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Introduction: Tumor neoantigens possess high specificity and immunogenicity,
making them crucial targets for personalized cancer immunotherapies such as
MRNA vaccines and T-cell therapies. However, experimental identification and
evaluation of their immunogenicity are time-consuming, which limits the
efficiency of vaccine development.

Methods: To address these challenges, we implemented two key strategies. First,
we upgraded the TumorAgDB database by integrating publicly available
neoantigen data from the past two years, resulting in TumorAgDB2.0. Second,
we developed NeoTImmuML, a weighted ensemble machine learning model for
predicting neoantigen immunogenicity. Using data from TumorAgDB2.0, we
calculated the physicochemical properties of peptides and systematically
evaluated eight machine learning algorithms via five-fold cross-validation. The
top-performing algorithms — LightGBM, XGBoost, and Random Forest — were
integrated into a weighted ensemble model.

Results: TumorAgDB2.0 (https://tumoragdb.com.cn) now contains 187,223
entries. Moreover, NeoTImmuML demonstrated strong generalization
performance on both internal and external test datasets. SHAP feature
importance analysis revealed that peptide hydrophilicity and length are key
determinants of immunogenicity.

Discussion: TumorAgDB2.0 provides a comprehensive data resource for
neoantigen research, while NeoTImmuML offers an efficient and interpretable
tool for predicting neoantigen immunogenicity. Together, they offer valuable
support for the design of personalized neoantigen vaccines and the development
of cancer immunotherapy strategies.

tumor neoantigens, immunogenicity, machine learning, ensemble model,
database, SHAP
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1 Introduction

In recent years, T-cell-mediated cancer immunotherapy has
made remarkable progress in various solid tumors. It is now
recognized as the fourth pillar of cancer treatment, following
surgery, radiotherapy, and chemotherapy. At the core of this
therapy is the recognition of tumor neoantigens. These are
peptides generated by somatic mutations. They are tumor-specific
and immunogenic. Presented by MHC molecules on tumor cells,
they can trigger T-cell immune responses. Studies have shown that
in patients receiving tumor-infiltrating lymphocyte (TIL) adoptive
cell transfer, T cells that specifically recognize mutated neoantigens
play a key role in driving effective anti-tumor responses (1).
Additionally, neoantigens are closely linked to the success of
immune checkpoint inhibitors (ICIs). When used as personalized
vaccine targets, they have produced promising outcomes in several
clinical studies (2). Despite their potential, identifying truly
immunogenic neoantigens remains a major challenge. Current
workflows often include high-throughput sequencing, mutation
detection, and HLA-binding prediction. These methods can
generate large numbers of candidate peptides (3). However, only
a small portion can actually activate effective T-cell responses (4).
Many studies have shown that HLA binding affinity (BA) alone is
not a reliable predictor of immunogenicity. High-affinity peptides
often fail to induce functional CD8" T-cell responses (5). This leads
to serious waste of time and resources during experimental
validation. Although technologies are advancing rapidly, one
major obstacle remains: it is still difficult to efficiently identify
peptides with true immunogenic potential.

Current neoantigen discovery workflows still rely heavily on
experimental validation. This process is time-consuming and
resource-intensive (6). To overcome these challenges, machine
learning (ML) has been widely applied to predict neoantigen
immunogenicity. ML excels at modeling high-dimensional data
and capturing nonlinear relationships (7). Recent studies have
applied algorithms like k-nearest neighbors (KNN) (8), support
vector machines (SVM) (9), and gradient boosting trees (XGBoost)
(10) for neoantigen screening. These methods have shown
promising results. They can effectively integrate the
physicochemical properties, structural features, and immune-
related information of peptides. This helps improve the accuracy
of immunogenicity prediction (11). Moreover, several publicly
available prediction tools, such as DeepImmuno (12) and
DeepNeo (13), have leveraged deep learning techniques to
improve neoantigen immunogenicity prediction. While these
models have shown encouraging performance, their accuracy and
generalizability remain constrained by the limited size and quality
of available datasets. High-quality datasets have also become more
available. Resources such as the TESLA (4) consortium, the
National Cancer Institute (NCI) (14), and ITSNdb (15) offer
reliable validation data. These datasets provide strong support for
model training and independent evaluation. As a result, prediction
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research is moving from affinity-based approaches toward
mechanism-driven modeling (16). However, the performance of
ML models is still limited by data-related issues. Current public
neoantigen datasets remain small in size, inconsistent in quality,
and poorly integrated.

Although many cancer antigen and neoantigen peptide datasets
have been published, they are scattered across different platforms
and databases. Efficient integration and centralized management are
lacking. Most existing databases suffer from fragmentation, narrow
coverage, and limited functionality. For example, TANTIGEN2.0
focuses mainly on conventional tumor antigens (17). It lacks
annotations for neoantigens and immunogenicity. dbPepNeo
relies on a small number of cohort studies, which limits its
usefulness for cross-cancer or multi-mutation training (18).
Similarly, Neodb (19) and NEPdb (20) provide valuable resources
for neoantigen collection and annotation but face challenges such as
incomplete immunogenicity labeling and limited data
standardization, which restrict their utility for developing robust
prediction models. Additionally, the absence of standardized
formats and the complexity of data cleaning further reduce model
stability and generalizability. Even with rapid advances in
sequencing and experimental technologies, the lack of systematic
data integration remains a major bottleneck for
algorithm optimization.

To fill this gap, we developed TumorAgDB2.0. This new
database builds on TumorAgDBI1.0. It integrates neoantigen data
from the past two years and incorporates the NeoTImmuML
prediction tool. TumorAgDB2.0 provides a standardized and
multi-dimensional resource platform. It covers multiple cancer
types, mutation categories, and immunogenicity validation results.
It includes annotations for key immunogenic features, a summary
of existing prediction tools, and seamless access to NeoTImmuML
for fast and accurate prediction. This platform solves key issues
found in earlier databases—such as scattered data, limited size, and
single-function design. It offers solid data and tool support for
advancing neoantigen prediction research. Using TumorAgDB2.0,
we computed physicochemical features of each peptide. We then
evaluated the performance of eight mainstream ML algorithms
using five-fold cross-validation. Among them, LightGBM,
XGBoost, and Random Forest performed the best. Based on these
results, we developed a weighted ensemble learning framework
called NeoTImmuML. This framework improves both prediction
accuracy and stability. To enhance the model’s practical value, we
applied SHAP (21). SHAP quantifies and visualizes the contribution
of each feature to the model’s output. This helped identify the key
determinants of immunogenicity. Finally, we tested NeoTImmuML
on an external independent dataset. It outperformed all single
models in both accuracy and AUROC. The model showed strong
generalization and promising clinical potential. By building
TumorAgDB2.0 and developing NeoTImmuML, this study
provides powerful technical support for efficient neoantigen
screening and personalized cancer vaccine design.
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2 Materials and methods

2.1 Statistical analysis of TumorAgDB2.0
data

This study builds upon the TumorAgDB1.0 (22) database by
incorporating the latest research findings to construct an updated
version, TumorAgDB2.0. TumorAgDB1.0 included neoantigen
immunogenicity data from several authoritative sources, such as
peptide-MHC binding and T-cell epitope information from the
Immune Epitope Database (IEDB) (23), experimentally validated
neoantigen data from the National Cancer Institute (NCI), and 608
neoantigen sequences published by the TESLA alliance. It also
integrated human cancer neoantigen data from the CADv1.0
platform, released by Yu Jijun et al. in 2022, forming a high-
quality, multi-source foundational dataset (24).

TumorAgDB2.0 adds neoantigen immunogenicity data
published between January 2024 and May 2025 (25, 26). All data
were collected from peer-reviewed studies. We searched the
PubMed database using keywords such as “immunogenicity,”

» o«

“neoantigen,” “tumor,” and “neoepitope” to identify relevant
studies on human cancers. Articles were first screened based on
their titles, abstracts, and keywords, followed by manual review.
From each eligible article, we extracted peptide data with confirmed
immunogenicity and verified source reliability to ensure scientific
rigor and accuracy.

The updated database now includes neoantigen data from 15
cancer types or cell lines, including colon adenocarcinoma,
melanoma, invasive breast cancer, esophageal cancer, cervical
cancer, cholangiocarcinoma, pancreatic adenocarcinoma, lung
adenocarcinoma, renal clear cell carcinoma, gastric
adenocarcinoma, sarcoma, endometrial cancer, bladder cancer,
and mast cell leukemia. These data are organized into 13
functional datasets. The number of neoantigens in each dataset is
shown in Figure 1A. All data are freely available for download.

The database contains neoantigen data derived from both
human and mouse sources. Human neoantigens were validated
using gold-standard immunological assays such as enzyme-linked
immunospot (ELISPOT) and fluorescence-activated cell sorting
(FACS). Due to the limited availability of human data, we also
included mouse-validated neoantigens to expand the dataset.
TumorAgDB2.0 currently contains 1,106 validated neoantigens,
most of which are annotated with clear immunogenicity labels.

To improve the robustness and generalizability of machine
learning models, we incorporated a large number of simulated
datasets into the database (Figure 1B). These simulated data help
address the scarcity of experimental samples and provide additional
resources for training and evaluating immunogenicity prediction
models. We also conducted a statistical analysis of peptide length
distributions among human neoantigens (Figure 1C). Peptides were
categorized into three groups: long peptides (>25 amino acids),
mutant peptides (13-25 amino acids), and short peptides (8-12
amino acids). The results show that short peptides (8-12 amino
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acids) are the most prevalent. These peptides fall within the typical
length range presented by MHC class I molecules and represent the
primary targets in current immunogenicity prediction research.

2.2 Data sources used for NeoTImmuML
development

In this study, we built a standardized dataset from the
TumorAgDB2.0 database to develop the NeoTImmuML model.
Because experimentally validated tumor neoantigen data remain
limited, we also introduced simulated data. This increased the
diversity and robustness of model training.

For the positive dataset, we first included peptides confirmed
as immunogenic by functional assays, such as ELISPOT or flow
cytometry (FACS). We then generated simulated positive peptides
from human T-cell epitopes in IEDB. Mutant peptides that could
trigger T-cell immune responses were selected. Only peptides with
predicted binding affinity IC50 < 500 nM were retained to ensure
immunological relevance.For the negative dataset, we prioritized
peptides verified as non-immunogenic by in vitro functional
assays. If a peptide failed to induce CD8" T cells to produce
cytokines (e.g., IFN-y, TNF-o) and no proliferation was observed,
it was considered non-immunogenic (27). These data came mainly
from published studies and databases such as TESLA and IEDB,
where entries were explicitly labeled “non-immunogenic” with
original experimental records. This helped us avoid indirect
assumptions. At the same time, we generated simulated negative
peptides from the NCBI dbSNP database. Nonsynonymous SNV's
with high frequency (MAF > 0.05) were used to generate mutant
peptides, and their wild-type counterparts were also included. To
further reduce false positives, peptides with predicted IC50 < 500
nM were removed. Only peptides with weaker binding were kept
as negative samples.

All datasets were then standardized by deduplicated across
databases, and restricted to peptide lengths of 8-13 amino acids.
After strict filtering and preprocessing, we built a balanced dataset
containing 5,156 positive samples (immunogenic) and 5,156
negative samples (non-immunogenic). The dataset was randomly
split at an 8:2 ratio into a training set and an independent test set for
model development and evaluation.

2.3 Feature calculation for neoantigens

To extract physicochemical property features of peptides, we
used the “Peptides” package in R (version 2.4.6) (28). This tool
integrates a variety of amino acid physicochemical property indices
and includes 20 types of feature parameters. Each parameter can
generate multiple feature values. As a result, each peptide can have
up to 78 numerical features within a single feature dimension. A
complete list of feature names and calculation details is provided in
Supplementary Table 1.
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FIGURE 1

Statistical analysis of neoantigen data in TumorAgDB2.0. (A) Distribution of neoantigen counts across 13 categorized datasets available on the
download page. (B) Comparison of validated and simulated neoantigens in human and mouse datasets. (C) Distribution of immunogenic and non-
immunogenic neoantigens categorized by peptide length, including short peptides, mutant peptides, and long peptides.

2.4 Construction of a weighted ensemble
model to enhance predictive performance

In this study, we selected eight commonly used classification
models: LightGBM, XGBoost, Random Forest, Naive Bayes, Logistic
Regression CV, Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and Multi-Layer Perceptron (MLP). We
evaluated the performance of these models using five-fold cross-
validation. Preliminary results showed that LightGBM
300, learning_rate = 0.05, max_depth = 7,
50, subsample = 0.6,
0.8, reg_lambda = 0.01), XGBoost
0.05, max_depth = 5,
1.0,
gamma = 0.1, reg_alpha = 0.01), and Random Forest (n_estimators

(n_estimators =
num_leaves = 31, min_child_samples =
colsample_bytree =
(n_estimators = 200, learning_rate =

min_child_weight = 3, subsample = 0.6, colsample_bytree =

=300, max_depth = 7, max_features = None, min_samples_split =
2, min_samples_leaf = 4) performed well across multiple key
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metrics. These models demonstrated strong generalization ability.
Specifically, all three achieved an AUC greater than 0.80, an
accuracy above 0.70, and a precision exceeding 0.80. Their
performance significantly surpassed that of the other models.

To further improve generalization and robustness, we
constructed an ensemble model. The predicted probabilities from
the three best-performing base classifiers were used as inputs and
combined using a weighted voting strategy. To determine the
optimal weight combination, we set the weight range for each
model from 0 to 10 and conducted an exhaustive grid search over
all possible combinations (w;, w,, w3 € (0, 10)). For each weight
combination (a, b, ¢), we calculated the weighted average of the
predicted probabilities for the positive class (probability of class 1)
from the three models, as shown in Equation 1:

axy; +bxy, +cxys
a+b+c

(1)

ySCDfE -
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Here, yi, y2, and y; represent the predicted probabilities of the
positive class from the three models. The weighted average
probability was thresholded at 0.5 to perform binary
classification, producing the final label. Then, we ranked all
weight combinations by their AUC values. The combination with
the highest AUC was selected as the final weight configuration.The
best weight group was a =4, b =8, ¢ = 9, which was used to build the
optimal weighted ensemble classifier.

2.5 Evaluation of machine learning models

In this study, we employed multiple evaluation metrics to
comprehensively assess the performance of various machine
learning algorithms in predicting the immunogenicity of human
tumor neoantigens. These metrics included accuracy (Acc),
precision (Pre), recall (Recall), F1-score, specificity (Spe), and the
area under the ROC curve (AUROCQC).

The formulas for these metrics are provided in Equations 1-6.

True Positive (TP) refers to the number of peptides correctly
predicted as immunogenic.

True Negative (TN) refers to the number of peptides correctly
predicted as non-immunogenic.

False Positive (FP) is the number of non-immunogenic peptides
incorrectly predicted as immunogenic. False Negative (FN) is the
number of immunogenic peptides incorrectly predicted as
non-immunogenic.

AUROC represents the area under the ROC curve and evaluates
the model’s ability to distinguish between classes across all
classification thresholds. The closer the AUROC value is to 1, the
better the model’s performance.

Accuracy (Acc) is the ratio of correctly classified samples to the
total number of samples. It reflects the overall classification
performance of the model, as shown in Equation 2.

Acc = TP+TN (2)

TP+TN+FP+FN

Precision (Pre) is the proportion of correctly predicted positive
samples among all samples predicted as positive. It measures the
accuracy of the model’s positive predictions, as shown in Equation
3.

_ _TP
Pre = TP+FP (3)

Recall is the proportion of actual positive samples that are
correctly identified by the model. It reflects the model’s sensitivity in
detecting positive samples, as shown in Equation 4.

Recall = TPT% (4)

Fl-score is the harmonic mean of precision and recall. It
provides a balanced measure of both metrics, as shown in
Equation 5.

_ _ PrexRecall
F1 —score = 2 x Pre+Recall ©)

Specificity (Spe) is the proportion of actual negative samples
that are correctly identified as negative by the model, as shown in
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Equation 6.

Spe = e (6)

3 Results
3.1 Overview of TumorAgDB2.0 database

TumorAgDB 2.0 delivers a revamped and expanded user
interface built on a modern, modular architecture. As shown in
Figure 2, the platform now integrates seven seamless modules: (I)
Home—the central entry point with an intuitive visual overview;
(II) Search—for structured data retrieval; (IIT) Tools—hosting
analytical utilities and peptide-feature calculators; (IV)
NeoTImmuML—an immunogenicity-prediction interface; (V)
Download—a comprehensive data repository; (VI) FAQ—step-
by-step operational guidance; and (VII) Feedback—a direct user-
engagement channel.

TumorAgDB2.0 provides a direct link to the NeoTImmuML
GitHub repository, where users can click the corresponding card on
the NeoTImmuML page to access the model code and related files.
This machine-learning model predicts human tumor-neoantigen
immunogenicity and achieved an average AUC of 0.8707 under
five-fold cross-validation (Supplementary Table 2). A one-click
download option provides the full source code and pretrained
weights, enabling users to deploy the model locally for
personalized predictions. NeoTImmuML can be accessed through
its dedicated module or downloaded for offline use. The FAQ page
accelerates onboarding, offering clear instructions for navigating
and leveraging the platform. To maintain currency, we
continuously curate peer-reviewed neoantigen-immunogenicity
data published from January 2024 through May 2025. These
latest datasets are available for immediate download in the
Download module.

To better illustrate the practical value of TumorAgDB2.0 and
NeoTImmuML, we designed a simplified workflow (Supplementary
Figure 1). Researchers can select and download datasets from the
download interface. Each dataset is accompanied by detailed
descriptions to guide appropriate use. After obtaining the data,
users can perform feature calculation and download our tool
NeoTImmuML for model training. NeoTImmuML classifies
peptides as immunogenic or non-immunogenic. Based on these
predictions, researchers can prioritize peptides predicted as
immunogenic for experimental validation. This helps narrow the
scope of experiments and reduces unnecessary testing. The
workflow demonstrates how NeoTImmuML can support
experimental design, lower costs, and shorten the validation cycle.

To position TumorAgDB2.0 within the current resource
landscape, we conducted a structured comparison with IEDB,
NeoDB, NEPdb, dbPepNeo, and TANTIGEN2.0 (Supplementary
Table 3). TumorAgDB2.0 is curated through May 2025 and
supports open, bulk downloads. It provides feature-level
annotations directly relevant to immunogenicity together with
explicit computation methods, enabling reproducibility and
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FIGURE 2

Overview of the content and construction process of the TumorAgDB2.0 database.

methodological extension. The platform is stably accessible,
actively maintained.

3.2 Performance evaluation of
NeoTImmuML

The overall workflow for data collection, feature extraction,
model evaluation, and model development is illustrated in Figure 3.
We systematically constructed a neoantigen immunogenicity
dataset by screening public databases and published literature.
The final dataset contains 10,312 samples, consisting of an equal
number of positive (immunogenic) and negative (non-
immunogenic) examples (n = 5,156 each). We used the
“Peptides” package in R to calculate physicochemical property
features for each peptide sequence. These features were used as
input for subsequent modeling.

During the data-splitting phase, we used the train_test_split
method to randomly divide the dataset into a training set (80%) and
a test set (20%), ensuring sufficient generalization capability. One-
hot encoding was applied to both subsets to maintain consistent
feature dimensions. We also aligned the feature structures to
prevent mismatches caused by inconsistent columns. For model
evaluation, we applied five-fold cross-validation on the training set
and assessed the performance of eight common machine learning
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algorithms: LightGBM, XGBoost, Random Forest, Support Vector
Classifier (SVC), Logistic Regression CV, Naive Bayes, K-Nearest
Neighbors (KNN), and Multi-Layer Perceptron (MLP). In each
iteration, the training data were split into five subsets. Four subsets
were used for training and one for validation. This process was
repeated five times so that each subset served as the validation set
once. The results from all five rounds were aggregated to evaluate
overall model performance. The summary of the evaluation results
of each model in the cross-validation is presented in Table 1.
LightGBM led the pack with an AUC of 0.8666, accuracy of
0.7785, precision of 0.8294, recall of 0.7034, F1 score of 0.7612,
and specificity of 0.8541, while XGBoost (AUC = 0.8568) and
Random Forest (AUC = 0.8522) came in close behind; every
other model posted an AUC below 0.85.

We then applied grid search to optimize hyperparameters for
the top three models—LightGBM, XGBoost, and Random Forest.
The optimized models showed improved performance across
several metrics. The changes are shown in Figure 4, with detailed
results provided in Supplementary Table 2. Next, we built both
voting and weighted ensemble classifiers and compared their
performance. The weighted ensemble model achieved an AUC of
0.8707 on the test set, slightly outperforming the voting ensemble
(AUC = 0.8704) and all individual base models. This strategy
improved overall performance while preserving the strengths of
each base learner. Detailed performance metrics are listed in
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Supplementary Table 2, and the average ROC curves are presented
in Figures 5A-C.

3.3 Independent test set validation of the
model

To assess the generalization of NeoTImmuML, we built a new
independent test set (n = 1,086). It was constructed by a systematic
search of studies published in 2024-2025 in PubMed and CNKI. To
ensure independence, we performed strict sequence-level de-
duplication. We removed all peptides that overlapped with the
training data. The test set is therefore completely independent of the
training set.

We then conducted a head-to-head comparison on this test set.
NeoTImmuML was evaluated against VaxiJen, the IEDB Class I
immunogenicity predictor, and DeepImmuno. We reported AUC
(threshold-independent discrimination) and F1 score (precision-
recall trade-off; decision performance). NeoTImmuML achieved the
best AUC (0.8865) and also showed a competitive F1 score (see
Supplementary Figure 1). These results demonstrate robust
predictive performance on unseen data.

3.4 SHAP-based feature importance
analysis of random forest, LightGBM, and
XGBoost models

To systematically analyze the contribution of physicochemical
properties to neoantigen immunogenicity prediction, we applied
SHAP for model interpretability (29). We performed SHAP-based
analysis on the three base models—Random Forest, LightGBM, and
XGBoost—within the ensemble learning framework. SHAP values
were computed for each feature, and their distributions were
analyzed to identify key contributors and understand how they
influenced the model’s decision-making process.

The results showed that lengthpep (peptide length) was the
most predictive feature across all three models. Its average SHAP
value far exceeded those of other features (Figures 6B, E, H). SHAP
summary plots (Figures 6A, D, G) indicated that longer peptides

ROC Curve of LightGBu
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were associated with higher SHAP values, increasing the likelihood
of being predicted as immunogenic. This finding aligns with known
biological mechanisms, where peptides of appropriate length are
more likely to form stable MHC-peptide complexes and elicit T-
cell-mediated immune responses.

Following lengthpep, zscale_1 (lipophilicity) and aaComp_1
(non-polar amino acid ratio) consistently ranked among the top five
features across all models. These features exhibited positively
skewed SHAP distributions, suggesting that peptides with higher
hydrophobicity and a greater proportion of non-polar residues are
more likely to be immunogenic. Hydrophobic residues enhance
peptide-MHC binding affinity, improving antigen presentation.
Heatmaps (Figures 6C, F, I) showed consistent positive
contributions of these features across samples, confirming their
generalizability and biological relevance. Enhancing hydrophobicity
and increasing non-polar content may improve neoantigen
immunogenicity by optimizing MHC binding.

Although the three models showed strong agreement on core
features, they differed in their sensitivity to secondary features. In
the Random Forest model (Figures 6A-C), blosum_1 (sequence
conservation) ranked third, suggesting that conserved amino acid
sequences may promote immune recognition by maintaining
structural stability. Features like aindex (amino acid index),
vhse_1 (electronic properties), and mol_weight (molecular
weight) were ranked lower but still contributed in certain samples.

In the LightGBM model (Figures 6D-F), the model showed
greater dependence on mol_weight and cruciani_1 (polarity).
SHAP dependency plots revealed that the contribution of these
features increased notably when peptide size or polarity exceeded
specific thresholds. In the XGBoost model (Figures 6G-I),
lengthpep, zscale_1, and aaComp_1 remained dominant.
XGBoost also showed higher sensitivity to features like protFP_1
(protein fingerprint), mol_weight, and hMoment (dipole moment),
reflecting its strength in capturing complex, multi-dimensional
physicochemical patterns.

A comparative analysis across the three models confirmed that
lengthpep, zscale_1, and aaComp_1 consistently ranked among the
top features, with stable contribution directions across all models.
This highlights their role as core drivers of neoantigen
immunogenicity. Model-specific differences revealed that Random

—— ROC Curve (AC = 0.8599) —— ROC Curve (ALC = 0.8686)

FIGURE 5

o8 10 0 10

Area under the curve (AUC) values of LightGBM, XGBoost, and Random Forest models used for neoantigen immunogenicity prediction.
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SHAP feature contribution visualization of Random Forest, LightGBM, and XGBoost models. Panels (A=I) show the SHAP analysis results for Random
Forest, LightGBM, and XGBoost models, respectively. (A, D, G) display SHAP value distributions of features, illustrating their impact on model output.
(B, E, H) present the top 10 SHAP feature importances with average contributions. (C, F, 1) show heatmaps depicting feature influence patterns

across samples.

Forest emphasized sequence conservation, LightGBM captured
physicochemical thresholds, and XGBoost was more sensitive to
electronic properties. These complementary perspectives
underscore the strength of ensemble learning in modeling
complex feature interactions.

Overall, SHAP-based interpretability analysis identified peptide
length, hydrophobicity, and non-polar amino acid composition as
key determinants of immunogenicity. It also enhanced the model’s
transparency and interpretability, providing useful insights for
experimental validation—especially in the selection and design of
neoantigen peptides with optimal length and hydrophobic profiles.

4 Discussion

In personalized cancer immunotherapy, accurately identifying
immunogenic neoantigens is essential. Traditional methods
primarily rely on Major Histocompatibility Complex (MHC)
binding affinity to predict immunogenicity (30). However, MHC
presentation is a necessary but not sufficient condition for triggering
effective immune responses. Notably, wild-type peptides can also be
presented by MHC molecules. In addition, overly strong or
prolonged MHC-peptide binding may lead to T-cell exhaustion.
Further complicating this issue, thymic negative selection

Frontiers in Immunology

eliminates T-cell receptors that recognize both neoantigens and
structurally similar wild-type peptides via central tolerance, thereby
reducing the immune system’s ability to detect tumor antigens (31,
32). Therefore, relying solely on MHC binding affinity to assess
immunogenicity is insufficient. An integrated approach
incorporating additional biological characteristics is essential.

Machine learning offers a powerful solution by integrating
multidimensional data such as amino acid physicochemical
properties, MHC binding affinity, and immune-relevant features
(33). This enables the modeling of complex, nonlinear relationships
with immunogenicity and supports automated prediction of
intricate biological processes. Motivated by this potential, we
developed NeoTImmuML, a machine learning framework
designed to predict neoantigen immunogenicity. Built upon the
upgraded TumorAgDB2.0 database, NeoTImmuML calculates 78
features capturing physicochemical, structural, and biochemical
properties of each peptide. These features represent both intrinsic
sequence characteristics and biologically relevant factors linked
to immunogenicity.

Recognizing the limitations of single machine learning
algorithms, we evaluated eight widely used models during
training using five-fold cross-validation. LightGBM, XGBoost,
and Random Forest consistently outperformed the others based
on accuracy and AUC. We then constructed two ensemble models
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TABLE 1 Performance of eight machine learning models on tumor neoantigen data.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROC (%) Specificity (%)
LightGBM 77.85 82.94 70.34 76.12 86.66 85.41
XGBoost 77.19 80.34 72.25 76.08 85.68 82.18
Random Forest 76.20 80.09 69.98 74.70 85.22 82.47
LOgiSticg\e/gressmn 75.76 79.15 70.22 74.42 83.66 8135
Naive Bayes 76.13 81.81 67.44 73.93 84.96 84.88
MLP 70.68 72.40 67.23 69.72 78.07 74.17
sVC 68.65 7116 63.12 66.90 76.31 74.22
K-Nearest Neighbors 66.68 68.15 63.14 65.55 7221 70.25

—voting and weighted integration—and found that the weighted interactive visualization modules, real-time statistical analysis of
ensemble significantly outperformed both individual base learners  search results, and direct user prediction functions. These updates
and the voting model. Validation on an independent test set  will transform TumorAgDB2.0 from a static database into an
confirmed NeoTImmuML’s strong generalization ability and high  interactive, user-friendly, and feature-rich platform for neoantigen
predictive performance. research. We believe this stepwise development strategy will ensure
To improve interpretability, we used SHAP to analyze feature  scientific rigor while continuously enhancing the platform’s
importance (34). Results revealed that peptide hydrophobicity and  practical value and user experience.
length were critical factors for immunogenicity prediction. Each
algorithm emphasized different aspects: Random Forest highlighted
sequence conservation features (35), LightGBM captured threshold Data avai lablllty statement
effects of physicochemical properties (36), and XGBoost placed
greater weight on electronic properties (29). This diversity The datasets presented in this study can be found in online
illustrates the complementarity of the base models in capturing  repositories. The names of the repository/repositories and accession
complex feature interactions and highlights NeoTImmuML’s  number(s) can be found below: TumorAgDB2.0 (https://
strength in identifying biologically meaningful predictors from  tumoragdb.com.cn).
multiple perspectives.
NeoTImmuML shows strong performance in identifying
neoantigens related to tumor-specific immunity. It provides an Author contributions
important theoretical basis for designing personalized
immunotherapy. However, some limitations remain. The current YS: Conceptualization, Data curation, Formal Analysis,
model mainly integrates peptide-level and publicly available Investigation, Methodology, Software, Validation, Visualization,
biological information. It does not yet include the complex  Writing - original draft, Writing - review & editing. SG:
immune regulatory dynamics of the tumor microenvironment  Conceptualization, Formal Analysis, Validation, Visualization,
(37). In addition, the dataset splitting strategy is based on  Writing - original draft. RD: Data curation, Investigation, Writing —
sequence uniqueness rather than sequence similarity. This may  review & editing. WJ: Data curation, Formal Analysis, Writing — review
introduce a risk of sequence-related bias. Future work will consider & editing. CQ: Data curation, Formal Analysis, Supervision, Writing —
similarity-based splitting methods to improve robustness and  review & editing. PW: Funding acquisition, Project administration,
generalization. Although TumorAgDB2.0 has expanded  Resources, Supervision, Writing — review & editing.
significantly in both data scale and dimensions compared with
the previous version, the diversity and size of the training data are
still limited. This may affect the model’s generalization to novel

types of neoantigens (38). Fu nding
It is worth emphasizing that TumorAgDB2.0 is designed as a
comprehensive and continuously updated resource platform. In The author(s) declare financial support was received for the

addition to searchable peptide information, the database integrates  research and/or publication of this article. This work was supported
physicochemical features related to immunogenicity and their ~ by the National Natural Science Foundation of China (Grant No.
computational methods, an overview of current prediction tools, ~ 32100998), the Shuangchuang Ph.D. Program of Jiangsu Province
downloadable datasets, and literature highly relevant to (Grant No. JSSCBS20211265), and the Initial Funding Program of
immunogenicity prediction. In the future, we plan to introduce  Xuzhou Medical University (Grant Nos. D2020040 and D2023028).
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