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Background: Gastric cancer progression involves complex interactions among
tumor cells, immune components, and stromal elements within the tumor
microenvironment. However, a comprehensive understanding of cellular
heterogeneity, spatial organization, and cell-cell communication in gastric
cancer remains incomplete.

Methods: Single-cell RNA sequencing was performed on 252, 399 cells from six
tissue types, spanning gastritis, intestinal metaplasia, primary tumors, adjacent
normal tissue, and metastatic lesions. Integration with spatial transcriptomics
enabled spatial mapping of cellular interactions. Pseudotime, cell-cell
communication, and transcriptional heterogeneity analyses were conducted.
Tumor stage-associated gene modules were identified using Weighted Gene
Co-expression Network Analysis (WGCNA) of The Cancer Genome Atlas (TCGA)
data. Finally, a deep learning-based prognostic model was developed and
externally validated.

Results: Our analysis revealed dynamic remodeling of the tumor
microenvironment during gastric cancer progression, characterized by the
expansion of dysfunctional CD8+ T cells, pro-tumorigenic fibroblasts (e.g.,
ITGBL1+, PI16+, and ITLN1+), and altered myeloid populations. Stromal-
immune crosstalk, particularly fibroblast-driven immunosuppressive signaling,
was prominent. Spatial transcriptomics revealed the colocalization of immune
and stromal cells, supporting spatially organized cellular interactions. WGCNA
identified a gene module (657 genes) associated with T cell, myeloid, and stromal
alterations, as well as tumor stage. A deep learning model based on this gene set
accurately stratified patients according to survival in both TCGA and independent
validation cohorts. Risk scores were correlated with clinical features, including
tumor stage and therapeutic response.
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Conclusions: Our integrative single-cell, spatial, and computational analysis
provides a high-resolution map of gastric cancer microenvironment
remodeling. We identified key stromal and immune subpopulations, extensive
cellular communication networks, and spatial structures that collectively drive
tumor progression and metastasis. The derived gene signature and prognostic
model have the potential for clinical risk stratification and therapeutic targeting in

gastric cancer.

gastric cancer, single-cell RNA sequencing, tumor microenvironment, WGCNA, deep
learning prognostic model

1 Introduction

Gastric cancer (GC) remains a major global health burden,
ranking fifth as the most common malignancy and the fourth
leading cause of cancer-related mortality worldwide (1). Despite
significant progress in diagnosis and treatment, the prognosis of
GC, particularly at advanced stages, remains dismal largely because
of late detection, tumor heterogeneity, and metastasis (2, 3).
Increasing evidence indicates that tumor progression is not solely
determined by malignant epithelial cells but is intricately regulated
by the surrounding tumor microenvironment (TME), which
consists of diverse immune and stromal cell populations (4, 5).

The GC microenvironment is characterized by substantial cellular
heterogeneity and dynamic interactions between tumor cells,
fibroblasts, endothelial cells (ECs), and immune components. For
example, cancer-associated fibroblasts have been shown to promote
extracellular matrix (ECM) remodeling, immunosuppression, and
metastatic dissemination (6, 7). Similarly, dysfunction and exhaustion
of tumor-infiltrating CD8+ T cells and accumulation of
immunosuppressive myeloid cells have been associated with poor
clinical outcomes (8). However, most conventional transcriptomic
studies based on bulk tissue analysis lack the resolution required to
capture the spatial and cellular complexities of the TME.

Recent advances in single-cell RNA sequencing (scRNA-seq)
and spatial transcriptomics have enabled the unprecedented
characterization of the cellular landscape and spatial organization
of solid tumors, including GC (9-11). These technologies have
revealed key immune-stromal interactions, novel cell
subpopulations, and cellular programs driving tumor progression
(12, 13). Nevertheless, comprehensive multidimensional analyses
integrating single-cell, spatial, and clinical data to elucidate the
progression and prognosis of GC remain limited.

Simultaneously, deep learning approaches have emerged as
powerful tools for biomarker discovery and outcome prediction
in oncology. Deep neural networks, which capture complex
nonlinear patterns in high-dimensional data, have demonstrated
superior performance to traditional statistical models in tasks such
as patient risk stratification and survival prediction across multiple
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cancer types (14, 15). Notably, deep learning-based prognostic
models that leverage transcriptomic or histopathological features
have shown promise in GC; however, few studies have incorporated
biologically grounded features derived from single-cell and spatial
analyses (16, 17).

In this study, we present an integrative framework that
combines scRNA-seq, spatial transcriptomics, bulk transcriptomic
profiling, and deep learning to dissect the cellular ecosystem and
molecular underpinnings of GC progression. We systematically
mapped the dynamic remodeling of the immune and stromal
compartments, characterized intercellular communication
networks, and identified gene modules associated with tumor
stage and microenvironmental alterations. Furthermore, we
developed and validated a deep learning-based prognostic model
based on single-cell-derived biological signatures, offering new
insights into the mechanisms driving GC progression and
providing clinically relevant tools for patient risk stratification.

2 Materials and methods
2.1 Human samples and ethical approval

A total of 77 tissue samples representing different pathological
states of GC progression were collected from public databases,
including non-atrophic gastritis (n = 3), chronic atrophic gastritis
(n = 3), intestinal metaplasia (IM, n = 6), adjacent normal gastric
tissues (n = 14), primary GC (n = 36), and distant metastases (n = 15).
All samples were obtained from the Gene Expression Omnibus
(GEO) database (GSE134520, GSE183904, GSE206785, GSE163558,
and GSE234129) (https://www.ncbinlm.nih.gov/geo/). The training
set data of the deep learning prognosis model were obtained from
The Cancer Genome Atlas (TCGA) database (TCGA-STAD), and
the validation set data were obtained from the GEO database
(GSE84433). Studies involving human participants were reviewed
and approved by the Medical Ethics Committee of Henan Cancer
Hospital. Written informed consent was obtained from all
participants or their relatives.
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2.2 scRNA-seq and data preprocessing

scRNA-seq data were processed and analyzed using the Scanpy
package for Python (version 1.9.0) (18). Scrublet was used to
identify potential doublets in each sample, and, after that, cells
with scrublet score > 0.5 were filtered out as doublets. Subsequent
filtering was performed to exclude empty droplets and doublet cells
based on the following criteria: cells were retained only if they
contained between 500 and 5, 000 detected genes and 700 to 50, 000
UMI counts. Cells with more than 10% mitochondrial genes
expressed were removed as potential low-quality cells.

Initial gene count were first normalized for library size using
sc.pp.normalize_total(adata, target_sum=1le4) to 10, 000 counts per
cell, making expression levels comparable across cells. Normalized data
were then log-transformed with sc.pp.loglp(adata). Highly variable
genes (HVGs) were identified using sc.pp.highly_variable_genes(adata,
layer="counts”, n_top_genes=2000). To remove unwanted variation
associated with sequencing depth, total counts per cell were regressed
out using sc.pp.regress_out (adata, [“total_counts”], layer="“scaled”),
followed by scaling of the data to unit variance with a maximum value
of 10 [sc.pp.scale(adata, max_value=10, layer="scaled”)]. Downstream
dimensionality reduction and clustering analyses were then performed
on the processed data.

The BBKNN algorithm wasapplied for dimensionality reductionand
batch effect correction (19). In this framework, continuous technical
variables, such as mitochondrial gene content, were modeled as
covariates, whereas donor identity was treated as a categorical batch
factor. The neighborhood graph was constructed using
scanpy.pp.neighbors with k set to 30, followed by community detection
using the Leiden algorithm (scanpy.tlleiden), with a resolution of 1.

Differentially expressed genes (DEGs) across clusters were
identified using scanpy.tl.rank_genes_groups, with statistical
significance determined by a t-test combined with Benjamini-
Hochberg false discovery rate correction. Only DEGs meeting the
following criteria were retained for downstream analyses: log, fold
change > 1, expression detected in at least 10% of the cells within the
cluster, and Bayes factor > 2.

2.3 Dimensionality reduction, clustering,
and cell type annotation

Principal component analysis was performed on the highly
variable genes, followed by Uniform Manifold Approximation and
Projection (UMAP) for dimensionality reduction. Unsupervised
clustering was performed by using the Leiden algorithm
implemented in Scanpy. Cell types and subtypes were annotated
based on the expression of canonical marker genes.

2.4 Differential abundance and
transcriptional heterogeneity analysis

The proportion of each cell type across the tissue types was
calculated and compared using the Wilcoxon rank-sum test.
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Jensen-Shannon divergence was used to quantify transcriptional
heterogeneity within major cell lineages, following established
methods (20).

2.5 Trajectory inference and pseudotime
analysis

To infer the cellular differentiation trajectories, Monocle 2
(version 2.18.0) was applied to NK/T cells using highly variable
genes for dimensionality reduction and pseudotime ordering (21).

2.6 Intercellular communication analysis

Cell-cell interactions were inferred using CellChat (version
1.1.3) (22). Interaction probabilities were computed based on
known ligand-receptor pairs, and global and pathway-specific
communication networks were constructed. The strengths of the
outgoing and incoming interactions were quantified for each
cell subtype.

2.7 Spatial mapping of cell types using
cell2location

To map single-cell transcriptomic profiles onto spatial
transcriptomic data and infer the spatial distribution of distinct
cell types, we applied the probabilistic model cell2location (23). This
approach enables robust deconvolution of spatial transcriptomic
data by leveraging reference cell-type signatures derived from
single-cell RNA sequencing. Cell type-specific gene expression
signatures were obtained from an annotated scRNA-seq dataset.
These signatures were then used as prior information in
cell2location to estimate the spatial abundance of each cell type
across tissue sections generated by the 10x Genomics Visium
platform. The model was trained using default hyperparameters
as recommended by the developers. The resulting spatial abundance
maps provided high-resolution predictions of cell-type localization
within the tissue architecture. These maps were visualized using
Scanpy frameworks, confirming the colocalization of immune and
stromal cells within the tumor regions. This spatial distribution
supported the predicted intercellular interactions inferred from cell-
cell communication analyses and revealed the organizational basis
for immune-stromal crosstalk within the TME.

2.8 ssGSEA and WGCNA

Gene expression and clinical data of patients with GC were
downloaded from TCGA database. Single-sample Gene Set
Enrichment Analysis (ssGSEA) was used to quantify
transcriptional alterations in T cells, macrophages, and stromal
cells across the samples (24). Weighted Gene Co-expression
Network Analysis (WGCNA) (version 1.71) was used to identify
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the gene modules associated with immune alterations and tumor
stages (25). Module-trait correlations were assessed, and significant
modules were selected for further prognostic model construction.

2.9 Deep learning-based prognostic model
construction and validation

To construct a robust prognostic model for GC, we
implemented DeepSurv, a deep learning extension of the
traditional Cox proportional hazards model specifically designed
to capture complex nonlinear relationships between input features
and survival risk (26). The gene expression profiles of the 657 stage-
associated module genes identified via WGCNA were used as input
features for model training.

The model architecture consisted of fully connected
feedforward layers with ReLU activation functions. Batch
normalization and dropout regularization were applied to prevent
overfitting. The network was optimized using the Adam optimizer,
with hyperparameters, including learning rate, dropout rate, and
hidden layer dimensions, tuned via fivefold cross-validation within
the training cohort (TCGA-STAD dataset).

The model output was a continuous risk score that reflected the
predicted hazard function for each patient. The patients were
stratified into high- and low-risk groups based on the median risk
score. Kaplan-Meier survival analysis and log-rank tests were
performed to assess survival differences between the risk groups.
Model performance was further evaluated using time-dependent
receiver operating characteristic (ROC) curves, with area under the
curve values calculated at 1, 3, and 5 years.

To assess model generalizability, the trained DeepSurv model
was applied to an independent external validation cohort
(GSE84433). Risk scores were computed for each patient, and the
performance of survival prediction was evaluated using the same
procedures as in the training set. Additionally, the association
between the DeepSurv-derived risk scores and clinicopathological
features, including tumor stage, lymph node status, and treatment
information, was explored using appropriate statistical tests.

2.10 Flow cytometry of tumor-infiltrating T
cells

Primary tumor tissue, adjacent normal tissue, and ascitic fluid
from peritoneal metastasis were obtained from a patient with GC.
The samples were processed within 2 hours of collection.

Solid tissues were cut into small fragments and digested in RPMI-
1640 containing 1 mg/mL collagenase IV and 0.1 mg/mL DNase I at
37 °C for 30 min. The cell suspensions were filtered through a 70 um
strainer. Red blood cells were removed using the ACK lysis buffer.
The ascitic cells were collected by centrifugation and washed with
PBS. Cells were stained with a fixable viability dye (Invitrogen),
followed by incubation with antibodies against CD45, CD3, CD4,
CD8, and PD-1 (BioLegend). For intracellular FOXP3 staining, cells
were fixed and permeabilized using a transcription factor buffer set
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(eBioscience) and incubated with an anti-FOXP3 antibody. Flow
cytometry was performed using the BD LSRFortessa. Data were
analyzed using FlowJo software (v10). CD8" Tex cells were defined
as CD45"CD3"CD8"PD-1". Regulatory T cells (Tregs) were defined
as CD45"CD3"CD4"FOXP3". The frequencies were calculated as the
percentage of live CD45" cells.

2.11 RNA extraction and quantitative PCR

Total RNA was extracted from adjacent non-tumor tissue,
primary gastric tumor tissue, and peritoneal metastases obtained
from patients with GC using a Universal RNA Purification Kit
(EZBioscience, EZB-RN4), following the manufacturer’s
instructions. Subsequently, 400 ng of total RNA was reverse-
transcribed into cDNA using the PrimeScript RT Master Mix Kit
(TaKaRa, RR036A). For quantitative PCR analysis, 100 ng of cDNA
was used per reaction with PerfectStart Green qPCR SuperMix
(TransGen, AQ601-04) in a real-time PCR system (Roche,
LightCycler 480). Gene expression levels were normalized to
TATA-binding protein as the internal control.

2.12 Statistical analysis

Statistical analyses were performed in R (version 4.1.2) unless
otherwise specified. For comparisons between groups, Wilcoxon
rank-sum tests or Kruskal-Wallis tests were applied, as appropriate.
Differences in survival were assessed using the log-rank test.
Statistical significance was set at P < 0.05.

3 Results

3.1 Construction of a comprehensive
single-cell transcriptomic atlas across
gastric disease states and metastatic sites

To systematically dissect cellular heterogeneity and
microenvironmental alterations associated with GC initiation,
progression, and metastasis, we performed scRNA-seq on 77
tissue samples from seven distinct pathological conditions,
yielding 252, 399 high-quality cells (Figures 1A, B). These
included samples from non-atrophic gastritis (n = 3, 6, 427 cells),
chronic atrophic gastritis (n = 3, 20, 499 cells), IM (n = 6, 17, 908
cells, including 3 wild-type IM and 3 severe IM), adjacent normal
gastric tissues (n = 14, 28, 888 cells), primary gastric tumors (n = 36,
131, 146 cells), and distant metastatic lesions (n = 15, 47, 531 cells).
Unbiased clustering and dimensionality reduction were applied to
delineate the cellular composition across these tissue types
(Figure 1C; Supplementary Figures 1A, B). Based on canonical
marker genes, we identified major cell lineages, including epithelial
cells, stromal cells, ECs, myeloid cells, B cells, T/NK cells, and their
corresponding subpopulations, thereby providing a comprehensive
cellular map of gastric disease states.
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FIGURE 1
Single-cell transcriptomic atlas reveals cellular heterogeneity and tissue-specific remodeling across gastric disease states and metastases.

(A) Schematic overview of tissue types and sample distribution included in this study. Single-cell RNA sequencing (scRNA-seq) was performed on
77 samples from 7 tissue types: non-atrophic gastritis (NAG, n = 3), chronic atrophic gastritis (CAG, n = 3), intestinal metaplasia (wild-type IM [IMW;
n = 3] and severe IM [IMS; n = 3]), adjacent normal tissues (n = 14), primary tumors (PT, n = 36), and distant metastases (n = 15). (B) Workflow of
scRNA-seq data analysis and downstream approaches. Data from 252, 399 cells were integrated for clustering and annotation. Differentially
expressed genes were identified across stage types and subsequently subjected to WGCNA to detect gene modules associated with key cellular
populations. These modules were incorporated into a deep learning model for survival prediction. (C) UMAP visualization of single cells colored by
major lineages and annotated subtypes, including epithelial, stromal, endothelial, myeloid, B, T/NK, and malignant cells. (D) Boxplots showing the
relative abundance of major cell types across the seven tissue types. Each dot represents one biological sample. (E) Bar plot of Jensen-Shannon
Divergence (JSD) scores depicting intra-lineage transcriptional heterogeneity of major cell types across tissue types. (F) Heatmap of Spearman
correlation coefficients reflecting global cellular composition similarities among the seven tissue types. Color scale represents correlation strength;
asterisks indicate statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001).
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Next, we quantitatively compared the relative abundance of each
major cell lineage across seven tissue types (Figure 1D; Supplementary
Table 1). Notably, macrophages exhibited a marked increase in cell
proportion in cancer-adjacent tissues, primary tumors, and metastatic
sites compared with gastritis and IM, suggesting their potential
involvement in tumor-promoting processes. Similarly, T cells
displayed a progressive increase in proportion from adjacent normal
tissues to primary tumors and metastatic sites, whereas their
abundance remained relatively low in gastritis samples. The NK cells
showed comparable enrichment patterns. B cells were substantially
enriched in adjacent normal, primary tumor, and metastatic tissues,
with plasma cells exhibiting increased abundance in adjacent and
primary tumor tissues but reduced representation in metastases.
Mast cells showed a slight increase, specifically within primary tumor
tissues, whereas neutrophils remained consistently scarce across all
tissue types. Within the stromal compartment, EC proportions peaked
during the gastritis and precancerous stages, but declined sharply in
primary tumors and metastases. Fibroblasts were most abundant in
IM, followed by a gradual decrease in cancer-adjacent primary tumors
and metastatic tissues. Mural cells mirrored the trends observed in the
fibroblasts. As expected, epithelial cells were predominant in
precancerous lesions but were significantly reduced in tumor tissues,
whereas malignant epithelial cells specifically emerged in primary
tumor and metastatic samples.

To further investigate the transcriptional heterogeneity within
each major cell lineage, we computed the Jensen-Shannon
divergence across tissue types (Figure 1E; Supplementary
Table 2). T cells exhibited reduced heterogeneity during gastritis
and precancerous stages, followed by a sharp increase in primary
tumor and metastatic tissues, suggesting transcriptional
diversification during malignant transformation and
dissemination. NK and plasma cells displayed progressive
increases in heterogeneity from precancerous to tumor tissues. In
contrast, fibroblasts, ECs, and mural cells showed low heterogeneity
in gastritis and precancerous stages, with a marked increase in
tumor and metastatic tissues, indicating that TME remodeling is
associated with disease progression. Finally, correlation analysis of
the global cellular composition revealed strong similarities between
gastritis and precancerous tissues, whereas primary tumors and
metastatic lesions displayed distinct cellular profiles and were
negatively correlated with non-malignant tissues (Figure 1F;
Supplementary Table 3). Adjacent normal tissues exhibited
intermediate cellular features that partially resembled those of
precancerous and tumor tissues. Collectively, these results
delineate a stage-independent, disease-specific cellular remodeling
process during GC development and metastasis, highlighting
substantial alterations in the immune and stromal compartments.

3.2 Dynamic remodeling and functional
heterogeneity of NK and T cell subsets
during GC progression and metastasis

To dissect the dynamic changes and functional heterogeneity of
NK and T cells during GC development and metastasis, we
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performed detailed subclustering and trajectory inference analyses
of NK/T cells derived from all tissue types. Unsupervised clustering
revealed 13 distinct NK/T cell subpopulations, including CD4+
effector memory T cells (CD4+ TEM), CD4+ naive T cells, CD4+
exhausted T cells (CD4+ Tex), CD8+ TEM, CD8+ cytotoxic T cells,
CD8+ naive T cells, CD8+ Tex, innate lymphoid cells, NK_CD16-,
NK_CD16+, cycling T cells, Th17 cells, and Tregs (Figure 2A). Each
cell subpopulation exhibited unique signature genes (Supplementary
Figure 2A). Notably, the CD4+ and CD8+ T cell compartments
exhibited transcriptionally distinct subclusters, reflecting functional
diversification. To elucidate the potential differentiation trajectories
of T cells, we performed a pseudotime analysis using Monocle
(Figure 2B). Naive CD4+ and Naive CD8+ T cells resided at the
root of the trajectory, consistent with their early differentiation state
(Supplementary Figure 2B; Supplementary Table 4). The trajectory
bifurcated into two major branches: one leading toward CD4+
effector (CD4+ TEM, CD4+ Tex, Thl7, Treg) cells and the other
toward CD8+ effector (CD8+ cytotoxic T, CD8+ TEM, CD8+ Tex)
cells, reflecting lineage-specific differentiation and functional
maturation (Supplementary Figure 2C).

Next, we quantified the proportions of NK/T cell subtypes
across different tissue types (Figure 2C; Supplementary Table 5).
CD4+ TEM, CD4+ naive T cells, and CD8+ cytotoxic T cells
exhibited progressive enrichment from cancer-adjacent to
primary tumors and metastatic tissues, suggesting their potential
involvement in antitumor responses. In contrast, CD8+ TEM, Th17
cells, and NK_CD16- cells displayed a marked decline in
abundance along disease progression. Furthermore, we examined
the distribution of T cells along the pseudotime trajectory across
different tissue types (Figure 2D; Supplementary Table 4). Cells
from metastatic lesions were enriched in early pseudotime states,
whereas primary tumor samples displayed a broad distribution
along the trajectory, implying distinct differentiation dynamics
between the primary and metastatic sites. To further validate
these findings, we collected matched samples, including the
primary tumor, cancer-adjacent tissue, and ascitic fluid from
peritoneal metastases, from the same patient with GC, and
performed flow cytometry. Consistent with the single-cell data,
we observed a significantly higher proportion of CD8" Tex and Treg
cells in the primary tumor than in the adjacent normal tissue and
peritoneal metastasis (Figures 2E-G). These results suggest that the
immunosuppressive microenvironment, characterized by the
presence of exhausted and regulatory T cells, is more prominent
in primary lesions.

Given the observed alterations in NK/T cell composition, we
next explored the potential molecular mechanisms underlying these
changes. Differential expression analysis followed by KEGG
pathway enrichment revealed distinct functional programs
between tissues (Figures 3A-C; Supplementary Table 6). The
upregulated pathways in CD4+ TEM cells included ribosome
biogenesis, coronavirus infection, human papillomavirus
infection, mitogen-activated protein kinase (MAPK) signaling,
and PI3K-Akt signaling, implicating these cells in active protein
synthesis and immune responses. Notably, CD4+ naive T cells
exhibited pronounced downregulation of the MAPK pathway,
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FIGURE 2

Transcriptional heterogeneity and trajectory dynamics alterations of NK and T cells during gastric cancer progression. (A) UMAP plot showing 13
transcriptionally distinct NK/T cell subpopulations, including CD4+ and CD8+ T cell subsets, innate lymphoid cells (ILC), and NK cell subsets.

(B) Pseudotime trajectory of T cells inferred by Monocle. Naive T cells reside at the trajectory root, with bifurcation into CD4+ and CD8+
differentiation branches. (C) Boxplots showing the relative abundance of NK/T cell subtypes across tissue types. Each dot represents one biological
sample. CD4+ TEM, CD4+ naive T, and CD8+ cytotoxic T cells increase from adjacent tissue to tumors and metastases, whereas CD8+ TEM, Th17,
and NK_CD16- cells decline. (D) Density plot of pseudotime distribution for T cells from each tissue type, highlighting enrichment of metastatic cells
at early differentiation states and broad distribution of primary tumor-derived cells. (E) Gating strategy for identifying CD8*PD-1* (CD8" Tex) and
CD4*FOXP3* (Treg) cells from live CD45*CD3™ T cells. (F) Representative flow plots from one patient. CD8" Tex and Treg cells were more
abundant in the primary tumor than in adjacent normal tissue or lymph node metastasis. (G) Statistical analysis of CD8"* Tex and Treg proportions
from gastric cancer patients (n = 5/group). One-way ANOVA; ***P < 0.001, ****P < 0.0001.

Frontiers in Immunology 07 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1680517
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ren et al.

highlighting functional suppression in this subset during tumor
progression. To further investigate the impact of tumor progression
on NK/T cells, we performed pairwise differential expression
analysis across primary tumor stages (PM-I to PM-IV). Heatmap
visualization revealed widespread stage-dependent transcriptional
alterations, particularly between stage I and subsequent stages
(Figure 3Dj; Supplementary Figure 2D). DEG quantification
demonstrated a consistent trend of gene downregulation across
NK/T cell subtypes during tumor progression (Figure 3E;
Supplementary Table 7). Most transcriptional changes occurred
between stages I and II, suggesting that early-stage tumors mark a
critical immunological turning point characterized by the loss of
NK/T cell functionality. Collectively, these results reveal profound
remodeling of the NK and T cell compartments during GC
development and metastasis, with functional impairment
emerging as an early event, underscoring the potential windows
for immunotherapeutic intervention.

3.3 Distinct myeloid cell subtypes exhibit
dynamic remodeling and functional
suppression during GC progression and
metastasis

To further delineate the role of myeloid cells in the TME of GC,
we performed a sub-clustering analysis. This analysis identified 12
transcriptionally distinct myeloid cell subsets, including classical
and non-classical monocytes, diverse macrophage populations,
dendritic cell subtypes, plasmacytoid dendritic cells (pDCs),
neutrophils, and proliferating macrophages (Figure 4A). These
subsets were characterized by canonical marker genes, as
demonstrated by dot plot analysis (Figure 4B). For instance,
CD14 and FCGR3A defined classical and non-classical
monocytes, respectively; SPP1, CD163L1, TREM2, and MLXIPL
marked distinct macrophage subsets; and CLEC9A, CLEC10A, and
IL3RA distinguished between dendritic and pDC populations.

To explore tissue-specific alterations in myeloid cell
composition, we quantified the relative abundance of each subset
across disease stages (Figure 4C; Supplementary Table 8). CD163L1
+ macrophages were enriched in cancer-adjacent tissues, but
declined progressively in primary tumors and metastases,
suggesting a potential tumor-suppressive role in this population.
In contrast, MLXIPL+ macrophages and pDCs were nearly absent
in precancerous tissues, but accumulated during tumor initiation
and metastasis. TREM2+ macrophages exhibited a biphasic pattern,
increasing during precancerous progression, but decreasing after
tumor formation. Unexpectedly, SPP1+ macrophages, previously
implicated in tumor promotion, showed relatively stable
proportions across disease stages, suggesting a more complex role.
Neutrophils were relatively scarce in primary and adjacent normal
tissues, but exhibited a marked increase in metastatic lesions,
indicating their potential involvement in the metastatic cascade.
Consistently, flow cytometry of matched tissues from the same
patient showed that neutrophils were the most abundant in the
peritoneal metastasis (Figure 4D).

Frontiers in Immunology

10.3389/fimmu.2025.1680517

To investigate the functional alterations underlying these
compositional changes, we performed differential expression and
KEGG pathway enrichment analyses comparing primary tumors to
adjacent tissues and metastases to primary tumors (Figure 4E;
Supplementary Figures 3A-C; Supplementary Table 9). In
contrast to NK/T cells, myeloid cells exhibited a predominant
downregulation of immune-related pathways, including TNF
signaling, NF-kappa B signaling, IL-17 signaling, and cytokine-
cytokine receptor interactions, indicating progressive functional
suppression. Lipid metabolism and atherosclerosis-related
pathways were also downregulated, whereas coronavirus infection
and Rapl signaling were among the few pathways upregulated
during tumor progression. SPP1+ macrophages upregulated
rheumatoid arthritis-related pathways in metastases, indicating
their potential involvement in late-stage disease and metastasis.

Finally, to elucidate the stage-dependent transcriptional
dynamics, we performed pairwise differential expression analysis
across the primary tumor stages within each myeloid subset
(Figure 4F; Supplementary Table 10). Most subsets exhibited
minimal changes in gene expression, indicating their functional
stability. However, cDC2 cells displayed a substantial number of
DEGs that were predominantly downregulated, with most changes
occurring between stage I and later stages, suggesting an early loss of
dendritic cell function. SPP1+ macrophages exhibited pronounced
transcriptional alterations at stage IV, implying that their functional
reprogramming may be linked to tumor metastasis. Collectively,
these results reveal profound compositional and functional
remodeling of the myeloid compartment during GC progression,
characterized by the early impairment of dendritic cells and late-
stage activation of tumor-associated macrophages, providing
insights into the potential immunoregulatory mechanisms driving
disease advancement.

3.4 Stromal cell remodeling reveals
potential drivers of tumor progression and
metastasis

To investigate the dynamic alterations and potential functions
of stromal cells during GC initiation and progression, we performed
a detailed sub-cluster analysis of stromal populations. UMAP
visualization revealed 15 distinct stromal cell subpopulations,
including multiple fibroblast subsets, pericytes, smooth muscle
cells (SMCs), ECs, and Schwann cells (Figure 5A). The
characteristic gene expression profiles of each stromal
subpopulation were defined using a dot plot (Figure 5B). For
example, ADAM28+ fibroblasts expressed high levels of
ADAM?28, ITGBL1+ fibroblasts expressed ITGBL1, and PIl6+
fibroblasts expressed PI16. Additionally, ITLN1+ fibroblasts
uniquely expressed ITLN1, TREMI1+ fibroblasts expressed
TREM]1, and venous ECs (VenECs) expressed RGS5.

Next, we analyzed the compositional changes in these
subpopulations across different tissue types, including adjacent
normal tissues, precancerous lesions, primary tumors, and
metastatic tumors (Figure 5C; Supplementary Table 11).
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FIGURE 3

Stage-dependent alterations of NK and T cells during gastric cancer progression. (A) KEGG pathway enrichment analysis of differentially expressed
genes (DEGs) between tissue types (primary tumor vs. adjacent tissue; metastasis vs. primary tumor) for each NK/T cell subset. Dot color indicates
cell type, shape indicates tissue comparison, and size reflects gene count. (B) Volcano plots showing DEGs in each NK/T cell subpopulation between
primary tumors (PT) and Adj_Normal tissues. The x-axis represents cell types, and the y-axis indicates the average log, fold change. Red dots denote
significantly upregulated genes, and blue dots denote significantly downregulated genes in primary tumors compared with those in adjacent normal
tissues. (C) Volcano plots displaying DEGs between metastatic and PT tissues across each NK/T cell subpopulation. Color scheme is consistent with
panel (B, D) Heatmap showing stage-specific DEGs across NK/T cell subtypes during tumor progression (PM-| to PM-1V). (E) Stacked bar plot
quantifying up- and downregulated genes for each NK/T cell subtype across tumor stage comparisons. Most transcriptional changes occur between
stages | and Il, with a predominant trend toward gene downregulation.
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UMAP2

FIGURE 4

Myeloid cell subtypes exhibit distinct compositional and functional alterations during the development and metastasis of gastric cancer. (A) UMAP
visualization of 12 transcriptionally distinct myeloid cell subsets, including monocytes, macrophages, dendritic cells, plasmacytoid dendritic cells
(pDCs), neutrophils, and proliferating macrophages. (B) Dot plot of canonical marker genes defining myeloid cell subsets. Dot size represents the
fraction of cells expressing the gene; color intensity reflects average expression. (C) Boxplots showing the proportion of each myeloid cell subset
across tissue types. CD163L1* macrophages decline in tumors and metastases; MLXIPL* macrophages, pDCs, and TREM2* macrophages increase
during disease progression. (D) Statistical analysis of neutrophil (CD11b*Ly6G*) proportions from gastric cancer patients (n = 5/group). One-way
ANOVA; ****pP < 0.0001. (E) KEGG pathway enrichment analysis of differentially expressed genes between tissue types for each myeloid cell subset.
Downregulated pathways are enriched for immune-related and inflammatory processes, while upregulated pathways include Rapl signaling and
coronavirus infection. (F) Stacked bar plots quantifying up- and downregulated genes for each myeloid subset across primary tumor stages. cDC2
cells exhibit early-stage transcriptional changes; SPP1" macrophages display marked alterations at stage 1V, implicating them in metastatic

progression.
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ADAM28+ fibroblasts were enriched in precancerous and adjacent
normal tissues but exhibited a marked decrease in primary and
metastatic tumors. Given that ADAM28 belongs to the ADAM
metalloproteinase family that is involved in ECM homeostasis, the
depletion of ADAM28+ fibroblasts likely reflects the disruption of
stromal integrity and loss of a protective barrier, thereby facilitating
tumor invasion. In contrast, ITGBL1+ fibroblasts, which
progressively accumulated from precancerous lesions to primary
tumors and metastases, expressed ITGBLI, a protein implicated in
promoting ECM deposition, stiffness, and tumor cell migration.
This finding suggests that ITGBLI1+ fibroblasts actively contribute
to the establishment of a pro-tumorigenic microenvironment
through matrix remodeling and immune evasion. Similarly, PI16+
fibroblasts, defined by PI16 expression, and SMCs demonstrated a
continuous increase in expression during disease progression. PI16
has been linked to fibroblast activation and ECM organization,
whereas SMCs are known to generate contractile forces that
enhance stromal stiffness and interstitial pressure, both of which
promote tumor cell invasion and metastasis. TREM1+ fibroblasts,
which progressively increased in tumor and metastatic tissues,
expressed TREMI, a receptor classically involved in amplifying
inflammatory responses. Their expansion implies a potential role in
sustaining chronic inflammation within the tumor stroma, which is
a known driver of cancer progression. The proportion of VenECs
characterized by RGS5 expression also increased with disease
progression. Given the role of RGS5 in vascular remodeling and
abnormal angiogenesis, expansion of VenECs may promote tumor
neovascularization, facilitating tumor growth and metastatic
dissemination. ITLN1+ fibroblasts were nearly absent in
precancerous and adjacent normal tissues, but specifically
appeared in primary and metastatic tumors. ITLN1 is associated
with ECM remodeling and immune regulation. These findings
suggest that ITLN1+ fibroblasts represent a metastasis-associated
fibroblast subtype that fosters a permissive niche for tumor cell
colonization and survival at distant sites.

To explore the potential biological functions of these altered
stromal subpopulations, we performed pathway enrichment analysis
on DEGs between primary tumors and adjacent normal tissues and
between metastatic and primary tumors (Figure 5D; Supplementary
Figure 4A-C; Supplementary Table 12). Notably, ITLN1+ fibroblasts
in metastatic tissues showed significant enrichment of upregulated
pathways, including those related to human papillomavirus infection
and lysosomal activity, indicating their involvement in metastatic
niche remodeling. In contrast, TREM1+ fibroblasts, despite their
increased abundance, exhibited enrichment of downregulated
pathways such as protein processing in the endoplasmic reticulum,
indicating complex functional reprogramming during metastasis.
Finally, we quantified the number of DEGs across tumor stages to
further understand stromal evolution during cancer progression
(Figure 5E; Supplementary Table 13). Although ITLN1+ fibroblasts
were associated with pathway upregulation in metastasis, they
exhibited significant downregulation of gene expression when
comparing early- and late-stage primary tumors, particularly
between stages I and III/IV. Similar trends were observed for EC
subsets, including capillary ECs and VenECs. TREM1+ fibroblasts
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displayed stage-specific gene expression patterns, with pronounced
upregulation of genes in stage III/IV and downregulation in early-
stage tumors. Collectively, these results highlight the dynamic
remodeling of the stromal compartment during GC progression.
Specific fibroblast and endothelial subpopulations, defined by their
unique marker gene signatures, undergo distinct compositional and
functional changes that may contribute to ECM remodeling,
angiogenesis, immune modulation, and establishment of a
metastatic microenvironment.

3.5 Intercellular communication networks
facilitate tumor progression in the GC
microenvironment

To investigate how interactions among diverse cell populations
shape the GC microenvironment and promote tumor progression,
we performed comprehensive cell-cell interaction analyses across all
major cellular compartments. At the global level, we constructed an
intercellular communication network among major cell lineages
(Figure 6A). This analysis revealed that fibroblasts and mural cells
exhibit the strongest overall interaction strength with other cell
types, highlighting their central role as organizational hubs within
the TME. Given the known contributions of fibroblasts to ECM
remodeling, immunomodulation, and angiogenesis, their
prominent interactions likely facilitate the establishment of a
tumor-permissive niche that supports cancer cell survival,
immune evasion, and metastatic dissemination.

To further delineate the directionality and functional
implications of these interactions, we quantified the strengths of
the outgoing (signal-sending) and incoming (signal-receiving)
interactions for each cellular subpopulation (Figure 6B). CD8+ T
cell subsets, including exhausted T cells (Tex), effector memory T
cells (TEM), and cytotoxic T cells, exhibited markedly higher
incoming interaction strengths, suggesting that these key
antitumor effector populations are subject to extensive external
modulation within the TME. In contrast, fibroblast subpopulations,
particularly ITGBL1+, PI16+, and VSTM2A+ fibroblasts, displayed
dominant outgoing interaction strengths, implicating them as
major signaling sources that actively influence the behavior of
neighboring cells. These findings suggest that tumor-associated
fibroblasts not only provide structural support but also act as
potent regulators of immune cell function, potentially
contributing to T cell dysfunction and immune suppression.

Given the critical role of T cells in tumor control, we
systematically examined their interactions with other cell types
(Figure 6C). Notably, CD8+ Tex, TEM, and cytotoxic T cells
exhibited the most extensive and robust crosstalk with diverse cell
populations, reinforcing the concept that these effector populations,
despite their dysfunctional state, remain the central nodes of cellular
communication within the tumor. The pervasive interactions
between fibroblasts and exhausted T cells imply a feed-forward
loop, in which stromal-derived signals further impair T cell
function, ultimately promoting immune escape and
tumor progression.
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FIGURE 5

Stromal cell remodeling during gastric cancer progression reveals dynamic changes in abundance and function. (A) UMAP visualization of 15 stromal
cell subtypes, including fibroblasts, endothelial cells (ArtEC, arterial endothelial cells; VenEC, venous endothelial cells; CapEC, capillary endothelial
cells; LymphEC, lymphatic endothelial cells; FB, fibroblast), smooth muscle cells, pericytes, and Schwann cells. (B) Dot plot showing expression of
representative marker genes for each stromal cell subtype. Dot size reflects the percentage of expressing cells; color intensity indicates average
expression. (C) Boxplots depicting the relative abundance of stromal cell subtypes across tissue types. ADAM28" fibroblasts decline in tumors;
ITGBL1*, PI16%, TREM1" fibroblasts, and endothelial cells increase with disease progression; ITLN1* fibroblasts emerge in tumors and metastases.

(D) KEGG pathway enrichment of differentially expressed genes between adjacent normal vs. primary tumors and primary tumors vs. metastases.
ITLN1" fibroblasts show upregulation of metastasis-related pathways; TREM1" fibroblasts exhibit downregulation of pathways despite humerical
expansion. (E) Stacked bar plots summarizing differentially expressed genes between tumor stages for each stromal cell subtype. Stage | vs. later
stages account for most transcriptional changes, with ITLN1" fibroblasts and TREM1* fibroblasts displaying distinct stage-dependent expression

dynamics.
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FIGURE 6

Comprehensive cell-cell interaction analysis reveals key communicative hubs in the gastric cancer microenvironment. (A) Circos plot illustrating
global intercellular interaction strength among major cell lineages. The width of each connection reflects the strength of interaction. (B) Scatter plot
showing outgoing (x-axis) and incoming (y-axis) interaction strength of each cell subset. (C) Detailed interaction network between NK/T cell
subpopulations and all other cell subsets. (D) Circos plots depicting cellular communication patterns within the chemokine (left) and IFN-II (right)
signaling pathways. In the chemokine network, endothelial cells and fibroblasts mainly act as signal senders, while CD4+ and CD8+ T cells serve as
major signal receivers. In the IFN-II network, CD16+ NK cells and CD8+ T cell subsets predominantly act as signal senders targeting myeloid and
stromal cells. (E, F) Spatial transcriptomics reveal the spatial distribution of major cell lineages in tumor tissue sections. Immune and stromal cells
exhibit colocalization within tumor stromal regions, providing spatial evidence for potential direct cellular interactions.
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To elucidate specific signaling pathways involved in these
interactions, we focused on chemokine and type II interferon
(IFN-y) signaling axes, both of which regulate immune cell
recruitment and activation (Figure 6D). Within the chemokine
network, fibroblasts and ECs primarily acted as signal senders,
whereas CD4+ and CD8+ T cells served as major signal recipients.
This result suggests that stromal cells orchestrate immune cell
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positioning within the tumor, which may favor the formation of
immunosuppressive niches. In contrast, IFN-y signaling was
predominantly initiated by CD16+ NK cells, CD8+ TEM,
cytotoxic T cells, and Tex cells, targeting various myeloid and
stromal populations. Although IFN-y is traditionally associated
with antitumor immunity, its dysregulated production within an
immune-suppressive environment may paradoxically contribute to
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chronic inflammation and stromal reprogramming, thereby
supporting tumor progression.

Finally, to validate these predicted intercellular interactions at
the spatial level, we integrated the spatial transcriptomic data
(Figures 6E, F). Immune and stromal cells, particularly fibroblasts
and mural cells, exhibited pronounced spatial colocalization within
tumor stromal regions. This spatial proximity provides a structural
basis for direct cellular crosstalk, facilitating the transmission of
pro-tumorigenic signals. Together, these findings reveal a complex
and coordinated intercellular communication network in the gastric
TME, in which tumor-associated fibroblasts emerge as key
regulators driving immune dysfunction and stromal remodeling.
This network promotes immune evasion, tumor progression, and
metastasis via extensive crosstalk with immune cells, particularly
CD8+ T cells.

3.6 Identification of stage-associated gene
modules by WGCNA

To identify the gene modules associated with tumor progression
and immune cell alterations, we performed WGCNA based on
TCGA cohort transcriptomic data. Considering our previous
findings that the DEGs of NK/T, myeloid, and stromal cells vary
significantly across tumor stages, we first applied ssGSEA to
calculate the DE scores for these three cell types across samples.

A hierarchical clustering dendrogram combined with a trait
heatmap revealed clear clustering patterns among samples, with DE
scores and clinical traits such as tumor stage and pathological
features showing distinct distributions (Figure 7A). Next, to
ensure the construction of a scale-free co-expression network, we
selected a soft-thresholding power of 3, which satisfied the scale-free
topology criterion with R* exceeding 0.9 (Figure 7B).

Module-trait correlation analysis identified multiple modules
that were significantly associated with immune cell DE scores and
clinical features (Figure 7C; Supplementary Table 14). Notably, the
“lightyellow” module demonstrated the strongest positive
correlation with NK/T cell DE scores (r = 0.60, p = 2.4e-34) and
myeloid cell DE scores (r = 0.46, p = 7e-19) and showed associations
with tumor stage and pathological indicators (Figure 7C). Further
assessment revealed a strong positive correlation between gene
significance for NK/T cell DE scores and module membership
within the lightyellow module (r = 0.78, p = 3.5e-110; Figure 7D).
Similarly, the gene significance for myeloid cell DE scores exhibited
an even stronger correlation with module membership in the
lightyellow module (r = 0.83, p = 9.7e-137). In contrast, although
stromal cell DE scores were also correlated with the lightyellow
module, the association was notably weaker (r = 0.28, p = 4.7¢-11).
Collectively, these results indicate that the lightyellow module,
which contains 657 genes, is closely associated with tumor
progression and immune cell alterations, particularly those
involving NK/T and myeloid cells, suggesting that this gene set
plays a crucial role in shaping the TME during GC progression.
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3.7 Deep learning-based prognostic model
for GC

To establish a prognostic model for GC based on previously
identified tumor stage-associated gene modules, we employed a deep
learning approach using the TCGA GC cohort as the training dataset.
The model weight distribution followed an approximately normal
distribution, as shown in the histogram, indicating the robustness of
model parameter initialization (Figure 8A). The distribution of
individual risk scores calculated using the model revealed a
continuous and widespread distribution across patients in the
training cohort (Figure 8B; Supplementary Table 15). Kaplan-Meier
survival analysis demonstrated that patients classified into the high-risk
group exhibited significantly worse overall survival than those in the
low-risk group (p < 0.0001; Figure 8C). Furthermore, time-dependent
ROC curve analysis showed excellent predictive performance, with the
area under the curve reaching 0.915, 0.930, and 0.921 for 1-, 3-, and 5-
year survival, respectively (Figure 8D).

To validate the predictive power of this model, we applied it to an
independent external validation cohort. Similar to that in the training
set, the risk score distribution in the validation cohort varied widely
(Figure 8E; Supplementary Table 16). High-risk patients in the
validation cohort consistently had significantly worse survival
outcomes than low-risk patients (p = 0.035; Figure 8F), confirming
the robust prognostic capability of the model. Subsequently, we
examined the expression differences of the top five genes constructed
in adjacent tissues, primary GC tissues, and peritoneal metastatic
tissues. The results showed that the expression of these genes was
significantly different in different tissues, specifically manifesting as the
lowest expression in the adjacent tissues and an upward trend in
primary GC and peritoneal metastasis tissues (Figure 8G).

Furthermore, we explored the association between risk scores
and clinical features in the training cohort. Boxplot analysis
revealed that the risk scores were significantly higher in patients
who did not receive radiation therapy, as well as in patients with a
more advanced tumor stage (stage III vs. stage II; stage IV vs. stage
III), higher histological grade (G3 vs. G2), and more severe lymph
node involvement (N2 vs. N1) (Figure 8H). These results indicate
that the model-derived risk score not only reflects patients’
prognostic outcomes but also correlates with classical
clinicopathological indicators of disease severity.

4 Discussion

In this study, we comprehensively delineated the cellular ecosystem
and intercellular interactions underlying GC progression and
metastasis using scRNA-seq, spatial transcriptomics, bulk
transcriptomic analysis, and deep learning-based prognostic
modeling. Our results provide novel insights into the dynamic
remodeling of the immune and stromal compartments, highlight
specific cell subpopulations and communication patterns that drive
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FIGURE 7

Identification of gene modules associated with immune cell alterations and tumor progression by Weighted Gene Co-expression Network Analysis
(WGCNA). (A) Sample clustering dendrogram and corresponding trait heatmap. ssGSEA scores for NK/T cells (T_DE_ssGSEA_score), myeloid cells
(Mo_DE_ssGSEA_score), stromal cells (Stroma_DE_ssGSEA_score), and clinical features, including tumor stage, grade, and pathological TNM
classifications, are shown. (B) Determination of soft-thresholding power for WGCNA. The left panel shows the scale-free topology fit index (R?)
versus soft-thresholding power. A power of 3 achieves an R? above 0.9 (red line). The right panel shows mean connectivity across powers.

(C) Heatmap of module—trait correlations. Each cell displays the correlation coefficient and corresponding p-value between the module eigengene
and the indicated trait. The lightyellow module shows the strongest positive association with NK/T cell and myeloid cell DE scores. (D) Scatter plots
showing correlations between gene significance for NK/T cell DE scores, myeloid cell DE scores, or stromal cell DE scores and module membership
in the lightyellow module. Strong positive correlations were observed for NK/T and myeloid cell DE scores, indicating the biological relevance of this
module.
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Construction and validation of a deep learning-based prognostic model for gastric cancer. (A) Histogram and density curve illustrating the
distribution of model weights (n = 140, 920), showing near-normal distribution with minor skewness and kurtosis. (B) Scatter plot showing the
distribution of risk scores across the training cohort (n = 350), with quartile thresholds indicated by dashed lines. (C) Kaplan-Meier survival curves for
high- and low-risk groups in the training cohort, demonstrating significantly poorer survival in the high-risk group (p < 0.0001). (D) Time-dependent
ROC curves for the training cohort showing excellent predictive accuracy for 1-, 3-, and 5-year overall survival. (E) Scatter plot showing the risk
score distribution in the independent validation cohort (n = 355). (F) Kaplan-Meier survival analysis in the validation cohort confirming significantly
worse survival in the high-risk group (p = 0.035). (G) gPCR demonstrated the differential expression of the top five genes of the deep learning model
in adjacent, primary tumor, and peritoneal metastatic tissues. (H) Boxplots displaying the distribution of risk scores across different clinical subgroups
within the training cohort. Statistically significant differences were observed in relation to radiation therapy status, tumor stage, histological grade,
and lymph node metastasis, supporting the clinical relevance of the model-derived risk score.
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tumor progression, and offer a clinically applicable prognostic model
with strong predictive power.

First, by constructing a high-resolution single-cell atlas of GC and
related tissue states, we revealed profound heterogeneity within the
TME, which is consistent with previous studies on GC and other solid
tumors (27). Notably, the progressive accumulation of dysfunctional
CD8+ T cells, immunosuppressive myeloid populations, and pro-
tumorigenic fibroblast subsets underscores the coordinated
remodeling of the TME to facilitate immune evasion and tumor
progression (28, 29). Our trajectory analysis further demonstrated
impaired T-cell differentiation and functional exhaustion during
tumor development, echoing observations in lung and colorectal
cancers (8, 30). We identified specific stromal subpopulations,
including ITGBL1+ and PI16+ fibroblasts, TREM1+ fibroblasts, and
ITLN1+ fibroblasts, which displayed dynamic alterations and potential
pro-tumorigenic functions based on characteristic gene expression
patterns and pathway enrichment. The association of ITGBL1 with
ECM remodeling and immune evasion has been reported in ovarian
and colorectal cancers (31, 32), whereas PI16 has been implicated in
fibrotic diseases and the activation of tumor-associated fibroblasts (33).
Moreover, our identification of ITLN1+ fibroblasts as a metastasis-
associated population extends recent findings linking ITLN1 to matrix
remodeling and tumor dissemination in colorectal cancers (34).

Our cell-cell interaction analysis revealed extensive crosstalk between
stromal and immune cells, with fibroblasts acting as the dominant signal
source and exhausted CD8+ T cells as major signal recipients. This
observation is consistent with reports that cancer-associated fibroblasts
actively modulate T cell dysfunction and exclusion through cytokine and
chemokine signaling (35, 36). Notably, IFN-y signaling, typically
regarded as anti-tumorigenic, was predominantly initiated by
dysfunctional T cells in our cohort, potentially contributing to chronic
inflammation and further stromal reprogramming, a mechanism
increasingly recognized in tumor biology (37, 38).

Integration of our single-cell and spatial transcriptomic data
further confirmed the spatial organization of immune and stromal
cells within tumor tissues, providing structural evidence for functional
crosstalk. Similar spatially resolved studies have emphasized the
importance of immune-stromal niches in regulating tumor
progression and the response to therapy (11, 13). To translate these
biological insights into clinical utility, we constructed a deep learning-
based prognostic model using stage-associated gene modules derived
from bulk transcriptomic and co-expression network analyses. Our
model demonstrated excellent performance in the training and
independent validation cohorts, outperforming conventional clinical
parameters. Previous studies have highlighted the potential of machine
learning and multi-omics integration for prognostic prediction in lung
adenocarcinoma (39, 40). However, our model is distinguished by its
direct biological grounding in single-cell and spatial transcriptomic
alterations, providing predictive value and mechanistic interpretability.

Despite these strengths, several limitations of this study must be
acknowledged. First, although our study used a large and diverse
sample cohort, future validation in larger prospective clinical trials
is warranted. Second, the functional validation of specific stromal
and immune cell subpopulations, particularly ITLN1+ fibroblasts, is
necessary to confirm their role in metastasis. Finally, the
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incorporation of additional multi-omics data, such as proteomics
or epigenomics, could further refine the mechanistic understanding
of TME remodeling in GC.

In conclusion, our integrated single-cell, spatial, and
computational analysis provides a comprehensive framework for
understanding TME remodeling during GC progression. The
identification of key cellular subpopulations and intercellular
interactions, coupled with the development of a clinically
applicable prognostic model, offers new opportunities for
biomarker discovery and therapeutic targeting in GC.
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