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Lactylation-related gene AKR1A1
contributes to osteoporosis via
metabolic–immune regulation:
evidence from multi-omics
integration, single-cell
transcriptomics, and
in vitro validation
Zichen Shao1, Qinqin Deng1, Ling Cheng1, Jianfeng Wu2,
Weikang Sun1, Weidong Liang2*† and Huanan Li2*†

1Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China, 2Affiliated Hospital of Jiangxi
University of Chinese Medicine, Nanchang, Jiangxi, China
Objective: This study aimed to systematically identify key differentially expressed

genes (DEGs) associated with lysine lactylation in osteoporosis and to explore

their potential roles in disease pathogenesis from a dual perspective of metabolic

and immune regulation, thereby providing a theoretical basis for targeted

therapeutic strategies.

Methods: Five osteoporosis-related gene expression microarray datasets and one

single-cell RNA-sequencing dataset were integrated from the GEO database. A

lactylation-related gene panel comprising 1,347 genes was used to construct a

screening framework. Batch effect correction, differential expression analysis, GO/

KEGG enrichment, CIBERSORT-based immune infiltration, and GSEA/GSVA

functional annotation were performed. A total of 113 combinations of machine

learning models were applied to identify key genes. Single-cell UMAP clustering

and CellChat-based intercellular communication analysis were conducted to

further characterize the findings. In vitro experiments were performed using

RAW264.7 macrophages treated with lactate and osteoporotic serum, and gene

expression and lactylation levels were validated via qPCR, Western blot, and co-

immunoprecipitation (Co-IP).

Results: A total of 37 lactylation-related DEGs were identified, mainly enriched in

metabolic and inflammatory pathways. Among them, AKR1A1 was highlighted as

a key feature gene through machine learning models, exhibiting elevated

expression and high levels of lactylation, particularly enriched in monocytes

and macrophages. CellChat analysis revealed that AKR1A1 participates in the

SPP1–CD44 signaling pathway, mediating intercellular communication among

immune cells. In vitro validation confirmed that AKR1A1 expression and

lactylation levels were significantly upregulated under combined lactate and

osteoporotic serum treatment, suggesting a synergistic enhancement effect.
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Conclusion: AKR1A1 lactylation plays a pivotal role in the metabolic–immune

regulatory axis of osteoporosis, contributing to metabolic reprogramming and

immune microenvironment remodeling. Through involvement in the SPP1–

CD44 signaling pathway, it mediates communication between monocytes and

macrophages, and may serve as a novel biomarker and therapeutic target for

early diagnosis and intervention in osteoporosis.
KEYWORDS
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1 Introduction

Osteoporosis (OP) is a systemic skeletal disorder characterized by

reduced bone mass and microarchitectural deterioration, leading to

increased fracture risk and significant morbidity among the elderly

population (1). With the global population aging rapidly, the incidence

of OP is steadily rising, posing a substantial public health concern by

reducing healthy life expectancy and impairing quality of life.

Epidemiological studies estimate that more than 200 million people

worldwide are affected by osteoporosis, with approximately one-third of

women and one-fifth of men over the age of 50 experiencing at least one

osteoporotic fracture (2). Although several pharmacological agents such

as bisphosphonates, selective estrogen receptor modulators, and

monoclonal antibodies have been approved for the prevention and

treatment of OP, their clinical application is often limited by suboptimal

efficacy, poor tolerance, and low patient compliance (3, 4). Hence,

elucidating the molecular mechanisms underlying OP pathogenesis and

identifying novel therapeutic targets remain critical needs.

Recent advances have shifted the paradigm of bone homeostasis

research from macroscopic bone mineral density measurements

to cellular and molecular mechanisms. Among these, metabolic

reprogramming has emerged as a central regulator of bone

remodeling processes (5). Lactate, once considered a metabolic

waste product of glycolysis, is now recognized as a signaling

molecule involved in modulating inflammation, immune responses,

and gene transcriptional activity (6, 7). Increasing evidence suggests

that lactate plays a pivotal role in bone metabolism through lysine

lactylation, a novel post-translational modification (PTM)

mechanism (8). Lactylation of histone lysine residues can alter

chromatin structure and gene expression, contributing to the

dynamic balance between bone formation and resorption.

Specifically, lactylation has been shown to promote the

transcription of osteogenic genes such as Runx2 and JunB, thereby

enhancing osteogenic differentiation of bone marrow mesenchymal

stem cells (BMSCs) (9). Simultaneously, lactylation can inhibit

osteoclastogenesis and suppress bone resorption. Moreover, lactate

modulates the polarization of immune cells, particularly promoting
02
the anti-inflammatory M2 phenotype of macrophages, thereby

indirectly influencing bone homeostasis and tissue repair (8).

Vascular endothelial cell-derived lactate has also been reported to

induce H3K18la histone lactylation in BMSCs, activating osteogenic

genes such as COL1A2 and COMP, thereby alleviating osteoporosis

progression (10). Collectively, these findings highlight the therapeutic

potential of lactylation in bone-related disorders such as osteoporosis

and periodontitis. However, the expression patterns and mechanistic

roles of lactylation in osteoporosis remain insufficiently characterized,

and its involvement in the immunometabolic axis of bone pathology

has yet to be systematically explored.

With the continued advancement of omics technologies and

data science, integrative multi-omics analysis, machine learning

algorithms, and single-cell RNA sequencing (scRNA-seq) have

opened new avenues for investigating metabolic bone diseases

(11, 12). The integration and batch correction of public

transcriptomic datasets enhance the reliability and robustness of

DEG identification (13). Machine learning-based feature selection

facilitates the efficient discovery of molecular biomarkers with

diagnostic or therapeutic relevance (14). Furthermore, single-cell

transcriptomic profiling enables the dissection of cellular

heterogeneity within the bone marrow microenvironment, and in

combination with immune infiltration analysis and intercellular

communication networks, allows for a more refined understanding

of dynamic regulatory processes in situ (15).

In this study, we systematically identified lactylation-related

DEGs associated with osteoporosis using publicly available datasets

and explored their diagnostic value and functional roles through

multi-dimensional bioinformatic analyses. These included immune

infiltration profiling, functional enrichment analyses, single-cell

expression distribution, and cell–cell communication modeling.

Based on these findings, we established an in vitro RAW264.7

macrophage model to validate the expression and lactylation levels

of key candidate genes (e.g., AKR1A1) under different treatment

conditions. This integrative strategy—combining multi-omics data

mining, machine learning-based gene prioritization, and

experimental validation—aims to uncover the mechanistic role of
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lactylation in the immunometabolic regulation of osteoporosis

and to provide a theoretical foundation for future targeted

therapeutic interventions.
2 Materials and methods

2.1 Data acquisition and preprocessing

Microarray datasets related to osteoporosis were retrieved from

the Gene Expression Omnibus (GEO) public database (https://

www.ncbi.nlm.nih.gov/geo/). A total of five datasets were included

in the analysis: GSE7158, GSE56116, GSE56815, GSE7429, and

GSE230665. GSE7158 contains 12 low peak bone mass (PBM)

samples and 14 high PBM samples (platform: GPL570).

GSE56116 includes 10 postmenopausal osteoporosis patients and

3 healthy postmenopausal women (platform: GPL4133). GSE56815

consists of 40 subjects with high hip bone mineral density (BMD)

and 40 subjects with low hip BMD (platform: GPL96). GSE7429

includes 10 high BMD and 10 low BMD samples (platform:

GPL96). GSE230665 contains 12 postmenopausal osteoporosis

patients and 3 healthy postmenopausal controls (platform:

GPL10332). Datasets GSE7158, GSE56116, and GSE56815 were

merged and designated as the training set, while GSE7429 and

GSE230665 were combined to form the validation set. Additionally,

single-cell RNA-seq data from human bone marrow-derived

mesenchymal stem cells (BMSCs) were obtained from dataset

GSE147287, specifically the osteoporosis sample GSM4423510

(platform: GPL24676). A curated list of 1,347 lactylation-related

genes was compiled for subsequent analysis.
2.2 Reagents and instruments

The reagents and consumables used in this study included:

high-glucose DMEM, PBS buffer, trypsin-EDTA, phorbol ester

(PMA), Ultrapure RNA Kit, HiFiScript gDNA Removal RT

MasterMix, MagicSYBR Mixture, 0.1 mL eight-strip flat-cap

tubes, Super Red nucleic acid dye, DNA loading buffer (6X),

anhydrous ethanol, chloroform, centrifuge tubes and pipette tips,

RIPA lysis buffer, high-efficiency lysis buffer, protease inhibitors,

BCA protein assay kit, MOPS-SDS running buffer, FuturePAGE™

pre-cast protein gels, gel preparation kit, dual-color pre-stained

protein marker, PVDF membrane, methanol, rapid transfer buffer,

nonfat dry milk, QuickBlock™ blocking buffer, primary antibody

dilution buffer, secondary antibody dilution buffer, 20×TBST buffer,

Meilunbio® Fect ultra-sensitive ECL reagent, AP substrate, Ponceau

S staining solution, Coomassie brilliant blue staining solution, and

Protein A/G magnetic beads. The main instruments used included:

biosafety cabinet, CO2 incubator, upright microscope, Gilson

P-series pipettes, tissue grinder, ultrasonic cell disruptor, metal

bath, shaker, micro-spectrophotometer, PCR gradient thermal

cycler, real-time PCR system, gel electrophoresis apparatus, gel

documentation system, electrophoresis system, blotting apparatus,

PVDF membrane cassette, microplate reader, chemiluminescence
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imaging system, general imaging system, benchtop high-speed

refrigerated centrifuge, low-temperature centrifuge, and water bath.
2.3 Differentially expressed genes analysis

To identify DEGs, the training datasets were first subjected to

batch effect correction. The limma package in R was employed to

perform differential expression analysis between osteoporosis and

healthy control samples. Genes with |log2 fold change (logFC)| >

0.1375 and adjusted P-value < 0.05 were considered statistically

significant DEGs. Heatmaps and volcano plots were generated to

visualize the DEGs. For heatmap clustering, the top 50 genes ranked

by the absolute value of logFC were selected. The DEGs were then

intersected with the 1,347 lactylation-related genes to identify

lactylation-associated DEGs.
2.4 Gene ontology and Kyoto encyclopedia
of genes and genomes enrichment analysis

GO functional enrichment and KEGG pathway analysis of the

lactylation-related DEGs were performed using the clusterProfiler

package in R. A significance threshold of P < 0.05 and q < 1 was

applied to identify enriched biological terms and pathways. The GO

analysis covered three main categories: biological process (BP),

cellular component (CC), and molecular function (MF).
2.5 Machine learning analysis

A comprehensive machine learning framework was employed

to systematically evaluate the diagnostic value of lactylation-related

DEGs. Gene expression data from the training and validation

cohorts were first normalized, followed by the construction of a

multi-level machine learning model integrating 113 algorithmic

combinations. The foundational algorithms included classical and

modern approaches such as Least Absolute Shrinkage and Selection

Operator (Lasso), Ridge regression, Elastic Net, Support Vector

Machine (SVM), Generalized Linear Model Boosting (glmBoost),

Partial Least Squares Generalized Linear Model (plsRglm), Stepwise

Generalized Linear Model (Stepglm), Random Forest (RF),

Gradient Boosting Machine (GBM), Linear Discriminant Analysis

(LDA), Extreme Gradient Boosting (XGBoost), and Naïve Bayes. A

two-stage modeling strategy was implemented: in the first stage,

different algorithms were used to select feature variables (with a

minimum gene threshold offive), and in the second stage, predictive

models were constructed based on the selected features. The

optimal model was then integrated through multivariate logistic

regression, and its performance was assessed by calculating the area

under the receiver operating characteristic curve (AUC). This

process yielded a combination of lactylation-related DEGs with

the best classification performance. To further interpret the model,

SHapley Additive exPlanations (SHAP) analysis was applied to

quantify each gene’s contribution to prediction outcomes. By
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calculating SHAP values, genes were ranked according to their

importance, thereby elucidating both the positive and negative

effects of differential expression on the model’s predictions. This

approach provided global and individual-level interpretability of the

model. Genes with AUC ≥ 0.7 and ranked among the top five in

SHAP importance were identified as key lactylation-related DEGs

for downstream analyses. In the training cohort, expression

differences of these key genes between osteoporotic and healthy

samples were examined. Pearson correlation coefficients were

computed to assess relationships among the key lactylation-

related DEGs. Finally, a co-expression network of these genes was

constructed using the GeneMANIA database, a robust tool for

exploring internal functional associations within a gene set.
2.6 Gene set enrichment analysis and gene
set variation analysis

To explore the biological functions of the key lactylation-related

DEGs, both GSEA and GSVA were performed using the KEGG

pathway gene sets. For GSEA, enrichment significance was

determined using a threshold of P < 0.05. GSVA was employed to

assess pathway-level variations across samples, again using KEGG

gene sets with the same significance criteria (P < 0.05).
2.7 Immune cell infiltration analysis via
CIBERSORT

The CIBERSORT algorithm was applied to the training dataset

to estimate the proportions of 22 immune cell types in each sample.

Samples with P < 0.05 were retained for downstream analysis.

(1) A stacked bar plot was used to illustrate the relative

composition of immune cell subsets across samples. (2) Box plots

were generated to compare immune cell proportions between

osteoporosis and control groups, and intergroup differences were

assessed using the Wilcoxon rank-sum test with significance

thresholds set at P < 0.001, P < 0.01, and P < 0.05. (3) In the

osteoporosis group, Spearman correlation and hierarchical

clustering were performed to analyze the interrelationships

among immune cell subtypes.
2.8 Preprocessing and normalization of
single-cell RNA-seq data

Single-cell data preprocessing and normalization were conducted

using the Seurat R package. The expression matrix was converted into

a Seurat object and filtered to retain cells expressing at least 50 genes

and with mitochondrial gene percentages below 5%. Data

normalization was performed using the “LogNormalize” method

with a scale factor of 10,000. A total of 1,500 highly variable genes

were selected based on variance for downstream analyses.

FeatureScatter and violin plots were used to validate data quality
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and expression distribution. Statistical thresholds were set at logFC > 1

and adjusted P-value < 0.05 to ensure both biological relevance and

statistical rigor.
2.9 Principal component analysis

After standard preprocessing with the ScaleData function, PCA

was performed based on the highly variable gene set (identified by

VariableFeatures). Twenty principal components (PCs) were

extracted. VizDimLoadings plots were used to visualize the

contribution of genes to each PC, and DimPlot was employed to

visualize sample distributions in reduced dimensions. DimHeatmap

was used to display gene expression patterns for the top four PCs.

Significance of PCs was assessed using JackStraw analysis with

resampling, and the P-value distribution of the top 20 PCs was

shown in the JackStrawPlot. Significant PCs were selected for

further downstream analysis.
2.10 Clustering and visualization of key
lactylation-related DEGs

Clustering analysis was performed using the Uniform Manifold

Approximation and Projection (UMAP) method. The

FindNeighbors and FindClusters functions were applied for cell

clustering, with the number of principal components (PCs) set to

20. Dimensionality reduction and visualization were carried out

using RunUMAP. Differentially expressed genes (DEGs) in each

cluster were identified with the FindAllMarkers function under

thresholds of logFC > 1 and P < 0.05. Heatmaps showing the top 10

marker genes per cluster were generated. Cell type annotation was

conducted using the SingleR package in conjunction with the

HumanPrimaryCellAtlasData reference. Cluster identities were

refined using RenameIdents and visualized via UMAP plots.

DEGs across annotated cell types were analyzed (logFC > 1, P <

0.05). The expression patterns of key lactylation-related DEGs were

further visualized using violin plots (VlnPlot), feature plots

(FeaturePlot), and dot plots (DotPlot) to display expression

distributions and trends across cell clusters. Pseudotime trajectory

analysis was performed using the Monocle 2 package to explore

potential differentiation dynamics among distinct cell populations.

The normalized expression matrix and cell annotations from the

Seurat object were converted into a CellDataSet using the

importCDS function. Highly variable genes were selected as

ordering genes with setOrderingFilter, and dimensional reduction

was carried out with reduceDimension (method = “DDRTree”).

Cells were then ordered along pseudotime using orderCells, and

branch points were automatically detected to define divergent

developmental paths. Cells were visualized by cluster, state, and

pseudotime to depict lineage trajectories. The expression patterns of

key lactylation-related DEGs (AKR1A1 and RRP1B) were further

plotted along the trajectory, revealing their temporal regulation

features during cell-fate transitions.
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2.11 Cell–cell communication analysis

Cell–cell communication analysis was conducted using the

CellChat package. A CellChat object was constructed from the

single-cell data, incorporating a curated database of human ligand–

receptor interactions. Secreted signaling pathways were selected for

analysis. After data preprocessing, overexpressed genes and

interacting partners were identified for each cell type, and

communication probabilities were calculated. Significant signaling

interactions were inferred and visualized to represent the number

and strength of intercellular communications. For each cell type,

communication patterns were independently analyzed, and key

ligand–receptor interactions were displayed using bubble plots.

Communication networks involving key lactylation-related DEGs

were extracted, and their roles within signaling pathways were

characterized. Osteoporosis-relevant signaling pathways were

selected for detailed visualization using circular layouts,

hierarchical layouts, and heatmaps to show interaction intensity

and gene expression levels. Contribution analysis was conducted to

evaluate the role of ligand–receptor pairs in osteoporosis-associated

signaling, and chord diagrams were used to display specific

interaction relationships.
2.12 Cell induction, grouping, and
treatment

Themurinemacrophage cell line RAW264.7 was selected as the in

vitro model for functional experiments due to its stable origin, well-

characterized phenotype, and widespread use in studies of

inflammation and bone metabolism. RAW264.7 cells can be

differentiated into M0 macrophages upon induction with phorbol

12-myristate 13-acetate (PMA), making them suitable for stimulation

studies under various conditions. A PMA stock solution (100 mM)was

diluted to a final concentration of 100 nM with complete culture

medium and filtered through a 0.22 mm membrane for use.

RAW264.7 cells were digested with trypsin, resuspended at a

density of 1×106 cells/mL, and seeded at 1 mL per dish. Cells were

incubated overnight at 37 °C to allow adherence. M0 macrophages

were generated by treating adherent cells with 100 nM PMA for 48

hours. The cells were then divided into four groups. Ctrl group:

conventional culture without treatment. LAC group: treated with

lactate (10 mM) for 24 hours. OP group: treated with 10% serum

from osteoporosis patients for 24 hours. OP+LAC group: co-treated

with 10% osteoporosis patient serum and lactate (10 mM) for 24

hours. Following the treatment period, cells were harvested for reverse

transcription quantitative polymerase chain reaction (RT-qPCR),

Western blotting, and co-immunoprecipitation (Co-IP) analyses.
2.13 RT-qPCR analysis

RT-qPCR was used to quantify the mRNA expression levels of

AKR1A1 in the four experimental groups. Total RNAwas extracted and

reverse-transcribed into cDNA. Amplification was performed using
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SYBR Green dye, with GAPDH as the internal control.

Primer sequences were as follows: GAPDH: forward 5′-
GCCCAGAACATCATCCCTGCAT-3′, reverse 5′-GCCTGCTTCAC
CACCTTCTTGA-3′ (product size: 188 bp). AKR1A1: forward 5′-AA
CAGTCGGCAGATTGATGATG-3′, reverse 5′-CCAAGCAC
GGTCAGAGGAA-3′ (product size: 168 bp). Relative gene expression

levels were calculated using the 2^−DDCt method.
2.14 Western blot analysis

Western blotting was employed to detect the protein expression

levels of AKR1A1 across the four groups. Total cellular proteins

were extracted and quantified using the BCA assay, followed by

SDS-PAGE separation and transfer to PVDF membranes. After

blocking, membranes were incubated with anti-AKR1A1 primary

antibody and HRP-conjugated secondary antibody. b-actin served

as the internal control. Bands were visualized using enhanced

chemiluminescence (ECL), and grayscale intensity was quantified

using ImageJ software to determine the relative expression levels

of AKR1A1.
2.15 Co-immunoprecipitation assay

Co-IP was performed to assess the lactylation level of AKR1A1

in the four treatment groups. Cells were lysed in IP lysis

buffer containing protease inhibitors, followed by grinding,

ultrasonication, and centrifugation to obtain total protein. Pre-

clearing was conducted with magnetic beads to remove non-specific

proteins. Subsequently, anti-AKR1A1 antibody or IgG control was

added to the lysate and incubated at 4°C to form immune

complexes, which were then incubated with magnetic beads. After

washing, beads were resuspended in reducing loading buffer and

boiled at 100 °C to elute the immunoprecipitated (IP) samples, with

the remaining input used as control. For Western blot detection,

samples were separated via SDS-PAGE and transferred to

membranes. Membranes were blocked and incubated with anti-

AKR1A1 or anti-pan-Kla (pan-lysine lactylation) antibodies,

followed by HRP-conjugated secondary antibodies. Signal

detection was performed using ECL, and band intensities were

quantified with ImageJ to assess AKR1A1 lactylation levels.
3 Results

3.1 Identification of lactylation-related
DEGs in osteoporosis

Prior to batch correction, expression boxplots (Figure 1A) and

PCA scatter plots (Figure 1C) revealed pronounced sample

clustering and expression heterogeneity across datasets, indicating

significant batch effects. After correction, the data distribution was

markedly improved (Figures 1B, D), and PCA confirmed that inter-

sample variance was minimized, indicating successful removal of
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batch effects. A total of 617 differentially expressed genes (DEGs)

were identified between osteoporosis and healthy control samples,

including 330 upregulated and 287 downregulated genes. Heatmap

and volcano plots illustrating these DEGs are shown in Figures 1E,

F. By intersecting the 617 DEGs with 1,347 lactylation-related

genes, we identified 37 lactylation-related DEGs (Figure 1G).
3.2 GO functional and KEGG pathway
enrichment analysis

GO enrichment analysis of the 37 lactylation-related DEGs

revealed significant involvement in glucose metabolic processes,

including monosaccharide metabolism, glucose metabolism,

cellular ketone metabolism, hexose metabolism, and regulation of

transmembrane glucose transport (Figures 2A, B). KEGG

pathway enrichment indicated that these genes were associated

with cell cycle regulation, type II diabetes mellitus, glycolysis/

gluconeogenesis, the p53 signaling pathway, and cardiac muscle

contraction (Figures 2C, D).
Frontiers in Immunology 06
3.3 Identification of key lactylation-related
DEGs via 113 machine learning model
combinations

A multi-level machine learning framework encompassing 113

algorithmic combinations was established to identify key lactylation-

related DEGs, with model performance evaluated using the area under

the receiver operating characteristic curve (AUC). The results

demonstrated that the Stepglm[both]+GBM and Stepglm[backward]

+GBM models achieved optimal performance compared with other

algorithmic combinations. Both models exhibited stable and robust

performance across the training cohort (AUC = 1.000), the

independent validation cohort GSE230665 (AUC = 0.944), and the

validation cohort GSE7429 (AUC = 0.720), yielding an average AUC of

0.888 (Figures 3A–C). Based on these optimal models, a set of 18

lactylation-related DEGs with the highest classification performance

was identified, including TPM4, RRP1B, AKR1A1, HIST1H2BO,

GPR87, DDX21, MPHOSPH6, CCNA2, CRABP2, ABCB6, SCO2,

SET, FABP5, HMOX1, PC, TRIM28, COX6A2, and SLC7A7

(Figure 3D). Among these, RRP1B and AKR1A1 were selected as key
FIGURE 1

Batch effect correction and identification of DEGs. (A, B) Boxplots of gene expression before (A) and after (B) batch correction. (C, D) PCA plots
before (C) and after (D) batch correction. (E) Heatmap of top 50 DEGs ranked by absolute logFC. (F) Volcano plot showing the distribution of all
DEGs. (G) Venn diagram showing the overlap between DEGs and lactylation-related genes.
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lactylation-related DEGs for further analysis, as they exhibited both

AUC ≥ 0.7 and top-five SHAP importance rankings (Figures 3E, F). In

the training dataset, RRP1B was significantly downregulated in

osteoporotic samples compared with healthy controls (P < 0.001),

while AKR1A1 was markedly upregulated in osteoporotic samples (P <

0.001) (Figure 3G). Correlation analysis between the two genes revealed

a weak negative association (r = −0.15, P > 0.05) (Figure 3H). Using the

GeneMANIA database, we further explored the co-expression and

functional interaction network of RRP1B and AKR1A1. The two genes

were involved in a complex protein–protein interaction (PPI) network,

in which physical interactions accounted for 77.64%, co-expression for

8.01%, predicted associations for 5.37%, co-localization for 3.63%,

genetic interactions for 2.87%, pathway relationships for 1.88%, and

shared protein domains for 0.60% (Figure 3I).
3.4 GSEA and GSVA analyses of key genes

GSEA was performed to explore the pathway enrichment

characteristics of high- and low-expression subgroups of AKR1A1

and RRP1B (Figures 4A, B). In the AKR1A1 low-expression group,

pathways such as cell cycle, cytokine–cytokine receptor interaction,
Frontiers in Immunology 07
hematopoietic cell lineage, p53 signaling, and T cell receptor

signaling were enriched. Conversely, the high-expression group

was enriched in pathways related to drug metabolism, glycolysis/

gluconeogenesis, oxidative phosphorylation, primary bile acid

biosynthesis, and tyrosine metabolism (Figure 4A). For RRP1B,

the low-expression group was enriched in neuroactive ligand–

receptor interaction, olfactory transduction, ubiquitin-mediated

proteolysis, pantothenate and CoA biosynthesis, and tryptophan

metabolism. The high-expression group was enriched in cell cycle,

fructose and mannose metabolism, non-small cell lung cancer, p53

signaling pathway, and small cell lung cancer (Figure 4B). GSVA

was further applied to systematically assess functional pathway

enrichment in different expression groups of AKR1A1 and RRP1B

(Figures 4C, D). The AKR1A1 high-expression group was enriched

in various metabolic pathways including pantothenate and CoA

biosynthesis, drug metabolism (other enzymes), selenoamino acid

metabolism, phenylalanine metabolism, nucleotide sugar

metabolism, and fructose/mannose metabolism. The low-

expression group was enriched in cancer-related pathways such as

non-small cell lung cancer, colorectal cancer, cell cycle, and T cell

receptor signaling (Figure 4C). In the RRP1B high-expression

group, enrichment was observed in cell cycle, sulfur metabolism,
FIGURE 2

Enrichment analysis of lactylation-related DEGs. (A, B) GO enrichment results presented as a bubble plot (A) and bar chart (B). (C, D) KEGG pathway
enrichment results shown as a bubble plot (C) and bar chart (D).
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thyroid cancer, bladder cancer, and non-small cell lung

cancer pathways. The low-expression group was enriched in lipid

and amino acid metabolic pathways including sphingolipid

biosynthesis, linoleic acid metabolism, ether lipid metabolism,

nicotinate metabolism, pantothenate and CoA biosynthesis, and

tryptophan metabolism (Figure 4D).
3.5 Immune infiltration analysis via
CIBERSORT

The CIBERSORT algorithm was used to evaluate the immune

cell infiltration landscape in the training dataset. We compared the

composition of immune cells between the healthy control (Control)

and osteoporosis (Treat) groups (Figure 5A). Monocytes were the

most abundant immune cell type across all samples, suggesting their

predominant role in the local immune milieu. Macrophage subsets

(M0, M1, and M2) were also widely distributed in both groups. A

Spearman correlation heatmap was constructed to visualize

interrelationships among immune cell subsets (Figure 5B). The

results indicated both positive and negative correlations between

various cell types. Notably, T cell subsets (e.g., CD4 naive T cells,
Frontiers in Immunology 08
CD4 memory resting T cells) showed a negative correlation with

macrophage subsets (M0, M1, and M2), suggesting potential

reciprocal regulation between T cell infiltration and macrophage

dynamics. Monocytes were positively correlated with all

three macrophage subsets, implying that monocytes may serve as

a source for macrophage infiltration and polarization.

Boxplot analysis (Figure 5C) revealed that the proportion of M1

macrophages was significantly elevated in the osteoporosis group (P

< 0.01), while no statistically significant differences were observed

for other immune cell types (p > 0.05).
3.6 Clustering and visualization of key
lactylation-related DEGs

Dimensionality reduction and clustering were performed using

the Uniform Manifold Approximation and Projection (UMAP)

algorithm. A total of 16 cell clusters were identified with the

FindClusters function, and the UMAP plot illustrated their spatial

distribution, with each color representing a distinct cell population

(Figure 6A). Differentially expressed marker genes for each cluster

were determined using the FindAllMarkers function, and the top 10
FIGURE 3

Screening of key lactylation-related DEGs. (A) Distribution of AUC values and performance heatmap of 113 models constructed using multiple
machine learning algorithms, identifying Stepglm[both]+GBM and Stepglm[backward]+GBM as the optimal models. (B) Receiver operating
characteristic (ROC) curves and corresponding AUC values of the optimal models in the training cohort, GSE230665 validation cohort, and GSE7429
validation cohort. (C) Confusion matrices of the optimal models across the training cohort and two validation cohorts. (D) Volcano plot of 18
lactylation-related DEGs identified by the optimal model. (E) ROC curves of the 18 lactylation-related DEGs. (F) SHAP value analysis of key feature
genes within the GBM model. (G) Boxplots showing the expression levels of RRP1B and AKR1A1 in osteoporotic and healthy samples. (H) Scatterplot
matrix illustrating the relationship between RRP1B and AKR1A1, including histogram distributions, kernel density curves, and the Pearson correlation
coefficient (r = −0.15). (I) Co-expression network of RRP1B and AKR1A1, displaying their associated genes and functional annotations.
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FIGURE 4

Functional enrichment of AKR1A1 and RRP1B by GSEA and GSVA. (A) GSEA results comparing high- and low-expression groups of AKR1A1. (B) GSEA
results for RRP1B. (C) GSVA enrichment pathways for AKR1A1. (D) GSVA enrichment pathways for RRP1B.
FIGURE 5

Immune cell infiltration analysis results. (A) Stacked bar chart showing the relative proportions of 22 immune cell subtypes in the Control and Treat
groups. (B) Spearman correlation heatmap among immune cell subsets. (C) Boxplots comparing immune cell proportions between the Control and
Treat groups. **p < 0.01.
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highly expressed marker genes per cluster were visualized in a

heatmap (Figure 6B). Cell-type annotation revealed that the sample

mainly contained B cells, chondrocyte precursors, erythroid cells,

macrophages, monocytes, mesenchymal stem cells (MSC),

neutrophils, plasmacytoid dendritic cells (pDC), plasma cells,

proliferating cells, and T cells (Figure 6C). Visualization of key

lactylation-related genes showed that AKR1A1 was markedly

upregulated in macrophages, monocytes, pDCs, and proliferating

cells, whereas RRP1B was predominantly upregulated in T cells

(Figures 6D–F). Pseudotime trajectory analysis demonstrated clear

differentiation trends along the developmental continuum among

distinct cell clusters (Figures 6G–I). The overall trajectory exhibited a

branched tree-like structure, suggesting multiple potential

differentiation routes. Cells progressively transitioned from early to

mature states, with major trajectories indicating differentiation from

MSCs and chondrocyte precursors toward immune-related

subpopulations such as macrophages, monocytes, and neutrophils.

In the state-based visualization, cells were divided into five states

(State 1–5); early-stage cells were mainly distributed in MSCs and

erythroid cells, whereas late-stage cells were enriched in macrophages

and monocytes, indicating a distinct temporal pattern of lineage

progression. Further analysis revealed that AKR1A1 expression

markedly increased during the late pseudotime stages (mainly

corresponding to macrophage and monocyte phases), whereas
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RRP1B exhibited a relatively stable expression pattern without

pronounced time dependence (Figure 6J).
3.7 Results of cell–cell communication
analysis

Cell–cell communication analysis was performed using the

CellChat package to construct interaction networks based on

ligand–receptor pairs. The results revealed that intercellular

communication occurred primarily through three major modalities:

secreted signaling (61.8%), extracellular matrix (ECM)–receptor

interactions (21.7%), and cell–cell contact (16.5%) (Figure 7A).

Among the cell populations, Monocytes and Macrophages

exhibited particularly active interactions, reflecting robust

communication activity. Quantitative evaluation of interaction

count (Figure 7B) and communication strength (Figure 7C)

indicated that the interaction frequency and intensity between

Monocytes and Macrophages were remarkably elevated, suggesting

a key role for these cell types in modulating the immune

microenvironment. A ligand–receptor network illustrating

directional relationships among different cell types was constructed

(Figure 7D), revealing major signaling pairs across cell subsets. The

bubble plot displayed the critical ligand–receptor interactions along
FIGURE 6

Clustering, annotation, and pseudotime analysis of key lactylation-related DEGs. (A) UMAP visualization of 16 identified cell clusters using the
FindClusters function. (B) Heatmap showing the top 10 highly expressed marker genes per cluster. (C) Cell type annotation results displaying major
cell populations including B_cell, Chondrocyte_precursor, Erythroid_cells, Macrophages, Monocytes, MSC, Neutrophils, pDC, Plasma, Proliferating,
and T_cell. (D–F) Expression distribution of key lactylation-related DEGs (AKR1A1 and RRP1B) visualized by violin plots, dot plots, and feature plots.
(G–I) Pseudotime trajectory analysis showing differentiation dynamics among distinct cell populations, with cells ordered by cluster, pseudotime,
and state. (J) Expression trends of AKR1A1 and RRP1B along the pseudotime trajectory.
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with their corresponding communication probabilities and P-values

(Figure 7E). Notably, ligand–receptor pairs from Macrophages to

Monocytes included CXCL12–CXCR4, LGALS9–CD44, LGALS9–

CD45, SPP1–(ITGA4+ITGB1), and SPP1–CD44. All detected

signaling pathways were identified, including SPP1, RESISTIN,

CXCL, MK, ANNEXIN, MIF, ANGPTL, GALECTIN, IL16, FGF,

BAFF, CD40, CCL, CHEMERIN, CSF, BTLA, and FLT3. Given that

SPP1 plays a direct role in bone remodeling by modulating osteoblast

and osteoclast activity, it was selected for further analysis. The major

cell types participating in the SPP1 signaling network included B cells,

BM cells, Erythroblasts, Macrophages, Monocytes, Myelocytes,

Neutrophils, T cells, and Tissue stem cells. A heatmap revealed

strong signaling between Macrophages and Monocytes (Figure 8A).

Role analysis showed that Macrophages functioned as Senders and

Influencers, while Monocytes acted as Mediators, Influencers, and

Receivers in the SPP1 pathway (Figure 8B). Contribution analysis of

ligand–receptor interactions highlighted SPP1–CD44 as a key

signaling axis (Figure 8C). Violin plots showed that SPP1 was

highly expressed in Macrophages, while CD44 was enriched in

Monocytes (Figure 8D). The chord diagram and network plot

further demonstrated frequent and directional communication,

particularly between Macrophages and Monocytes (Figures 8E, F),

indicating that the SPP1–CD44 axis may serve as a critical bridge in

their interaction.
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3.8 Changes in RAW264.7 cell morphology,
AKR1A1 expression, and lactylation levels
under lactate intervention

After 48 hours of PMA (100 nM) induction, RAW264.7 cells

exhibited adherent growth with a uniform morphology, indicating

successful differentiation into M0-type macrophages. Distinct

morphological differences were observed under different treatment

conditions. In the control group (Ctrl), cells were densely arranged

with regular morphology. The lactate-treated group (LAC) showed a

comparable density to the control, with clear boundaries and slightly

shrunken cell bodies. In contrast, the osteoporosis serum group (OP)

exhibited reduced adhesion, sparse distribution, and irregular shapes,

with some cells showing shrinkage or detachment. Notably, the OP

+LAC group demonstrated markedly improved morphology

compared with the OP group, characterized by enhanced adhesion

and tighter arrangement (Figure 9A). These findings suggest that

lactate exerts a protective and regulatory effect on RAW264.7 cell

morphology under osteoporosis-related stress.

RT-qPCR analysis revealed significant differences in AKR1A1

mRNA expression among the four groups (Figure 9B). Compared

with the Ctrl group, both the LAC and OP groups exhibited

significantly increased AKR1A1 mRNA levels (P < 0.05), with

the OP+LAC group showing the most pronounced elevation
FIGURE 7

Cell–cell communication network inferred from single-cell RNA-seq data. (A) Proportional distribution of signaling modalities, including secreted
signaling, ECM–receptor interaction, and cell–cell contact. (B, C) Cell–cell interaction counts (B) and strengths (C) among different cell subsets.
(D) Network of ligand–receptor pairs between cell types showing interaction directionality. (E) Bubble plot of key ligand–receptor pairs. The x-axis
indicates sender–receiver pairs; the y-axis indicates ligand–receptor pairs; bubble color represents communication probability; and bubble size
denotes statistical significance (P-value).
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(P < 0.001). Further comparison indicated that AKR1A1 expression

in the OP+LAC group was significantly higher than in either the

LAC or OP group (both P < 0.05), while no statistical difference was

observed between the LAC and OP groups (P > 0.05). These results

indicate that both lactate and osteoporosis serum upregulate

AKR1A1 transcription, and their combined treatment produces a

synergistic enhancement effect.

Western blot analysis showed results consistent with the mRNA

expression pattern (Figure 9C). Compared with the Ctrl group,

AKR1A1 protein expression was significantly increased in both the

LAC and OP groups (P < 0.05), with the OP+LAC group showing a

further marked increase (P < 0.001). Protein expression in the OP

+LAC group was significantly higher than in either the LAC or OP

group (both P < 0.05), while no significant difference was observed

between the latter two (P > 0.05). These findings demonstrate that
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both lactate and osteoporosis serum promote AKR1A1 protein

expression, with a clear synergistic effect when combined.

To further assess lactylation modification of AKR1A1, co-

immunoprecipitation (Co-IP) was performed to detect the relative

expression of pan-Kla/AKR1A1 (Figure 9D). Compared with the

Ctrl group, lactylation levels were significantly elevated in the LAC

and OP groups (P < 0.05) and were most pronounced in the OP

+LAC group (P < 0.001). The lactylation level in the OP+LAC

group was significantly higher than in either the LAC or OP group

(both P < 0.05), whereas no significant difference was found

between the LAC and OP groups (P > 0.05). These results suggest

that under osteoporotic conditions, lactate intervention further

enhances AKR1A1 lactylation modification, with the combined

effects of lactate and osteoporotic serum exhibiting a pronounced

synergistic upregulation.
FIGURE 8

SPP1 signaling pathway network analysis. (A) Heatmap of cell–cell communication strength for the SPP1 pathway. (B) Functional roles of cell types in
SPP1 signaling (Sender, Receiver, Mediator, Influencer). (C) Contribution scores of major ligand–receptor pairs within the SPP1 network. (D) Violin
plots showing expression levels of SPP1, CD44, ITGAV, ITGA4, ITGB1, and ITGB5 across cell types. (E) Network diagram of cell interactions via key
SPP1-related ligand–receptor pairs. (F) Chord diagram illustrating SPP1 signaling interactions.
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4 Discussion

Osteoporosis is a prototypical age-related chronic bone

metabolic disorder, traditionally characterized by an imbalance

between bone formation and resorption. In recent years,

the emerging concept of “immunometabolism” has garnered

increasing attention, highlighting the pivotal role of immune cell

metabolic reprogramming in modulating the inflammatory

microenvironment of bone tissue (16, 17). Lactate, a terminal

product of glycolysis, not only functions as a metabolic

intermediate but also acts as an epigenetic regulator via protein

lactylation (Kla), thereby influencing chromatin remodeling and

gene transcription (18). Zhang et al. were the first to identify

lactylation modifications on histone lysine residues, revealing its

role in gene activation (19). Subsequent studies demonstrated that

Kla exerts broad regulatory functions in macrophage polarization,

inflammatory responses, and tumor microenvironment remodeling

(20). Although several reviews have postulated that Kla may be

involved in the regulation of bone mineral density, the specific

target proteins and signaling pathways remain largely unexplored.

Aldo-keto reductase family 1 member A1 (AKR1A1) is an

important enzyme involved in aldehyde metabolism and the

maintenance of redox homeostasis (21). Zhou et al. reported that

AKR1A1 regulates oxidative stress and protein S-nitrosylation

under diabetic and hyperlipidemic conditions, suggesting a
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cytoprotective role in metabolic homeostasis (22). Emerging

evidence has indicated that AKR1A1 expression modulates the

metabolic activity and differentiation capacity of osteoprogenitor

cells; however, its functional role in lactylation has not been

examined in the context of bone metabolism (23). To date, no

studies have systematically evaluated the lactylation status of

AKR1A1 or its potential role in the metabolic-immune axis of

osteoporosis pathogenesis. In this study, we comprehensively

focused on the lactylation of AKR1A1, integrating multi-omics

analyses, single-cell RNA sequencing, and in vitro stimulation

assays using RAW264.7 macrophages treated with lactate

and osteoporotic serum. Our findings elucidate the involvement

of AKR1A1 in the metabolic-immune regulatory axis of

osteoporosis, providing both theoretical insights and experimental

evidence for its potential as a therapeutic target.

In this study, a total of 1,347 lactylation-related genes were

cross-analyzed by integrating five GEO microarray datasets, leading

to the identification of 37 differentially expressed lactylation-related

genes (DEGs). Subsequently, a predictive model was constructed

using 113 combinations of machine learning algorithms, from

which 18 genes with high discriminative power were selected.

Among them, AKR1A1 and RRP1B demonstrated exceptional

classification performance, with AUC values reaching 1.000 in the

training set and 0.944 and 0.720, respectively, in two independent

validation datasets, indicating stable predictive capabilities.
FIGURE 9

orphological changes, AKR1A1 expression, and lactylation levels in RAW264.7 cells under lactate intervention. (A) Morphological alterations of
RAW264.7 cells under different treatment conditions (optical microscopy, ×200). Ctrl group: normal culture; LAC group: treated with lactate (10 mM)
for 24 h; OP group: treated with serum from osteoporotic patients (10%) for 24 h; OP+LAC group: co-treatment with osteoporotic patient serum
(10%) and lactate (10 mM) for 24 h. (B) mRNA expression levels of AKR1A1 in the four groups of RAW264.7 cells. (C) Protein expression levels of
AKR1A1 in the four groups of RAW264.7 cells, with b-actin used as an internal reference. (D) Lactylation levels of AKR1A1 in the four groups. AKR1A1
was used as the immunoprecipitation antibody (IP: AKR1A1), and pan-Kla antibody was used to detect lactylation modification (IB: pan-Kla). The
lower panel shows the internal control for AKR1A1 expression (IB: AKR1A1). *p < 0.05, **p < 0.01, ***p < 0.001.
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AKR1A1 was significantly upregulated in osteoporotic samples and

exhibited promising diagnostic and subclassification potential.

Single-cell transcriptomic analysis further revealed that AKR1A1

was highly expressed in monocytes and macrophages, suggesting its

potential role in modulating the local immune microenvironment

within the bone marrow. Protein–protein interaction (PPI) network

analysis based on the GeneMANIA database demonstrated that

AKR1A1 was centrally positioned within a highly connected

network, functionally associated with glycolysis/gluconeogenesis,

pantothenate and CoA biosynthesis, and the p53 signaling pathway.

Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses consistently supported its

involvement in metabolic regulation. Previous studies have shown

that AKR1A1 maintains redox homeostasis by catalyzing the

reduction of reactive aldehyde and ketone intermediates and plays

a cytoprotective role under conditions of oxidative stress and

metabolic dysregulation (24). Under hyperglycemic conditions,

AKR1A1 modulates macrophage metabolism and inflammatory

status, implicating its dual role in metabolic-immune crosstalk

(25, 26). In parallel, lactate-induced protein lactylation has been

demonstrated to regulate macrophage polarization, inflammatory

transcriptional programs, and bone homeostasis (27, 28).

In conjunction with our findings, these results suggest that the

lactylation of AKR1A1 may mediate its immunometabolic

regulatory function, thereby playing a critical role in the

pathogenesis of osteoporosis.

In our in vitro experiments using RAW264.7 cells, both lactate

(LAC) stimulation and serum derived from osteoporotic patients

(OP) independently induced a significant increase in AKR1A1

lactylation levels. Notably, the combined treatment with OP

serum and lactate (OP+LAC) exerted a synergistic enhancing

effect. RT-qPCR and Western blot analyses demonstrated that the

mRNA and protein expression levels of AKR1A1 were highest in the

OP+LAC group, significantly exceeding those observed in the

single-treatment groups (P < 0.05), indicating that lactate and

pathological stimuli cooperatively upregulate AKR1A1 expression.

Furthermore, Co-immunoprecipitation (Co-IP) assays measuring

the pan-Kla/AKR1A1 ratio revealed a significant increase in

lactylation in the OP+LAC group (P < 0.01), providing the first

experimental evidence of lactate-dependent post-translational

modification of AKR1A1. These results support the notion that

lactate functions not merely as a metabolic byproduct, but as a

functional epigenetic modulator involved in protein modification

and signaling regulation. Previous studies have demonstrated

that lactate-induced protein lactylation in macrophages can

activate specific inflammatory gene programs and modulate

transcriptional activity via p300-mediated mechanisms (29, 30).

Our findings, for the first time, identify AKR1A1 as a direct target of

lactylation, with its modification levels driven by the synergistic

effects of lactate and pathological signals, highlighting a distinct

physiological–pathological interplay. This conclusion addresses a

critical knowledge gap regarding the lactylation of AKR1A1 and its

regulatory role in the context of osteoporosis.

Single-cell RNA sequencing analysis revealed a highly specific

expression pattern of AKR1A1 within bone marrow–derived
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immune cells, predominantly localized in monocytes and

macrophages, suggesting its potential role in the regulation of the

osteoporotic immune microenvironment. Integrating these

findings with CIBERSORT-based immune infiltration analysis, we

observed a significant increase in M1 macrophage proportions in

osteoporotic samples, indicating a shift toward pro-inflammatory

polarization. The immune cell correlation heatmap further

demonstrated a marked negative correlation between T cell

subsets (e.g., CD4+ naive and memory resting) and M1/M2

macrophages, implying that T cell functionality may be

dynamically influenced by macrophage activity within the bone

marrow. Previous studies have confirmed that M1 macrophages, in

the context of osteoporosis and inflammatory bone loss, can

facilitate osteoclastogenesis and bone resorption by secreting pro-

inflammatory cytokines such as IL-1b and TNF-a (31). Notably, a

recent single-cell level study identified an OLR1+ macrophage

subset (Mac_OLR1) in osteoporotic bone marrow tissues

exhibiting typical M1 characteristics, accompanied by the

activation of chemokine and osteoclast-associated signaling

pathways, thereby contributing to osteoclast recruitment

and microenvironmental remodeling (1). Moreover, lactate

metabolism has been shown to modulate macrophage

polarization profiles and induce the expression of AKR family

enzymes, positioning these enzymes as potential metabolic–

immune regulatory hubs (28, 32). Our study further links

AKR1A1 lactylation to specific immune phenotypes, suggesting

that it may mediate inflammatory amplification during M1

polarization via a metabolic enzyme–epigenetic modification–

signaling axis.

Cell–cell communication analysis based on CellChat revealed a

markedly enhanced interaction frequency between macrophages

and monocytes exhibiting high AKR1A1 expression. Ligand–

receptor pair identification highlighted the SPP1–CD44 axis as the

dominant signaling pathway. Specifically, SPP1 was highly

expressed in macrophages, whereas its receptor CD44 was

markedly upregulated in monocytes, suggesting a core interactive

bridge between these two immune subsets. Supporting this finding,

bubble plots, chord diagrams, and pathway heatmaps consistently

demonstrated a prominent communication density along this

bidirectional axis. Contribution analysis further confirmed

that the SPP1–CD44 signaling route held the highest weight in

the overall communication network. In this context, macrophages

acted primarily as signal “senders” and monocytes as predominant

“receivers,” reinforcing the directionality and functional polarity of

this intercellular communication axis. Previous studies have

established that SPP1 plays a critical role in osteoclast adhesion

and differentiation, promoting bone resorption via activation of the

osteoclastogenesis pathway (33). CD44, a widely expressed adhesion

molecule on stem and immune cells, has been implicated in

macrophage migration and intercellular adhesion processes (34,

35). Moreover, the SPP1–CD44 axis has been shown to drive

macrophage polarization and immune signal transduction in both

tumor and tissue immune microenvironments, influencing immune

cell infiltration and local inflammatory states (36). This study,

for the first time, links AKR1A1 lactylation—a candidate
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immunometabolic marker—to the SPP1–CD44-mediated bone

marrow immune communication network, proposing the

“AKR1A1–SPP1–CD44” axis as a novel signaling pathway

involved in osteoporosis pathogenesis.

Multi-omics enrichment analyses revealed that high AKR1A1

expression was significantly associated with multiple metabolic

pathways, including drug metabolism, bile acid biosynthesis, fructose

metabolism, and phenylalanine metabolism, encompassing glucose,

lipid, and amino acid metabolism. Concurrently, KEGG pathway

enrichment also implicated immune-related mechanisms such as the

p53 signaling pathway and T cell receptor signaling, suggesting that

AKR1A1 may exert a coupling regulatory function at the interface

between energy metabolism and immune responses. Both GSEA and

GSVA analyses consistently supported the potential regulatory role of

AKR1A1 in the metabolic dysregulation underlying osteoporosis.

Previous studies have demonstrated that bone metabolism is

intricately dependent on mitochondrial activity, glycolysis, and

nutrient stress responses, with metabolic reprogramming emerging

as a core pathological component of osteoporosis (5, 37, 38). In both

osteoblasts and osteoclasts, remodeling of metabolic pathways directly

influences their differentiation and functional states (39). AKR1A1, as a

member of the aldo-keto reductase family, has been established to play

a critical role in maintaining redox homeostasis and detoxification of

metabolic intermediates (21, 40). However, its mechanistic

involvement within the metabolic network of bone tissue remains

largely unexplored. This study is the first to propose that AKR1A1-

mediated lactylation is closely linked to metabolic reprogramming,

thereby constructing a tripartite regulatory framework of “lactylation–

metabolism–immunity” and offering a novel perspective on the

metabolic pathology of osteoporosis.

This study systematically elucidates the multifaceted role of the

lactylation-associated enzyme AKR1A1 in the pathogenesis of

osteoporosis and, for the first time, proposes that it orchestrates

disease progression through metabolic reprogramming, immune

modulation, and intercellular communication. By integrating multi-

omics analysis, machine learning-based feature selection, single-cell

annotation, and in vitro functional validation, a comprehensive

research framework was established spanning from biomarker

discovery to mechanistic verification. AKR1A1 lactylation was

markedly upregulated in osteoporotic conditions, exhibiting

strong diagnostic performance and potential value for molecular

subtyping and therapeutic intervention. These findings broaden the

research scope and target landscape of metabolic bone disorders.

Despite the robust findings, several limitations remain in this

study. First, the in vitro experimental system cannot fully

recapitulate the complex cell–microenvironment interactions

present in osteoporotic bone tissue, and the physiological

relevance of the results requires further in vivo validation. Second,

the specific lysine residues subjected to AKR1A1 lactylation have

not yet been identified, and the structural basis and functional

consequences of these modifications remain unclear. Third, the lack

of AKR1A1 knockdown or mutational intervention experiments

limits the causal interpretation of its role in the pathophysiological
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process. Future studies should aim to construct lactylation-deficient

AKR1A1 mutants to delineate critical modification sites and assess

their functional impact. In vivo validation using osteoporotic

animal models would help confirm the pathogenic role of

AKR1A1 in bone metabolism. Moreover, elucidating its regulatory

effects on the dynamic balance between osteoclasts and osteoblasts

may offer mechanistic insights. On this basis, the development of

selective small-molecule inhibitors targeting AKR1A1 lactylation

could represent a novel therapeutic strategy for osteoporosis.
5 Conclusion

This study identifies AKR1A1 as a key lactylation-modified gene

involved in the pathogenesis of osteoporosis. Through integrated

multi-omics analysis, machine learning-based feature selection,

single-cell transcriptomic annotation, and in vitro functional

validation, we demonstrate that AKR1A1 is significantly upregulated

and exhibits enhanced lactylation under osteoporotic conditions. It is

predominantly expressed in monocytes and macrophages, where it

participates in metabolic reprogramming, immune polarization, and

SPP1–CD44-mediated intercellular communication. Functional

enrichment analyses further reveal strong associations between

AKR1A1 and glycolytic as well as inflammatory signaling pathways.

Collectively, these findings suggest that AKR1A1 lactylation plays a

central role in the metabolism–immunity regulatory axis of

osteoporosis, and highlight its potential as an early molecular

biomarker and therapeutic target.
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