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Integrative multi-omics analysis
of gastric cancer evolution from
precancerous lesions to
metastasis identifies a deep
learning-based prognostic model
Yulin Ren1*†, Xiaoyan Zhang2†, Ke Li1, Shuning Xu1, Lei Qiao1,
Qun Li1, Cheng Zhang1 and Ying Liu1*

1Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan
Cancer Hospital, Zhengzhou, China, 2State Key Laboratory of Experimental Hematology and Division
of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Peking
Union Medical College, Chinese Academy of Medical Sciences, Tianjin, China
Background: Gastric cancer progression involves complex interactions among

tumor cells, immune components, and stromal elements within the tumor

microenvironment. However, a comprehensive understanding of cellular

heterogeneity, spatial organization, and cell-cell communication in gastric

cancer remains incomplete.

Methods: Single-cell RNA sequencing was performed on 252, 399 cells from six

tissue types, spanning gastritis, intestinal metaplasia, primary tumors, adjacent

normal tissue, and metastatic lesions. Integration with spatial transcriptomics

enabled spatial mapping of cellular interactions. Pseudotime, cell-cell

communication, and transcriptional heterogeneity analyses were conducted.

Tumor stage-associated gene modules were identified using Weighted Gene

Co-expression Network Analysis (WGCNA) of The Cancer Genome Atlas (TCGA)

data. Finally, a deep learning-based prognostic model was developed and

externally validated.

Results: Our analysis revealed dynamic remodeling of the tumor

microenvironment during gastric cancer progression, characterized by the

expansion of dysfunctional CD8+ T cells, pro-tumorigenic fibroblasts (e.g.,

ITGBL1+, PI16+, and ITLN1+), and altered myeloid populations. Stromal-

immune crosstalk, particularly fibroblast-driven immunosuppressive signaling,

was prominent. Spatial transcriptomics revealed the colocalization of immune

and stromal cells, supporting spatially organized cellular interactions. WGCNA

identified a genemodule (657 genes) associated with T cell, myeloid, and stromal

alterations, as well as tumor stage. A deep learning model based on this gene set

accurately stratified patients according to survival in both TCGA and independent

validation cohorts. Risk scores were correlated with clinical features, including

tumor stage and therapeutic response.
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Conclusions: Our integrative single-cell, spatial, and computational analysis

provides a high-resolution map of gastric cancer microenvironment

remodeling. We identified key stromal and immune subpopulations, extensive

cellular communication networks, and spatial structures that collectively drive

tumor progression and metastasis. The derived gene signature and prognostic

model have the potential for clinical risk stratification and therapeutic targeting in

gastric cancer.
KEYWORDS

gastric cancer, single-cell RNA sequencing, tumor microenvironment, WGCNA, deep
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1 Introduction

Gastric cancer (GC) remains a major global health burden,

ranking fifth as the most common malignancy and the fourth

leading cause of cancer-related mortality worldwide (1). Despite

significant progress in diagnosis and treatment, the prognosis of

GC, particularly at advanced stages, remains dismal largely because

of late detection, tumor heterogeneity, and metastasis (2, 3).

Increasing evidence indicates that tumor progression is not solely

determined by malignant epithelial cells but is intricately regulated

by the surrounding tumor microenvironment (TME), which

consists of diverse immune and stromal cell populations (4, 5).

The GC microenvironment is characterized by substantial cellular

heterogeneity and dynamic interactions between tumor cells,

fibroblasts, endothelial cells (ECs), and immune components. For

example, cancer-associated fibroblasts have been shown to promote

extracellular matrix (ECM) remodeling, immunosuppression, and

metastatic dissemination (6, 7). Similarly, dysfunction and exhaustion

of tumor-infiltrating CD8+ T cells and accumulation of

immunosuppressive myeloid cells have been associated with poor

clinical outcomes (8). However, most conventional transcriptomic

studies based on bulk tissue analysis lack the resolution required to

capture the spatial and cellular complexities of the TME.

Recent advances in single-cell RNA sequencing (scRNA-seq)

and spatial transcriptomics have enabled the unprecedented

characterization of the cellular landscape and spatial organization

of solid tumors, including GC (9–11). These technologies have

revealed key immune-stromal interactions, novel cel l

subpopulations, and cellular programs driving tumor progression

(12, 13). Nevertheless, comprehensive multidimensional analyses

integrating single-cell, spatial, and clinical data to elucidate the

progression and prognosis of GC remain limited.

Simultaneously, deep learning approaches have emerged as

powerful tools for biomarker discovery and outcome prediction

in oncology. Deep neural networks, which capture complex

nonlinear patterns in high-dimensional data, have demonstrated

superior performance to traditional statistical models in tasks such

as patient risk stratification and survival prediction across multiple
02
cancer types (14, 15). Notably, deep learning-based prognostic

models that leverage transcriptomic or histopathological features

have shown promise in GC; however, few studies have incorporated

biologically grounded features derived from single-cell and spatial

analyses (16, 17).

In this study, we present an integrative framework that

combines scRNA-seq, spatial transcriptomics, bulk transcriptomic

profiling, and deep learning to dissect the cellular ecosystem and

molecular underpinnings of GC progression. We systematically

mapped the dynamic remodeling of the immune and stromal

compartments, characterized intercellular communication

networks, and identified gene modules associated with tumor

stage and microenvironmental alterations. Furthermore, we

developed and validated a deep learning-based prognostic model

based on single-cell-derived biological signatures, offering new

insights into the mechanisms driving GC progression and

providing clinically relevant tools for patient risk stratification.
2 Materials and methods

2.1 Human samples and ethical approval

A total of 77 tissue samples representing different pathological

states of GC progression were collected from public databases,

including non-atrophic gastritis (n = 3), chronic atrophic gastritis

(n = 3), intestinal metaplasia (IM, n = 6), adjacent normal gastric

tissues (n = 14), primary GC (n = 36), and distant metastases (n = 15).

All samples were obtained from the Gene Expression Omnibus

(GEO) database (GSE134520, GSE183904, GSE206785, GSE163558,

and GSE234129) (https://www.ncbi.nlm.nih.gov/geo/). The training

set data of the deep learning prognosis model were obtained from

The Cancer Genome Atlas (TCGA) database (TCGA-STAD), and

the validation set data were obtained from the GEO database

(GSE84433). Studies involving human participants were reviewed

and approved by the Medical Ethics Committee of Henan Cancer

Hospital. Written informed consent was obtained from all

participants or their relatives.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1680517
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2025.1680517
2.2 scRNA-seq and data preprocessing

scRNA-seq data were processed and analyzed using the Scanpy

package for Python (version 1.9.0) (18). Scrublet was used to

identify potential doublets in each sample, and, after that, cells

with scrublet score > 0.5 were filtered out as doublets. Subsequent

filtering was performed to exclude empty droplets and doublet cells

based on the following criteria: cells were retained only if they

contained between 500 and 5, 000 detected genes and 700 to 50, 000

UMI counts. Cells with more than 10% mitochondrial genes

expressed were removed as potential low-quality cells.

Initial gene count were first normalized for library size using

sc.pp.normalize_total(adata, target_sum=1e4) to 10, 000 counts per

cell, making expression levels comparable across cells. Normalized data

were then log-transformed with sc.pp.log1p(adata). Highly variable

genes (HVGs) were identified using sc.pp.highly_variable_genes(adata,

layer=“counts”, n_top_genes=2000). To remove unwanted variation

associated with sequencing depth, total counts per cell were regressed

out using sc.pp.regress_out (adata, [“total_counts”], layer=“scaled”),

followed by scaling of the data to unit variance with a maximum value

of 10 [sc.pp.scale(adata, max_value=10, layer=“scaled”)]. Downstream

dimensionality reduction and clustering analyses were then performed

on the processed data.

TheBBKNNalgorithmwasappliedfordimensionalityreductionand

batch effect correction (19). In this framework, continuous technical

variables, such as mitochondrial gene content, were modeled as

covariates, whereas donor identity was treated as a categorical batch

factor. The neighborhood graph was constructed using

scanpy.pp.neighbors with k set to 30, followed by community detection

using the Leiden algorithm (scanpy.tl.leiden), with a resolution of 1.

Differentially expressed genes (DEGs) across clusters were

identified using scanpy.tl.rank_genes_groups, with statistical

significance determined by a t-test combined with Benjamini-

Hochberg false discovery rate correction. Only DEGs meeting the

following criteria were retained for downstream analyses: log2 fold

change > 1, expression detected in at least 10% of the cells within the

cluster, and Bayes factor > 2.
2.3 Dimensionality reduction, clustering,
and cell type annotation

Principal component analysis was performed on the highly

variable genes, followed by Uniform Manifold Approximation and

Projection (UMAP) for dimensionality reduction. Unsupervised

clustering was performed by using the Leiden algorithm

implemented in Scanpy. Cell types and subtypes were annotated

based on the expression of canonical marker genes.
2.4 Differential abundance and
transcriptional heterogeneity analysis

The proportion of each cell type across the tissue types was

calculated and compared using the Wilcoxon rank-sum test.
Frontiers in Immunology 03
Jensen-Shannon divergence was used to quantify transcriptional

heterogeneity within major cell lineages, following established

methods (20).
2.5 Trajectory inference and pseudotime
analysis

To infer the cellular differentiation trajectories, Monocle 2

(version 2.18.0) was applied to NK/T cells using highly variable

genes for dimensionality reduction and pseudotime ordering (21).
2.6 Intercellular communication analysis

Cell-cell interactions were inferred using CellChat (version

1.1.3) (22). Interaction probabilities were computed based on

known ligand-receptor pairs, and global and pathway-specific

communication networks were constructed. The strengths of the

outgoing and incoming interactions were quantified for each

cell subtype.
2.7 Spatial mapping of cell types using
cell2location

To map single-cell transcriptomic profiles onto spatial

transcriptomic data and infer the spatial distribution of distinct

cell types, we applied the probabilistic model cell2location (23). This

approach enables robust deconvolution of spatial transcriptomic

data by leveraging reference cell-type signatures derived from

single-cell RNA sequencing. Cell type-specific gene expression

signatures were obtained from an annotated scRNA-seq dataset.

These signatures were then used as prior information in

cell2location to estimate the spatial abundance of each cell type

across tissue sections generated by the 10x Genomics Visium

platform. The model was trained using default hyperparameters

as recommended by the developers. The resulting spatial abundance

maps provided high-resolution predictions of cell-type localization

within the tissue architecture. These maps were visualized using

Scanpy frameworks, confirming the colocalization of immune and

stromal cells within the tumor regions. This spatial distribution

supported the predicted intercellular interactions inferred from cell-

cell communication analyses and revealed the organizational basis

for immune-stromal crosstalk within the TME.
2.8 ssGSEA and WGCNA

Gene expression and clinical data of patients with GC were

downloaded from TCGA database. Single-sample Gene Set

Enrichment Analysis (ssGSEA) was used to quantify

transcriptional alterations in T cells, macrophages, and stromal

cells across the samples (24). Weighted Gene Co-expression

Network Analysis (WGCNA) (version 1.71) was used to identify
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the gene modules associated with immune alterations and tumor

stages (25). Module-trait correlations were assessed, and significant

modules were selected for further prognostic model construction.
2.9 Deep learning-based prognostic model
construction and validation

To construct a robust prognostic model for GC, we

implemented DeepSurv, a deep learning extension of the

traditional Cox proportional hazards model specifically designed

to capture complex nonlinear relationships between input features

and survival risk (26). The gene expression profiles of the 657 stage-

associated module genes identified via WGCNA were used as input

features for model training.

The model architecture consisted of fully connected

feedforward layers with ReLU activation functions. Batch

normalization and dropout regularization were applied to prevent

overfitting. The network was optimized using the Adam optimizer,

with hyperparameters, including learning rate, dropout rate, and

hidden layer dimensions, tuned via fivefold cross-validation within

the training cohort (TCGA-STAD dataset).

The model output was a continuous risk score that reflected the

predicted hazard function for each patient. The patients were

stratified into high- and low-risk groups based on the median risk

score. Kaplan-Meier survival analysis and log-rank tests were

performed to assess survival differences between the risk groups.

Model performance was further evaluated using time-dependent

receiver operating characteristic (ROC) curves, with area under the

curve values calculated at 1, 3, and 5 years.

To assess model generalizability, the trained DeepSurv model

was applied to an independent external validation cohort

(GSE84433). Risk scores were computed for each patient, and the

performance of survival prediction was evaluated using the same

procedures as in the training set. Additionally, the association

between the DeepSurv-derived risk scores and clinicopathological

features, including tumor stage, lymph node status, and treatment

information, was explored using appropriate statistical tests.
2.10 Flow cytometry of tumor-infiltrating T
cells

Primary tumor tissue, adjacent normal tissue, and ascitic fluid

from peritoneal metastasis were obtained from a patient with GC.

The samples were processed within 2 hours of collection.

Solid tissues were cut into small fragments and digested in RPMI-

1640 containing 1 mg/mL collagenase IV and 0.1 mg/mL DNase I at

37 °C for 30 min. The cell suspensions were filtered through a 70 mm
strainer. Red blood cells were removed using the ACK lysis buffer.

The ascitic cells were collected by centrifugation and washed with

PBS. Cells were stained with a fixable viability dye (Invitrogen),

followed by incubation with antibodies against CD45, CD3, CD4,

CD8, and PD-1 (BioLegend). For intracellular FOXP3 staining, cells

were fixed and permeabilized using a transcription factor buffer set
Frontiers in Immunology 04
(eBioscience) and incubated with an anti-FOXP3 antibody. Flow

cytometry was performed using the BD LSRFortessa. Data were

analyzed using FlowJo software (v10). CD8+ Tex cells were defined

as CD45+CD3+CD8+PD-1+. Regulatory T cells (Tregs) were defined

as CD45+CD3+CD4+FOXP3+. The frequencies were calculated as the

percentage of live CD45+ cells.
2.11 RNA extraction and quantitative PCR

Total RNA was extracted from adjacent non-tumor tissue,

primary gastric tumor tissue, and peritoneal metastases obtained

from patients with GC using a Universal RNA Purification Kit

(EZBioscience, EZB-RN4), following the manufacturer’s

instructions. Subsequently, 400 ng of total RNA was reverse-

transcribed into cDNA using the PrimeScript RT Master Mix Kit

(TaKaRa, RR036A). For quantitative PCR analysis, 100 ng of cDNA

was used per reaction with PerfectStart Green qPCR SuperMix

(TransGen, AQ601-04) in a real-time PCR system (Roche,

LightCycler 480). Gene expression levels were normalized to

TATA-binding protein as the internal control.
2.12 Statistical analysis

Statistical analyses were performed in R (version 4.1.2) unless

otherwise specified. For comparisons between groups, Wilcoxon

rank-sum tests or Kruskal-Wallis tests were applied, as appropriate.

Differences in survival were assessed using the log-rank test.

Statistical significance was set at P < 0.05.
3 Results

3.1 Construction of a comprehensive
single-cell transcriptomic atlas across
gastric disease states and metastatic sites

To systematically dissect cellular heterogeneity and

microenvironmental alterations associated with GC initiation,

progression, and metastasis, we performed scRNA-seq on 77

tissue samples from seven distinct pathological conditions,

yielding 252, 399 high-quality cells (Figures 1A, B). These

included samples from non-atrophic gastritis (n = 3, 6, 427 cells),

chronic atrophic gastritis (n = 3, 20, 499 cells), IM (n = 6, 17, 908

cells, including 3 wild-type IM and 3 severe IM), adjacent normal

gastric tissues (n = 14, 28, 888 cells), primary gastric tumors (n = 36,

131, 146 cells), and distant metastatic lesions (n = 15, 47, 531 cells).

Unbiased clustering and dimensionality reduction were applied to

delineate the cellular composition across these tissue types

(Figure 1C; Supplementary Figures 1A, B). Based on canonical

marker genes, we identified major cell lineages, including epithelial

cells, stromal cells, ECs, myeloid cells, B cells, T/NK cells, and their

corresponding subpopulations, thereby providing a comprehensive

cellular map of gastric disease states.
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FIGURE 1

Single-cell transcriptomic atlas reveals cellular heterogeneity and tissue-specific remodeling across gastric disease states and metastases.
(A) Schematic overview of tissue types and sample distribution included in this study. Single-cell RNA sequencing (scRNA-seq) was performed on
77 samples from 7 tissue types: non-atrophic gastritis (NAG, n = 3), chronic atrophic gastritis (CAG, n = 3), intestinal metaplasia (wild-type IM [IMW;
n = 3] and severe IM [IMS; n = 3]), adjacent normal tissues (n = 14), primary tumors (PT, n = 36), and distant metastases (n = 15). (B) Workflow of
scRNA-seq data analysis and downstream approaches. Data from 252, 399 cells were integrated for clustering and annotation. Differentially
expressed genes were identified across stage types and subsequently subjected to WGCNA to detect gene modules associated with key cellular
populations. These modules were incorporated into a deep learning model for survival prediction. (C) UMAP visualization of single cells colored by
major lineages and annotated subtypes, including epithelial, stromal, endothelial, myeloid, B, T/NK, and malignant cells. (D) Boxplots showing the
relative abundance of major cell types across the seven tissue types. Each dot represents one biological sample. (E) Bar plot of Jensen-Shannon
Divergence (JSD) scores depicting intra-lineage transcriptional heterogeneity of major cell types across tissue types. (F) Heatmap of Spearman
correlation coefficients reflecting global cellular composition similarities among the seven tissue types. Color scale represents correlation strength;
asterisks indicate statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001).
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Next, we quantitatively compared the relative abundance of each

major cell lineage across seven tissue types (Figure 1D; Supplementary

Table 1). Notably, macrophages exhibited a marked increase in cell

proportion in cancer-adjacent tissues, primary tumors, and metastatic

sites compared with gastritis and IM, suggesting their potential

involvement in tumor-promoting processes. Similarly, T cells

displayed a progressive increase in proportion from adjacent normal

tissues to primary tumors and metastatic sites, whereas their

abundance remained relatively low in gastritis samples. The NK cells

showed comparable enrichment patterns. B cells were substantially

enriched in adjacent normal, primary tumor, and metastatic tissues,

with plasma cells exhibiting increased abundance in adjacent and

primary tumor tissues but reduced representation in metastases.

Mast cells showed a slight increase, specifically within primary tumor

tissues, whereas neutrophils remained consistently scarce across all

tissue types. Within the stromal compartment, EC proportions peaked

during the gastritis and precancerous stages, but declined sharply in

primary tumors and metastases. Fibroblasts were most abundant in

IM, followed by a gradual decrease in cancer-adjacent primary tumors

and metastatic tissues. Mural cells mirrored the trends observed in the

fibroblasts. As expected, epithelial cells were predominant in

precancerous lesions but were significantly reduced in tumor tissues,

whereas malignant epithelial cells specifically emerged in primary

tumor and metastatic samples.

To further investigate the transcriptional heterogeneity within

each major cell lineage, we computed the Jensen-Shannon

divergence across tissue types (Figure 1E; Supplementary

Table 2). T cells exhibited reduced heterogeneity during gastritis

and precancerous stages, followed by a sharp increase in primary

tumor and metastatic tissues, suggesting transcriptional

divers ificat ion during malignant transformation and

dissemination. NK and plasma cells displayed progressive

increases in heterogeneity from precancerous to tumor tissues. In

contrast, fibroblasts, ECs, and mural cells showed low heterogeneity

in gastritis and precancerous stages, with a marked increase in

tumor and metastatic tissues, indicating that TME remodeling is

associated with disease progression. Finally, correlation analysis of

the global cellular composition revealed strong similarities between

gastritis and precancerous tissues, whereas primary tumors and

metastatic lesions displayed distinct cellular profiles and were

negatively correlated with non-malignant tissues (Figure 1F;

Supplementary Table 3). Adjacent normal tissues exhibited

intermediate cellular features that partially resembled those of

precancerous and tumor tissues. Collectively, these results

delineate a stage-independent, disease-specific cellular remodeling

process during GC development and metastasis, highlighting

substantial alterations in the immune and stromal compartments.
3.2 Dynamic remodeling and functional
heterogeneity of NK and T cell subsets
during GC progression and metastasis

To dissect the dynamic changes and functional heterogeneity of

NK and T cells during GC development and metastasis, we
Frontiers in Immunology 06
performed detailed subclustering and trajectory inference analyses

of NK/T cells derived from all tissue types. Unsupervised clustering

revealed 13 distinct NK/T cell subpopulations, including CD4+

effector memory T cells (CD4+ TEM), CD4+ naïve T cells, CD4+

exhausted T cells (CD4+ Tex), CD8+ TEM, CD8+ cytotoxic T cells,

CD8+ naïve T cells, CD8+ Tex, innate lymphoid cells, NK_CD16−,

NK_CD16+, cycling T cells, Th17 cells, and Tregs (Figure 2A). Each

cell subpopulation exhibited unique signature genes (Supplementary

Figure 2A). Notably, the CD4+ and CD8+ T cell compartments

exhibited transcriptionally distinct subclusters, reflecting functional

diversification. To elucidate the potential differentiation trajectories

of T cells, we performed a pseudotime analysis using Monocle

(Figure 2B). Naïve CD4+ and Naïve CD8+ T cells resided at the

root of the trajectory, consistent with their early differentiation state

(Supplementary Figure 2B; Supplementary Table 4). The trajectory

bifurcated into two major branches: one leading toward CD4+

effector (CD4+ TEM, CD4+ Tex, Th17, Treg) cells and the other

toward CD8+ effector (CD8+ cytotoxic T, CD8+ TEM, CD8+ Tex)

cells, reflecting lineage-specific differentiation and functional

maturation (Supplementary Figure 2C).

Next, we quantified the proportions of NK/T cell subtypes

across different tissue types (Figure 2C; Supplementary Table 5).

CD4+ TEM, CD4+ naïve T cells, and CD8+ cytotoxic T cells

exhibited progressive enrichment from cancer-adjacent to

primary tumors and metastatic tissues, suggesting their potential

involvement in antitumor responses. In contrast, CD8+ TEM, Th17

cells, and NK_CD16− cells displayed a marked decline in

abundance along disease progression. Furthermore, we examined

the distribution of T cells along the pseudotime trajectory across

different tissue types (Figure 2D; Supplementary Table 4). Cells

from metastatic lesions were enriched in early pseudotime states,

whereas primary tumor samples displayed a broad distribution

along the trajectory, implying distinct differentiation dynamics

between the primary and metastatic sites. To further validate

these findings, we collected matched samples, including the

primary tumor, cancer-adjacent tissue, and ascitic fluid from

peritoneal metastases, from the same patient with GC, and

performed flow cytometry. Consistent with the single-cell data,

we observed a significantly higher proportion of CD8+ Tex and Treg

cells in the primary tumor than in the adjacent normal tissue and

peritoneal metastasis (Figures 2E–G). These results suggest that the

immunosuppressive microenvironment, characterized by the

presence of exhausted and regulatory T cells, is more prominent

in primary lesions.

Given the observed alterations in NK/T cell composition, we

next explored the potential molecular mechanisms underlying these

changes. Differential expression analysis followed by KEGG

pathway enrichment revealed distinct functional programs

between tissues (Figures 3A-C; Supplementary Table 6). The

upregulated pathways in CD4+ TEM cells included ribosome

biogenesis, coronavirus infection, human papillomavirus

infection, mitogen-activated protein kinase (MAPK) signaling,

and PI3K-Akt signaling, implicating these cells in active protein

synthesis and immune responses. Notably, CD4+ naïve T cells

exhibited pronounced downregulation of the MAPK pathway,
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FIGURE 2

Transcriptional heterogeneity and trajectory dynamics alterations of NK and T cells during gastric cancer progression. (A) UMAP plot showing 13
transcriptionally distinct NK/T cell subpopulations, including CD4+ and CD8+ T cell subsets, innate lymphoid cells (ILC), and NK cell subsets.
(B) Pseudotime trajectory of T cells inferred by Monocle. Naïve T cells reside at the trajectory root, with bifurcation into CD4+ and CD8+
differentiation branches. (C) Boxplots showing the relative abundance of NK/T cell subtypes across tissue types. Each dot represents one biological
sample. CD4+ TEM, CD4+ naïve T, and CD8+ cytotoxic T cells increase from adjacent tissue to tumors and metastases, whereas CD8+ TEM, Th17,
and NK_CD16− cells decline. (D) Density plot of pseudotime distribution for T cells from each tissue type, highlighting enrichment of metastatic cells
at early differentiation states and broad distribution of primary tumor-derived cells. (E) Gating strategy for identifying CD8+PD-1+ (CD8+ Tex) and
CD4+FOXP3+ (Treg) cells from live CD45+CD3+ T cells. (F) Representative flow plots from one patient. CD8+ Tex and Treg cells were more
abundant in the primary tumor than in adjacent normal tissue or lymph node metastasis. (G) Statistical analysis of CD8+ Tex and Treg proportions
from gastric cancer patients (n = 5/group). One-way ANOVA; ***P < 0.001, ****P < 0.0001.
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highlighting functional suppression in this subset during tumor

progression. To further investigate the impact of tumor progression

on NK/T cells, we performed pairwise differential expression

analysis across primary tumor stages (PM-I to PM-IV). Heatmap

visualization revealed widespread stage-dependent transcriptional

alterations, particularly between stage I and subsequent stages

(Figure 3D; Supplementary Figure 2D). DEG quantification

demonstrated a consistent trend of gene downregulation across

NK/T cell subtypes during tumor progression (Figure 3E;

Supplementary Table 7). Most transcriptional changes occurred

between stages I and II, suggesting that early-stage tumors mark a

critical immunological turning point characterized by the loss of

NK/T cell functionality. Collectively, these results reveal profound

remodeling of the NK and T cell compartments during GC

development and metastasis, with functional impairment

emerging as an early event, underscoring the potential windows

for immunotherapeutic intervention.
3.3 Distinct myeloid cell subtypes exhibit
dynamic remodeling and functional
suppression during GC progression and
metastasis

To further delineate the role of myeloid cells in the TME of GC,

we performed a sub-clustering analysis. This analysis identified 12

transcriptionally distinct myeloid cell subsets, including classical

and non-classical monocytes, diverse macrophage populations,

dendritic cell subtypes, plasmacytoid dendritic cells (pDCs),

neutrophils, and proliferating macrophages (Figure 4A). These

subsets were characterized by canonical marker genes, as

demonstrated by dot plot analysis (Figure 4B). For instance,

CD14 and FCGR3A defined classical and non-classical

monocytes, respectively; SPP1, CD163L1, TREM2, and MLXIPL

marked distinct macrophage subsets; and CLEC9A, CLEC10A, and

IL3RA distinguished between dendritic and pDC populations.

To explore tissue-specific alterations in myeloid cell

composition, we quantified the relative abundance of each subset

across disease stages (Figure 4C; Supplementary Table 8). CD163L1

+ macrophages were enriched in cancer-adjacent tissues, but

declined progressively in primary tumors and metastases,

suggesting a potential tumor-suppressive role in this population.

In contrast, MLXIPL+ macrophages and pDCs were nearly absent

in precancerous tissues, but accumulated during tumor initiation

and metastasis. TREM2+ macrophages exhibited a biphasic pattern,

increasing during precancerous progression, but decreasing after

tumor formation. Unexpectedly, SPP1+ macrophages, previously

implicated in tumor promotion, showed relatively stable

proportions across disease stages, suggesting a more complex role.

Neutrophils were relatively scarce in primary and adjacent normal

tissues, but exhibited a marked increase in metastatic lesions,

indicating their potential involvement in the metastatic cascade.

Consistently, flow cytometry of matched tissues from the same

patient showed that neutrophils were the most abundant in the

peritoneal metastasis (Figure 4D).
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To investigate the functional alterations underlying these

compositional changes, we performed differential expression and

KEGG pathway enrichment analyses comparing primary tumors to

adjacent tissues and metastases to primary tumors (Figure 4E;

Supplementary Figures 3A–C; Supplementary Table 9). In

contrast to NK/T cells, myeloid cells exhibited a predominant

downregulation of immune-related pathways, including TNF

signaling, NF-kappa B signaling, IL-17 signaling, and cytokine-

cytokine receptor interactions, indicating progressive functional

suppression. Lipid metabolism and atherosclerosis-related

pathways were also downregulated, whereas coronavirus infection

and Rap1 signaling were among the few pathways upregulated

during tumor progression. SPP1+ macrophages upregulated

rheumatoid arthritis-related pathways in metastases, indicating

their potential involvement in late-stage disease and metastasis.

Finally, to elucidate the stage-dependent transcriptional

dynamics, we performed pairwise differential expression analysis

across the primary tumor stages within each myeloid subset

(Figure 4F; Supplementary Table 10). Most subsets exhibited

minimal changes in gene expression, indicating their functional

stability. However, cDC2 cells displayed a substantial number of

DEGs that were predominantly downregulated, with most changes

occurring between stage I and later stages, suggesting an early loss of

dendritic cell function. SPP1+ macrophages exhibited pronounced

transcriptional alterations at stage IV, implying that their functional

reprogramming may be linked to tumor metastasis. Collectively,

these results reveal profound compositional and functional

remodeling of the myeloid compartment during GC progression,

characterized by the early impairment of dendritic cells and late-

stage activation of tumor-associated macrophages, providing

insights into the potential immunoregulatory mechanisms driving

disease advancement.
3.4 Stromal cell remodeling reveals
potential drivers of tumor progression and
metastasis

To investigate the dynamic alterations and potential functions

of stromal cells during GC initiation and progression, we performed

a detailed sub-cluster analysis of stromal populations. UMAP

visualization revealed 15 distinct stromal cell subpopulations,

including multiple fibroblast subsets, pericytes, smooth muscle

cells (SMCs), ECs, and Schwann cells (Figure 5A). The

characteristic gene expression profiles of each stromal

subpopulation were defined using a dot plot (Figure 5B). For

example, ADAM28+ fibroblasts expressed high levels of

ADAM28, ITGBL1+ fibroblasts expressed ITGBL1, and PI16+

fibroblasts expressed PI16. Additionally, ITLN1+ fibroblasts

uniquely expressed ITLN1, TREM1+ fibroblasts expressed

TREM1, and venous ECs (VenECs) expressed RGS5.

Next, we analyzed the compositional changes in these

subpopulations across different tissue types, including adjacent

normal tissues, precancerous lesions, primary tumors, and

metastatic tumors (Figure 5C; Supplementary Table 11).
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FIGURE 3

Stage-dependent alterations of NK and T cells during gastric cancer progression. (A) KEGG pathway enrichment analysis of differentially expressed
genes (DEGs) between tissue types (primary tumor vs. adjacent tissue; metastasis vs. primary tumor) for each NK/T cell subset. Dot color indicates
cell type, shape indicates tissue comparison, and size reflects gene count. (B) Volcano plots showing DEGs in each NK/T cell subpopulation between
primary tumors (PT) and Adj_Normal tissues. The x-axis represents cell types, and the y-axis indicates the average log2 fold change. Red dots denote
significantly upregulated genes, and blue dots denote significantly downregulated genes in primary tumors compared with those in adjacent normal
tissues. (C) Volcano plots displaying DEGs between metastatic and PT tissues across each NK/T cell subpopulation. Color scheme is consistent with
panel (B, D) Heatmap showing stage-specific DEGs across NK/T cell subtypes during tumor progression (PM-I to PM-IV). (E) Stacked bar plot
quantifying up- and downregulated genes for each NK/T cell subtype across tumor stage comparisons. Most transcriptional changes occur between
stages I and II, with a predominant trend toward gene downregulation.
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FIGURE 4

Myeloid cell subtypes exhibit distinct compositional and functional alterations during the development and metastasis of gastric cancer. (A) UMAP
visualization of 12 transcriptionally distinct myeloid cell subsets, including monocytes, macrophages, dendritic cells, plasmacytoid dendritic cells
(pDCs), neutrophils, and proliferating macrophages. (B) Dot plot of canonical marker genes defining myeloid cell subsets. Dot size represents the
fraction of cells expressing the gene; color intensity reflects average expression. (C) Boxplots showing the proportion of each myeloid cell subset
across tissue types. CD163L1+ macrophages decline in tumors and metastases; MLXIPL+ macrophages, pDCs, and TREM2+ macrophages increase
during disease progression. (D) Statistical analysis of neutrophil (CD11b+Ly6G+) proportions from gastric cancer patients (n = 5/group). One-way
ANOVA; ****P < 0.0001. (E) KEGG pathway enrichment analysis of differentially expressed genes between tissue types for each myeloid cell subset.
Downregulated pathways are enriched for immune-related and inflammatory processes, while upregulated pathways include Rap1 signaling and
coronavirus infection. (F) Stacked bar plots quantifying up- and downregulated genes for each myeloid subset across primary tumor stages. cDC2
cells exhibit early-stage transcriptional changes; SPP1+ macrophages display marked alterations at stage IV, implicating them in metastatic
progression.
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ADAM28+ fibroblasts were enriched in precancerous and adjacent

normal tissues but exhibited a marked decrease in primary and

metastatic tumors. Given that ADAM28 belongs to the ADAM

metalloproteinase family that is involved in ECM homeostasis, the

depletion of ADAM28+ fibroblasts likely reflects the disruption of

stromal integrity and loss of a protective barrier, thereby facilitating

tumor invasion. In contrast, ITGBL1+ fibroblasts, which

progressively accumulated from precancerous lesions to primary

tumors and metastases, expressed ITGBL1, a protein implicated in

promoting ECM deposition, stiffness, and tumor cell migration.

This finding suggests that ITGBL1+ fibroblasts actively contribute

to the establishment of a pro-tumorigenic microenvironment

through matrix remodeling and immune evasion. Similarly, PI16+

fibroblasts, defined by PI16 expression, and SMCs demonstrated a

continuous increase in expression during disease progression. PI16

has been linked to fibroblast activation and ECM organization,

whereas SMCs are known to generate contractile forces that

enhance stromal stiffness and interstitial pressure, both of which

promote tumor cell invasion and metastasis. TREM1+ fibroblasts,

which progressively increased in tumor and metastatic tissues,

expressed TREM1, a receptor classically involved in amplifying

inflammatory responses. Their expansion implies a potential role in

sustaining chronic inflammation within the tumor stroma, which is

a known driver of cancer progression. The proportion of VenECs

characterized by RGS5 expression also increased with disease

progression. Given the role of RGS5 in vascular remodeling and

abnormal angiogenesis, expansion of VenECs may promote tumor

neovascularization, facilitating tumor growth and metastatic

dissemination. ITLN1+ fibroblasts were nearly absent in

precancerous and adjacent normal tissues, but specifically

appeared in primary and metastatic tumors. ITLN1 is associated

with ECM remodeling and immune regulation. These findings

suggest that ITLN1+ fibroblasts represent a metastasis-associated

fibroblast subtype that fosters a permissive niche for tumor cell

colonization and survival at distant sites.

To explore the potential biological functions of these altered

stromal subpopulations, we performed pathway enrichment analysis

on DEGs between primary tumors and adjacent normal tissues and

between metastatic and primary tumors (Figure 5D; Supplementary

Figure 4A–C; Supplementary Table 12). Notably, ITLN1+ fibroblasts

in metastatic tissues showed significant enrichment of upregulated

pathways, including those related to human papillomavirus infection

and lysosomal activity, indicating their involvement in metastatic

niche remodeling. In contrast, TREM1+ fibroblasts, despite their

increased abundance, exhibited enrichment of downregulated

pathways such as protein processing in the endoplasmic reticulum,

indicating complex functional reprogramming during metastasis.

Finally, we quantified the number of DEGs across tumor stages to

further understand stromal evolution during cancer progression

(Figure 5E; Supplementary Table 13). Although ITLN1+ fibroblasts

were associated with pathway upregulation in metastasis, they

exhibited significant downregulation of gene expression when

comparing early- and late-stage primary tumors, particularly

between stages I and III/IV. Similar trends were observed for EC

subsets, including capillary ECs and VenECs. TREM1+ fibroblasts
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displayed stage-specific gene expression patterns, with pronounced

upregulation of genes in stage III/IV and downregulation in early-

stage tumors. Collectively, these results highlight the dynamic

remodeling of the stromal compartment during GC progression.

Specific fibroblast and endothelial subpopulations, defined by their

unique marker gene signatures, undergo distinct compositional and

functional changes that may contribute to ECM remodeling,

angiogenesis, immune modulation, and establishment of a

metastatic microenvironment.
3.5 Intercellular communication networks
facilitate tumor progression in the GC
microenvironment

To investigate how interactions among diverse cell populations

shape the GC microenvironment and promote tumor progression,

we performed comprehensive cell-cell interaction analyses across all

major cellular compartments. At the global level, we constructed an

intercellular communication network among major cell lineages

(Figure 6A). This analysis revealed that fibroblasts and mural cells

exhibit the strongest overall interaction strength with other cell

types, highlighting their central role as organizational hubs within

the TME. Given the known contributions of fibroblasts to ECM

remodeling, immunomodulation, and angiogenesis, their

prominent interactions likely facilitate the establishment of a

tumor-permissive niche that supports cancer cell survival,

immune evasion, and metastatic dissemination.

To further delineate the directionality and functional

implications of these interactions, we quantified the strengths of

the outgoing (signal-sending) and incoming (signal-receiving)

interactions for each cellular subpopulation (Figure 6B). CD8+ T

cell subsets, including exhausted T cells (Tex), effector memory T

cells (TEM), and cytotoxic T cells, exhibited markedly higher

incoming interaction strengths, suggesting that these key

antitumor effector populations are subject to extensive external

modulation within the TME. In contrast, fibroblast subpopulations,

particularly ITGBL1+, PI16+, and VSTM2A+ fibroblasts, displayed

dominant outgoing interaction strengths, implicating them as

major signaling sources that actively influence the behavior of

neighboring cells. These findings suggest that tumor-associated

fibroblasts not only provide structural support but also act as

potent regulators of immune cell function, potentially

contributing to T cell dysfunction and immune suppression.

Given the critical role of T cells in tumor control, we

systematically examined their interactions with other cell types

(Figure 6C). Notably, CD8+ Tex, TEM, and cytotoxic T cells

exhibited the most extensive and robust crosstalk with diverse cell

populations, reinforcing the concept that these effector populations,

despite their dysfunctional state, remain the central nodes of cellular

communication within the tumor. The pervasive interactions

between fibroblasts and exhausted T cells imply a feed-forward

loop, in which stromal-derived signals further impair T cell

funct ion , u l t imate ly promot ing immune escape and

tumor progression.
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FIGURE 5

Stromal cell remodeling during gastric cancer progression reveals dynamic changes in abundance and function. (A) UMAP visualization of 15 stromal
cell subtypes, including fibroblasts, endothelial cells (ArtEC, arterial endothelial cells; VenEC, venous endothelial cells; CapEC, capillary endothelial
cells; LymphEC, lymphatic endothelial cells; FB, fibroblast), smooth muscle cells, pericytes, and Schwann cells. (B) Dot plot showing expression of
representative marker genes for each stromal cell subtype. Dot size reflects the percentage of expressing cells; color intensity indicates average
expression. (C) Boxplots depicting the relative abundance of stromal cell subtypes across tissue types. ADAM28+

fibroblasts decline in tumors;
ITGBL1+, PI16+, TREM1+ fibroblasts, and endothelial cells increase with disease progression; ITLN1+ fibroblasts emerge in tumors and metastases.
(D) KEGG pathway enrichment of differentially expressed genes between adjacent normal vs. primary tumors and primary tumors vs. metastases.
ITLN1+ fibroblasts show upregulation of metastasis-related pathways; TREM1+ fibroblasts exhibit downregulation of pathways despite numerical
expansion. (E) Stacked bar plots summarizing differentially expressed genes between tumor stages for each stromal cell subtype. Stage I vs. later
stages account for most transcriptional changes, with ITLN1+ fibroblasts and TREM1+ fibroblasts displaying distinct stage-dependent expression
dynamics.
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To elucidate specific signaling pathways involved in these

interactions, we focused on chemokine and type II interferon

(IFN-g) signaling axes, both of which regulate immune cell

recruitment and activation (Figure 6D). Within the chemokine

network, fibroblasts and ECs primarily acted as signal senders,

whereas CD4+ and CD8+ T cells served as major signal recipients.

This result suggests that stromal cells orchestrate immune cell
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positioning within the tumor, which may favor the formation of

immunosuppressive niches. In contrast, IFN-g signaling was

predominantly initiated by CD16+ NK cells, CD8+ TEM,

cytotoxic T cells, and Tex cells, targeting various myeloid and

stromal populations. Although IFN-g is traditionally associated

with antitumor immunity, its dysregulated production within an

immune-suppressive environment may paradoxically contribute to
FIGURE 6

Comprehensive cell-cell interaction analysis reveals key communicative hubs in the gastric cancer microenvironment. (A) Circos plot illustrating
global intercellular interaction strength among major cell lineages. The width of each connection reflects the strength of interaction. (B) Scatter plot
showing outgoing (x-axis) and incoming (y-axis) interaction strength of each cell subset. (C) Detailed interaction network between NK/T cell
subpopulations and all other cell subsets. (D) Circos plots depicting cellular communication patterns within the chemokine (left) and IFN-II (right)
signaling pathways. In the chemokine network, endothelial cells and fibroblasts mainly act as signal senders, while CD4+ and CD8+ T cells serve as
major signal receivers. In the IFN-II network, CD16+ NK cells and CD8+ T cell subsets predominantly act as signal senders targeting myeloid and
stromal cells. (E, F) Spatial transcriptomics reveal the spatial distribution of major cell lineages in tumor tissue sections. Immune and stromal cells
exhibit colocalization within tumor stromal regions, providing spatial evidence for potential direct cellular interactions.
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chronic inflammation and stromal reprogramming, thereby

supporting tumor progression.

Finally, to validate these predicted intercellular interactions at

the spatial level, we integrated the spatial transcriptomic data

(Figures 6E, F). Immune and stromal cells, particularly fibroblasts

and mural cells, exhibited pronounced spatial colocalization within

tumor stromal regions. This spatial proximity provides a structural

basis for direct cellular crosstalk, facilitating the transmission of

pro-tumorigenic signals. Together, these findings reveal a complex

and coordinated intercellular communication network in the gastric

TME, in which tumor-associated fibroblasts emerge as key

regulators driving immune dysfunction and stromal remodeling.

This network promotes immune evasion, tumor progression, and

metastasis via extensive crosstalk with immune cells, particularly

CD8+ T cells.
3.6 Identification of stage-associated gene
modules by WGCNA

To identify the gene modules associated with tumor progression

and immune cell alterations, we performed WGCNA based on

TCGA cohort transcriptomic data. Considering our previous

findings that the DEGs of NK/T, myeloid, and stromal cells vary

significantly across tumor stages, we first applied ssGSEA to

calculate the DE scores for these three cell types across samples.

A hierarchical clustering dendrogram combined with a trait

heatmap revealed clear clustering patterns among samples, with DE

scores and clinical traits such as tumor stage and pathological

features showing distinct distributions (Figure 7A). Next, to

ensure the construction of a scale-free co-expression network, we

selected a soft-thresholding power of 3, which satisfied the scale-free

topology criterion with R² exceeding 0.9 (Figure 7B).

Module-trait correlation analysis identified multiple modules

that were significantly associated with immune cell DE scores and

clinical features (Figure 7C; Supplementary Table 14). Notably, the

“lightyellow” module demonstrated the strongest positive

correlation with NK/T cell DE scores (r = 0.60, p = 2.4e-34) and

myeloid cell DE scores (r = 0.46, p = 7e-19) and showed associations

with tumor stage and pathological indicators (Figure 7C). Further

assessment revealed a strong positive correlation between gene

significance for NK/T cell DE scores and module membership

within the lightyellow module (r = 0.78, p = 3.5e-110; Figure 7D).

Similarly, the gene significance for myeloid cell DE scores exhibited

an even stronger correlation with module membership in the

lightyellow module (r = 0.83, p = 9.7e-137). In contrast, although

stromal cell DE scores were also correlated with the lightyellow

module, the association was notably weaker (r = 0.28, p = 4.7e-11).

Collectively, these results indicate that the lightyellow module,

which contains 657 genes, is closely associated with tumor

progression and immune cell alterations, particularly those

involving NK/T and myeloid cells, suggesting that this gene set

plays a crucial role in shaping the TME during GC progression.
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3.7 Deep learning-based prognostic model
for GC

To establish a prognostic model for GC based on previously

identified tumor stage-associated gene modules, we employed a deep

learning approach using the TCGA GC cohort as the training dataset.

The model weight distribution followed an approximately normal

distribution, as shown in the histogram, indicating the robustness of

model parameter initialization (Figure 8A). The distribution of

individual risk scores calculated using the model revealed a

continuous and widespread distribution across patients in the

training cohort (Figure 8B; Supplementary Table 15). Kaplan-Meier

survival analysis demonstrated that patients classified into the high-risk

group exhibited significantly worse overall survival than those in the

low-risk group (p < 0.0001; Figure 8C). Furthermore, time-dependent

ROC curve analysis showed excellent predictive performance, with the

area under the curve reaching 0.915, 0.930, and 0.921 for 1-, 3-, and 5-

year survival, respectively (Figure 8D).

To validate the predictive power of this model, we applied it to an

independent external validation cohort. Similar to that in the training

set, the risk score distribution in the validation cohort varied widely

(Figure 8E; Supplementary Table 16). High-risk patients in the

validation cohort consistently had significantly worse survival

outcomes than low-risk patients (p = 0.035; Figure 8F), confirming

the robust prognostic capability of the model. Subsequently, we

examined the expression differences of the top five genes constructed

in adjacent tissues, primary GC tissues, and peritoneal metastatic

tissues. The results showed that the expression of these genes was

significantly different in different tissues, specifically manifesting as the

lowest expression in the adjacent tissues and an upward trend in

primary GC and peritoneal metastasis tissues (Figure 8G).

Furthermore, we explored the association between risk scores

and clinical features in the training cohort. Boxplot analysis

revealed that the risk scores were significantly higher in patients

who did not receive radiation therapy, as well as in patients with a

more advanced tumor stage (stage III vs. stage II; stage IV vs. stage

III), higher histological grade (G3 vs. G2), and more severe lymph

node involvement (N2 vs. N1) (Figure 8H). These results indicate

that the model-derived risk score not only reflects patients’

prognostic outcomes but also correlates with classical

clinicopathological indicators of disease severity.
4 Discussion

In this study, we comprehensively delineated the cellular ecosystem

and intercellular interactions underlying GC progression and

metastasis using scRNA-seq, spatial transcriptomics, bulk

transcriptomic analysis, and deep learning-based prognostic

modeling. Our results provide novel insights into the dynamic

remodeling of the immune and stromal compartments, highlight

specific cell subpopulations and communication patterns that drive
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FIGURE 7

Identification of gene modules associated with immune cell alterations and tumor progression by Weighted Gene Co-expression Network Analysis
(WGCNA). (A) Sample clustering dendrogram and corresponding trait heatmap. ssGSEA scores for NK/T cells (T_DE_ssGSEA_score), myeloid cells
(Mj_DE_ssGSEA_score), stromal cells (Stroma_DE_ssGSEA_score), and clinical features, including tumor stage, grade, and pathological TNM
classifications, are shown. (B) Determination of soft-thresholding power for WGCNA. The left panel shows the scale-free topology fit index (R²)
versus soft-thresholding power. A power of 3 achieves an R² above 0.9 (red line). The right panel shows mean connectivity across powers.
(C) Heatmap of module–trait correlations. Each cell displays the correlation coefficient and corresponding p-value between the module eigengene
and the indicated trait. The lightyellow module shows the strongest positive association with NK/T cell and myeloid cell DE scores. (D) Scatter plots
showing correlations between gene significance for NK/T cell DE scores, myeloid cell DE scores, or stromal cell DE scores and module membership
in the lightyellow module. Strong positive correlations were observed for NK/T and myeloid cell DE scores, indicating the biological relevance of this
module.
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FIGURE 8

Construction and validation of a deep learning-based prognostic model for gastric cancer. (A) Histogram and density curve illustrating the
distribution of model weights (n = 140, 920), showing near-normal distribution with minor skewness and kurtosis. (B) Scatter plot showing the
distribution of risk scores across the training cohort (n = 350), with quartile thresholds indicated by dashed lines. (C) Kaplan-Meier survival curves for
high- and low-risk groups in the training cohort, demonstrating significantly poorer survival in the high-risk group (p < 0.0001). (D) Time-dependent
ROC curves for the training cohort showing excellent predictive accuracy for 1-, 3-, and 5-year overall survival. (E) Scatter plot showing the risk
score distribution in the independent validation cohort (n = 355). (F) Kaplan-Meier survival analysis in the validation cohort confirming significantly
worse survival in the high-risk group (p = 0.035). (G) qPCR demonstrated the differential expression of the top five genes of the deep learning model
in adjacent, primary tumor, and peritoneal metastatic tissues. (H) Boxplots displaying the distribution of risk scores across different clinical subgroups
within the training cohort. Statistically significant differences were observed in relation to radiation therapy status, tumor stage, histological grade,
and lymph node metastasis, supporting the clinical relevance of the model-derived risk score.
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tumor progression, and offer a clinically applicable prognostic model

with strong predictive power.

First, by constructing a high-resolution single-cell atlas of GC and

related tissue states, we revealed profound heterogeneity within the

TME, which is consistent with previous studies on GC and other solid

tumors (27). Notably, the progressive accumulation of dysfunctional

CD8+ T cells, immunosuppressive myeloid populations, and pro-

tumorigenic fibroblast subsets underscores the coordinated

remodeling of the TME to facilitate immune evasion and tumor

progression (28, 29). Our trajectory analysis further demonstrated

impaired T-cell differentiation and functional exhaustion during

tumor development, echoing observations in lung and colorectal

cancers (8, 30). We identified specific stromal subpopulations,

including ITGBL1+ and PI16+ fibroblasts, TREM1+ fibroblasts, and

ITLN1+ fibroblasts, which displayed dynamic alterations and potential

pro-tumorigenic functions based on characteristic gene expression

patterns and pathway enrichment. The association of ITGBL1 with

ECM remodeling and immune evasion has been reported in ovarian

and colorectal cancers (31, 32), whereas PI16 has been implicated in

fibrotic diseases and the activation of tumor-associated fibroblasts (33).

Moreover, our identification of ITLN1+ fibroblasts as a metastasis-

associated population extends recent findings linking ITLN1 to matrix

remodeling and tumor dissemination in colorectal cancers (34).

Our cell-cell interaction analysis revealed extensive crosstalk between

stromal and immune cells, with fibroblasts acting as the dominant signal

source and exhausted CD8+ T cells as major signal recipients. This

observation is consistent with reports that cancer-associated fibroblasts

actively modulate T cell dysfunction and exclusion through cytokine and

chemokine signaling (35, 36). Notably, IFN-g signaling, typically

regarded as anti-tumorigenic, was predominantly initiated by

dysfunctional T cells in our cohort, potentially contributing to chronic

inflammation and further stromal reprogramming, a mechanism

increasingly recognized in tumor biology (37, 38).

Integration of our single-cell and spatial transcriptomic data

further confirmed the spatial organization of immune and stromal

cells within tumor tissues, providing structural evidence for functional

crosstalk. Similar spatially resolved studies have emphasized the

importance of immune-stromal niches in regulating tumor

progression and the response to therapy (11, 13). To translate these

biological insights into clinical utility, we constructed a deep learning-

based prognostic model using stage-associated gene modules derived

from bulk transcriptomic and co-expression network analyses. Our

model demonstrated excellent performance in the training and

independent validation cohorts, outperforming conventional clinical

parameters. Previous studies have highlighted the potential of machine

learning and multi-omics integration for prognostic prediction in lung

adenocarcinoma (39, 40). However, our model is distinguished by its

direct biological grounding in single-cell and spatial transcriptomic

alterations, providing predictive value and mechanistic interpretability.

Despite these strengths, several limitations of this study must be

acknowledged. First, although our study used a large and diverse

sample cohort, future validation in larger prospective clinical trials

is warranted. Second, the functional validation of specific stromal

and immune cell subpopulations, particularly ITLN1+ fibroblasts, is

necessary to confirm their role in metastasis. Finally, the
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incorporation of additional multi-omics data, such as proteomics

or epigenomics, could further refine the mechanistic understanding

of TME remodeling in GC.

In conclusion, our integrated single-cell, spatial, and

computational analysis provides a comprehensive framework for

understanding TME remodeling during GC progression. The

identification of key cellular subpopulations and intercellular

interactions, coupled with the development of a clinically

applicable prognostic model, offers new opportunities for

biomarker discovery and therapeutic targeting in GC.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by the Medical

Ethics Committee of Henan Cancer Hospital. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

YR: Writing – original draft, Formal analysis, Visualization. XZ:

Writing – review & editing, Visualization. KL: Writing – review &

editing, Investigation, Software. SX: Data curation, Writing – review

& editing. LQ: Writing – review & editing. QL: Writing – review &

editing. CZ: Writing – review & editing. YL: Conceptualization,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by the PhD Start-up Fund of Henan Cancer Hospital.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1680517
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2025.1680517
Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 18
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1680517/full#supplementary-material
References
1. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA
Cancer J Clin. (2025) 75:10–45. doi: 10.3322/caac.21871

2. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat
Rev Dis Primers. (2017) 3:17036. doi: 10.1038/nrdp.2017.36

3. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer.
Lancet. (2020) 396:635–48. doi: 10.1016/S0140-6736(20)31288-5

4. HinshawDC, Shevde LA. The tumor microenvironment innately modulates cancer
progression. Cancer Res. (2019) 79:4557–66. doi: 10.1158/0008-5472.CAN-18-3962

5. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.
Understanding the tumor immune microenvironment (TIME) for effective therapy.
Nat Med. (2018) 24:541–50. doi: 10.1038/s41591-018-0014-x

6. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A
framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev
Cancer. (2020) 20:174–86. doi: 10.1038/s41568-019-0238-1

7. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and
metastasis. Nat Med. (2013) 19:1423–37. doi: 10.1038/nm.3394

8. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals
dynamic relationships of T cells in colorectal cancer. Nature. (2018) 564:268–72.
doi: 10.1038/s41586-018-0694-x

9. Zhang Y, Yang K, Bai J, Chen J, Ou Q, Zhou W, et al. Single-cell transcriptomics
reveals the multidimensional dynamic heterogeneity from primary to metastatic gastric
cancer. iScience. (2025) 28:111843. doi: 10.1016/j.isci.2025.111843

10. Yin X, Xing W, Yi N, Zhou Y, Chen Y, Jiang Z, et al. Comprehensive analysis of
lactylation-related gene sets and mitochondrial functions in gastric adenocarcinoma:
implications for prognosis and therapeutic strategies. Front Immunol. (2024)
15:1451725. doi: 10.3389/fimmu.2024.1451725

11. Lee SH, Lee D, Choi J, Oh HJ, Ham IH, Ryu D, et al. Spatial dissection of tumour
microenvironments in gastric cancers reveals the immunosuppressive crosstalk
between CCL2+ fibroblasts and STAT3-activated macrophages. Gut. (2025) 74:714–
27. doi: 10.1136/gutjnl-2024-332901

12. Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, et al. A
single-cell and spatially resolved atlas of human breast cancers. Nat Genet. (2021)
53:1334–47. doi: 10.1038/s41588-021-00911-1

13. Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, et al. Multimodal
analysis of composition and spatial architecture in human squamous cell carcinoma.
Cell. (2020) 182:497–514.e22. doi: 10.1016/j.cell.2020.05.039

14. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide
to deep learning in healthcare. Nat Med. (2019) 25:24–9. doi: 10.1038/s41591-018-0316-z
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