the expression patterns of MFSD12 were significantly

associated with clinical characteristics, whereas tumor-infiltrating

lymphocytes serve as independent predictors of key clinical

parameters, including tumor stage, grade, and lymph node status.

The tumor microenvironment, comprising tumor cells, stromal

cells, and immune infiltrating cells, plays a pivotal role in cancer

progression. To further explore this relationship, we conducted an

analysis using data from TCGA to assess the association between

MFSD12 expression levels and immune cell infiltration in LIHC.

Utilizing the “ESTIMATE” function within the R package, we

examined the correlations between immune scores, estimate

scores, stromal scores, and MFSD12 expression in LIHC. Our

analysis demonstrated a positive correlation between MFSD12

expression and the estimate score (R = 0.238, P = 4.1e − 06), the

immune score (R = 0.255, P = 7.9e - 07) and the stromal score

(R = 0.176, P = 6.8e − 04), suggesting its potential involvement in

augmenting stromal and immune activities (Figure 8A).

Next, we examined MFSD12 expression across 33 cancer types

and its impact on 24 immune cell types, revealing distinct

immunomodulatory patterns (Figure 8B). MFSD12 positively

correlated with effector lymphocytes and myeloid cells, especially

Tem cells (notably in THYM, KIRC, LIHC), macrophages (TGCT,

UCEC, SKCM), and iDCs (LGG, PRAD, KICH). Conversely, it

negatively correlated with immunosuppressive elements,

particularly Th17 cells (UVM, DLBC, KIRC) and eosinophils

(CHOL, THCA, STAD). Over 78% of cancer types showed

significant associations with Tem cells, macrophages, and iDCs,

while Th17 cells had pan-cancer inverse relationships. Tissue-

specific trends were noted, with LIHC showing strong dual

regulatory effects, whereas brain tumors GBM, LGG had weaker
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correlations. NK cell subsets varied by cancer type, with CD56bright

cells positively correlating in BRCA and OV but negatively in

COAD and LUSC. The persistent occurrence of asterisks

underscored the universal role of MFSD12 in macrophage

recruitment, as evidenced by its positive association in 31 out of

33 cancer types, and in the suppression of Th17 cells, with a

negative correlation observed in 29 out of 33 cancers. This

established MFSD12 as a conserved regulator of tumor-associated

immunity. Figure 8C illustrated the comparison of immune cell

proportions stratified by MFSD12 expression low and high levels in

TCGA_LIHC. The analysis revealed that high MFSD12 expression

was associated with increased proportions of M2 macrophages,

monocytes, and CD8 T cells, while it correlated with decreased

proportions of resting NK cells, naive B cells, and neutrophils.

Furthermore, we conducted a comprehensive analysis of immune

cell infiltration using the single-sample Gene Set Enrichment Analysis

(ssGSEA) algorithm to examine the associations between MFSD12

expression and 24 immune cell subtypes (Figure 8D). Our findings

revealed a spectrum of relationships, ranging from strong positive to

strong negative correlations. MFSD12 exhibited moderate positive

correlations with effector memory T cells (Tem, R = 0.298, P < 0.001),

macrophages (R = 0.256, P < 0.001), and immature dendritic cells

(iDC, R = 0.254, P < 0.001), suggesting co-enrichment within the

tumor microenvironment. Additional associations were noted with

follicular helper T cells (TFH, R = 0.227, P < 0.001), Th2 cells
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(R = 0.200, P < 0.001), and activated dendritic cells (aDC, R = 0.180,

P < 0.001). In contrast, moderate negative correlations were observed

with Th17 cells (R = -0.288, P < 0.001) and eosinophils (R = -0.225,

P < 0.001), indicating mutual exclusion. Non-significant associations

(P > 0.05) were found with CD8+ T cells (R = 0.007), regulatory T

cells (Treg, R = -0.010), and neutrophils (R = -0.041), underscoring

the specificity of MFSD12’s immunomodulatory effects. To enhance

the validation of our findings, we utilized a range of immune

infiltration analysis tools, namely EPIC, ESTIMATE, TIMER,

MCP-Counter, QuanTIseq and XCELL, across several genomic

datasets, including GSE144269, GSE76427, GSE104580,

GSE116174, GSE14520, TCGA_LIHC, E_TABM_36, GSE54236,

and GSE109211. The application of these algorithms to diverse

genomic datasets collectively demonstrated a robust concordance in

characterizing the tumor immune microenvironment, thereby

reinforcing the consistency of our observations across various

computational frameworks (Figure 8E).

To assess the consistency of immune infiltration estimates

derived from different computational methods, we calculated the

Spearman correlation coefficients between results from the ssGSEA

and CIBERSORT algorithms. As shown in Supplementary Figure

S6, moderate to strong correlations were observed for several

immune cell types, such as Neutrophils (R = 0.37) and Tregs

(R = 0.38). This analysis confirms the reliability of our immune

infiltration estimates despite methodological differences.
FIGURE 7

MFSD12 functional enrichment analysis across immune-related pathways and biological processes in LIHC. (A) GO enrichment analysis of MFSD12-
associated biological processes. (B) KEGG pathway enrichment of MFSD12. (C) The GSEA-GO enrichment profile of MFSD12 in the context of
immune regulation, as indicated by the enrichment score. (D) The GSEA-KEGG enrichment profile of MFSD12 in the context of immune regulation,
as indicated by the enrichment score. (E) Hallmark gene set enrichment of MFSD12 in LIHC. ES, Enrichment Score; GSEA, Gene Set Enrichment
Analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MFSD12, Major Facilitator Superfamily Domain Containing 12.
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FIGURE 8

Integrative analysis of MFSD12 expression correlation with tumor microenvironment immunocytes in LIHC. (A) Correlation of MFSD12 with tumor
microenvironment scores using algorithm of ESTIMATE database: association of MFSD12 with immune score, stromal score, and ESTIMATE score in
LIHC. (B) Correlation of MFSD12 expression level with immune cell across 33 cancer types. (C) Comparison of immune cell proportions stratified by
MFSD12 expression levels (Low vs. High) in TCGA_LIHC. (D) Relationship between MFSD12 expression and immune infiltration in LIHC, as analyzed
by the ssGSEA algorithm. (E) Relationship between MFSD12 expression and immune infiltration in LIHC across a range of immune infiltration analysis
tools and multiple genomic datasets. **P < 0.01, ***P < 0.001. CIBERSORT, cell-type identification by estimating relative subsets of RNA Transcripts;
Cor, Pearson correlation coefficient; ESTIMATE, estimation of stromal and immune cells in malignant tumor tissues using expression data; LIHC,
Liver Hepatocellular Carcinoma; Pval, p-value; TCGA, The Cancer Genome Atlas; xCell, cell type enrichment analysis tool.
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Immune regulatory genes, and immune
checkpoints analysis of MFSD12 in LIHC

The effectiveness of immune checkpoint blockade (ICB) therapy

is determined not only by the infiltration of immune cells but also

by the presence of immune checkpoints and the expression of

immune regulatory genes. In further continuation, we performed a

comprehensive analysis of the correlations between the

mRNA expression levels of MFSD12 and various immune-related

genes, including chemokines, chemokine receptors, major

histocompatibility complex (MHC) molecules, immunoinhibitors,

and immunostimulators, across 32 different cancer types from

TCGA (Figure 9A). MFSD12 demonstrated predominantly positive

correlations across multiple cancer types, with distinct clusters

indicating significant associations in specific cancers. Notably, in

LIHC, the expression of MFSD12 was almost universally positively

correlated with immune-related genes. Numerous transcripts related

to immunological checkpoints, including SIGLEC15, PDCD1LG2

(PD-L2), TIGIT, PDCD1 (PD-1), CD274 (PD-L1), CTLA4, LAG3,

and HAVCR2 (TIM3), are integral to tumor immune evasion

mechanisms. Within the TCGA-LIHC cohort, the expression of

MFSD12 demonstrated highly significant positive correlations with

the transcript levels of these immune-checkpoint molecules

(Figure 9B). Notably, HAVCR2 (TIM-3) exhibited the strongest

association, suggesting a predominant co-regulation of this T-cell

exhaustion marker. The B7/CD28 family inhibitors, PD-L1 (CD274)

and PD-L2 (PDCD1LG2), displayed nearly equivalent correlations,

which were mirrored by the immunoglobulin superfamily regulators

TIGIT and LAG3. Additionally, associations were observed for

CTLA4 and PD-1, whereas IGSF8 and SIGLEC15 showed non-

significant correlations.

To substantiate our findings, we conducted a systematic analysis

of the correlations between MFSD12 expression and 137 immune

regulators across five functional categories: antigen presentation,

chemokines, immunoinhibitors, immunostimulators, and

receptors. This analysis was performed using nine independent

cohorts, including TCGA-LIHC and GSE14520, among others

(Figure 9C). The principal findings revealed a predominant

positive correlation of immunosuppressive checkpoints, with

HAVCR2 exhibiting the strongest correlation, followed by

VTCN1 (B7-H4) and CD274 (PD-L1). Interestingly, LGALS9, the

ligand of HAVCR2, showed a strong positive correlation with

MFSD12. These results suggested a significant involvement in T-

cell exhaustion pathways. Positive correlations were consistently

observed with immune-related genes, thereby reinforcing the

robustness of our observations. These findings implied that

MFSD12 may play a pivotal role in modulating the tumor

immune infiltration microenvironment in LIHC.
Single-cell RNA sequencing analysis of
MFSD12 expression

To investigate the cellular distribution and transcriptional

regulation of MFSD12, we conducted single-cell RNA sequencing
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(scRNA-seq) analysis on LIHC tissues and adjacent normal liver

tissue. The application of Uniform Manifold Approximation and

Projection (UMAP) for dimensionality reduction revealed distinct

clustering of major cell types, including CD4+ conventional T cells

(CD4T_conv), exhausted CD8+ T cells (CD8T_exhausted),

proliferating T cells (T_prolif), regulatory T cells (Treg), natural

killer (NK) cells, B cells, dendritic cells (DCs), monocytes/

macrophages (Mono/Macro), mast cells, innate lymphoid cells, and

plasma cells (Figure 10A). Within the UMAP landscape, MFSD12

expression was spatially restricted, with discrete cell clusters exhibiting

elevated transcript levels (Figure 10B). Quantitative analysis

demonstrated that MFSD12 was most abundantly expressed in

innate lymphoid cells (ILCs), monocytes/macrophages, DCs, mast

cells, T_prolif, and Treg, followed by CD4+ conventional T cells and

exhausted CD8+ T cells, with minimal expression observed in typical

CD8+ T cells, B cells, and NK cells (Figure 10C). To enhance our

understanding of the anatomical distribution of MFSD12-expressing

cells, we mapped the identified clusters to their respective tissue

origins, including the tumor core, tumor edge, adjacent normal

tissue, and blood. Our findings indicated that cells with high

MFSD12 expression were predominantly localized within the tumor

core and edge, while exhibiting a sparse distribution in normal tissues

and blood (Figure 10D). Within tumor subtypes, MFSD12 expression

was notably enriched in LIHC compared to cholangiocarcinoma (CC)

and normal controls, suggesting a subtype-specific regulatory

mechanism (Figure 10E). A heatmap analysis of G1/S and G2/M

phase marker genes revealed significant positive associations between

MFSD12 expression and genes involved in the G1/S and G2/M phases

within the T_prolif cell type (Figure 10F). Quantitative analysis of cell

types confirmed that CD8+ typical T cells constituted the most

abundant subset, followed by CD8+ exhausted T cells and

monocytes/macrophages (Figure 10G). Finally, an examination of

MFSD12 expression across immune cell types in normal,

cholangiocarcinoma, and LIHC tissues demonstrated that innate

lymphoid-normal cells exhibited the highest levels of MFSD12

expression, whereas other normal cells showed lower expression

levels (Figure 10H). In CC and LIHC, Innate lymphoid-CC and

Innate lymphoid-HCC cells exhibited elevated MFSD12 expression.

Although the overall expression levels and cell fractions were

higher than those observed in normal conditions, they differed

across disease states, indicating the presence of context-dependent

regulatory mechanisms. These findings underscored the cell-type-

specific and condition-specific modulation of MFSD12, suggesting its

potential involvement in the dynamics of immune response

during carcinogenesis.
Response to immunotherapy and drug
sensitivity

A comprehensive pharmacogenomic analysis conducted across a

range of datasets (GSE144269, GSE76427, GSE116174, GSE104580,

GSE14520, GSE54236, TCGA_LIHC, E_TABM_36, GSE109211)

and drug screening platforms (CTRP, PRISM, GDSC1, GDSC2)

demonstrated that increased expression of MFSD12 was
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consistently and significantly associated with resistance to a wide

array of therapeutic agents (Figures 11A-D). Notably, this included

resistance to EGFR inhibitors (such as Afatinib, Erlotinib, Gefitinib,

Osimertinib, CI-1033), DNA-damaging agents (such as

Sepantronium Bromide, Temozolomide), PI3K/mTOR inhibitors
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(such as Pilaralisib), BTK inhibitors (such as Ibrutinib), FGFR

inhibitors (such as AZD4547), and WNT pathway inhibitors (such

as WIKI4). Additionally, resistance was observed with various other

compounds, including TAF1_5496, MIM1, gamma-aminobutyric

acid (GABA), Bakuchiol, GTS21, NBI-27914, Bafetinib,
FIGURE 9

Integrated analysis of the link between MFSD12 expression and immune-related genes. (A) The relationship between the expression levels of MFSD12
and Immune-related genes in pan-cancers; (B) The relationship between the MFSD12 expression levels and immune checkpoints in LUSC.
(C) Relationship between MFSD12 expression and Immune-related genes in LIHC across a range of immune infiltration analysis tools and multiple
genomic datasets. *P < 0.05, **P < 0.01. LIHC, Liver Hepatocellular Carcinoma; Pearson, Pearson correlation coefficient; Cor, Correlation coefficient.
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Gemcitabine, Disulfiram, Econazole, Ibuproxam, Benzonatate,

Thiamphenicol, and Radezolid, among others. In contrast, elevated

MFSD12 expression exhibited a robust positive correlation,

indicating increased sensitivity to a range of agents, including

MEK/ERK pathway inhibitors (such as Selumetinib, Trametinib,

Ulixertinib, VX-11e, PD0325901, CI-1040), DNA-damaging agents

(including Dactinomycin, Topotecan, Camptothecin, Bleomycin),

Bcl-2/BCR-ABL inhibitors (such as Navitoclax combinations,

Bosutinib, Dasatinib), proteasome inhibitors (such as Bortezomib

combinations), PI3K/mTOR inhibitors (including Dactolisib,

Temsirolimus, ZSTK474), as well as other compounds like

Cevimeline, Nutlin-3a, Luminespib, PLX-4720, Dabrafenib,
Frontiers in Immunology 19
Staurosporine, PNU-142633, Chlorambucil, Alisertib, and CAL-

101. This highlighted a distinct and opposing pattern of drug

response dependent on MFSD12 expression levels, consistently

observed across all analytical platforms. Survival analysis within the

Hugo cohort (2016, anti–PD-1 therapy) revealed that patients

undergoing anti-PD-1 immunotherapy with high MFSD12

expression experienced significantly better OS compared to those

with low expression (Figure 11E). Similarly, in the Nathanson cohort

(2017, anti–CTLA-4 therapy), patients receiving anti-CTLA-4

immunotherapy with high MFSD12 expression were associated

with a favorable prognosis, further confirming MFSD12’s role as a

potential predictor of immunotherapy response.
FIGURE 10

Single-Cell analysis of MFSD12 in LIHC by scRNA-seq. (A) UMAP visualization of cell type distribution in LIHC. (B) UMAP expression profile of MFSD12
in LIHC. (C) Relative expression levels of MFSD12 across cell types. (D) UMAP visualization of cell distribution by location. (E) UMAP visualization of
cell distribution by cancer subtype (Normal, HCC, CC). (F) Heatmap of G1/S and G2/M phase transition gene expression across cell types. (G) Cell
number and proportion statistics for each cell type. (H) Expression Proportion of MFSD12 in Different Cell Types and Cancer Subtypes. UMAP,
Uniform Manifold Approximation and Projection; MFSD12, Major Facilitator Superfamily Domain Containing 12; CD4T_conv, Conventional CD4+ T
cells; CD8T_typical, Typical CD8+ T cells; CD8T_exhausted, Exhausted CD8+ T cells; T_prolif, Proliferating T cells; Treg, Regulatory T cells; NK_cell,
Natural Killer cell; B_cell, B lymphocyte; Mono/Macro, Monocyte/Macrophage; HCC, Hepatocellular Carcinoma; CC, Cholangiocarcinoma; G1/S, G1/
S phase transition genes; G2/M, G2/M phase transition genes.
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FIGURE 11

A thorough analysis of the correlation between MFSD12 expression and drug response across various databases, as well as its association with
survival outcomes. (A) Correlation between MFSD12 expression and drug resistance/sensitivity in the CTRP dataset. (B) Correlation between MFSD12
expression and drug resistance/sensitivity in the PRISM dataset. (C) Correlation between MFSD12 expression and drug resistance/sensitivity in the
GDSC1 database. (D) Correlation between MFSD12 expression and drug resistance/sensitivity in the GDSC2 database. (E) Overall survival analysis of
Hugo cohort 2016 (Anti-PD-1) and Nathanson cohort 2017 (Anti-CTLA-4). CTRIP, Cancer Therapeutics Response Portal; PRISM, Preclinical
Repurposing of Medicines; GDSC1/GDSC2, Genomics of Drug Sensitivity in Cancer 1/2; Anti-PD-1, Anti-Programmed Cell Death Protein 1; Anti-
CTLA-4, Anti-Cytotoxic T-Lymphocyte-Associated Protein 4; Log-rank, Log-rank test; Number at risk, Number of patients at risk at each time point.
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MFSD12 promotes the proliferation,
migration, and invasion of LIHC cells

To elucidate the functional role of MFSD12 in the progression

of hepatocellular carcinoma, we conducted in vitro experiments

utilizing HEP 3B2.1–7 cells subjected to MFSD12 knockdown. Four

distinct siRNA constructs targeting MFSD12 were transfected into

these cells, and the successful downregulation of MFSD12

expression was confirmed via western blot and RT-qPCR

analyses, as compared to negative control groups (Figures 12A,B).

The most efficacious siRNA sequence(si-MFSD12-3) was

subsequently selected for further functional assays. Proliferation

analysis using the CCK-8 assay demonstrated that the depletion of

MFSD12 significantly impaired the growth potential of HEP 3B2.1–
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7 cells (Figure 12C). Furthermore, MFSD12 knockdown markedly

reduced the migration and invasion capabilities of the HEP 3B2.1–7

cell line, as evidenced by transwell migration and invasion assays

(Figure 12D). Epithelial-mesenchymal transition (EMT) is a critical

process for cancer cell invasion and migration. During EMT in

tumor cells, the expression of proteins that promote cell-cell

adhesion, such as E-cadherin, is decreased, while the expression

of mesenchymal markers, including vimentin, MMP-2, and MMP-

9, is increased, thereby enhancing cell migration and invasion

capabilities (48–50). Subsequently, we investigated these EMT

markers due to their known association with cellular invasion and

migration. Our analysis of protein expression revealed that

MFSD12 knockdown resulted in a significant upregulation of

E-cadherin, accompanied by a concurrent downregulation of
FIGURE 12

The knockdown of MFSD12 inhibited the proliferation, migration, and invasion of LIHC cells, as well as the TIM-3/Galectin-9 signaling pathway.
(A, B) RT-qPCR and Western blot validation of MFSD12 silencing efficiency using siRNAs (si-MFSD12–1 to −4) with GAPDH as loading control.
(C) CCK-8 cell viability assay showing reduced HEP 3B2.1–7 cells proliferation after MFSD12 knockdown (si-MFSD12-3). (D) Transwell assay revealed
a reduction in the migratory and invasive capabilities of HEP 3B2.1–7 cells following the knockdown of MFSD12. (E) Immunoblot analysis of EMT
markers and TIM-3 axis components showing up-regulation of E-cadherin and down-regulation of Vimentin, MMP-2, MMP-9, HAVCR2 (TIM-3) and
LGALS9 in si-MFSD12-treated cells. *P < 0.05, **P < 0.01, ***P < 0.001. CTRL, control untreated; si-NC, negative control siRNA; si-MFSD12, MFSD12-
targeting siRNA; E-cadherin, epithelial cadherin; MMP-2/9, matrix metalloproteinase-2/9; HAVCR2, hepatitis A virus cellular receptor 2 (TIM-3);
LGALS9, lectin galactoside-binding soluble 9 (Galectin-9).
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vimentin, MMP-2, and MMP-9 (Figure 12E). These findings offered

compelling evidence that MFSD12 was integral to enhancing the

proliferative and metastatic potential of liver cancer cells through

the modulation of EMT-related pathways.
MFSD12-siRNA decreased HAVCR2 and
iLGALS9 expression in LIHC cells

In our investigation into the relationship between MFSD12 and

immune cell infiltration, we identified a predominantly positive

correlation between MFSD12 and some immunosuppressive

checkpoints. Notably, a robust association was observed between

MFSD12 expression and the expression levels of HAVCR2 as well as

its ligand galectin-9 (LGALS9). To further explore this relationship, we

conducted in vitro experiments using HEP 3B2.1–7 cells with MFSD12

knockdown. Our findings demonstrated that the downregulation of

MFSD12 expression resulted in a significant decrease in the expression

levels of HAVCR2 and LGALS9 in LIHC cells (Figure 12E). These

results strongly suggested that MFSD12 might play a critical regulatory

role in modulating the expression of HAVCR2 and LGALS9.
Discussion

MFSD12 is a transmembrane protein vital for importing cysteine

into melanosomes and lysosomes, maintaining normal cystine levels. It

is crucial for pigmentation by aiding pheomelanin synthesis via

cysteinyldopa production in melanosomes (22). Recent research has

broadened the understanding of MFSD12’s involvement in oncological

biology. This protein has been identified as a critical factor in the

proliferation and progression of various malignancies, including

melanoma, breast cancer, and lung cancer (26). Its function as a

cysteine transporter implies that MFSD12 may influence tumor

development and metastasis by affecting cellular redox states and

metabolic pathways. In the context of LIHC, investigations into

MFSD12’s role remain in the early stages. Nonetheless, its

involvement in cysteine transport and broader implications in cancer

biology suggest that it could play a pivotal role in the pathogenesis of

LIHC. Given the liver’s central role in metabolic and detoxification

processes, it represents a crucial site for examining the effects of

dysregulated cysteine transport. Moreover, the potential association

between MFSD12 and lysosomal storage disorders may offer insights

into novel mechanisms underlying LIHC development, particularly in

scenarios where metabolic and storage pathways are compromised.

Our research found that MFSD12 mRNA expression was

significantly higher in most cancer tissues compared to normal ones.

In LIHC, this overexpression was confirmed using TCGA-LIHC data

and the combined TCGA and GTEx dataset. Overexpression was more

common in males and females separately. Additionally, higher

MFSD12 levels were linked to lower AFP levels and a history of

alcohol consumption. The HPA database and immunohistochemical

analysis also revealed significantly higher MFSD12 expression in LIHC

tissues compared to adjacent non-tumor tissues. Subsequently, we

found that high MFSD12 expression in LIHC was associated with
Frontiers in Immunology 22
poorer clinical outcomes. Univariate and multivariate Cox regression

analyses identified high MFSD12 expression as a significant risk factor

for OS, even after adjusting for pathologic T stage, AFP level, and age,

with pathologic T stage being an independent prognostic factor. Gene

Mutation Analysis indicated that MFSD12’s prognostic role in LIHC

was primarily expression-driven rather than mutation-dependent.

GSEA analyses showed that MFSD12 was positively enriched in

immune-inflammatory pathways, such as cytokine interactions and

T cell signaling, but negatively enriched in core metabolic pathways like

DNA repair, suggesting it boosts immune activation while inhibiting

metabolic balance in LIHC. Hallmark analysis indicated that MFSD12

upregulates interferon-g response and inflammation, while

downregulating Wnt/b-catenin signaling and androgen response,

acting as both a promoter of immune pathways and a suppressor of

cancer-related processes in the LIHC environment. This finding

comprehensively revealed the comprehensive landscape of MFSD12

in LIHC and was consistent with existing literature that underscores

the oncogenic function of MFSD12 across multiple cancer types. In

LIHC, the upregulation of MFSD12 might disrupt the normal

regulation of the cell cycle, allowing cancer cells to divide more

rapidly and evade apoptosis.

When compared to its role in other malignancies such as

melanoma and breast cancer, where MFSD12 primarily drives

tumorigenesis through metabolic reprogramming and

proliferation, our study unveils a distinctive facet of MFSD12 in

LIHC. Beyond its cell-autonomous oncogenic functions, we

identified a prominent role for MFSD12 in sculpting the immune

landscape, particularly through its strong correlation with the

HAVCR2/LGALS9 checkpoint axis. This immune-regulatory

function appears to be more pronounced in LIHC, potentially

reflecting the unique immunological context of the liver.

The tumor immune microenvironment has been shown to

influence tumor growth, invasion, and metastasis. Understanding

the composition of immune cells within tumor tissues could aid in

the development of innovative therapeutic strategies and enhance

the effectiveness of ICB therapy. Given that LIHC demonstrates

relatively low immunogenicity and suboptimal responses to

immunotherapy, we examined the link between immune-related

scores and MFSD12 expression in LIHC, finding a positive

correlation between MFSD12 expression and the estimate,

immune, and stromal scores. This suggested MFSD12 might

enhance stromal and immune activities. The immune score

indicates immune cell presence and activity in the TME, with

higher scores linked to better responses to neoadjuvant

chemoradiotherapy and improved survival. Stromal scores can

identify therapy targets and predict outcomes. Estimate scores

combine stromal and immune scores to assess the TME, with low

scores (high tumor purity) linked to aggressive behavior and

immunotherapy resistance (51, 52). MFSD12 might support

tumor cell independence, reduce stromal reliance and increase

purity. We hypothesized that abnormal MFSD12 expression could

impact immune engagement. Furthermore, we demonstrated that

elevated MFSD12 expression was associated with increased

proportions of M2 macrophages, monocytes, and CD8+ T cells,

while it was correlated with decreased proportions of resting NK
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cells, naive B cells, and neutrophils. This relationship highlighted

the intricate interaction between MFSD12 and the immune system,

which was essential for understanding its role in cancer biology and

its potential therapeutic implications. The findings supported the

hypothesis that MFSD12 might enhance the infiltration and activity

of CD8+ T cells and macrophages, thereby contributing to its role in

the tumor microenvironment. Conversely, the negative correlation

suggested that MFSD12 might lead to a diminished presence

of cytotoxic and inflammatory cells within the tumor

microenvironment, potentially facilitating tumor immune evasion

and progression.

Our study identified a robust positive correlation between

MFSD12 expression and transcripts of immune checkpoint

molecules, notably HAVCR2(TIM3), suggesting potential co-

regulation with this marker of T-cell exhaustion. Additionally,

LGALS9, the ligand for HAVCR2, demonstrated a strong positive

correlation with MFSD12. Similar correlation patterns were

observed with PD-L1 (CD274) and PD-L2 (PDCD1LG2) from

the B7/CD28 family, as well as TIGIT and LAG3 from the

immunoglobulin superfamily. The interaction between HAVCR2

and its ligand, LGALS9, has been identified as a critical axis in the

regulation of immune responses within oncological contexts. This

pathway plays a pivotal role in modulating immune tolerance and

facilitating immune evasion mechanisms across various

malignancies. The TIM3/LGALS9 interaction is recognized for its

immunosuppressive effects, which tumors can exploit to circumvent

immune surveillance, thereby promoting tumor progression and

correlating with poor prognosis in cancer patients (53, 54).

Subsequently, we conducted in vitro experiments utilizing HEP

3B2.1–7 cells with targeted knockdown of MFSD12. Our findings

indicated that the downregulation of MFSD12 expression resulted

in a marked decrease in the expression levels of HAVCR2 and

LGALS9 in LIHC cells. These results implied that MFSD12 might

serve a pivotal regulatory function in modulating the expression of

HAVCR2 and LGALS9. Furthermore, it remained to be elucidated

whether MFSD12 knockdown impeded the binding of TIM3 to its

ligand and whether it mitigated the immunosuppressive effect

induced by the TIM3-ligand interaction-mediated T cell

apoptosis. These questions merited further investigation.

scRNA-seq showed that MFSD12 was mainly expressed in ILCs,

monocytes/macrophages, dendritic cells, mast cells, T_prolif, and

Tregs in LIHC, with low expression in CD8+ T cells, B cells, and NK

cells. These MFSD12-expressing cells were significantly more

abundant in the LIHC tumor core and edge than in nearby

normal tissue, blood, or cholangiocarcinoma, indicating subtype-

specific upregulation. Pharmacogenomic analysis showed that high

MFSD12 expression was linked to resistance against EGFR, BTK,

FGFR, and WNT inhibitors but sensitivity to MEK/ERK inhibitors,

certain DNA-damaging agents, Bcl-2/BCR-ABL inhibitors, and

proteasome inhibitors. This suggested MFSD12 predicted a

unique drug response pattern, indicating resistance to some drugs

and sensitivity to others across various platforms.

Given the correlation between dysregulation of MFSD12

expression and adverse clinical outcomes in LIHC, it is crucial to

elucidate the molecular functions of MFSD12. To address this gap
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in knowledge, we conducted comprehensive in vitro studies to

characterize the role of MFSD12 in LIHC cell proliferation and

metastatic behavior. Initially, we developed specific siRNA

constructs to knock down MFSD12 expression in the HEP 3B2.1–

7 cell line. Functional assays indicated that MFSD12 knockdown

significantly impaired cellular proliferation, as demonstrated by

CCK-8 viability assays. Furthermore, transwell experiments showed

a substantial reduction in the migratory and invasive capacities of

MFSD12-deficient cells compared to controls. Considering the

pivotal role of EMT in tumor progression, we conducted an

investigation into the principal molecular mediators involved in

this process. EMT is typically characterized by the suppression of

epithelial markers such as E-cadherin and the induction of

mesenchymal proteins, including vimentin and MMP-2/9.

Western blot analysis demonstrated that the silencing of MFSD12

led to a significant increase in E-cadherin levels, accompanied by a

reduction in the expression of vimentin, MMP-2, and MMP-9.

These findings strongly indicated that MFSD12 might play a role in

the pathogenesis of LIHC by promoting tumor cell proliferation

and facilitating EMT-mediated metastasis. Nonetheless, the specific

molecular pathways through which MFSD12 exerts these oncogenic

effects have yet to be fully elucidated.

From a therapeutic perspective, our findings nominated

MFSD12 as a candidate for targeted intervention in LIHC. Given

its structure as a member of the Major Facilitator Superfamily,

future efforts could focus on developing small-molecule inhibitors

that targeted the conserved MFS_2 transporter domain of MFSD12.

Such inhibitors could potentially disrupt its function in cysteine

transport and immune modulation, offering a novel combinatorial

strategy with existing immune checkpoint blockers.

This study had several limitations that should be acknowledged.

First, our functional in vitro experiments were primarily conducted

in a single LIHC cell line (HEP3B2.1-7), and future studies should

validate these findings in a broader panel of cell lines. Second, the

lack of in vivo validation using animal models meant the

physiological relevance of MFSD12’s role in LIHC progression

and immune modulation required further confirmation. Third,

although our multivariate Cox model included major clinical

parameters, the lack of universally available data on liver cirrhosis

status and HBV/HCV infection in the TCGA-LIHC cohort was a

limitation. Future studies with more comprehensively annotated

clinical datasets were needed to fully ascertain the independent

prognostic value of MFSD12 after adjusting for these crucial liver-

specific factors. Finally, the precise molecular mechanism by which

MFSD12 influences the HAVCR2/LGALS9 axis remained to be

fully elucidated.

In conclusion, our comprehensive study elucidated the

multifaceted roles of MFSD12 in the progression of LIHC and its

impact on immune modulation. We observed that increased

expression of MFSD12 promoted tumor growth while creating an

immune-evasive microenvironment by affecting immune cell

recruitment and the production of immunosuppressive factors.

Targeted inhibition of MFSD12 demonstrated significant

therapeutic potential by concurrently reducing malignant cell

proliferation and invasion, and enhancing the efficacy of immune
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checkpoint blockade, particularly when used in conjunction with

TIM3 inhibition. These findings underscored the potential of

MFSD12 as a prognostic biomarker and a promising molecular

target for LIHC treatment. Incorporating MFSD12 profiling into

clinical practice could enable personalized therapeutic strategies

and improve survival outcomes for patients.
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SUPPLEMENTARY FIGURE 1

MFSD12 expression levels before (Pre) and after (Post) treatment in LIHC
patients, stratified by gender. Analysis was performed using the GSE196434

dataset. The observed differential expression patterns following treatment,
which vary between male and female patients, may contribute to the

divergent gender-associated expression trends identified in the TCGA-LIHC
and GSE76427 cohorts, potentially reflecting differences in baseline clinical

characteristics and treatment status.

SUPPLEMENTARY FIGURE 2

MFSD12 expression is significantly altered following intervention in LIHC.
MFSD12 transcript levels were measured before (Pre) and after (Post) a

specific intervention in the GSE213797 dataset. Expression values are
presented as log2(TPM + 1). Statistical significance is indicated as follows:

*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. This result reinforces

the dynamic regulation of MFSD12 in LIHC-related conditions.

SUPPLEMENTARY FIGURE 3

Time-dependent receiver operating characteristic (ROC) analysis of MFSD12

for predicting survival in LIHC patients across multiple cohorts. ROC curves
and corresponding area under the curve (AUC) values at 1, 2, 3, 4, and 5 years

for MFSD12 expression are shown for the TCGA-LIHC cohort and four

independent GEO cohorts (GSE116174, GSE144269, GSE14520, and
GSE76427). The analysis demonstrates the predictive accuracy of MFSD12

for patient survival at different time points across diverse datasets.
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SUPPLEMENTARY FIGURE 4

Bootstrap validation of the prognostic value of MFSD12 expression in LIHC
across independent cohorts. Hazard ratios (HRs) for overall survival based on

MFSD12 expression were calculated from 1,000 bootstrap samples in each of
the five cohorts (TCGA-LIHC, GSE116174, GSE144269, GSE14520, and

GSE76427). The stability of the HRs across resampled datasets confirms the

robustness of MFSD12 as a prognostic factor in LIHC.

SUPPLEMENTARY FIGURE 5

Kaplan-Meier survival analysis of MFSD12 expression in LIHC patients across

multiple independent cohorts. Overall survival curves for patients with high
versus low MFSD12 expression are shown for the TCGA-LIHC cohort and four

GEO cohorts (GSE116174, GSE144269, GSE14520, and GSE76427). Log-rank test

p-values are indicated for each cohort. Although the statistical significance varies, a
consistent trend towards poorer survival in patients with high MFSD12 expression

is observed across all datasets, further supporting its prognostic value in LIHC.

SUPPLEMENTARY FIGURE 6

Correlation of immune cell infiltration estimates between ssGSEA and

CIBERSORT algorithms. Spearman correlation coefficients (r) are shown for
Frontiers in Immunology 25
selected immune cell types, comparing estimates derived from the ssGSEA
and CIBERSORT computational methods. Moderate to strong correlations

were observed for several cell types, including Neutrophils (r=0.37) and
regulatory T cells (Tregs, r=0.38), supporting the consistency and reliability

of the immune infi l tration analyses used in this study despite

methodological differences.

SUPPLEMENTARY TABLE 1

Summary of sample information for the single-cell RNA sequencing cohort

(GSE140228). The table provides the GEO sample accession numbers, sample
source, and key characteristics for each specimen, including patient identifier,

tissue origin (e.g., tumor, adjacent liver, blood, ascites, lymph node), and cell
type (CD45+ immune cells). This metadata describes the cellular

heterogeneity and tissue context of the 41 LIHC specimens analyzed in the

single-cell RNA sequencing study.

SUPPLEMENTARY TABLE 2

Cl i n i ca l charac te r i s t i c s o f pa t i en t s w i th L IHC . L IHC , l i ve r
hepatocellular carcinoma.
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Visualizing and interpreting cancer genomics data via the Xena platform. Nat
Biotechnol. (2020) 38:675–8. doi: 10.1038/s41587-020-0546-8

28. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. (2013)
41:D991–5. doi: 10.1093/nar/gks1193

29. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A,
et al. Proteomics. Tissue-based map of the human proteome. Science. (2015)
347:1260419. doi: 10.1126/science.1260419

30. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al.
Towards a knowledge-based human protein atlas. Nat Biotechnol. (2010) 28:1248–50.
doi: 10.1038/nbt1210-1248

31. Stekhoven DJ, Bühlmann P. MissForest–non-parametric missing value
imputation for mixed-type data. Bioinformatics. (2012) 28:112–8. doi: 10.1093/
bioinformatics/btr597

32. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard
deviation from the sample size, median, range and/or interquartile range. BMC Med
Res Methodol. (2014) 14:135. doi: 10.1186/1471-2288-14-135
frontiersin.org

https://doi.org/10.1002/cac2.12345
https://doi.org/10.1038/s41575-022-00688-6
https://doi.org/10.1016/j.jes.2022.05.037
https://doi.org/10.1186/s13045-024-01527-8
https://doi.org/10.1186/s13045-024-01527-8
https://doi.org/10.1186/s43556-024-00184-0
https://doi.org/10.1186/s43556-024-00184-0
https://doi.org/10.1097/HEP.0000000000000005
https://doi.org/10.1016/j.jhepr.2022.100479
https://doi.org/10.1016/S2468-1253(23)00111-5
https://doi.org/10.1016/S2468-1253(23)00111-5
https://doi.org/10.3390/ijms231911908
https://doi.org/10.1016/j.prp.2023.154913
https://doi.org/10.1002/hep.32740
https://doi.org/10.1016/j.bbcan.2022.188848
https://doi.org/10.3389/fimmu.2023.1323581
https://doi.org/10.1016/j.jhep.2023.02.033
https://doi.org/10.3389/fimmu.2023.1230465
https://doi.org/10.3389/fimmu.2023.1230465
https://doi.org/10.1055/s-0044-1787152
https://doi.org/10.2147/IJN.S349426
https://doi.org/10.2147/IJN.S349426
https://doi.org/10.1038/s41575-023-00821-z
https://doi.org/10.1016/j.canlet.2022.216048
https://doi.org/10.1080/19490976.2023.2240031
https://doi.org/10.1080/19490976.2023.2240031
https://doi.org/10.1038/s41575-024-00919-y
https://doi.org/10.1038/s41586-020-2937-x
https://doi.org/10.1038/s41388-018-0531-6
https://doi.org/10.1038/s41388-018-0531-6
https://doi.org/10.1093/procel/pwaf077
https://doi.org/&nbsp;10.1093/procel/pwaf077
https://doi.org/10.1152/ajprenal.00014.2024
https://doi.org/10.3389/fphar.2024.1398320
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1126/science.1260419
https://doi.org/10.1038/nbt1210-1248
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1186/1471-2288-14-135
https://doi.org/10.3389/fimmu.2025.1681887
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1681887
33. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

34. Liu S, Wang Z, Zhu R, Wang F, Cheng Y, Liu Y. Three differential expression
analysis methods for RNA sequencing: limma, edgeR, DESeq2. J Vis Exp. (2021) 175.
doi: 10.3791/62528

35. Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve
analysis in medical research: current methods and applications. BMC Med Res
Methodol. (2017) 17:53. doi: 10.1186/s12874-017-0332-6

36. Chandrashekar DS, Bashel B, Balasubramanya S, Creighton CJ, Ponce-Rodriguez I,
Chakravarthi B, et al. UALCAN: A portal for facilitating tumor subgroup gene expression
and survival analyses. Neoplasia. (2017) 19:649–58. doi: 10.1016/j.neo.2017.05.002

37. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

38. Xiong Z, Yang F, Li M, Ma Y, Zhao W, Wang G, et al. EWAS Open Platform:
integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic
Acids Res. (2022) 50:D1004–9. doi: 10.1093/nar/gkab972

39. Li Y, Ge D, Lu C. The SMART App: an interactive web application for
comprehensive DNA methylation analysis and visualization. Epigenet Chromatin.
(2019) 12:71. doi: 10.1186/s13072-019-0316-3

40. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

41. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still
GOing strong. Nucleic Acids Res. (2019) 47:D330–8. doi: 10.1093/nar/gky1055

42. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

43. Sturm G, Finotello F, List M. Immunedeconv: an R package for unified access to
computational methods for estimating immune cell fractions from bulk RNA-sequencing
data. Methods Mol Biol. (2020) 2120:223–32. doi: 10.1007/978-1-0716-0327-7_16
Frontiers in Immunology 26
44. Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT
Pharmacometrics Syst Pharmacol. (2013) 2:e79. doi: 10.1038/psp.2013.56

45. Gu Z. Complex heatmap visualization. Imeta. (2022) 1:e43. doi: 10.1002/imt2.43

46. Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets
and new tools for single-cell transcriptome analyses of the tumor microenvironment.
Nucleic Acids Res. (2023) 51:D1425–31. doi: 10.1093/nar/gkac959

47. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One.
(2014) 9:e107468. doi: 10.1371/journal.pone.0107468

48. Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in
cancer invasion and metastasis. J Cell Sci. (2013) 126:393–401. doi: 10.1242/jcs.100115

49. Gupta S, Maitra A. EMT: matter of life or death. Cell. (2016) 164:840–2.
doi: 10.1016/j.cell.2016.02.024

50. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and
potential therapeutic targets in human cancer. J Clin Oncol. (2009) 27:5287–97.
doi: 10.1200/JCO.2009.23.5556

51. Mezheyeuski A, Backman M, Mattsson J, Martıń-Bernabé A, Larsson C,
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Glossary

MFSD12 Major Facilitator Superfamily Domain-containing 12
Frontiers in Immunol
LIHC liver hepatocellular carcinoma
AFP Alpha-fetoprotein
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
IACR International Agency for Research on Cancer
IHC immunohistochemistry
HPA Human Protein Atlas
AUC Area Under Curve
CI Confidence Interval
ROC Receiver Operating Characteristic
TPM Transcripts Per Million
CC Cholangiocarcinoma
CNV Copy Number Variation
SNV Single Nucleotide Variant
WES Whole Exome Sequencing
CpG Cytosine-phosphate-Guanine dinucleotide
TNM Tumor-Node-Metastasis staging system
GSEA Gene Set Enrichment Analysis
CIBERSORT cell-type identification by estimating relative subsets of

RNA Transcripts
Cor Pearson correlation coefficient
ESTIMATE estimation of stromal and immune cells in malignant tumor

tissues using expression data
xCell cell type enrichment analysis tool
Pearson Pearson correlation coefficient
Cor Correlation coefficient
UMAP Uniform Manifold Approximation and Projection
MFSD12 Major Facilitator Superfamily Domain Containing 12
CD4T_conv Conventional CD4+ T cells
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T_prolif Proliferating T cells
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NK_cell Natural Killer cell
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HCC Hepatocellular Carcinoma
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G1/S G1/S phase transition genes
G2/M G2/M phase transition genes
CTRP Cancer Therapeutics Response Portal
ogy 27
PRISM Preclinical Repurposing of Medicines
GDSC1/GDSC2 Genomics of Drug Sensitivity in Cancer 1/2
Anti-PD-1 Anti-Programmed Cell Death Protein 1
Anti-CTLA-4 Anti-Cytotoxic T-Lymphocyte-Associated Protein 4
Log-rank Log-rank test
Number at risk Number of patients at risk at each time point
CTRL control untreated
si-NC negative control siRNA
si-MFSD12 MFSD12-targeting siRNA
E-cadherin epithelial cadherin
MMP-2/9 matrix metalloproteinase-2/9
HAVCR2 hepatitis A virus cellular receptor 2 (TIM-3)
LGALS9 lectin galactoside-binding soluble 9 (Galectin-9)
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
TMB Tumor mutation burden;MSI, Microsatellite instability
GTEx Genotype-Tissue Expression databases
OS overall survival
PFS progression-free survival
ROC receiver operating characteristic
AUCs area under the curves
C-index consistency index
KM plotter Kaplan-Meier plotter
IOD integrated optical density
FC fold-change
HR Hazard ratio
siRNA small interfering RNA
OD optical density
GBM Glioblastoma
GBMLGG Glioblastoma and Lower Grade Glioma
LGG Lower Grade Glioma
BRCA Breast Cancer
KIRP Kidney Papillary Cell Carcinoma
STAD Stomach Adenocarcinoma
HNSC Head and Neck Squamous Cell Carcinoma
KIRC Kidney Renal Clear Cell Carcinoma
LIHC Liver Hepatocellular Carcinoma
PAAD Pancreatic Adenocarcinoma
TILs tumor-infiltrating lymphocytes
TME tumor microenvironment
ICI Immune checkpoint inhibitors
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