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Antibodies against Plasmodium falciparum erythrocyte membrane protein 1

(PfEMP1) on infected erythrocytes (IEs) play a central role in naturally acquired

protection against cerebral malaria (CM), yet the determinants of effective humoral

immunity remain incompletely defined. We review evidence from

seroepidemiological, functional, and mechanistic studies demonstrating that

antibodies to endothelial protein C receptor (EPCR)‐binding cysteine-rich

interdomain regions (CIDR)a1 and Duffy binding-like (DBL)b domains associated

with dual EPCR and intercellular adhesion molecule 1 (ICAM1) binding correlate with

reduced risk of CM, while responses to rosetting‐associated domains (DBLa, CIDRg)
and other domains are less well characterized. We synthesize findings on antibody

kinetics—early, durable responses to Group A variants versus delayed, transient

responses to Groups B and C—and on effector mechanisms including opsonic

phagocytosis, complement activation, and Fc glycosylation. We highlight

methodological challenges in measuring PfEMP1‐specific immunity, such as

antigenic switching, differences between assays using single domains and native

protein on IEs, and the need for physiologically relevant 3D vascular models. Finally,

we identify key research priorities: mapping immunodominant epitopes across

variant repertoires; longitudinal cohort studies to track antibody maturation and

post‐translational modifications; and the development of broadly inhibitory

monoclonal antibodies. Addressing these gaps will be critical for designing

vaccines and therapeutics that harness protective antibody functions to prevent CM.
KEYWORDS

Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1), cerebral malaria
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1 Introduction

Malaria remains a significant global health challenge, with over

200 million cases annually, disproportionately affecting resource-

constrained regions, mostly in sub-Saharan Africa (1). Vulnerable

populations, including children under 5 and pregnant women, bear

the greatest burden, with severe consequences like high mortality

rates, neurological complications, and adverse pregnancy outcomes.

Malaria presents across a broad clinical spectrum, ranging from

asymptomatic parasite carriage to uncomplicated malaria (UM),

and progressing to severe, life-threatening disease. Severe malaria

(SM) includes complications such as severe malarial anemia (SMA)

and neurological syndromes like cerebral malaria (CM). CM, the

most severe form of Plasmodium falciparum (P. falciparum)

malaria, is clinically defined as unarousable coma not attributable

to other causes in the presence of parasitemia (1).

P. falciparum, the most virulent species of malaria parasites

infecting humans, is responsible for most of the severe disease and

mortality (1, 2). A key contributor to the virulence of P. falciparum

is the binding of infected erythrocytes (IEs) to the vascular

endothelium, causing sequestration of the parasite in the

microvasculature of various tissues. By preventing splenic

clearance, sequestration aids parasite survival. Sequestration of

IEs in the brain’s microvasculature is a defining feature of CM

pathogenesis (3).

Sequestration is mediated by Plasmodium falciparum

Erythrocyte Membrane Protein 1 (PfEMP1), a species-specific,

highly polymorphic protein that is predominantly expressed on

the surface of IEs during the blood stage of infection (4, 5). PfEMP1

proteins are encoded by approximately 60 var genes per genome

that undergo frequent recombination to enhance their antigenic

diversity and immune evasion capabilities (4, 6). Though diverse,

the var genes that encode most PfEMP1s can be grouped based on

upstream promoter sequences (UPS), chromosomal location, and

transcription direction (Figure 1A) into 3 main groups: Group A, B,

C, and 2 intermediary groups: Group B/A and UPS B/C.

The extracellular ectodomain of PfEMP1 has a modular structure,

primarily composed of 2–10 tandemly arranged protein domains

named the Duffy Binding-Like domains (DBL) and the Cysteine-

Rich Interdomain Regions (CIDR). PfEMP1’s antigenic diversity is

driven by the variation in the number, arrangement and sequences of

the DBL and CIDR domains present in the ectodomain of different

PfEMP1s (4, 7). Sequence similarities allow for the classification of DBL

domains into distinct classes, including a, b, g, d, e, and z, while CIDR
domains are grouped into classes such as a, b, g, d, and pam. Each of

these major classes is further subdivided into subclasses denoted by

numbers, e.g., DBLa1 (5). Over 95% of PfEMP1s feature a head

structure composed of tandem DBLa and CIDR domains adjacent to

the N-terminal segment (NTS) (5). The central region of PfEMP1 often

contains multiple, alternating DBL and CIDR domains, followed by a

transmembrane region and an acidic-tail segment at the C-terminus (4,

5, 8) (Figure 1B).

There are specific combinations of domains which are seen in

different PfEMP1s. Domain Cassettes (DCs) are defined as

structural alignment of two or more adjacent DBL and CIDR
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domains within PfEMP1 proteins that frequently occur together

in at least three P. falciparum genomes (5). Some DCs are known to

bind to specific endothelial receptors, and it is possible that these

conserved arrangements have evolved to facilitate a survival

advantage for the parasite. For example, DC8 which consists of

DBLa2 – CIDRa1.1 – DBLb12 – DBLg4/6 binds to Endothelial

Protein C Receptor (EPCR) via a conserved CIDRa1.1
domain (Figure 1C).

The clinical manifestations of P. falciparum infection are

influenced by the parasite’s ability to bind specific host receptors,

which differ in abundance and distribution across tissues. While

many of these receptors are found on the vascular endothelium,

others involved in rosetting or placental malaria are located on

uninfected erythrocytes and placental syncytiotrophoblasts,

respectively. For instance, intercellular adhesion molecule 1

(ICAM1) is abundant in the brain, chondroitin sulfate A (CSA) is

found on placental syncytiotrophoblasts, and Cluster of

Differentiation 36 (CD36) is widely distributed throughout many

tissues in the body (9–11). The ability of a particular PfEMP1

variant to bind to specific receptors determines where IEs sequester,

driving organ-specific complications. This selective binding is

critical to the manifestation of CM, in which PfEMP1 variants

with high affinity for brain-expressed receptors promote

sequestration in the microvasculature of the brain (4, 12, 13).
1.1 The pathogenesis of cerebral malaria

Despite standardized diagnostic criteria, distinguishing true CM

from other causes of coma remains difficult in high-transmission

settings, where incidental parasitemia is prevalent. The clinical

definition of CM (Blantyre coma score ≤2, parasitemia, and

exclusion of other causes (1)) misclassifies approximately a

quarter of cases, which have alternative causes like meningitis,

highlighting the prevalence of incidental parasitemia (3).

Pathophysiologically, CM can be categorized into 3 subtypes:

sequestration only, sequestration with microvascular pathology,

and no sequestration—the latter likely representing non-malarial

causes of comas (3, 14). Retinal findings, such as hemorrhages,

vascular whitening, and other vascular changes, are strongly

associated with sequestration in true CM, while the absence of

these points to non-malarial causes of coma (3). These features

make fundoscopic examination a practical, non-invasive tool to

confirm CM (15, 16).

In CM, pathology is partly driven by blood-brain barrier

breakdown, a process involving multiple interrelated mechanisms.

Sequestration of IEs, inflammation from inflammatory cytokines,

endothelial activation, and dysregulated coagulation leading to

microvascular thrombosis can all contribute to tight junction

disruption (Figure 2) [Reviewed in Jensen et al. (17)]. The

expression of endothelial adhesion receptors is upregulated by

two responses to pathogen associated molecular patterns

(PAMPS) released during schizont rupture, namely the sensing of

PAMPs by Toll-like receptors and TNF production by

macrophages. Thus, the upregulation of endothelial adhesion
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receptors leads to further sequestration of IEs (18, 19).

Sequestration activates endothelial cells, which in turn produce

chemokines that recruit leukocytes. These leukocytes further

amplify local inflammation by releasing additional chemokines

(20). Cytotoxic T-cells are also recruited and can recognize

endothelial-bound antigens via MHC-I sensing (21). They induce

endothelial cell apoptosis through Granzyme B (22), compromising

the integrity of the blood–brain barrier. During pathogenesis, a

procoagulatory microenvironment develops due to two main

factors: first, sequestration reduces the availability and activation

of Protein C (23); second, activated endothelial cells release Von

Willebrand factor, which activates platelets (24). These activated
Frontiers in Immunology 03
platelets then aggregate and bind to endothelial receptors or IEs

(25). In vitro and ex vivo data suggests that IEs expressing ICAM1

and EPCR dual-binding PfEMP1 variants are internalized by brain

endothelial cells via an ICAM1–dependent mechanism, leading to

endothelial cell swelling and impaired BBB integrity (26).

Additionally, focal hemorrhages further weaken the blood-brain

barrier, causing plasma and protein leakage into brain tissue, which

promotes cerebral swelling, a severe and potentially fatal

complication of CM (27, 28). Sahu et al. (29) showed that

increased parasite biomass (as indicated by higher PfHRP2 levels)

and the elevated expression of EPCR-binding PfEMP1 variants are

key determinants driving brain swelling in CM.
FIGURE 1

PfEMP1 classification overview. (A) UPS classification illustrating the chromosomal locations of var genes along with the direction of their transcription,
depicted using arrows. (B) Schematic representation of the typical PfEMP1 structure, with dotted lines indicating domains that may or may not be present
depending on the specific variant. (C) Schematic representation of domain cassettes 8 and 13 and their UPS group and binding phenotype.
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2 Structural diversity of PfEMP1s
associated with cerebral malaria and
their host receptor interactions

2.1 Sequestration

Sequestration in the cerebral microvasculature is a hallmark

feature of CM. There isn’t a single PfEMP1 variant exclusively

linked to the development of CM. Instead, multiple PfEMP1

variants are differentially transcribed in SM and CM (30–32).

Given the high diversity of PfEMP1, research has focused on the

binding phenotypes of different PfEMP1. Among these, EPCR and

ICAM1-binding variants can bind brain endothelial cells in vitro and

often associated with CM, making them the focus of the following

discussion. However, they are not always expressed in CM and may

not be the only PfEMP1 variants involved in its pathology.

Many studies have observed an association between infections

caused by P. falciparum parasites that express var genes encoding

PfEMP1 proteins from Group A and B/A and SM including CM (26,

30, 33–36). The receptor-binding phenotypes of some Group A and
Frontiers in Immunology 04
B/A PfEMP1 proteins can be directly linked to the pathogenesis of

CM. Some PfEMP1 variants are capable of simultaneously binding to

both EPCR and ICAM1 (37, 38) and CM is associated with P.

falciparum expressing dual EPCR- and ICAM1-binding PfEMP1

variants, as shown by both upregulation of the corresponding var

genes (39, 40) and IEs which bind microvascular endothelium (38,

41). Notably, these “dual-binding” proteins are primarily found in

Group A and Group B/A (38).

EPCR is a receptor located on vascular endothelial cells, and

PfEMP1 variants with CIDRa1 domains can bind EPCR, a feature

associated with SM and CM (33, 40, 42). Phylogenetically, CIDRa1
sequences are grouped into subclasses (CIDRa1.1–1.8), of which
CIDRa1.1 and 1.4–1.8 bind EPCR, while CIDRa1.2 and 1.3 do not

and may occur only in pseudogenes.

DBLb1/3/5 domains are known to bind ICAM1 (38, 43–45). In

dual-binding PfEMP1 variants, ICAM1-binding DBLb domains are

downstream of EPCR-binding CIDRa1 domains (38). The “DBLb
motif”, a short amino acid sequence within DBLb domains of

specific PfEMP1 proteins, is associated with a dual binding

PfEMP1 to EPCR and ICAM1. This motif is present in Group A
FIGURE 2

Postulated pathophysiology of cerebral malaria: 1. Sequestration – P. falciparum pathogen-associated molecular patterns (PAMPs) activate Toll-like
receptors (TLRs) on endothelial cells and macrophages, upregulating endothelial adhesion molecules. TNF from macrophages amplifies this,
promoting PfEMP1-mediated IE binding and further endothelial activation in the brain (17, 18). 2. Inflammation – Activated endothelial cells (ECs)
secrete chemokines that recruit leukocytes, which in turn release inflammatory cytokines like TNF, further promoting sequestration. This cycle
amplifies inflammation as recruited immune cells continue to produce cytokines and chemokines, sustaining the response (19). 3. Procoagulatory
pathways – Activated ECs release von Willebrand Factor (vWF), which binds to glycoproteins on platelets, triggering their activation (20). Activated
platelets aggregate and express various surface receptors—including tissue factor—that enhance adhesion to both ECs and IEs, forming multimeric
complexes (21). Additionally, sequestration reduces the abundance and activation of protein C (22). 4. Blood-Brain Barrier (BBB) Breakdown -
Cytotoxic T cells infiltrate the brain’s microvasculature, recognize antigens on endothelial cells via MHC-I (23), and release granzyme B to trigger
apoptosis (24). This cytotoxic activity disrupts the blood-brain barrier, contributing to vasogenic oedema and neurological damage, and may result in
brain swelling (25).
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and some Group B/A variants and is transcribed by isolates from

children with CM (26, 46). Although transcript levels of var genes

that encode both Group A and Group B PfEMP1 were elevated in

CM cases (41), it remains unclear what fraction of these transcripts

correspond to EPCR–ICAM1 dual binders versus ICAM1–only

binders. In other words, it is not yet known whether ICAM1–

binding PfEMP1 that lack EPCR binding are associated with

disease. To address this, future studies should directly compare

var gene transcription and surface expression of ICAM1–only

versus dual-binding PfEMP1 in cerebral and non-cerebral cases,

and evaluate these isolates' adhesive capacity under physiological

flow conditions.

DC13 is an EPCR-binding domain cassette found in certain

Group A PfEMP1 proteins, which is composed of DBLa1.7 and

CIDRa1.4 (Figure 1C) (9, 43). High transcription of var genes

encoding DC13 is observed in both African children and Indian

adults with SM, including CM, suggesting that this association is

not geographically restricted (47–50). Additionally, DC13-encoding

var genes show higher transcription levels in CM compared to

SMA, reinforcing their stronger link to CM (33, 48, 50–52). DC8 is

an EPCR-binding PfEMP1 variant, primarily found in Group B

PfEMP1 proteins, consisting of four domains: DBLa2, CIDRa1.1,
DBLb12, and DBLg4/6 (4). Although DC8 transcription is elevated

in CM it is also upregulated in individuals with broader SM

manifestations (49, 51).

In CM, the transcription of DBLa from Group A var genes is

upregulated compared to UM (30, 36). This includes DBLa1.1,
which is typically adjacent to a CIDRa1.4/6/7 domain that

facilitates binding to EPCR (4, 53) and DBLa1.6/8 domains that

typically feature in rosetting types, which will be discussed in the

following section (4, 53).

Platelet and endothelial cell adhesion molecule 1 (PECAM-1)

binds PfEMP1 on infected erythrocytes. In vitro studies

demonstrate adhesion to recombinant and transfected PECAM-1,

and many field isolates, including those from children with severe

malaria, show measurable but generally low binding (54). PECAM-

1 is also expressed in the microvasculature of the human brain (55),

providing a biologically plausible site for such interactions. Genetic

association studies have further linked PECAM-1 polymorphisms

with susceptibility to cerebral malaria, supporting its potential

relevance to severe disease (56, 57). However, unlike EPCR, direct

evidence from human autopsy material demonstrating

colocalization of sequestered parasites with PECAM-1 in brain

microvessels is lacking (23). This gap highlights PECAM-1 as a

plausible but unconfirmed contributor to cerebral sequestration,

and an important target for future exploration.
2.2 Rosetting

PfEMP1 not only mediates sequestration but can bind IEs to

uninfected erythrocytes, forming clusters in a process known as

rosetting. Isolates from individuals with CM have been shown to

form rosettes in vitro (58–60). However, the contribution of

rosetting to pathogenesis remains unclear due to conflicting
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findings, which may reflect geographical differences. In sub-

Saharan African cohorts, significantly higher rosetting rates were

observed in CM compared to UM (58, 61), and rosetting was

elevated in SM compared to UM, regardless of syndrome subtype

(59, 60). In contrast, a study from Papua New Guinea found similar

rosetting rates in CM and UM (62), while a Thai study reported the

highest rosetting frequencies in CM compared to both UM and

non-cerebral SM (63).

The mechanisms by which rosetting might contribute to

malaria pathogenesis remain unclear. One hypothesis is that

rosettes impede phagocytosis of IEs. The larger size and complex

structure of rosettes can physically hinder phagocytes from

engulfing infected cells (64, 65). When rosetting is disrupted,

parasites become more susceptible to phagocytosis, but intact

rosettes require multiple phagocytes for clearance, potentially

leading to phagocyte exhaustion in hyperparasitemic malaria

patients (66).

Assessing the exact contribution of rosettes to disease severity is

challenging, as they are difficult to observe in autopsy samples,

making it hard to confirm their presence and impact in affected

organs. Furthermore, rosetting involves multiple host factors, such

as ABO blood group and complement components (67–69), which

vary between individuals and populations. There may not be a

universal mechanism linking rosetting to severe disease, as both

host and parasite factors contribute to its heterogeneity. These

limitations underscore the need for innovative approaches, such

as 3D microvessels with precise control over vessel architecture and

blood flow (70), to better replicate in vivo rosette dynamics.

Most rosetting variants are encoded by Group A var genes and

typically feature domain combinations—such as DBLa1.5/6/8
paired with CIDRb/g/d—that form the rosetting-associated head

structure (4, 71–75). Given that transcription of these Group A var

genes is upregulated in CM (26, 33, 35), this supports the idea that

rosetting may contribute to pathogenesis. However, several

knowledge gaps remain. First, not all var genes that give rise to

the rosetting phenotype have been definitively identified, and it is

unclear whether currently known associations capture the full

diversity of rosetting PfEMP1 variants. Second, transcriptomic

data provide only partial insight into protein expression; mRNA

levels don’t always translate to surface-expressed PfEMP1, and the

relationship between var gene transcription and PfEMP1 display

remains incompletely understood. Third, parasites sampled from

peripheral blood may not reflect the phenotype of sequestered IEs in

critical organs, where rosetting is presumed to exert its pathological

effects. The second and third challenges, although discussed in this

section, represent broader obstacles to understanding all PfEMP1

and not only rosetting variants.
3 Antibodies to PfEMP1 in cerebral
malaria

Antibodies targeting PfEMP1 are likely essential for malaria

immunity as they could prevent the sequestration of IEs and

facilitate IE clearance. PfEMP1 appears to be the immunodominant
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surface antigen on IEs, as suppression of PfEMP1 expression

significantly reduced IgG binding by plasma from malaria-exposed

individuals (76). Effective immunity may result from acquisition of

antibodies to a broad range of PfEMP1 variants, or from the

acquisition of strain-transcending antibodies against specific

binding phenotypes (75, 77).

Individuals living in malaria-endemic regions develop naturally

acquired immunity to P. falciparum through repeated infections,

leading to the production of antibodies against key parasite

antigens, including PfEMP1 (78, 79). This immunity is associated

with reduced disease, with adults and older children developing a

broader, more robust antibody response to PfEMP1 variants due to

cumulative exposure (80, 81) The best evidence for the protective

effect of PfEMP1 antibodies comes from placental malaria.

Pregnant women develop antibody to the PfEMP1 VAR2CSA in

a gravidity dependent manner, and development of these antibodies

is associated with declining prevalence and density of placental

malaria infection (Reviewed in Rogerson et al. (82)).

Studies indicate that PfEMP1-specific antibodies develop

sequentially in response to different parasite variants. The earliest

acquired antibodies target Group A PfEMP1 variants, which are

associated with SM, followed by Group B and C variants, which are

linked to UM (78, 79, 83). For example, Tessema et al. (84)

demonstrated that young Papuan New Guinean children, age 1–3

years old, mainly develop antibodies to Group A PfEMP1,

indicating early infections involve these variants. With age and

repeated exposure, their immunity broadens to include Group B/C

PfEMP1s, potentially reflecting progressive immunity to SM (84).

Sequential acquisition of antibodies toward Group A, B and C

variants is true for CIDRa domains that bind to EPCR and CD36.

In malaria-endemic regions, antibodies to CIDRa1 are present at

birth, due to maternal antibody transfer, but decline by around six

months of age (85). Children then begin to acquire IgG antibodies

against EPCR-binding CIDRa1 variants, such as CIDRa1.7 and

CIDRa1.8, earlier than IgG targeting CD36-binding variants (86,

87). Transcription of CIDRa1.7 was particularly associated with

brain swelling in Malawian children (40). CIDRa1.7 elicited the

highest IgG antibody levels among all the CIDR domain variants

tested in young children and a larger proportion of children in the

cohort had detectable IgG to CIDRa1.7 compared to other variants

(86). This early antibody acquisition may reflect a parasite fitness

advantage from expression of EPCR‐binding PfEMP1 variants,

which mediate microvascular adhesion (33, 42, 88). PfEMP1

variants that are both common in circulating parasites and

initially unopposed by antibodies are favored in early infection.

As children develop specific IgG (such as against CIDRa1.7) these
antibodies target the most widely circulating variants, gradually

eroding their fitness advantage (89, 90).

Young children are highly vulnerable to CM, likely because of

the limited antigenic breadth and functional capacity of their

antibodies, predisposing them to high parasite burdens (90).

Travassos et al. (91) highlight syndrome-specific differences:

children with CM exhibited more frequent and wider gaps in

seroreactivity than those with SMA and UM.
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3.1 Antibody responses to EPCR-binding
PfEMP1

Children recovering from SM —including CM and SMA—

exhibit increased PfEMP1 antibody levels during convalescence,

particularly targeting EPCR-binding CIDRa1 domains (91, 92).

These findings suggest that episodes of severe disease may drive

the acquisition of immunity to EPCR-binding PfEMP1 variants

(91). Notably, Nunes-Silva et al. (93) reported that children with

CM failed to boost antibody responses against parasites expressing

the EPCR-binding PfEMP1 VAR19 or recombinant proteins

containing VAR19’s EPCR binding CIDRa1.1 domain following

infection. While this appears to contrast with previous findings of

post-infection increases in antibody to EPCR-binding PfEMP1

variants, the difference may reflect the use of a single EPCR-

binding PfEMP1 in the study (93). The apparent lack of boosted

immunity to that variant may simply reflect antigenic differences

between the PfEMP1s circulating in Benin and the variant tested.

However, while convalescent children with CM develop a boost in

IgG to EPCR-binding PfEMP1 domains (91, 92), they remain at

increased risk of subsequent SM episodes (94). This may reflect

immunological gaps, as Travassos et al. (91) demonstrated that

children with CM lack IgG breadth to certain PfEMP1 subsets,

and Rambhatla et al. (92) showed that convalescent boosts can be

non-broadly reactive or transient. The persistence of these

antibody “blind spots” may underlie why even boosted

responses do not necessarily translate into durable protection

from recurrent SM.

Across diverse populations, antibodies to the EPCR-binding

CIDRa1 domains of PfEMP1 are significantly higher in UM than in

SM, including CM, suggesting that these antibodies may play a

protective role (76, 95, 96).

Antibody specificity plays a critical role in mediating protection

against severe disease. In one study of IgG levels to 32 PfEMP1

domains—selected based on their differential transcription in SM

compared to UM— individuals with UM had significantly higher

IgG against 15 of 22 SM-associated PfEMP1 domains compared to

those with SM (95). Of the domains eliciting significantly higher

IgG responses, CIDRa1.6 was one of the three PfEMP1 domains

that most effectively distinguished uncomplicated from severe cases

(95). This suggests that IgG to CIDRa1.6 may contribute to

protection from SM. Another study, which focused specifically on

EPCR-binding DC13 (DBLa1.7-CIDRa1.4) found no significant

differences in IgG1 nor IgG3 responses to DC13 between CM and

UM (96). However, these IgG1 and IgG3 levels to DC13 did

significantly increase in the CM cohort from admission to

convalescence (96). Similarly, Kessler et al. (97) assessed IgG

seroreactivity to 61 3D7-derived PfEMP1 domains using a

proteome microarray in children with retinopathy-positive CM or

UM and found no differences in antibody responses to EPCR-

binding DC8 domains between the groups (97). This suggests that

not all antibodies to EPCR−binding domains confer equal

protection and echoes the “gaps in seroreactivity” described by

Travassos et al. (91).
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Retinopathy in CM provides a non-invasive window into brain

pathology, reflecting both microvascular sequestration and

hemorrhagic events occurring in the cerebral microvasculature (3,

16). Additionally, Joste et al. (98) reported that among children with

CM, those with retinopathy had significantly lower IgG responses to

the EPCR-binding CIDRa1.4 than children without retinopathy,

even though the expression of var genes encoding CIRDa1.4
binding domains and in vitro cytoadherence levels of isolated IEs

to EPCR were similar between the groups (98). Although antibodies

to EPCR-binding CIDRa1.4 domains did not differ overall between

all CM cases compared to UM (98), their lower levels in CM

children with retinopathy compared to those without suggest a

potential role in modulating severity, rather than conferring

outright protection from CM.

The CIDRa1.1 domain of DC8 is known to bind to EPCR,

however, other domains of DC8 may also contribute to vascular

adhesion, via additional receptors. Recombinant DC8 exhibited

stronger binding to EPCR and to an immortalized human

microvascular endothelial cell line compared to the CIDRa1.1
domain of DC8 alone (93). Notably, antibodies targeting the

multi-domain DC8 protein fully blocked binding to recombinant

EPCR but only partially inhibited endothelial cell adhesion (93).

This implies that domains of DC8 other than CIDRa1.1 could

interact with unknown receptors, highlighting alternative adhesion

pathways contributing to IE binding in CM (93). This notion of

alternative adhesion pathways is further supported by findings from

a separate study, which reported that children with UM had

significantly higher IgG reactivity to DBLa2 and DBLg6 domains

(both of which are part of DC8) compared to those with CM (76).

In contrast, IgG responses to CIDRa1 (the EPCR-binding domain)

and DBLb12 did not differ between the groups (76). These findings

suggest that antibodies targeting only CIDRa1.1 may not block all

adhesion mechanisms in vivo, and that antibodies against adjacent

domains such as DBLa2 and DBLg6 may contribute to protection

against CM by interfering with alternative binding interactions

beyond EPCR. However, further research is required to confirm

these hypotheses.
3.2 Antibody responses to ICAM1-binding
PfEMP1

Acquisition of antibodies to ICAM1–binding PfEMP1 domains

differs between Group A and Groups B and C. Olsen et al. (79)

report that in healthy children from Ghana, Group A DBLb
domains, which are more conserved and often associated with

CM pathogenesis, tend to elicit early and sustained antibody

responses, as seen in longitudinal cohorts (79, 99). These

responses are characterized by prompt seroconversion and

evidence of long-lived antibody memory, while responses to

Groups B and C develop later and increase gradually with

repeated exposure (79).

The role of DBLb domains, particularly those encoding

ICAM1-binding regions, as targets of the immune response in

CM is complex and multifaceted.
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In a study using an ICAM1-binding DBLb3 domain from a

Group A PfEMP1 variant with an EPCR-binding CIDRa1 domain,

higher IgG levels against the DBLb3 at enrolment were significantly

associated with a reduced risk of high‐density clinical malaria (fever

+ ≥10,000 parasites/µL) and of progression to SM during follow-up

(69 weeks) (84). While this longitudinal evidence suggests that

antibodies to this DBLb3 may protect against malaria, it remains

unclear whether this protection extends to CM. Future studies

should stratify SM cases by clinical phenotype to determine if

these antibodies confer similar protection against CM,

considering the potential for distinct pathogenic mechanisms

between CM and other SM manifestations.

While children with CM and UM of similar age show no

significant differences in DBLb-specific IgG titers (98, 100, 101),

they do differ in antibody function. Two separate studies

investigated phagocytic activity against ICAM1-binding PfEMP1.

In Benin, where the cohort included children with SM including

CM, and in Malawi, which focused exclusively on CM, individuals

with UM showed greater phagocytic activity against DBLb-coated
beads and ICAM1-binding IEs, respectively (101, 102).

Additionally, among the four recombinant ICAM1-binding

domains assessed, antibodies from children with UM showed

significantly higher inhibition of ICAM1 binding to a Group A

DBLb domain, compared to antibodies from children with SM or

CM (101). These findings suggest that antibody-mediated

inhibition of ICAM1-binding and enhanced opsonic phagocytosis

may contribute to protection against SM (101). These functional

differences may be influenced by antibody features including IgG

subclass. IgG1 and IgG3 are effective in driving phagocytosis, but it

is unknown how antibody subclass influences binding inhibition.

IgG1 and IgG3 antibody titers against multiple ICAM1–binding

DBLb domains were associated with protection against severe

disease in Beninese children (101). This suggests that individuals

in Benin acquire functional antibodies that can bind to multiple

DBLb domains and may be protective.
3.3 Antibody responses that disrupt
rosetting

Several studies have demonstrated that immune sera from

malaria-exposed individuals can reverse rosetting in vitro,

particularly in severe disease including CM (58, 67, 73). One

study found that IgG to the SM-associated DBLa1.5 domain

(selected based on its higher transcription in SM compared to

UM) was significantly higher in UM compared to SM (95),

suggesting that antibodies that disrupt rosetting may confer

protection. The same study found that IgG to SM-associated

CIDRg12 was also significantly higher in UM compared to SM.

Another study found that FcgRIIIb binding antibodies to CIDRg12
were significantly higher in UM than CM and this was one of seven

key features predictive of protection against CM (102). Though

there is limited direct evidence linking the CIDRg12 to rosetting,

other CIDRg domains have been linked to rosetting. Evidence

suggests that CIDRg2 can mediate rosetting. One study showed
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that the CIDRg2 domain of 3D7A parasites binds glycophorin B on

uninfected erythrocytes to mediate robust, plasma-independent

rosetting, and anti-CIDRg2 antibodies specifically inhibited

rosetting in 3D7A parasites in a dose-dependent manner (9).

Interestingly, anti-CIDRg2 antibodies did not affect rosetting of

another parasite line FCR3, whose rosetting involves IgM and a2-
macroglobulin. In the FCR3 parasite, antibodies to DBL1a-CIDRb
blocked rosetting (103), highlighting that there are multiple,

domain-specific mechanisms of rosette formation. These findings

suggest a possible link between rosetting and the pathogenesis of

CM, highlighting the need for further investigation into the

underlying mechanisms and the potential for antibodies targeting

rosetting domains to offer protection against CM.

Some rosetting parasites bind IgM and IgM facilitates the

adhesion of the IEs to uninfected erythrocytes (104). IgM-positive

rosetting parasites express distinct PfEMP1 variants with specific N-

terminal and DBL domains, and polyclonal IgG antibodies raised

against these variants could inhibit rosetting across different strains

(73), indicating strain-transcending potential. In contrast, IgM-

negative rosetting parasites exhibited strain-specific antibody

activity (73). These strain-transcending antibodies represent the

kind of broader protection that would be ideal for developing a

preventative measure against CM. However, there is no data on

which rosetting strains are expressed in CM or whether antibodies

toward them provide protective immunity. These aspects require

further investigation.
3.4 Functional features of antibodies
protective against cerebral malaria

PfEMP1-specific antibody responses may offer protection

against malaria by eliciting multiple effector functions, including

blocking IE adhesion (73, 105) and promoting immune clearance

via ADCP (76, 101, 105) and antibody-dependent cellular

cytotoxicity (ADCC) (106–108).

Complement enhances antibody-mediated inhibition across

multiple parasite stages, including sporozoites (CSP), merozoites

(MSP1), and sexual forms (Pfs230) (104, 109), however the role of

complement fixing antibodies against PfEMP1 and IEs is less clear

(110). Recent findings emphasize the role of antibody-dependent

effector functions in distinguishing CM from UM, identifying seven

key antibody features predictive of malaria severity (102). Among

these were antibodies that fix C1q (targeting the ICAM1 binding

IT4VAR13_DBLb) indicating that complement-mediated effector

functions may be a protective mechanism. While these insights offer

a valuable starting point, it is important to note that findings based

on recombinant proteins may not fully capture native PfEMP1

conformation or function in vivo. Given that IgG1 and IgG3

dominate the PfEMP1-specific response in semi-immune

individuals (111–113) and are potent complement activators,

their ability to fix C1q may contribute to protection against CM.

However, a study found that complement-mediated opsonization of

IEs is limited in efficacy, potentially due to the patchy distribution of

PfEMP1 on the IE surface (111), which could limit IgG
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hexamerization—an essential step for effective C1q activation

(114). Although antibodies that fix C1q have been suggested to

play a protective role in CM, it is important to confirm if

complement deposition does occur on the IE and whether it

enhances complement-mediated phagocytosis. Future studies

should elucidate how C1q-fixing antibodies targeting PfEMP1

contribute to protection against CM, for better prognostic and

therapeutic strategies.

Fc mediated functions may protect against CM; antibody

features associated with protection from CM include FcgRIIIb-
binding antibodies targeting ICAM1 binding DBLb3 PfEMP1

domains (112). In the same study, Malawian children with UM

had higher neutrophil-mediated phagocytosis of IEs expressing

ICAM1 and EPCR-binding PfEMP1 (3D7VAR04) than children

with CM (112), suggesting a protective role of FcgRIIIb-
dependent phagocytosis. In contrast, children with CM had

higher neutrophil-mediated phagocytosis of ICAM1 and CD36-

binding IEs (IT4VAR13), indicating a difference in immune

targeting of variant surface antigens. FcgRIIa can work

synergistically with FcgRIIIb to enhance antibody-dependent

neutrophil phagocytosis of merozoites (115) and sporozoites

(116), it is currently unknown whether this is similar for PfEMP1.

This suggests that exploring Fc-mediated immune functions, such

as complement activation, ADCC, and FcgR engagement, could

provide stronger predictive value for clinical outcomes than total

neutralizing antibodies alone.
3.5 Fucose-free PfEMP1-specific antibodies

Antibody-dependent immune effector functions depend on IgG

binding to FcgR on immune cells, a process influenced by

glycosylation (the presence of sugar molecules on the antibody’s

Fc region), which can significantly influence downstream immune

functions. One key glycosylation modification is Fc-afucosylation,

the absence of fucose on the biantennary glycan at asparagine 297

(N297) in the IgG Fc region. This enhances IgG binding to FcgRIIIa,
greatly amplifying ADCC activity (117). Afucosylated IgG

antibodies targeting enveloped viruses or alloantigens are highly

effective at ADCC, as they can bind the FcgRIIIa receptor on

immune cells up to 20 times more strongly (117–119).

A study on IgG afucosylation in pregnancy-associated malaria

highlighted the potential importance of afucosylated antibodies in

malaria immunity (107). Researchers found that naturally acquired

IgG targeting pregnancy-associated PfEMP1 (VAR2CSA) was

afucosylated and remained stable over time, whereas vaccination

did not induce afucosylated antibodies (107). Notably, only

afucosylated VAR2CSA-specific IgG could induce natural killer

(NK) cell degranulation (107). In a more recent study, children

with Fc-afucosylated IgG1 targeting the PfEMP1 variant

HB3VAR06 were less likely to be anemic. Fc-afucosylation of

these antibodies is acquired through repeated malaria exposure

and persists over time. Protection from anemia was associated with

immune cell activation via FcgRIIIa, rather than complement-

mediated lysis, likely due to the uneven distribution of PfEMP1
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on IEs (120), suggesting that Fc-afucosylation enhances antibody

function by improving IgG binding to FcgRIIIa, which boosts NK

cell activation and IE clearance. However, the role of NK cells in

CM may be a double-edged sword, as children with CM have more

activated NK cells than those with SM or UM (121).

Despite growing interest in antibody glycosylation, there is

limited data on the role of afucosylated IgG antibodies in CM.
4 Where can we go from here?

Current evidence suggests that antibodies targeting PfEMP1

have the potential to protect against CM, but further research is

needed to determine which PfEMP1 targets are most important for

immunity. Longitudinal studies indicate that hyperimmune

individuals in endemic areas develop antibodies against EPCR-

binding CIDRa1 domains, which may limit clinically dense malaria

(84, 86). Both EPCR-binding domains and those with dual binding

to EPCR and ICAM1 have been associated with CM (38–40). It is

likely that the determinants of protective immunity extend beyond

the neutralizing capacity of PfEMP1-specific antibodies and

understanding how adhesion inhibition and immune effector

functions cooperate to eliminate infections will be important.

Our understanding of naturally acquired immunity to malaria,

and CM in particular, remains incomplete. One key gap is our

limited understanding of why some PfEMP1 variants trigger strong,

protective antibody responses while others evade immunity, leaving

young children—despite early exposure—more vulnerable to CM

compared to older children and adults who develop sustained

responses against EPCR-binding (86) and ICAM1-binding (79)

domains. When considering a determinant of antibody function,

such as afucosylation—acquired over repeated exposure and

persisting over time—we recognize its potential to significantly

enhance immune effector functions like ADCC. It would be

interesting to explore how afucosylation evolves over time,

whether it contributes to age-related differences in immunity, and

how relevant it is for protection (Table 1). The gold standard for

addressing some of these questions would be longitudinal cohort

studies in malaria-endemic regions that follow individuals from

infancy to adulthood. Such studies would provide comprehensive

data on how antibody responses to PfEMP1 develop, persist, and

change over time. However, realistically, these studies may not be

feasible due to several limitations, including their high cost, the

substantial manpower required for long-term follow-up, and the

logistical challenges associated with maintaining consistent data

collection over many years.

Post-translational modifications do not only occur on

antibodies but can also occur on FcgRs located on immune

effector cells and regulate antibody effector function. For example,

ligand−induced ubiquitination of the FcgRIIIa z−chain targets the

receptor for degradation, reducing its surface expression and

dampening natural killer cell activation (122). In the context of

anti−PfEMP1 antibodies, investigations into antibody Fc and FcgR
modifications beyond glycosylation remain scarce. Mass

spectrometry–based mapping of post-translational modifications
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(123) in anti-PfEMP1 antibodies from CM patients and in-silico

structure-based predictions of potential modification sites (124)

offer powerful strategies for identifying which post-translational

modifications are important in CM.

EPCR-binding and dual-binding PfEMP1 variants are closely

associated with CM, leading to the natural hypothesis that

antibodies targeting these variants would provide protection.

However, the data thus far on both DC8- and DC13-containing

PfEMP1 variants, while suggestive of protection, is not conclusive.

This presents a gap that needs further exploration: which isolates of

these variants are most immunogenic, which peptides within them

are immunogenic, and whether these responses are protective.

Beyond antibodies to CIDRa1 and DBLb domains, other regions

of PfEMP1—such as DBLa and CIDRg2 domains involved in

rosetting, and CIDRg6 and CIDRg12 domains with unknown

binding phenotypes—may also influence PfEMP1-mediated

adhesion. It is imperative to assess how their presence in EPCR-

binding PfEMP1 variants enhance CIDRa1’s interaction with

EPCR and evaluate the protective potential of antibodies against

each of these domains in CM.

Monoclonal antibodies like C7 and C74, which target the

CIDRa1 domain of PfEMP1, show promise in preventing IE

sequestration in CM by blocking adhesion to endothelial cells

(125). Identifying post-translational modifications that are

important for protection could help enhance the blocking

capabilities of broadly inhibitory monoclonal antibodies, such

as these.

How broad must the antibody repertoire be to confer effective

protection, and what is the best way to measure immunity? Studies

like Walker et al. (102) demonstrate the power of a systems serology
TABLE 1 Research gaps and proposed approaches.

Knowledge gap Proposed approach

1. The roles of non-binding
PfEMP1 domains (e.g. DBLa,
CIDRg2, g6, g12) in modulating
sequestration and rosetting, and
their potential as protective
antibody targets.

Assess how non-binding domains in
PfEMP1 variants associated with CM
affect binding affinity and test the
functional efficacy of domain-specific
antibodies in blocking adhesion and
protecting against CM.

2. Role of Fc glycan (e.g.
afucosylation) and other post-
translational modifications in
antibody effector function.

Combine mass-spectrometry mapping of
post-translational modifications on anti-
PfEMP1 IgG from CM vs UM patients
with functional assays (ADCC, ADNP).

3. Limitations of recombinant-
domain multiplex assays vs native-
IE assays.

Parallel systems serology profiling:
compare recombinant-domain enzyme-
linked immunosorbent assays/microarrays
with whole-IE binding/phagocytosis/
complement-fixation assays to validate
correlates.

4. Techniques to minimize antigen
switching

Develop and maintain antigenically stable
parasite lines (single-var expressors)

5. Need for robust binding-
inhibition assays that reflect in
vivo conditions.

Employ 3D microvessel flow models and
endothelial organoids to test antibody or
monoclonal antibody blockade of IE
sequestration under physiological shear
stress.
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approach in identifying targets and features of a possible protective

antibody response. The study also illustrates potential shortcomings

of recombinant protein-based multiplex immunoassays, which did

not correlate well with assays using whole IEs (102). This

discrepancy may be due to differences in antigen presentation and

Fc receptor engagement, underscoring that assays based on

individual recombinant PfEMP1 domains may not fully capture

immunity to PfEMP1 in its native configuration or full-length

proteins (126). PfEMP1 antigenic switching (127) remains a

significant challenge for in vitro studies, and it will be critical to

obtain antigenically stable parasite lines that accurately reflect the

antigenic diversity in natural infections.

While this review has focused on neutrophils primarily in terms

of antibody-mediated phagocytosis, the work by Zelter et al. (128)

demonstrates that neutrophils can also directly recognize directly

recognize and kill infected erythrocytes via ICAM-1, independently

of antibodies. This suggests that, in addition to their antibody-

dependent phagocytic function, neutrophils may exert selective

pressure on the parasite population: IEs expressing ICAM1-

binding PfEMP1 are preferentially eliminated, forcing surviving

parasites to downregulate or switch away from these variants. This

“filtering” mechanism may contribute to protection and raises an

important question for protective immunity: are antibody-mediated

opsonic phagocytosis and ICAM1–mediated killing both necessary

for effective protection against severe disease?

Another gap is the lack of robust binding inhibition assays, and

how these interactions influence immune effector functions remains

largely unknown. Most binding assays to date have relied on 2D

systems, such as flat layers of cultured cells or immobilized

receptors, where parasites adhere under static conditions (129,

130). Recent work using engineered 3D human brain microvessels

has shown IEs cytoadhere via PfEMP1–endothelial receptor

interactions, mature, and rupture within a physiologically relevant

microvascular environment (70, 131, 132). This binding triggers

endothelial activation, including upregulation of ICAM1 and

inflammatory signaling, promotes focal barrier disruptions and

endothelial apoptosis, and elicits a stress response profile distinct

from that differ from conventional 2Dmonolayers (132, 133). These

3D microvessel models are already proving valuable in investigating

PfEMP1-mediated adhesion and offer a versatile platform for future

research to assess how changes in the microenvironment influence

PfEMP1 expression, transcription, and binding, as well as to

evaluate the efficacy of broadly inhibitory monoclonal antibodies,

both current and in development.

In conclusion, there is still much to learn about the antibody

responses to PfEMP1 that provide protection from CM. Current

research has laid a strong foundation for asking the crucial questions

that will guide us toward those answers. There are many exciting future

directions, including exploring monoclonal antibodies, post-

translational modifications, and 3D vascular models, which may

bring us closer to a deeper understanding of the immune

mechanisms at play and potentially effective interventions.
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