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Antibodies against Plasmodium falciparum erythrocyte membrane protein 1
(PfEMP1) on infected erythrocytes (IEs) play a central role in naturally acquired
protection against cerebral malaria (CM), yet the determinants of effective humoral
immunity remain incompletely defined. We review evidence from
seroepidemiological, functional, and mechanistic studies demonstrating that
antibodies to endothelial protein C receptor (EPCR)-binding cysteine-rich
interdomain regions (CIDR)al and Duffy binding-like (DBL)B domains associated
with dual EPCR and intercellular adhesion molecule 1 (ICAM1) binding correlate with
reduced risk of CM, while responses to rosetting-associated domains (DBLa, CIDRY)
and other domains are less well characterized. We synthesize findings on antibody
kinetics—early, durable responses to Group A variants versus delayed, transient
responses to Groups B and C—and on effector mechanisms including opsonic
phagocytosis, complement activation, and Fc glycosylation. We highlight
methodological challenges in measuring PfEMP1-specific immunity, such as
antigenic switching, differences between assays using single domains and native
protein on IEs, and the need for physiologically relevant 3D vascular models. Finally,
we identify key research priorities: mapping immunodominant epitopes across
variant repertoires; longitudinal cohort studies to track antibody maturation and
post-translational modifications; and the development of broadly inhibitory
monoclonal antibodies. Addressing these gaps will be critical for designing
vaccines and therapeutics that harness protective antibody functions to prevent CM.
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1 Introduction

Malaria remains a significant global health challenge, with over
200 million cases annually, disproportionately affecting resource-
constrained regions, mostly in sub-Saharan Africa (1). Vulnerable
populations, including children under 5 and pregnant women, bear
the greatest burden, with severe consequences like high mortality
rates, neurological complications, and adverse pregnancy outcomes.
Malaria presents across a broad clinical spectrum, ranging from
asymptomatic parasite carriage to uncomplicated malaria (UM),
and progressing to severe, life-threatening disease. Severe malaria
(SM) includes complications such as severe malarial anemia (SMA)
and neurological syndromes like cerebral malaria (CM). CM, the
most severe form of Plasmodium falciparum (P. falciparum)
malaria, is clinically defined as unarousable coma not attributable
to other causes in the presence of parasitemia (1).

P. falciparum, the most virulent species of malaria parasites
infecting humans, is responsible for most of the severe disease and
mortality (1, 2). A key contributor to the virulence of P. falciparum
is the binding of infected erythrocytes (IEs) to the vascular
endothelium, causing sequestration of the parasite in the
microvasculature of various tissues. By preventing splenic
clearance, sequestration aids parasite survival. Sequestration of
IEs in the brain’s microvasculature is a defining feature of CM
pathogenesis (3).

Sequestration is mediated by Plasmodium falciparum
Erythrocyte Membrane Protein 1 (PfEMPI1), a species-specific,
highly polymorphic protein that is predominantly expressed on
the surface of IEs during the blood stage of infection (4, 5). PEEMP1
proteins are encoded by approximately 60 var genes per genome
that undergo frequent recombination to enhance their antigenic
diversity and immune evasion capabilities (4, 6). Though diverse,
the var genes that encode most PfEMP1s can be grouped based on
upstream promoter sequences (UPS), chromosomal location, and
transcription direction (Figure 1A) into 3 main groups: Group A, B,
C, and 2 intermediary groups: Group B/A and UPS B/C.

The extracellular ectodomain of PfEMP1 has a modular structure,
primarily composed of 2-10 tandemly arranged protein domains
named the Duffy Binding-Like domains (DBL) and the Cysteine-
Rich Interdomain Regions (CIDR). PfEMP1’s antigenic diversity is
driven by the variation in the number, arrangement and sequences of
the DBL and CIDR domains present in the ectodomain of different
PfEMP1s (4, 7). Sequence similarities allow for the classification of DBL
domains into distinct classes, including o, B, ¥, 8, €, and &, while CIDR
domains are grouped into classes such as o, B, ¥, §, and pam. Each of
these major classes is further subdivided into subclasses denoted by
numbers, e.g., DBLal (5). Over 95% of PfEMPIs feature a head
structure composed of tandem DBLa: and CIDR domains adjacent to
the N-terminal segment (N'TS) (5). The central region of PEEMP1 often
contains multiple, alternating DBL and CIDR domains, followed by a
transmembrane region and an acidic-tail segment at the C-terminus (4,
5, 8) (Figure 1B).

There are specific combinations of domains which are seen in
different PfEMP1s. Domain Cassettes (DCs) are defined as
structural alignment of two or more adjacent DBL and CIDR
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domains within PfEMP1 proteins that frequently occur together
in at least three P. falciparum genomes (5). Some DCs are known to
bind to specific endothelial receptors, and it is possible that these
conserved arrangements have evolved to facilitate a survival
advantage for the parasite. For example, DC8 which consists of
DBLo2 - CIDRal.1 - DBLB12 - DBLY4/6 binds to Endothelial
Protein C Receptor (EPCR) via a conserved CIDRal.1
domain (Figure 1C).

The clinical manifestations of P. falciparum infection are
influenced by the parasite’s ability to bind specific host receptors,
which differ in abundance and distribution across tissues. While
many of these receptors are found on the vascular endothelium,
others involved in rosetting or placental malaria are located on
uninfected erythrocytes and placental syncytiotrophoblasts,
respectively. For instance, intercellular adhesion molecule 1
(ICAM1) is abundant in the brain, chondroitin sulfate A (CSA) is
found on placental syncytiotrophoblasts, and Cluster of
Differentiation 36 (CD36) is widely distributed throughout many
tissues in the body (9-11). The ability of a particular PfEMP1
variant to bind to specific receptors determines where IEs sequester,
driving organ-specific complications. This selective binding is
critical to the manifestation of CM, in which PfEMP1 variants
with high affinity for brain-expressed receptors promote
sequestration in the microvasculature of the brain (4, 12, 13).

1.1 The pathogenesis of cerebral malaria

Despite standardized diagnostic criteria, distinguishing true CM
from other causes of coma remains difficult in high-transmission
settings, where incidental parasitemia is prevalent. The clinical
definition of CM (Blantyre coma score <2, parasitemia, and
exclusion of other causes (1)) misclassifies approximately a
quarter of cases, which have alternative causes like meningitis,
highlighting the prevalence of incidental parasitemia (3).
Pathophysiologically, CM can be categorized into 3 subtypes:
sequestration only, sequestration with microvascular pathology,
and no sequestration—the latter likely representing non-malarial
causes of comas (3, 14). Retinal findings, such as hemorrhages,
vascular whitening, and other vascular changes, are strongly
associated with sequestration in true CM, while the absence of
these points to non-malarial causes of coma (3). These features
make fundoscopic examination a practical, non-invasive tool to
confirm CM (15, 16).

In CM, pathology is partly driven by blood-brain barrier
breakdown, a process involving multiple interrelated mechanisms.
Sequestration of IEs, inflammation from inflammatory cytokines,
endothelial activation, and dysregulated coagulation leading to
microvascular thrombosis can all contribute to tight junction
disruption (Figure 2) [Reviewed in Jensen et al. (17)]. The
expression of endothelial adhesion receptors is upregulated by
two responses to pathogen associated molecular patterns
(PAMPS) released during schizont rupture, namely the sensing of
PAMPs by Toll-like receptors and TNF production by
macrophages. Thus, the upregulation of endothelial adhesion
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FIGURE 1

PfEMP1 classification overview. (A) UPS classification illustrating the chromosomal locations of var genes along with the direction of their transcription,
depicted using arrows. (B) Schematic representation of the typical PfEMP1 structure, with dotted lines indicating domains that may or may not be present
depending on the specific variant. (C) Schematic representation of domain cassettes 8 and 13 and their UPS group and binding phenotype.

receptors leads to further sequestration of IEs (18, 19).
Sequestration activates endothelial cells, which in turn produce
chemokines that recruit leukocytes. These leukocytes further
amplify local inflammation by releasing additional chemokines
(20). Cytotoxic T-cells are also recruited and can recognize
endothelial-bound antigens via MHC-I sensing (21). They induce
endothelial cell apoptosis through Granzyme B (22), compromising
the integrity of the blood-brain barrier. During pathogenesis, a
procoagulatory microenvironment develops due to two main
factors: first, sequestration reduces the availability and activation
of Protein C (23); second, activated endothelial cells release Von
Willebrand factor, which activates platelets (24). These activated
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platelets then aggregate and bind to endothelial receptors or IEs
(25). In vitro and ex vivo data suggests that IEs expressing ICAM1
and EPCR dual-binding PfEMP1 variants are internalized by brain
endothelial cells via an ICAM1-dependent mechanism, leading to
endothelial cell swelling and impaired BBB integrity (26).
Additionally, focal hemorrhages further weaken the blood-brain
barrier, causing plasma and protein leakage into brain tissue, which
promotes cerebral swelling, a severe and potentially fatal
complication of CM (27, 28). Sahu et al. (29) showed that
increased parasite biomass (as indicated by higher PfHRP2 levels)
and the elevated expression of EPCR-binding PfEMP1 variants are
key determinants driving brain swelling in CM.
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FIGURE 2

Postulated pathophysiology of cerebral malaria: 1. Sequestration — P. falciparum pathogen-associated molecular patterns (PAMPs) activate Toll-like
receptors (TLRs) on endothelial cells and macrophages, upregulating endothelial adhesion molecules. TNF from macrophages amplifies this,
promoting PfEMP1-mediated IE binding and further endothelial activation in the brain (17, 18). 2. Inflammation — Activated endothelial cells (ECs)
secrete chemokines that recruit leukocytes, which in turn release inflammatory cytokines like TNF, further promoting sequestration. This cycle
amplifies inflammation as recruited immune cells continue to produce cytokines and chemokines, sustaining the response (19). 3. Procoagulatory
pathways — Activated ECs release von Willebrand Factor (vWF), which binds to glycoproteins on platelets, triggering their activation (20). Activated
platelets aggregate and express various surface receptors—including tissue factor—that enhance adhesion to both ECs and IEs, forming multimeric
complexes (21). Additionally, sequestration reduces the abundance and activation of protein C (22). 4. Blood-Brain Barrier (BBB) Breakdown -
Cytotoxic T cells infiltrate the brain’s microvasculature, recognize antigens on endothelial cells via MHC-| (23), and release granzyme B to trigger

apoptosis (24). This cytotoxic activity disrupts the blood-brain barrier, contributing to vasogenic oedema and neurological damage, and may result in

brain swelling (25).

2 Structural diversity of PfEMP1s
associated with cerebral malaria and
their host receptor interactions

2.1 Sequestration

Sequestration in the cerebral microvasculature is a hallmark
feature of CM. There isn’t a single PfEMP1 variant exclusively
linked to the development of CM. Instead, multiple PfEMP1
variants are differentially transcribed in SM and CM (30-32).
Given the high diversity of PfEMP1, research has focused on the
binding phenotypes of different PfEMP1. Among these, EPCR and
ICAMI-binding variants can bind brain endothelial cells in vitro and
often associated with CM, making them the focus of the following
discussion. However, they are not always expressed in CM and may
not be the only PfEMP1 variants involved in its pathology.

Many studies have observed an association between infections
caused by P. falciparum parasites that express var genes encoding
PfEMP1 proteins from Group A and B/A and SM including CM (26,
30, 33-36). The receptor-binding phenotypes of some Group A and
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B/A PfEMP1 proteins can be directly linked to the pathogenesis of
CM. Some PfEMP1 variants are capable of simultaneously binding to
both EPCR and ICAM1 (37, 38) and CM is associated with P.
falciparum expressing dual EPCR- and ICAMI-binding PfEMP1
variants, as shown by both upregulation of the corresponding var
genes (39, 40) and IEs which bind microvascular endothelium (38,
41). Notably, these “dual-binding” proteins are primarily found in
Group A and Group B/A (38).

EPCR is a receptor located on vascular endothelial cells, and
PfEMP1 variants with CIDRa1 domains can bind EPCR, a feature
associated with SM and CM (33, 40, 42). Phylogenetically, CIDRo1
sequences are grouped into subclasses (CIDRo1.1-1.8), of which
CIDRal.1 and 1.4-1.8 bind EPCR, while CIDRa1.2 and 1.3 do not
and may occur only in pseudogenes.

DBLf1/3/5 domains are known to bind ICAM1 (38, 43-45). In
dual-binding PfEMP1 variants, ICAM1-binding DBLP} domains are
downstream of EPCR-binding CIDRa.l domains (38). The “DBLf
motif”, a short amino acid sequence within DBLB domains of
specific PfEMP1 proteins, is associated with a dual binding
PfEMPI to EPCR and ICAMI1. This motif is present in Group A
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and some Group B/A variants and is transcribed by isolates from
children with CM (26, 46). Although transcript levels of var genes
that encode both Group A and Group B PfEMP1 were elevated in
CM cases (41), it remains unclear what fraction of these transcripts
correspond to EPCR-ICAMI1 dual binders versus ICAMI1-only
binders. In other words, it is not yet known whether ICAMI-
binding PfEMP1 that lack EPCR binding are associated with
disease. To address this, future studies should directly compare
var gene transcription and surface expression of ICAM1-only
versus dual-binding PfEMP1 in cerebral and non-cerebral cases,
and evaluate these isolates' adhesive capacity under physiological
flow conditions.

DC13 is an EPCR-binding domain cassette found in certain
Group A PfEMPI proteins, which is composed of DBLo1.7 and
CIDRa1.4 (Figure 1C) (9, 43). High transcription of var genes
encoding DC13 is observed in both African children and Indian
adults with SM, including CM, suggesting that this association is
not geographically restricted (47-50). Additionally, DC13-encoding
var genes show higher transcription levels in CM compared to
SMA, reinforcing their stronger link to CM (33, 48, 50-52). DC8 is
an EPCR-binding PfEMP1 variant, primarily found in Group B
PfEMP1 proteins, consisting of four domains: DBLo:2, CIDRa1.1,
DBLP12, and DBLY4/6 (4). Although DC8 transcription is elevated
in CM it is also upregulated in individuals with broader SM
manifestations (49, 51).

In CM, the transcription of DBLo from Group A var genes is
upregulated compared to UM (30, 36). This includes DBLal.1,
which is typically adjacent to a CIDRo1.4/6/7 domain that
facilitates binding to EPCR (4, 53) and DBL1.6/8 domains that
typically feature in rosetting types, which will be discussed in the
following section (4, 53).

Platelet and endothelial cell adhesion molecule 1 (PECAM-1)
binds PfEMP1 on infected erythrocytes. In vitro studies
demonstrate adhesion to recombinant and transfected PECAM-1,
and many field isolates, including those from children with severe
malaria, show measurable but generally low binding (54). PECAM-
1 is also expressed in the microvasculature of the human brain (55),
providing a biologically plausible site for such interactions. Genetic
association studies have further linked PECAM-1 polymorphisms
with susceptibility to cerebral malaria, supporting its potential
relevance to severe disease (56, 57). However, unlike EPCR, direct
evidence from human autopsy material demonstrating
colocalization of sequestered parasites with PECAM-1 in brain
microvessels is lacking (23). This gap highlights PECAM-1 as a
plausible but unconfirmed contributor to cerebral sequestration,
and an important target for future exploration.

2.2 Rosetting

PfEMP1 not only mediates sequestration but can bind IEs to
uninfected erythrocytes, forming clusters in a process known as
rosetting. Isolates from individuals with CM have been shown to
form rosettes in vitro (58-60). However, the contribution of
rosetting to pathogenesis remains unclear due to conflicting
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findings, which may reflect geographical differences. In sub-
Saharan African cohorts, significantly higher rosetting rates were
observed in CM compared to UM (58, 61), and rosetting was
elevated in SM compared to UM, regardless of syndrome subtype
(59, 60). In contrast, a study from Papua New Guinea found similar
rosetting rates in CM and UM (62), while a Thai study reported the
highest rosetting frequencies in CM compared to both UM and
non-cerebral SM (63).

The mechanisms by which rosetting might contribute to
malaria pathogenesis remain unclear. One hypothesis is that
rosettes impede phagocytosis of IEs. The larger size and complex
structure of rosettes can physically hinder phagocytes from
engulfing infected cells (64, 65). When rosetting is disrupted,
parasites become more susceptible to phagocytosis, but intact
rosettes require multiple phagocytes for clearance, potentially
leading to phagocyte exhaustion in hyperparasitemic malaria
patients (66).

Assessing the exact contribution of rosettes to disease severity is
challenging, as they are difficult to observe in autopsy samples,
making it hard to confirm their presence and impact in affected
organs. Furthermore, rosetting involves multiple host factors, such
as ABO blood group and complement components (67-69), which
vary between individuals and populations. There may not be a
universal mechanism linking rosetting to severe disease, as both
host and parasite factors contribute to its heterogeneity. These
limitations underscore the need for innovative approaches, such
as 3D microvessels with precise control over vessel architecture and
blood flow (70), to better replicate in vivo rosette dynamics.

Most rosetting variants are encoded by Group A var genes and
typically feature domain combinations—such as DBLo1.5/6/8
paired with CIDRB/y/6—that form the rosetting-associated head
structure (4, 71-75). Given that transcription of these Group A var
genes is upregulated in CM (26, 33, 35), this supports the idea that
rosetting may contribute to pathogenesis. However, several
knowledge gaps remain. First, not all var genes that give rise to
the rosetting phenotype have been definitively identified, and it is
unclear whether currently known associations capture the full
diversity of rosetting PfEMPI1 variants. Second, transcriptomic
data provide only partial insight into protein expression; mRNA
levels don’t always translate to surface-expressed PfEMP1, and the
relationship between var gene transcription and PfEMP1 display
remains incompletely understood. Third, parasites sampled from
peripheral blood may not reflect the phenotype of sequestered IEs in
critical organs, where rosetting is presumed to exert its pathological
effects. The second and third challenges, although discussed in this
section, represent broader obstacles to understanding all PfFEMP1
and not only rosetting variants.

3 Antibodies to PfEMP1 in cerebral
malaria
Antibodies targeting PfEMP1 are likely essential for malaria

immunity as they could prevent the sequestration of IEs and
facilitate IE clearance. PEMP1 appears to be the immunodominant
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surface antigen on IEs, as suppression of PfEMP1 expression
significantly reduced IgG binding by plasma from malaria-exposed
individuals (76). Effective immunity may result from acquisition of
antibodies to a broad range of PfEMPI variants, or from the
acquisition of strain-transcending antibodies against specific
binding phenotypes (75, 77).

Individuals living in malaria-endemic regions develop naturally
acquired immunity to P. falciparum through repeated infections,
leading to the production of antibodies against key parasite
antigens, including PfEMP1 (78, 79). This immunity is associated
with reduced disease, with adults and older children developing a
broader, more robust antibody response to PfEMP1 variants due to
cumulative exposure (80, 81) The best evidence for the protective
effect of PfEMP1 antibodies comes from placental malaria.
Pregnant women develop antibody to the PEEMP1 VAR2CSA in
a gravidity dependent manner, and development of these antibodies
is associated with declining prevalence and density of placental
malaria infection (Reviewed in Rogerson et al. (82)).

Studies indicate that PfEMP1-specific antibodies develop
sequentially in response to different parasite variants. The earliest
acquired antibodies target Group A PfEMP1 variants, which are
associated with SM, followed by Group B and C variants, which are
linked to UM (78, 79, 83). For example, Tessema et al. (84)
demonstrated that young Papuan New Guinean children, age 1-3
years old, mainly develop antibodies to Group A PfEMPI,
indicating early infections involve these variants. With age and
repeated exposure, their immunity broadens to include Group B/C
PfEMP1s, potentially reflecting progressive immunity to SM (84).

Sequential acquisition of antibodies toward Group A, B and C
variants is true for CIDRo. domains that bind to EPCR and CD36.
In malaria-endemic regions, antibodies to CIDRal are present at
birth, due to maternal antibody transfer, but decline by around six
months of age (85). Children then begin to acquire IgG antibodies
against EPCR-binding CIDRal variants, such as CIDRol.7 and
CIDRa1.8, earlier than IgG targeting CD36-binding variants (86,
87). Transcription of CIDRol.7 was particularly associated with
brain swelling in Malawian children (40). CIDRol.7 elicited the
highest IgG antibody levels among all the CIDR domain variants
tested in young children and a larger proportion of children in the
cohort had detectable IgG to CIDR.1.7 compared to other variants
(86). This early antibody acquisition may reflect a parasite fitness
advantage from expression of EPCR-binding PfEMP1 variants,
which mediate microvascular adhesion (33, 42, 88). PfEMP1
variants that are both common in circulating parasites and
initially unopposed by antibodies are favored in early infection.
As children develop specific IgG (such as against CIDRa1.7) these
antibodies target the most widely circulating variants, gradually
eroding their fitness advantage (89, 90).

Young children are highly vulnerable to CM, likely because of
the limited antigenic breadth and functional capacity of their
antibodies, predisposing them to high parasite burdens (90).
Travassos et al. (91) highlight syndrome-specific differences:
children with CM exhibited more frequent and wider gaps in
seroreactivity than those with SMA and UM.

Frontiers in Immunology

10.3389/fimmu.2025.1681852

3.1 Antibody responses to EPCR-binding
PfEMP1

Children recovering from SM —including CM and SMA—
exhibit increased PfEMP1 antibody levels during convalescence,
particularly targeting EPCR-binding CIDRal domains (91, 92).
These findings suggest that episodes of severe disease may drive
the acquisition of immunity to EPCR-binding PfEMP1 variants
(91). Notably, Nunes-Silva et al. (93) reported that children with
CM failed to boost antibody responses against parasites expressing
the EPCR-binding PfEMP1 VARI19 or recombinant proteins
containing VAR19’s EPCR binding CIDRa1.1 domain following
infection. While this appears to contrast with previous findings of
post-infection increases in antibody to EPCR-binding PfEMP1
variants, the difference may reflect the use of a single EPCR-
binding PfEMP1 in the study (93). The apparent lack of boosted
immunity to that variant may simply reflect antigenic differences
between the PfEMP1s circulating in Benin and the variant tested.
However, while convalescent children with CM develop a boost in
IgG to EPCR-binding PfEMP1 domains (91, 92), they remain at
increased risk of subsequent SM episodes (94). This may reflect
immunological gaps, as Travassos et al. (91) demonstrated that
children with CM lack IgG breadth to certain PfEMP1 subsets,
and Rambhatla et al. (92) showed that convalescent boosts can be
non-broadly reactive or transient. The persistence of these
antibody “blind spots” may underlie why even boosted
responses do not necessarily translate into durable protection
from recurrent SM.

Across diverse populations, antibodies to the EPCR-binding
CIDRal domains of PEEMP1 are significantly higher in UM than in
SV, including CM, suggesting that these antibodies may play a
protective role (76, 95, 96).

Antibody specificity plays a critical role in mediating protection
against severe disease. In one study of IgG levels to 32 PfEMP1
domains—selected based on their differential transcription in SM
compared to UM— individuals with UM had significantly higher
IgG against 15 of 22 SM-associated PfEMP1 domains compared to
those with SM (95). Of the domains eliciting significantly higher
IgG responses, CIDRa1.6 was one of the three PFEMP1 domains
that most effectively distinguished uncomplicated from severe cases
(95). This suggests that IgG to CIDRa1.6 may contribute to
protection from SM. Another study, which focused specifically on
EPCR-binding DC13 (DBLa1.7-CIDR1.4) found no significant
differences in IgG1 nor IgG3 responses to DC13 between CM and
UM (96). However, these IgGl and IgG3 levels to DCI13 did
significantly increase in the CM cohort from admission to
convalescence (96). Similarly, Kessler et al. (97) assessed IgG
seroreactivity to 61 3D7-derived PfEMP1 domains using a
proteome microarray in children with retinopathy-positive CM or
UM and found no differences in antibody responses to EPCR-
binding DC8 domains between the groups (97). This suggests that
not all antibodies to EPCR-binding domains confer equal
protection and echoes the “gaps in seroreactivity” described by
Travassos et al. (91).
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Retinopathy in CM provides a non-invasive window into brain
pathology, reflecting both microvascular sequestration and
hemorrhagic events occurring in the cerebral microvasculature (3,
16). Additionally, Joste et al. (98) reported that among children with
CM, those with retinopathy had significantly lower IgG responses to
the EPCR-binding CIDRa1.4 than children without retinopathy,
even though the expression of var genes encoding CIRDol.4
binding domains and in vitro cytoadherence levels of isolated IEs
to EPCR were similar between the groups (98). Although antibodies
to EPCR-binding CIDRa:1.4 domains did not differ overall between
all CM cases compared to UM (98), their lower levels in CM
children with retinopathy compared to those without suggest a
potential role in modulating severity, rather than conferring
outright protection from CM.

The CIDRol.1 domain of DCS8 is known to bind to EPCR,
however, other domains of DC8 may also contribute to vascular
adhesion, via additional receptors. Recombinant DC8 exhibited
stronger binding to EPCR and to an immortalized human
microvascular endothelial cell line compared to the CIDRal.1
domain of DC8 alone (93). Notably, antibodies targeting the
multi-domain DC8 protein fully blocked binding to recombinant
EPCR but only partially inhibited endothelial cell adhesion (93).
This implies that domains of DC8 other than CIDRal.1 could
interact with unknown receptors, highlighting alternative adhesion
pathways contributing to IE binding in CM (93). This notion of
alternative adhesion pathways is further supported by findings from
a separate study, which reported that children with UM had
significantly higher IgG reactivity to DBLo2 and DBLY6 domains
(both of which are part of DC8) compared to those with CM (76).
In contrast, IgG responses to CIDRol (the EPCR-binding domain)
and DBLP12 did not differ between the groups (76). These findings
suggest that antibodies targeting only CIDRoul.1 may not block all
adhesion mechanisms in vivo, and that antibodies against adjacent
domains such as DBLoi2 and DBLY6 may contribute to protection
against CM by interfering with alternative binding interactions
beyond EPCR. However, further research is required to confirm
these hypotheses.

3.2 Antibody responses to ICAM1-binding
PfEMP1

Acquisition of antibodies to ICAM1-binding PfEMP1 domains
differs between Group A and Groups B and C. Olsen et al. (79)
report that in healthy children from Ghana, Group A DBLf
domains, which are more conserved and often associated with
CM pathogenesis, tend to elicit early and sustained antibody
responses, as seen in longitudinal cohorts (79, 99). These
responses are characterized by prompt seroconversion and
evidence of long-lived antibody memory, while responses to
Groups B and C develop later and increase gradually with
repeated exposure (79).

The role of DBLB domains, particularly those encoding
ICAM1-binding regions, as targets of the immune response in
CM is complex and multifaceted.
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In a study using an ICAM1-binding DBLB3 domain from a
Group A PfEMPI variant with an EPCR-binding CIDRal domain,
higher IgG levels against the DBLB3 at enrolment were significantly
associated with a reduced risk of high-density clinical malaria (fever
+ 210,000 parasites/pL) and of progression to SM during follow-up
(69 weeks) (84). While this longitudinal evidence suggests that
antibodies to this DBLB3 may protect against malaria, it remains
unclear whether this protection extends to CM. Future studies
should stratify SM cases by clinical phenotype to determine if
these antibodies confer similar protection against CM,
considering the potential for distinct pathogenic mechanisms
between CM and other SM manifestations.

While children with CM and UM of similar age show no
significant differences in DBLf-specific IgG titers (98, 100, 101),
they do differ in antibody function. Two separate studies
investigated phagocytic activity against ICAM1-binding PfEMP1.
In Benin, where the cohort included children with SM including
CM, and in Malawi, which focused exclusively on CM, individuals
with UM showed greater phagocytic activity against DBLB-coated
beads and ICAMI1-binding IEs, respectively (101, 102).
Additionally, among the four recombinant ICAMI-binding
domains assessed, antibodies from children with UM showed
significantly higher inhibition of ICAM1 binding to a Group A
DBLf domain, compared to antibodies from children with SM or
CM (101). These findings suggest that antibody-mediated
inhibition of ICAM1-binding and enhanced opsonic phagocytosis
may contribute to protection against SM (101). These functional
differences may be influenced by antibody features including IgG
subclass. IgG1 and IgG3 are effective in driving phagocytosis, but it
is unknown how antibody subclass influences binding inhibition.
IgG1 and IgG3 antibody titers against multiple ICAM1-binding
DBLpB domains were associated with protection against severe
disease in Beninese children (101). This suggests that individuals
in Benin acquire functional antibodies that can bind to multiple
DBLf domains and may be protective.

3.3 Antibody responses that disrupt
rosetting

Several studies have demonstrated that immune sera from
malaria-exposed individuals can reverse rosetting in vitro,
particularly in severe disease including CM (58, 67, 73). One
study found that IgG to the SM-associated DBLol.5 domain
(selected based on its higher transcription in SM compared to
UM) was significantly higher in UM compared to SM (95),
suggesting that antibodies that disrupt rosetting may confer
protection. The same study found that IgG to SM-associated
CIDRY12 was also significantly higher in UM compared to SM.
Another study found that FcyRIIIb binding antibodies to CIDRy12
were significantly higher in UM than CM and this was one of seven
key features predictive of protection against CM (102). Though
there is limited direct evidence linking the CIDRY12 to rosetting,
other CIDRy domains have been linked to rosetting. Evidence
suggests that CIDRY2 can mediate rosetting. One study showed
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that the CIDRY2 domain of 3D7A parasites binds glycophorin B on
uninfected erythrocytes to mediate robust, plasma-independent
rosetting, and anti-CIDRY2 antibodies specifically inhibited
rosetting in 3D7A parasites in a dose-dependent manner (9).
Interestingly, anti-CIDRY2 antibodies did not affect rosetting of
another parasite line FCR3, whose rosetting involves IgM and o.2-
macroglobulin. In the FCR3 parasite, antibodies to DBL10.-CIDR
blocked rosetting (103), highlighting that there are multiple,
domain-specific mechanisms of rosette formation. These findings
suggest a possible link between rosetting and the pathogenesis of
CM, highlighting the need for further investigation into the
underlying mechanisms and the potential for antibodies targeting
rosetting domains to offer protection against CM.

Some rosetting parasites bind IgM and IgM facilitates the
adhesion of the IEs to uninfected erythrocytes (104). IgM-positive
rosetting parasites express distinct PEEMP1 variants with specific N-
terminal and DBL domains, and polyclonal IgG antibodies raised
against these variants could inhibit rosetting across different strains
(73), indicating strain-transcending potential. In contrast, IgM-
negative rosetting parasites exhibited strain-specific antibody
activity (73). These strain-transcending antibodies represent the
kind of broader protection that would be ideal for developing a
preventative measure against CM. However, there is no data on
which rosetting strains are expressed in CM or whether antibodies
toward them provide protective immunity. These aspects require
further investigation.

3.4 Functional features of antibodies
protective against cerebral malaria

PfEMP1-specific antibody responses may offer protection
against malaria by eliciting multiple effector functions, including
blocking IE adhesion (73, 105) and promoting immune clearance
via ADCP (76, 101, 105) and antibody-dependent cellular
cytotoxicity (ADCC) (106-108).

Complement enhances antibody-mediated inhibition across
multiple parasite stages, including sporozoites (CSP), merozoites
(MSP1), and sexual forms (Pfs230) (104, 109), however the role of
complement fixing antibodies against PAEEMP1 and IEs is less clear
(110). Recent findings emphasize the role of antibody-dependent
effector functions in distinguishing CM from UM, identifying seven
key antibody features predictive of malaria severity (102). Among
these were antibodies that fix Clq (targeting the ICAM1 binding
IT4VAR13_DBLp) indicating that complement-mediated effector
functions may be a protective mechanism. While these insights offer
a valuable starting point, it is important to note that findings based
on recombinant proteins may not fully capture native PfEMPI
conformation or function in vivo. Given that IgGl and IgG3
dominate the PfEMPI-specific response in semi-immune
individuals (111-113) and are potent complement activators,
their ability to fix Clq may contribute to protection against CM.
However, a study found that complement-mediated opsonization of
IEs is limited in efficacy, potentially due to the patchy distribution of
PfEMP1 on the IE surface (111), which could limit IgG
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hexamerization—an essential step for effective Clq activation
(114). Although antibodies that fix Clq have been suggested to
play a protective role in CM, it is important to confirm if
complement deposition does occur on the IE and whether it
enhances complement-mediated phagocytosis. Future studies
should elucidate how Clq-fixing antibodies targeting PfEMP1
contribute to protection against CM, for better prognostic and
therapeutic strategies.

Fc mediated functions may protect against CM; antibody
features associated with protection from CM include FcyRIIIb-
binding antibodies targeting ICAM1 binding DBLB3 PfEMP1
domains (112). In the same study, Malawian children with UM
had higher neutrophil-mediated phagocytosis of IEs expressing
ICAMI and EPCR-binding PfEMP1 (3D7VARO04) than children
with CM (112), suggesting a protective role of FcyRIIIb-
dependent phagocytosis. In contrast, children with CM had
higher neutrophil-mediated phagocytosis of ICAM1 and CD36-
binding IEs (IT4VARI3), indicating a difference in immune
targeting of variant surface antigens. FcyRIla can work
synergistically with FcyRIIIb to enhance antibody-dependent
neutrophil phagocytosis of merozoites (115) and sporozoites
(116), it is currently unknown whether this is similar for PFEMPI.
This suggests that exploring Fc-mediated immune functions, such
as complement activation, ADCC, and FcyR engagement, could
provide stronger predictive value for clinical outcomes than total
neutralizing antibodies alone.

3.5 Fucose-free PFEMP1-specific antibodies

Antibody-dependent immune effector functions depend on IgG
binding to FcyR on immune cells, a process influenced by
glycosylation (the presence of sugar molecules on the antibody’s
Fc region), which can significantly influence downstream immune
functions. One key glycosylation modification is Fc-afucosylation,
the absence of fucose on the biantennary glycan at asparagine 297
(N297) in the IgG Fc region. This enhances IgG binding to FcyRI1Ia,
greatly amplifying ADCC activity (117). Afucosylated IgG
antibodies targeting enveloped viruses or alloantigens are highly
effective at ADCC, as they can bind the FcyRIIla receptor on
immune cells up to 20 times more strongly (117-119).

A study on IgG afucosylation in pregnancy-associated malaria
highlighted the potential importance of afucosylated antibodies in
malaria immunity (107). Researchers found that naturally acquired
IgG targeting pregnancy-associated PfEMP1 (VAR2CSA) was
afucosylated and remained stable over time, whereas vaccination
did not induce afucosylated antibodies (107). Notably, only
afucosylated VAR2CSA-specific IgG could induce natural killer
(NK) cell degranulation (107). In a more recent study, children
with Fc-afucosylated IgG1l targeting the PfEMP1 variant
HB3VARO06 were less likely to be anemic. Fc-afucosylation of
these antibodies is acquired through repeated malaria exposure
and persists over time. Protection from anemia was associated with
immune cell activation via FcyRIIla, rather than complement-
mediated lysis, likely due to the uneven distribution of PfEMP1
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on IEs (120), suggesting that Fc-afucosylation enhances antibody
function by improving IgG binding to FcyRIIIa, which boosts NK
cell activation and IE clearance. However, the role of NK cells in
CM may be a double-edged sword, as children with CM have more
activated NK cells than those with SM or UM (121).

Despite growing interest in antibody glycosylation, there is
limited data on the role of afucosylated IgG antibodies in CM.

4 Where can we go from here?

Current evidence suggests that antibodies targeting PfEMP1
have the potential to protect against CM, but further research is
needed to determine which PfEMP1 targets are most important for
immunity. Longitudinal studies indicate that hyperimmune
individuals in endemic areas develop antibodies against EPCR-
binding CIDRa1 domains, which may limit clinically dense malaria
(84, 86). Both EPCR-binding domains and those with dual binding
to EPCR and ICAM1 have been associated with CM (38-40). It is
likely that the determinants of protective immunity extend beyond
the neutralizing capacity of PfEMPI-specific antibodies and
understanding how adhesion inhibition and immune effector
functions cooperate to eliminate infections will be important.

Our understanding of naturally acquired immunity to malaria,
and CM in particular, remains incomplete. One key gap is our
limited understanding of why some PfEMP1 variants trigger strong,
protective antibody responses while others evade immunity, leaving
young children—despite early exposure—more vulnerable to CM
compared to older children and adults who develop sustained
responses against EPCR-binding (86) and ICAMI1-binding (79)
domains. When considering a determinant of antibody function,
such as afucosylation—acquired over repeated exposure and
persisting over time—we recognize its potential to significantly
enhance immune effector functions like ADCC. It would be
interesting to explore how afucosylation evolves over time,
whether it contributes to age-related differences in immunity, and
how relevant it is for protection (Table 1). The gold standard for
addressing some of these questions would be longitudinal cohort
studies in malaria-endemic regions that follow individuals from
infancy to adulthood. Such studies would provide comprehensive
data on how antibody responses to PfEMP1 develop, persist, and
change over time. However, realistically, these studies may not be
feasible due to several limitations, including their high cost, the
substantial manpower required for long-term follow-up, and the
logistical challenges associated with maintaining consistent data
collection over many years.

Post-translational modifications do not only occur on
antibodies but can also occur on FcyRs located on immune
effector cells and regulate antibody effector function. For example,
ligand—induced ubiquitination of the FcyRIIla {—chain targets the
receptor for degradation, reducing its surface expression and
dampening natural killer cell activation (122). In the context of
anti-PfEMP1 antibodies, investigations into antibody Fc and FcyR
modifications beyond glycosylation remain scarce. Mass
spectrometry-based mapping of post-translational modifications
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(123) in anti-PfEMP1 antibodies from CM patients and in-silico
structure-based predictions of potential modification sites (124)
offer powerful strategies for identifying which post-translational
modifications are important in CM.

EPCR-binding and dual-binding PfEMP1 variants are closely
associated with CM, leading to the natural hypothesis that
antibodies targeting these variants would provide protection.
However, the data thus far on both DC8- and DCI3-containing
PfEMP1 variants, while suggestive of protection, is not conclusive.
This presents a gap that needs further exploration: which isolates of
these variants are most immunogenic, which peptides within them
are immunogenic, and whether these responses are protective.
Beyond antibodies to CIDRa1 and DBLJ domains, other regions
of PfEMP1—such as DBLo. and CIDRY2 domains involved in
rosetting, and CIDRY6 and CIDRyl2 domains with unknown
binding phenotypes—may also influence PfEMPI1-mediated
adhesion. It is imperative to assess how their presence in EPCR-
binding PfEMP1 variants enhance CIDRal’s interaction with
EPCR and evaluate the protective potential of antibodies against
each of these domains in CM.

Monoclonal antibodies like C7 and C74, which target the
CIDRal domain of PfEMP1, show promise in preventing IE
sequestration in CM by blocking adhesion to endothelial cells
(125). Identifying post-translational modifications that are
important for protection could help enhance the blocking
capabilities of broadly inhibitory monoclonal antibodies, such
as these.

How broad must the antibody repertoire be to confer effective
protection, and what is the best way to measure immunity? Studies
like Walker et al. (102) demonstrate the power of a systems serology

TABLE 1 Research gaps and proposed approaches.

Knowledge gap Proposed approach

1. The roles of non-binding
PfEMP1 domains (e.g. DBLo,
CIDRY2, Y6, Y12) in modulating
sequestration and rosetting, and

Assess how non-binding domains in
PfEMPI variants associated with CM
affect binding affinity and test the

functional efficacy of domain-specific
their potential as protective antibodies in blocking adhesion and

antibody targets. protecting against CM.

2. Role of Fc glycan (e.g.
afucosylation) and other post-
translational modifications in

Combine mass-spectrometry mapping of
post-translational modifications on anti-
PfEMP1 IgG from CM vs UM patients

antibody effector function. with functional assays (ADCC, ADNP).

Parallel systems serology profiling:
compare recombinant-domain enzyme-
linked immunosorbent assays/microarrays
with whole-IE binding/phagocytosis/
complement-fixation assays to validate

3. Limitations of recombinant-
domain multiplex assays vs native-
IE assays.

correlates.

4. Techniques to minimize antigen | Develop and maintain antigenically stable

switching parasite lines (single-var expressors)

Employ 3D microvessel flow models and
5. Need for robust binding-
inhibition assays that reflect in

endothelial organoids to test antibody or
monoclonal antibody blockade of IE
sequestration under physiological shear
stress.

vivo conditions.
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approach in identifying targets and features of a possible protective
antibody response. The study also illustrates potential shortcomings
of recombinant protein-based multiplex immunoassays, which did
not correlate well with assays using whole IEs (102). This
discrepancy may be due to differences in antigen presentation and
Fc receptor engagement, underscoring that assays based on
individual recombinant PfEMP1 domains may not fully capture
immunity to PfEMP1 in its native configuration or full-length
proteins (126). PfEMPI1 antigenic switching (127) remains a
significant challenge for in vitro studies, and it will be critical to
obtain antigenically stable parasite lines that accurately reflect the
antigenic diversity in natural infections.

While this review has focused on neutrophils primarily in terms
of antibody-mediated phagocytosis, the work by Zelter et al. (128)
demonstrates that neutrophils can also directly recognize directly
recognize and kill infected erythrocytes via ICAM-1, independently
of antibodies. This suggests that, in addition to their antibody-
dependent phagocytic function, neutrophils may exert selective
pressure on the parasite population: IEs expressing ICAMI1-
binding PfEMP1 are preferentially eliminated, forcing surviving
parasites to downregulate or switch away from these variants. This
“filtering” mechanism may contribute to protection and raises an
important question for protective immunity: are antibody-mediated
opsonic phagocytosis and ICAM1-mediated killing both necessary
for effective protection against severe disease?

Another gap is the lack of robust binding inhibition assays, and
how these interactions influence immune effector functions remains
largely unknown. Most binding assays to date have relied on 2D
systems, such as flat layers of cultured cells or immobilized
receptors, where parasites adhere under static conditions (129,
130). Recent work using engineered 3D human brain microvessels
has shown IEs cytoadhere via PfEMPIl-endothelial receptor
interactions, mature, and rupture within a physiologically relevant
microvascular environment (70, 131, 132). This binding triggers
endothelial activation, including upregulation of ICAM1 and
inflammatory signaling, promotes focal barrier disruptions and
endothelial apoptosis, and elicits a stress response profile distinct
from that differ from conventional 2D monolayers (132, 133). These
3D microvessel models are already proving valuable in investigating
PfEMP1-mediated adhesion and offer a versatile platform for future
research to assess how changes in the microenvironment influence
PfEMPI1 expression, transcription, and binding, as well as to
evaluate the efficacy of broadly inhibitory monoclonal antibodies,
both current and in development.

In conclusion, there is still much to learn about the antibody
responses to PfEMP1 that provide protection from CM. Current
research has laid a strong foundation for asking the crucial questions
that will guide us toward those answers. There are many exciting future
directions, including exploring monoclonal antibodies, post-
translational modifications, and 3D vascular models, which may
bring us closer to a deeper understanding of the immune
mechanisms at play and potentially effective interventions.
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