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NeoTImmuML: a machine
learning-based prediction
model for human tumor
neoantigen immunogenicity
Yan Shao †, Shuguang Ge †, Ruizhe Dong, Wei Ji, Chaoran Qin
and Pengbo Wen*

School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
Introduction: Tumor neoantigens possess high specificity and immunogenicity,

making them crucial targets for personalized cancer immunotherapies such as

mRNA vaccines and T-cell therapies. However, experimental identification and

evaluation of their immunogenicity are time-consuming, which limits the

efficiency of vaccine development.

Methods: To address these challenges, we implemented two key strategies. First,

we upgraded the TumorAgDB database by integrating publicly available

neoantigen data from the past two years, resulting in TumorAgDB2.0. Second,

we developed NeoTImmuML, a weighted ensemble machine learning model for

predicting neoantigen immunogenicity. Using data from TumorAgDB2.0, we

calculated the physicochemical properties of peptides and systematically

evaluated eight machine learning algorithms via five-fold cross-validation. The

top-performing algorithms — LightGBM, XGBoost, and Random Forest — were

integrated into a weighted ensemble model.

Results: TumorAgDB2.0 (https://tumoragdb.com.cn) now contains 187,223

entries. Moreover, NeoTImmuML demonstrated strong generalization

performance on both internal and external test datasets. SHAP feature

importance analysis revealed that peptide hydrophilicity and length are key

determinants of immunogenicity.

Discussion: TumorAgDB2.0 provides a comprehensive data resource for

neoantigen research, while NeoTImmuML offers an efficient and interpretable

tool for predicting neoantigen immunogenicity. Together, they offer valuable

support for the design of personalized neoantigen vaccines and the development

of cancer immunotherapy strategies.
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1 Introduction

In recent years, T-cell–mediated cancer immunotherapy has

made remarkable progress in various solid tumors. It is now

recognized as the fourth pillar of cancer treatment, following

surgery, radiotherapy, and chemotherapy. At the core of this

therapy is the recognition of tumor neoantigens. These are

peptides generated by somatic mutations. They are tumor-specific

and immunogenic. Presented by MHC molecules on tumor cells,

they can trigger T-cell immune responses. Studies have shown that

in patients receiving tumor-infiltrating lymphocyte (TIL) adoptive

cell transfer, T cells that specifically recognize mutated neoantigens

play a key role in driving effective anti-tumor responses (1).

Additionally, neoantigens are closely linked to the success of

immune checkpoint inhibitors (ICIs). When used as personalized

vaccine targets, they have produced promising outcomes in several

clinical studies (2). Despite their potential, identifying truly

immunogenic neoantigens remains a major challenge. Current

workflows often include high-throughput sequencing, mutation

detection, and HLA-binding prediction. These methods can

generate large numbers of candidate peptides (3). However, only

a small portion can actually activate effective T-cell responses (4).

Many studies have shown that HLA binding affinity (BA) alone is

not a reliable predictor of immunogenicity. High-affinity peptides

often fail to induce functional CD8+ T-cell responses (5). This leads

to serious waste of time and resources during experimental

validation. Although technologies are advancing rapidly, one

major obstacle remains: it is still difficult to efficiently identify

peptides with true immunogenic potential.

Current neoantigen discovery workflows still rely heavily on

experimental validation. This process is time-consuming and

resource-intensive (6). To overcome these challenges, machine

learning (ML) has been widely applied to predict neoantigen

immunogenicity. ML excels at modeling high-dimensional data

and capturing nonlinear relationships (7). Recent studies have

applied algorithms like k-nearest neighbors (KNN) (8), support

vector machines (SVM) (9), and gradient boosting trees (XGBoost)

(10) for neoantigen screening. These methods have shown

promising results . They can effectively integrate the

physicochemical properties, structural features, and immune-

related information of peptides. This helps improve the accuracy

of immunogenicity prediction (11). Moreover, several publicly

available prediction tools, such as DeepImmuno (12) and

DeepNeo (13), have leveraged deep learning techniques to

improve neoantigen immunogenicity prediction. While these

models have shown encouraging performance, their accuracy and

generalizability remain constrained by the limited size and quality

of available datasets. High-quality datasets have also become more

available. Resources such as the TESLA (4) consortium, the

National Cancer Institute (NCI) (14), and ITSNdb (15) offer

reliable validation data. These datasets provide strong support for

model training and independent evaluation. As a result, prediction
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research is moving from affinity-based approaches toward

mechanism-driven modeling (16). However, the performance of

ML models is still limited by data-related issues. Current public

neoantigen datasets remain small in size, inconsistent in quality,

and poorly integrated.

Although many cancer antigen and neoantigen peptide datasets

have been published, they are scattered across different platforms

and databases. Efficient integration and centralized management are

lacking. Most existing databases suffer from fragmentation, narrow

coverage, and limited functionality. For example, TANTIGEN2.0

focuses mainly on conventional tumor antigens (17). It lacks

annotations for neoantigens and immunogenicity. dbPepNeo

relies on a small number of cohort studies, which limits its

usefulness for cross-cancer or multi-mutation training (18).

Similarly, Neodb (19) and NEPdb (20) provide valuable resources

for neoantigen collection and annotation but face challenges such as

incomplete immunogenicity labeling and limited data

standardization, which restrict their utility for developing robust

prediction models. Additionally, the absence of standardized

formats and the complexity of data cleaning further reduce model

stability and generalizability. Even with rapid advances in

sequencing and experimental technologies, the lack of systematic

d a t a i n t e g r a t i on r ema i n s a ma j o r bo t t l e n e c k f o r

algorithm optimization.

To fill this gap, we developed TumorAgDB2.0. This new

database builds on TumorAgDB1.0. It integrates neoantigen data

from the past two years and incorporates the NeoTImmuML

prediction tool. TumorAgDB2.0 provides a standardized and

multi-dimensional resource platform. It covers multiple cancer

types, mutation categories, and immunogenicity validation results.

It includes annotations for key immunogenic features, a summary

of existing prediction tools, and seamless access to NeoTImmuML

for fast and accurate prediction. This platform solves key issues

found in earlier databases—such as scattered data, limited size, and

single-function design. It offers solid data and tool support for

advancing neoantigen prediction research. Using TumorAgDB2.0,

we computed physicochemical features of each peptide. We then

evaluated the performance of eight mainstream ML algorithms

using five-fold cross-validation. Among them, LightGBM,

XGBoost, and Random Forest performed the best. Based on these

results, we developed a weighted ensemble learning framework

called NeoTImmuML. This framework improves both prediction

accuracy and stability. To enhance the model’s practical value, we

applied SHAP (21). SHAP quantifies and visualizes the contribution

of each feature to the model’s output. This helped identify the key

determinants of immunogenicity. Finally, we tested NeoTImmuML

on an external independent dataset. It outperformed all single

models in both accuracy and AUROC. The model showed strong

generalization and promising clinical potential. By building

TumorAgDB2.0 and developing NeoTImmuML, this study

provides powerful technical support for efficient neoantigen

screening and personalized cancer vaccine design.
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2 Materials and methods

2.1 Statistical analysis of TumorAgDB2.0
data

This study builds upon the TumorAgDB1.0 (22) database by

incorporating the latest research findings to construct an updated

version, TumorAgDB2.0. TumorAgDB1.0 included neoantigen

immunogenicity data from several authoritative sources, such as

peptide–MHC binding and T-cell epitope information from the

Immune Epitope Database (IEDB) (23), experimentally validated

neoantigen data from the National Cancer Institute (NCI), and 608

neoantigen sequences published by the TESLA alliance. It also

integrated human cancer neoantigen data from the CADv1.0

platform, released by Yu Jijun et al. in 2022, forming a high-

quality, multi-source foundational dataset (24).

TumorAgDB2.0 adds neoantigen immunogenicity data

published between January 2024 and May 2025 (25, 26). All data

were collected from peer-reviewed studies. We searched the

PubMed database using keywords such as “immunogenicity,”

“neoantigen,” “tumor,” and “neoepitope” to identify relevant

studies on human cancers. Articles were first screened based on

their titles, abstracts, and keywords, followed by manual review.

From each eligible article, we extracted peptide data with confirmed

immunogenicity and verified source reliability to ensure scientific

rigor and accuracy.

The updated database now includes neoantigen data from 15

cancer types or cell lines, including colon adenocarcinoma,

melanoma, invasive breast cancer, esophageal cancer, cervical

cancer, cholangiocarcinoma, pancreatic adenocarcinoma, lung

adenocarc inoma, rena l c lear ce l l carc inoma, gas tr ic

adenocarcinoma, sarcoma, endometrial cancer, bladder cancer,

and mast cell leukemia. These data are organized into 13

functional datasets. The number of neoantigens in each dataset is

shown in Figure 1A. All data are freely available for download.

The database contains neoantigen data derived from both

human and mouse sources. Human neoantigens were validated

using gold-standard immunological assays such as enzyme-linked

immunospot (ELISPOT) and fluorescence-activated cell sorting

(FACS). Due to the limited availability of human data, we also

included mouse-validated neoantigens to expand the dataset.

TumorAgDB2.0 currently contains 1,106 validated neoantigens,

most of which are annotated with clear immunogenicity labels.

To improve the robustness and generalizability of machine

learning models, we incorporated a large number of simulated

datasets into the database (Figure 1B). These simulated data help

address the scarcity of experimental samples and provide additional

resources for training and evaluating immunogenicity prediction

models. We also conducted a statistical analysis of peptide length

distributions among human neoantigens (Figure 1C). Peptides were

categorized into three groups: long peptides (>25 amino acids),

mutant peptides (13–25 amino acids), and short peptides (8–12

amino acids). The results show that short peptides (8–12 amino
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acids) are the most prevalent. These peptides fall within the typical

length range presented by MHC class I molecules and represent the

primary targets in current immunogenicity prediction research.
2.2 Data sources used for NeoTImmuML
development

In this study, we built a standardized dataset from the

TumorAgDB2.0 database to develop the NeoTImmuML model.

Because experimentally validated tumor neoantigen data remain

limited, we also introduced simulated data. This increased the

diversity and robustness of model training.

For the positive dataset, we first included peptides confirmed

as immunogenic by functional assays, such as ELISPOT or flow

cytometry (FACS). We then generated simulated positive peptides

from human T-cell epitopes in IEDB. Mutant peptides that could

trigger T-cell immune responses were selected. Only peptides with

predicted binding affinity IC50 ≤ 500 nM were retained to ensure

immunological relevance.For the negative dataset, we prioritized

peptides verified as non-immunogenic by in vitro functional

assays. If a peptide failed to induce CD8+ T cells to produce

cytokines (e.g., IFN-g, TNF-a) and no proliferation was observed,

it was considered non-immunogenic (27). These data came mainly

from published studies and databases such as TESLA and IEDB,

where entries were explicitly labeled “non-immunogenic” with

original experimental records. This helped us avoid indirect

assumptions. At the same time, we generated simulated negative

peptides from the NCBI dbSNP database. Nonsynonymous SNVs

with high frequency (MAF > 0.05) were used to generate mutant

peptides, and their wild-type counterparts were also included. To

further reduce false positives, peptides with predicted IC50 ≤ 500

nM were removed. Only peptides with weaker binding were kept

as negative samples.

All datasets were then standardized by deduplicated across

databases, and restricted to peptide lengths of 8–13 amino acids.

After strict filtering and preprocessing, we built a balanced dataset

containing 5,156 positive samples (immunogenic) and 5,156

negative samples (non-immunogenic). The dataset was randomly

split at an 8:2 ratio into a training set and an independent test set for

model development and evaluation.
2.3 Feature calculation for neoantigens

To extract physicochemical property features of peptides, we

used the “Peptides” package in R (version 2.4.6) (28). This tool

integrates a variety of amino acid physicochemical property indices

and includes 20 types of feature parameters. Each parameter can

generate multiple feature values. As a result, each peptide can have

up to 78 numerical features within a single feature dimension. A

complete list of feature names and calculation details is provided in

Supplementary Table 1.
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2.4 Construction of a weighted ensemble
model to enhance predictive performance

In this study, we selected eight commonly used classification

models: LightGBM, XGBoost, Random Forest, Naive Bayes, Logistic

Regression CV, Support Vector Machine (SVM), K-Nearest

Neighbors (KNN), and Multi-Layer Perceptron (MLP). We

evaluated the performance of these models using five-fold cross-

validation. Preliminary results showed that LightGBM

(n_estimators = 300, learning_rate = 0.05, max_depth = 7,

num_leaves = 31, min_child_samples = 50, subsample = 0.6,

colsample_bytree = 0.8, reg_lambda = 0.01), XGBoost

(n_estimators = 200, learning_rate = 0.05, max_depth = 5,

min_child_weight = 3, subsample = 0.6, colsample_bytree = 1.0,

gamma = 0.1, reg_alpha = 0.01), and Random Forest (n_estimators

= 300, max_depth = 7, max_features = None, min_samples_split =

2, min_samples_leaf = 4) performed well across multiple key
Frontiers in Immunology 04
metrics. These models demonstrated strong generalization ability.

Specifically, all three achieved an AUC greater than 0.80, an

accuracy above 0.70, and a precision exceeding 0.80. Their

performance significantly surpassed that of the other models.

To further improve generalization and robustness, we

constructed an ensemble model. The predicted probabilities from

the three best-performing base classifiers were used as inputs and

combined using a weighted voting strategy. To determine the

optimal weight combination, we set the weight range for each

model from 0 to 10 and conducted an exhaustive grid search over

all possible combinations (w1, w2, w3 ∈ (0, 10)). For each weight

combination (a, b, c), we calculated the weighted average of the

predicted probabilities for the positive class (probability of class 1)

from the three models, as shown in Equation 1:

yscore =
a�y1 +b�y 2 +c�y3  

a+b+c
(1)
FIGURE 1

Statistical analysis of neoantigen data in TumorAgDB2.0. (A) Distribution of neoantigen counts across 13 categorized datasets available on the
download page. (B) Comparison of validated and simulated neoantigens in human and mouse datasets. (C) Distribution of immunogenic and non-
immunogenic neoantigens categorized by peptide length, including short peptides, mutant peptides, and long peptides.
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Here, y1, y2, and y3 represent the predicted probabilities of the

positive class from the three models. The weighted average

probability was thresholded at 0.5 to perform binary

classification, producing the final label. Then, we ranked all

weight combinations by their AUC values. The combination with

the highest AUC was selected as the final weight configuration.The

best weight group was a = 4, b = 8, c = 9, which was used to build the

optimal weighted ensemble classifier.
2.5 Evaluation of machine learning models

In this study, we employed multiple evaluation metrics to

comprehensively assess the performance of various machine

learning algorithms in predicting the immunogenicity of human

tumor neoantigens. These metrics included accuracy (Acc),

precision (Pre), recall (Recall), F1-score, specificity (Spe), and the

area under the ROC curve (AUROC).

The formulas for these metrics are provided in Equations 1–6.

True Positive (TP) refers to the number of peptides correctly

predicted as immunogenic.

True Negative (TN) refers to the number of peptides correctly

predicted as non-immunogenic.

False Positive (FP) is the number of non-immunogenic peptides

incorrectly predicted as immunogenic. False Negative (FN) is the

number of immunogenic peptides incorrectly predicted as

non-immunogenic.

AUROC represents the area under the ROC curve and evaluates

the model’s ability to distinguish between classes across all

classification thresholds. The closer the AUROC value is to 1, the

better the model’s performance.

Accuracy (Acc) is the ratio of correctly classified samples to the

total number of samples. It reflects the overall classification

performance of the model, as shown in Equation 2.

Acc = TP+TN
TP+TN+FP+FN (2)

Precision (Pre) is the proportion of correctly predicted positive

samples among all samples predicted as positive. It measures the

accuracy of the model’s positive predictions, as shown in Equation

3.

Pre = TP
TP+FP (3)

Recall is the proportion of actual positive samples that are

correctly identified by the model. It reflects the model’s sensitivity in

detecting positive samples, as shown in Equation 4.

Recall = TP
TP+FN (4)

F1-score is the harmonic mean of precision and recall. It

provides a balanced measure of both metrics, as shown in

Equation 5.

F1 − score = 2� Pre�Recall
Pre+Recall (5)

Specificity (Spe) is the proportion of actual negative samples

that are correctly identified as negative by the model, as shown in
Frontiers in Immunology 05
Equation 6.

Spe = TN
TN+FP (6)
3 Results

3.1 Overview of TumorAgDB2.0 database

TumorAgDB 2.0 delivers a revamped and expanded user

interface built on a modern, modular architecture. As shown in

Figure 2, the platform now integrates seven seamless modules: (I)

Home—the central entry point with an intuitive visual overview;

(II) Search—for structured data retrieval; (III) Tools—hosting

analytical utilities and peptide-feature calculators; (IV)

NeoTImmuML—an immunogenicity-prediction interface; (V)

Download—a comprehensive data repository; (VI) FAQ—step-

by-step operational guidance; and (VII) Feedback—a direct user-

engagement channel.

TumorAgDB2.0 provides a direct link to the NeoTImmuML

GitHub repository, where users can click the corresponding card on

the NeoTImmuML page to access the model code and related files.

This machine-learning model predicts human tumor-neoantigen

immunogenicity and achieved an average AUC of 0.8707 under

five-fold cross-validation (Supplementary Table 2). A one-click

download option provides the full source code and pretrained

weights, enabling users to deploy the model locally for

personalized predictions. NeoTImmuML can be accessed through

its dedicated module or downloaded for offline use. The FAQ page

accelerates onboarding, offering clear instructions for navigating

and leveraging the platform. To maintain currency, we

continuously curate peer-reviewed neoantigen-immunogenicity

data published from January 2024 through May 2025. These

latest datasets are available for immediate download in the

Download module.

To better illustrate the practical value of TumorAgDB2.0 and

NeoTImmuML, we designed a simplified workflow (Supplementary

Figure 1). Researchers can select and download datasets from the

download interface. Each dataset is accompanied by detailed

descriptions to guide appropriate use. After obtaining the data,

users can perform feature calculation and download our tool

NeoTImmuML for model training. NeoTImmuML classifies

peptides as immunogenic or non-immunogenic. Based on these

predictions, researchers can prioritize peptides predicted as

immunogenic for experimental validation. This helps narrow the

scope of experiments and reduces unnecessary testing. The

workflow demonstrates how NeoTImmuML can support

experimental design, lower costs, and shorten the validation cycle.

To position TumorAgDB2.0 within the current resource

landscape, we conducted a structured comparison with IEDB,

NeoDB, NEPdb, dbPepNeo, and TANTIGEN2.0 (Supplementary

Table 3). TumorAgDB2.0 is curated through May 2025 and

supports open, bulk downloads. It provides feature-level

annotations directly relevant to immunogenicity together with

explicit computation methods, enabling reproducibility and
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methodological extension. The platform is stably accessible,

actively maintained.
3.2 Performance evaluation of
NeoTImmuML

The overall workflow for data collection, feature extraction,

model evaluation, and model development is illustrated in Figure 3.

We systematically constructed a neoantigen immunogenicity

dataset by screening public databases and published literature.

The final dataset contains 10,312 samples, consisting of an equal

number of positive (immunogenic) and negative (non-

immunogenic) examples (n = 5,156 each). We used the

“Peptides” package in R to calculate physicochemical property

features for each peptide sequence. These features were used as

input for subsequent modeling.

During the data-splitting phase, we used the train_test_split

method to randomly divide the dataset into a training set (80%) and

a test set (20%), ensuring sufficient generalization capability. One-

hot encoding was applied to both subsets to maintain consistent

feature dimensions. We also aligned the feature structures to

prevent mismatches caused by inconsistent columns. For model

evaluation, we applied five-fold cross-validation on the training set

and assessed the performance of eight common machine learning
Frontiers in Immunology 06
algorithms: LightGBM, XGBoost, Random Forest, Support Vector

Classifier (SVC), Logistic Regression CV, Naive Bayes, K-Nearest

Neighbors (KNN), and Multi-Layer Perceptron (MLP). In each

iteration, the training data were split into five subsets. Four subsets

were used for training and one for validation. This process was

repeated five times so that each subset served as the validation set

once. The results from all five rounds were aggregated to evaluate

overall model performance. The summary of the evaluation results

of each model in the cross-validation is presented in Table 1.

LightGBM led the pack with an AUC of 0.8666, accuracy of

0.7785, precision of 0.8294, recall of 0.7034, F1 score of 0.7612,

and specificity of 0.8541, while XGBoost (AUC = 0.8568) and

Random Forest (AUC = 0.8522) came in close behind; every

other model posted an AUC below 0.85.

We then applied grid search to optimize hyperparameters for

the top three models—LightGBM, XGBoost, and Random Forest.

The optimized models showed improved performance across

several metrics. The changes are shown in Figure 4, with detailed

results provided in Supplementary Table 2. Next, we built both

voting and weighted ensemble classifiers and compared their

performance. The weighted ensemble model achieved an AUC of

0.8707 on the test set, slightly outperforming the voting ensemble

(AUC = 0.8704) and all individual base models. This strategy

improved overall performance while preserving the strengths of

each base learner. Detailed performance metrics are listed in
FIGURE 2

Overview of the content and construction process of the TumorAgDB2.0 database.
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FIGURE 3

Flow chart illustrating the architecture and processing pipeline of the NeoTImmuML model.
FIGURE 4

Comparison of evaluation metrics for the three machine learning models (LightGBM, XGBoost, and Random Forest) before and after parameter
tuning.
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Supplementary Table 2, and the average ROC curves are presented

in Figures 5A–C.
3.3 Independent test set validation of the
model

To assess the generalization of NeoTImmuML, we built a new

independent test set (n = 1,086). It was constructed by a systematic

search of studies published in 2024–2025 in PubMed and CNKI. To

ensure independence, we performed strict sequence-level de-

duplication. We removed all peptides that overlapped with the

training data. The test set is therefore completely independent of the

training set.

We then conducted a head-to-head comparison on this test set.

NeoTImmuML was evaluated against VaxiJen, the IEDB Class I

immunogenicity predictor, and DeepImmuno. We reported AUC

(threshold-independent discrimination) and F1 score (precision–

recall trade-off; decision performance). NeoTImmuML achieved the

best AUC (0.8865) and also showed a competitive F1 score (see

Supplementary Figure 1). These results demonstrate robust

predictive performance on unseen data.
3.4 SHAP-based feature importance
analysis of random forest, LightGBM, and
XGBoost models

To systematically analyze the contribution of physicochemical

properties to neoantigen immunogenicity prediction, we applied

SHAP for model interpretability (29). We performed SHAP-based

analysis on the three base models—Random Forest, LightGBM, and

XGBoost—within the ensemble learning framework. SHAP values

were computed for each feature, and their distributions were

analyzed to identify key contributors and understand how they

influenced the model’s decision-making process.

The results showed that lengthpep (peptide length) was the

most predictive feature across all three models. Its average SHAP

value far exceeded those of other features (Figures 6B, E, H). SHAP

summary plots (Figures 6A, D, G) indicated that longer peptides
Frontiers in Immunology 08
were associated with higher SHAP values, increasing the likelihood

of being predicted as immunogenic. This finding aligns with known

biological mechanisms, where peptides of appropriate length are

more likely to form stable MHC–peptide complexes and elicit T-

cell-mediated immune responses.

Following lengthpep, zscale_1 (lipophilicity) and aaComp_1

(non-polar amino acid ratio) consistently ranked among the top five

features across all models. These features exhibited positively

skewed SHAP distributions, suggesting that peptides with higher

hydrophobicity and a greater proportion of non-polar residues are

more likely to be immunogenic. Hydrophobic residues enhance

peptide–MHC binding affinity, improving antigen presentation.

Heatmaps (Figures 6C, F, I) showed consistent positive

contributions of these features across samples, confirming their

generalizability and biological relevance. Enhancing hydrophobicity

and increasing non-polar content may improve neoantigen

immunogenicity by optimizing MHC binding.

Although the three models showed strong agreement on core

features, they differed in their sensitivity to secondary features. In

the Random Forest model (Figures 6A–C), blosum_1 (sequence

conservation) ranked third, suggesting that conserved amino acid

sequences may promote immune recognition by maintaining

structural stability. Features like aindex (amino acid index),

vhse_1 (electronic properties), and mol_weight (molecular

weight) were ranked lower but still contributed in certain samples.

In the LightGBM model (Figures 6D–F), the model showed

greater dependence on mol_weight and cruciani_1 (polarity).

SHAP dependency plots revealed that the contribution of these

features increased notably when peptide size or polarity exceeded

specific thresholds. In the XGBoost model (Figures 6G–I),

lengthpep, zscale_1, and aaComp_1 remained dominant.

XGBoost also showed higher sensitivity to features like protFP_1

(protein fingerprint), mol_weight, and hMoment (dipole moment),

reflecting its strength in capturing complex, multi-dimensional

physicochemical patterns.

A comparative analysis across the three models confirmed that

lengthpep, zscale_1, and aaComp_1 consistently ranked among the

top features, with stable contribution directions across all models.

This highlights their role as core drivers of neoantigen

immunogenicity. Model-specific differences revealed that Random
FIGURE 5

Area under the curve (AUC) values of LightGBM, XGBoost, and Random Forest models used for neoantigen immunogenicity prediction.
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Forest emphasized sequence conservation, LightGBM captured

physicochemical thresholds, and XGBoost was more sensitive to

electronic properties. These complementary perspectives

underscore the strength of ensemble learning in modeling

complex feature interactions.

Overall, SHAP-based interpretability analysis identified peptide

length, hydrophobicity, and non-polar amino acid composition as

key determinants of immunogenicity. It also enhanced the model’s

transparency and interpretability, providing useful insights for

experimental validation—especially in the selection and design of

neoantigen peptides with optimal length and hydrophobic profiles.
4 Discussion

In personalized cancer immunotherapy, accurately identifying

immunogenic neoantigens is essential. Traditional methods

primarily rely on Major Histocompatibility Complex (MHC)

binding affinity to predict immunogenicity (30). However, MHC

presentation is a necessary but not sufficient condition for triggering

effective immune responses. Notably, wild-type peptides can also be

presented by MHC molecules. In addition, overly strong or

prolonged MHC–peptide binding may lead to T-cell exhaustion.

Further complicating this issue, thymic negative selection
Frontiers in Immunology 09
eliminates T-cell receptors that recognize both neoantigens and

structurally similar wild-type peptides via central tolerance, thereby

reducing the immune system’s ability to detect tumor antigens (31,

32). Therefore, relying solely on MHC binding affinity to assess

immunogenicity is insufficient. An integrated approach

incorporating additional biological characteristics is essential.

Machine learning offers a powerful solution by integrating

multidimensional data such as amino acid physicochemical

properties, MHC binding affinity, and immune-relevant features

(33). This enables the modeling of complex, nonlinear relationships

with immunogenicity and supports automated prediction of

intricate biological processes. Motivated by this potential, we

developed NeoTImmuML, a machine learning framework

designed to predict neoantigen immunogenicity. Built upon the

upgraded TumorAgDB2.0 database, NeoTImmuML calculates 78

features capturing physicochemical, structural, and biochemical

properties of each peptide. These features represent both intrinsic

sequence characteristics and biologically relevant factors linked

to immunogenicity.

Recognizing the limitations of single machine learning

algorithms, we evaluated eight widely used models during

training using five-fold cross-validation. LightGBM, XGBoost,

and Random Forest consistently outperformed the others based

on accuracy and AUC. We then constructed two ensemble models
FIGURE 6

SHAP feature contribution visualization of Random Forest, LightGBM, and XGBoost models. Panels (A–I) show the SHAP analysis results for Random
Forest, LightGBM, and XGBoost models, respectively. (A, D, G) display SHAP value distributions of features, illustrating their impact on model output.
(B, E, H) present the top 10 SHAP feature importances with average contributions. (C, F, I) show heatmaps depicting feature influence patterns
across samples.
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—voting and weighted integration—and found that the weighted

ensemble significantly outperformed both individual base learners

and the voting model. Validation on an independent test set

confirmed NeoTImmuML’s strong generalization ability and high

predictive performance.

To improve interpretability, we used SHAP to analyze feature

importance (34). Results revealed that peptide hydrophobicity and

length were critical factors for immunogenicity prediction. Each

algorithm emphasized different aspects: Random Forest highlighted

sequence conservation features (35), LightGBM captured threshold

effects of physicochemical properties (36), and XGBoost placed

greater weight on electronic properties (29). This diversity

illustrates the complementarity of the base models in capturing

complex feature interactions and highlights NeoTImmuML’s

strength in identifying biologically meaningful predictors from

multiple perspectives.

NeoTImmuML shows strong performance in identifying

neoantigens related to tumor-specific immunity. It provides an

important theoretical basis for designing personalized

immunotherapy. However, some limitations remain. The current

model mainly integrates peptide-level and publicly available

biological information. It does not yet include the complex

immune regulatory dynamics of the tumor microenvironment

(37). In addition, the dataset splitting strategy is based on

sequence uniqueness rather than sequence similarity. This may

introduce a risk of sequence-related bias. Future work will consider

similarity-based splitting methods to improve robustness and

generalization. Although TumorAgDB2.0 has expanded

significantly in both data scale and dimensions compared with

the previous version, the diversity and size of the training data are

still limited. This may affect the model’s generalization to novel

types of neoantigens (38).

It is worth emphasizing that TumorAgDB2.0 is designed as a

comprehensive and continuously updated resource platform. In

addition to searchable peptide information, the database integrates

physicochemical features related to immunogenicity and their

computational methods, an overview of current prediction tools,

downloadable datasets, and literature highly relevant to

immunogenicity prediction. In the future, we plan to introduce
Frontiers in Immunology 10
interactive visualization modules, real-time statistical analysis of

search results, and direct user prediction functions. These updates

will transform TumorAgDB2.0 from a static database into an

interactive, user-friendly, and feature-rich platform for neoantigen

research. We believe this stepwise development strategy will ensure

scientific rigor while continuously enhancing the platform’s

practical value and user experience.
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TABLE 1 Performance of eight machine learning models on tumor neoantigen data.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROC (%) Specificity (%)

LightGBM 77.85 82.94 70.34 76.12 86.66 85.41

XGBoost 77.19 80.34 72.25 76.08 85.68 82.18

Random Forest 76.20 80.09 69.98 74.70 85.22 82.47

Logistic Regression
CV

75.76 79.15 70.22 74.42 83.66 81.35

Naive Bayes 76.13 81.81 67.44 73.93 84.96 84.88

MLP 70.68 72.40 67.23 69.72 78.07 74.17

SVC 68.65 71.16 63.12 66.90 76.31 74.22

K-Nearest Neighbors 66.68 68.15 63.14 65.55 72.21 70.25
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SUPPLEMENTARY FIGURE 1

Schematic workflow of immunogenicity prediction using TumorAgDB2.0 and

NeoTImmuML. Users can utilize their own data or data from the
TumorAgDB2.0 database, and select the desired peptide features on the

“Features” page to calculate physicochemical properties. Subsequently, our
NeoTImmuML tool can be used to predict immunogenicity, and peptides

predicted as “Immunogenic” can be considered as candidate peptides for

further experimental validation.

SUPPLEMENTARY FIGURE 2

Comparison of predictive performance among NeoTImmuML, Deeplmmuno,

IEDB, and Vaxijen. (A) Comparison of AUC values across the four prediction
tools; (B) Comparison of F1 scores across the four prediction tools.
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