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evidence from multi-omics
integration, single-cell
transcriptomics, and

in vitro validation
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Objective: This study aimed to systematically identify key differentially expressed
genes (DEGs) associated with lysine lactylation in osteoporosis and to explore
their potential roles in disease pathogenesis from a dual perspective of metabolic
and immune regulation, thereby providing a theoretical basis for targeted
therapeutic strategies.

Methods: Five osteoporosis-related gene expression microarray datasets and one
single-cell RNA-sequencing dataset were integrated from the GEO database. A
lactylation-related gene panel comprising 1,347 genes was used to construct a
screening framework. Batch effect correction, differential expression analysis, GO/
KEGG enrichment, CIBERSORT-based immune infiltration, and GSEA/GSVA
functional annotation were performed. A total of 113 combinations of machine
learning models were applied to identify key genes. Single-cell UMAP clustering
and CellChat-based intercellular communication analysis were conducted to
further characterize the findings. In vitro experiments were performed using
RAW264.7 macrophages treated with lactate and osteoporotic serum, and gene
expression and lactylation levels were validated via gPCR, Western blot, and co-
immunoprecipitation (Co-IP).

Results: A total of 37 lactylation-related DEGs were identified, mainly enriched in
metabolic and inflammatory pathways. Among them, AKR1A1 was highlighted as
a key feature gene through machine learning models, exhibiting elevated
expression and high levels of lactylation, particularly enriched in monocytes
and macrophages. CellChat analysis revealed that AKR1A1 participates in the
SPP1-CD44 signaling pathway, mediating intercellular communication among
immune cells. In vitro validation confirmed that AKR1A1 expression and
lactylation levels were significantly upregulated under combined lactate and
osteoporotic serum treatment, suggesting a synergistic enhancement effect.
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Conclusion: AKR1A1 lactylation plays a pivotal role in the metabolic—immune
regulatory axis of osteoporosis, contributing to metabolic reprogramming and
immune microenvironment remodeling. Through involvement in the SPPI1-
CD44 signaling pathway, it mediates communication between monocytes and
macrophages, and may serve as a novel biomarker and therapeutic target for
early diagnosis and intervention in osteoporosis.

osteoporosis, AKR1A1, lysine lactylation, immunometabolism, multi-omics integration,
single-cell RNA sequencing, SPP1-CD44 signaling pathway

1 Introduction

Osteoporosis (OP) is a systemic skeletal disorder characterized by
reduced bone mass and microarchitectural deterioration, leading to
increased fracture risk and significant morbidity among the elderly
population (1). With the global population aging rapidly, the incidence
of OP is steadily rising, posing a substantial public health concern by
reducing healthy life expectancy and impairing quality of life.
Epidemiological studies estimate that more than 200 million people
worldwide are affected by osteoporosis, with approximately one-third of
women and one-fifth of men over the age of 50 experiencing at least one
osteoporotic fracture (2). Although several pharmacological agents such
as bisphosphonates, selective estrogen receptor modulators, and
monoclonal antibodies have been approved for the prevention and
treatment of OP, their clinical application is often limited by suboptimal
efficacy, poor tolerance, and low patient compliance (3, 4). Hence,
elucidating the molecular mechanisms underlying OP pathogenesis and
identifying novel therapeutic targets remain critical needs.

Recent advances have shifted the paradigm of bone homeostasis
research from macroscopic bone mineral density measurements
to cellular and molecular mechanisms. Among these, metabolic
reprogramming has emerged as a central regulator of bone
remodeling processes (5). Lactate, once considered a metabolic
waste product of glycolysis, is now recognized as a signaling
molecule involved in modulating inflammation, immune responses,
and gene transcriptional activity (6, 7). Increasing evidence suggests
that lactate plays a pivotal role in bone metabolism through lysine
lactylation, a novel post-translational modification (PTM)
mechanism (8). Lactylation of histone lysine residues can alter
chromatin structure and gene expression, contributing to the
dynamic balance between bone formation and resorption.
Specifically, lactylation has been shown to promote the
transcription of osteogenic genes such as Runx2 and JunB, thereby
enhancing osteogenic differentiation of bone marrow mesenchymal
stem cells (BMSCs) (9). Simultaneously, lactylation can inhibit
osteoclastogenesis and suppress bone resorption. Moreover, lactate
modulates the polarization of immune cells, particularly promoting
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the anti-inflammatory M2 phenotype of macrophages, thereby
indirectly influencing bone homeostasis and tissue repair (8).
Vascular endothelial cell-derived lactate has also been reported to
induce H3K18la histone lactylation in BMSCs, activating osteogenic
genes such as COLIA2 and COMP, thereby alleviating osteoporosis
progression (10). Collectively, these findings highlight the therapeutic
potential of lactylation in bone-related disorders such as osteoporosis
and periodontitis. However, the expression patterns and mechanistic
roles of lactylation in osteoporosis remain insufficiently characterized,
and its involvement in the immunometabolic axis of bone pathology
has yet to be systematically explored.

With the continued advancement of omics technologies and
data science, integrative multi-omics analysis, machine learning
algorithms, and single-cell RNA sequencing (scRNA-seq) have
opened new avenues for investigating metabolic bone diseases
(11, 12). The integration and batch correction of public
transcriptomic datasets enhance the reliability and robustness of
DEG identification (13). Machine learning-based feature selection
facilitates the efficient discovery of molecular biomarkers with
diagnostic or therapeutic relevance (14). Furthermore, single-cell
transcriptomic profiling enables the dissection of cellular
heterogeneity within the bone marrow microenvironment, and in
combination with immune infiltration analysis and intercellular
communication networks, allows for a more refined understanding
of dynamic regulatory processes in situ (15).

In this study, we systematically identified lactylation-related
DEGs associated with osteoporosis using publicly available datasets
and explored their diagnostic value and functional roles through
multi-dimensional bioinformatic analyses. These included immune
infiltration profiling, functional enrichment analyses, single-cell
expression distribution, and cell-cell communication modeling.
Based on these findings, we established an in vitro RAW264.7
macrophage model to validate the expression and lactylation levels
of key candidate genes (e.g., AKRIAI) under different treatment
conditions. This integrative strategy—combining multi-omics data
mining, machine learning-based gene prioritization, and
experimental validation—aims to uncover the mechanistic role of
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lactylation in the immunometabolic regulation of osteoporosis
and to provide a theoretical foundation for future targeted
therapeutic interventions.

2 Materials and methods
2.1 Data acquisition and preprocessing

Microarray datasets related to osteoporosis were retrieved from
the Gene Expression Omnibus (GEO) public database (https://
www.ncbi.nlm.nih.gov/geo/). A total of five datasets were included
in the analysis: GSE7158, GSE56116, GSE56815, GSE7429, and
GSE230665. GSE7158 contains 12 low peak bone mass (PBM)
samples and 14 high PBM samples (platform: GPL570).
GSE56116 includes 10 postmenopausal osteoporosis patients and
3 healthy postmenopausal women (platform: GPL4133). GSE56815
consists of 40 subjects with high hip bone mineral density (BMD)
and 40 subjects with low hip BMD (platform: GPL96). GSE7429
includes 10 high BMD and 10 low BMD samples (platform:
GPL96). GSE230665 contains 12 postmenopausal osteoporosis
patients and 3 healthy postmenopausal controls (platform:
GPL10332). Datasets GSE7158, GSE56116, and GSE56815 were
merged and designated as the training set, while GSE7429 and
GSE230665 were combined to form the validation set. Additionally,
single-cell RNA-seq data from human bone marrow-derived
mesenchymal stem cells (BMSCs) were obtained from dataset
GSE147287, specifically the osteoporosis sample GSM4423510
(platform: GPL24676). A curated list of 1,347 lactylation-related
genes was compiled for subsequent analysis.

2.2 Reagents and instruments

The reagents and consumables used in this study included:
high-glucose DMEM, PBS buffer, trypsin-EDTA, phorbol ester
(PMA), Ultrapure RNA Kit, HiFiScript gDNA Removal RT
MasterMix, MagicSYBR Mixture, 0.1 mL eight-strip flat-cap
tubes, Super Red nucleic acid dye, DNA loading buffer (6X),
anhydrous ethanol, chloroform, centrifuge tubes and pipette tips,
RIPA lysis buffer, high-efficiency lysis buffer, protease inhibitors,
BCA protein assay kit, MOPS-SDS running buffer, FuturePAGE" ™
pre-cast protein gels, gel preparation kit, dual-color pre-stained
protein marker, PVDF membrane, methanol, rapid transfer buffer,
nonfat dry milk, QuickBlock blocking buffer, primary antibody
dilution buffer, secondary antibody dilution buffer, 20xTBST buffer,
Meilunbio® Fect ultra-sensitive ECL reagent, AP substrate, Ponceau
S staining solution, Coomassie brilliant blue staining solution, and
Protein A/G magnetic beads. The main instruments used included:
biosafety cabinet, CO, incubator, upright microscope, Gilson
P-series pipettes, tissue grinder, ultrasonic cell disruptor, metal
bath, shaker, micro-spectrophotometer, PCR gradient thermal
cycler, real-time PCR system, gel electrophoresis apparatus, gel
documentation system, electrophoresis system, blotting apparatus,
PVDF membrane cassette, microplate reader, chemiluminescence
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imaging system, general imaging system, benchtop high-speed
refrigerated centrifuge, low-temperature centrifuge, and water bath.

2.3 Differentially expressed genes analysis

To identify DEGs, the training datasets were first subjected to
batch effect correction. The limma package in R was employed to
perform differential expression analysis between osteoporosis and
healthy control samples. Genes with [log, fold change (logFC)| >
0.1375 and adjusted P-value < 0.05 were considered statistically
significant DEGs. Heatmaps and volcano plots were generated to
visualize the DEGs. For heatmap clustering, the top 50 genes ranked
by the absolute value of logFC were selected. The DEGs were then
intersected with the 1,347 lactylation-related genes to identify
lactylation-associated DEGs.

2.4 Gene ontology and Kyoto encyclopedia
of genes and genomes enrichment analysis

GO functional enrichment and KEGG pathway analysis of the
lactylation-related DEGs were performed using the clusterProfiler
package in R. A significance threshold of P < 0.05 and q < 1 was
applied to identify enriched biological terms and pathways. The GO
analysis covered three main categories: biological process (BP),
cellular component (CC), and molecular function (MF).

2.5 Machine learning analysis

A comprehensive machine learning framework was employed
to systematically evaluate the diagnostic value of lactylation-related
DEGs. Gene expression data from the training and validation
cohorts were first normalized, followed by the construction of a
multi-level machine learning model integrating 113 algorithmic
combinations. The foundational algorithms included classical and
modern approaches such as Least Absolute Shrinkage and Selection
Operator (Lasso), Ridge regression, Elastic Net, Support Vector
Machine (SVM), Generalized Linear Model Boosting (glmBoost),
Partial Least Squares Generalized Linear Model (plsRglm), Stepwise
Generalized Linear Model (Stepglm), Random Forest (RF),
Gradient Boosting Machine (GBM), Linear Discriminant Analysis
(LDA), Extreme Gradient Boosting (XGBoost), and Naive Bayes. A
two-stage modeling strategy was implemented: in the first stage,
different algorithms were used to select feature variables (with a
minimum gene threshold of five), and in the second stage, predictive
models were constructed based on the selected features. The
optimal model was then integrated through multivariate logistic
regression, and its performance was assessed by calculating the area
under the receiver operating characteristic curve (AUC). This
process yielded a combination of lactylation-related DEGs with
the best classification performance. To further interpret the model,
SHapley Additive exPlanations (SHAP) analysis was applied to
quantify each gene’s contribution to prediction outcomes. By
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calculating SHAP values, genes were ranked according to their
importance, thereby elucidating both the positive and negative
effects of differential expression on the model’s predictions. This
approach provided global and individual-level interpretability of the
model. Genes with AUC > 0.7 and ranked among the top five in
SHAP importance were identified as key lactylation-related DEGs
for downstream analyses. In the training cohort, expression
differences of these key genes between osteoporotic and healthy
samples were examined. Pearson correlation coefficients were
computed to assess relationships among the key lactylation-
related DEGs. Finally, a co-expression network of these genes was
constructed using the GeneMANIA database, a robust tool for
exploring internal functional associations within a gene set.

2.6 Gene set enrichment analysis and gene
set variation analysis

To explore the biological functions of the key lactylation-related
DEGs, both GSEA and GSVA were performed using the KEGG
pathway gene sets. For GSEA, enrichment significance was
determined using a threshold of P < 0.05. GSVA was employed to
assess pathway-level variations across samples, again using KEGG
gene sets with the same significance criteria (P < 0.05).

2.7 Immune cell infiltration analysis via
CIBERSORT

The CIBERSORT algorithm was applied to the training dataset
to estimate the proportions of 22 immune cell types in each sample.
Samples with P < 0.05 were retained for downstream analysis.

(1) A stacked bar plot was used to illustrate the relative
composition of immune cell subsets across samples. (2) Box plots
were generated to compare immune cell proportions between
osteoporosis and control groups, and intergroup differences were
assessed using the Wilcoxon rank-sum test with significance
thresholds set at P < 0.001, P < 0.01, and P < 0.05. (3) In the
osteoporosis group, Spearman correlation and hierarchical
clustering were performed to analyze the interrelationships
among immune cell subtypes.

2.8 Preprocessing and normalization of
single-cell RNA-seq data

Single-cell data preprocessing and normalization were conducted
using the Seurat R package. The expression matrix was converted into
a Seurat object and filtered to retain cells expressing at least 50 genes
and with mitochondrial gene percentages below 5%. Data
normalization was performed using the “LogNormalize” method
with a scale factor of 10,000. A total of 1,500 highly variable genes
were selected based on variance for downstream analyses.
FeatureScatter and violin plots were used to validate data quality
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and expression distribution. Statistical thresholds were set at logFC > 1
and adjusted P-value < 0.05 to ensure both biological relevance and
statistical rigor.

2.9 Principal component analysis

After standard preprocessing with the ScaleData function, PCA
was performed based on the highly variable gene set (identified by
VariableFeatures). Twenty principal components (PCs) were
extracted. VizDimLoadings plots were used to visualize the
contribution of genes to each PC, and DimPlot was employed to
visualize sample distributions in reduced dimensions. DimHeatmap
was used to display gene expression patterns for the top four PCs.
Significance of PCs was assessed using JackStraw analysis with
resampling, and the P-value distribution of the top 20 PCs was
shown in the JackStrawPlot. Significant PCs were selected for
further downstream analysis.

2.10 Clustering and visualization of key
lactylation-related DEGs

Clustering analysis was performed using the Uniform Manifold
Approximation and Projection (UMAP) method. The
FindNeighbors and FindClusters functions were applied for cell
clustering, with the number of principal components (PCs) set to
20. Dimensionality reduction and visualization were carried out
using RunUMAP. Differentially expressed genes (DEGs) in each
cluster were identified with the FindAllMarkers function under
thresholds of logFC > 1 and P < 0.05. Heatmaps showing the top 10
marker genes per cluster were generated. Cell type annotation was
conducted using the SingleR package in conjunction with the
HumanPrimaryCellAtlasData reference. Cluster identities were
refined using Renameldents and visualized via UMAP plots.
DEGs across annotated cell types were analyzed (logfC > 1, P <
0.05). The expression patterns of key lactylation-related DEGs were
further visualized using violin plots (VInPlot), feature plots
(FeaturePlot), and dot plots (DotPlot) to display expression
distributions and trends across cell clusters. Pseudotime trajectory
analysis was performed using the Monocle 2 package to explore
potential differentiation dynamics among distinct cell populations.
The normalized expression matrix and cell annotations from the
Seurat object were converted into a CellDataSet using the
importCDS function. Highly variable genes were selected as
ordering genes with setOrderingFilter, and dimensional reduction
was carried out with reduceDimension (method = “DDRTree”).
Cells were then ordered along pseudotime using orderCells, and
branch points were automatically detected to define divergent
developmental paths. Cells were visualized by cluster, state, and
pseudotime to depict lineage trajectories. The expression patterns of
key lactylation-related DEGs (AKRIAI and RRPIB) were further
plotted along the trajectory, revealing their temporal regulation
features during cell-fate transitions.
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2.11 Cell-cell communication analysis

Cell-cell communication analysis was conducted using the
CellChat package. A CellChat object was constructed from the
single-cell data, incorporating a curated database of human ligand-
receptor interactions. Secreted signaling pathways were selected for
analysis. After data preprocessing, overexpressed genes and
interacting partners were identified for each cell type, and
communication probabilities were calculated. Significant signaling
interactions were inferred and visualized to represent the number
and strength of intercellular communications. For each cell type,
communication patterns were independently analyzed, and key
ligand-receptor interactions were displayed using bubble plots.
Communication networks involving key lactylation-related DEGs
were extracted, and their roles within signaling pathways were
characterized. Osteoporosis-relevant signaling pathways were
selected for detailed visualization using circular layouts,
hierarchical layouts, and heatmaps to show interaction intensity
and gene expression levels. Contribution analysis was conducted to
evaluate the role of ligand-receptor pairs in osteoporosis-associated
signaling, and chord diagrams were used to display specific
interaction relationships.

2.12 Cell induction, grouping, and
treatment

The murine macrophage cell line RAW264.7 was selected as the in
vitro model for functional experiments due to its stable origin, well-
characterized phenotype, and widespread use in studies of
inflammation and bone metabolism. RAW264.7 cells can be
differentiated into MO macrophages upon induction with phorbol
12-myristate 13-acetate (PMA), making them suitable for stimulation
studies under various conditions. A PMA stock solution (100 uM) was
diluted to a final concentration of 100 nM with complete culture
medium and filtered through a 0.22 um membrane for use.
RAW264.7 cells were digested with trypsin, resuspended at a
density of 1x10° cells/mL, and seeded at 1 mL per dish. Cells were
incubated overnight at 37 °C to allow adherence. MO macrophages
were generated by treating adherent cells with 100 nM PMA for 48
hours. The cells were then divided into four groups. Ctrl group:
conventional culture without treatment. LAC group: treated with
lactate (10 mM) for 24 hours. OP group: treated with 10% serum
from osteoporosis patients for 24 hours. OP+LAC group: co-treated
with 10% osteoporosis patient serum and lactate (10 mM) for 24
hours. Following the treatment period, cells were harvested for reverse
transcription quantitative polymerase chain reaction (RT-qPCR),
Western blotting, and co-immunoprecipitation (Co-IP) analyses.

2.13 RT-gPCR analysis

RT-qPCR was used to quantify the mRNA expression levels of
AKRIALI in the four experimental groups. Total RNA was extracted and
reverse-transcribed into ¢cDNA. Amplification was performed using
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SYBR Green dye, with GAPDH as the internal control.
Primer sequences were as follows: GAPDH: forward 5'-
GCCCAGAACATCATCCCTGCAT-3, reverse 5-GCCTGCTTCAC
CACCTTCTTGA-3" (product size: 188 bp). AKRIAI: forward 5'-AA
CAGTCGGCAGATTGATGATG-3’, reverse 5-CCAAGCAC
GGTCAGAGGAA-3" (product size: 168 bp). Relative gene expression
levels were calculated using the 2A-AACt method.

2.14 Western blot analysis

Western blotting was employed to detect the protein expression
levels of AKRIAI across the four groups. Total cellular proteins
were extracted and quantified using the BCA assay, followed by
SDS-PAGE separation and transfer to PVDF membranes. After
blocking, membranes were incubated with anti-AKRIAI primary
antibody and HRP-conjugated secondary antibody. B-actin served
as the internal control. Bands were visualized using enhanced
chemiluminescence (ECL), and grayscale intensity was quantified
using Image] software to determine the relative expression levels
of AKRIAL.

2.15 Co-immunoprecipitation assay

Co-IP was performed to assess the lactylation level of AKRIAI
in the four treatment groups. Cells were lysed in IP lysis
buffer containing protease inhibitors, followed by grinding,
ultrasonication, and centrifugation to obtain total protein. Pre-
clearing was conducted with magnetic beads to remove non-specific
proteins. Subsequently, anti-AKRIAI antibody or IgG control was
added to the lysate and incubated at 4°C to form immune
complexes, which were then incubated with magnetic beads. After
washing, beads were resuspended in reducing loading buffer and
boiled at 100 °C to elute the immunoprecipitated (IP) samples, with
the remaining input used as control. For Western blot detection,
samples were separated via SDS-PAGE and transferred to
membranes. Membranes were blocked and incubated with anti-
AKRIAI or anti-pan-Kla (pan-lysine lactylation) antibodies,
followed by HRP-conjugated secondary antibodies. Signal
detection was performed using ECL, and band intensities were
quantified with Image] to assess AKRIAI lactylation levels.

3 Results

3.1 Identification of lactylation-related
DEGs in osteoporosis

Prior to batch correction, expression boxplots (Figure 1A) and
PCA scatter plots (Figure 1C) revealed pronounced sample
clustering and expression heterogeneity across datasets, indicating
significant batch effects. After correction, the data distribution was
markedly improved (Figures 1B, D), and PCA confirmed that inter-
sample variance was minimized, indicating successful removal of
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FIGURE 1

Batch effect correction and identification of DEGs. (A, B) Boxplots of gene expression before (A) and after (B) batch correction. (C, D) PCA plots
before (C) and after (D) batch correction. (E) Heatmap of top 50 DEGs ranked by absolute logFC. (F) Volcano plot showing the distribution of all

DEGs. (G) Venn diagram showing the overlap between DEGs and lactylation-

batch effects. A total of 617 differentially expressed genes (DEGs)
were identified between osteoporosis and healthy control samples,
including 330 upregulated and 287 downregulated genes. Heatmap
and volcano plots illustrating these DEGs are shown in Figures 1E,
F. By intersecting the 617 DEGs with 1,347 lactylation-related
genes, we identified 37 lactylation-related DEGs (Figure 1G).

3.2 GO functional and KEGG pathway
enrichment analysis

GO enrichment analysis of the 37 lactylation-related DEGs
revealed significant involvement in glucose metabolic processes,
including monosaccharide metabolism, glucose metabolism,
cellular ketone metabolism, hexose metabolism, and regulation of
transmembrane glucose transport (Figures 2A, B). KEGG
pathway enrichment indicated that these genes were associated
with cell cycle regulation, type II diabetes mellitus, glycolysis/
gluconeogenesis, the p53 signaling pathway, and cardiac muscle
contraction (Figures 2C, D).
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related genes.

3.3 Identification of key lactylation-related
DEGs via 113 machine learning model
combinations

A multi-level machine learning framework encompassing 113
algorithmic combinations was established to identify key lactylation-
related DEGs, with model performance evaluated using the area under
the receiver operating characteristic curve (AUC). The results
demonstrated that the Stepglm[both]+GBM and Stepglm[backward]
+GBM models achieved optimal performance compared with other
algorithmic combinations. Both models exhibited stable and robust
performance across the training cohort (AUC = 1.000), the
independent validation cohort GSE230665 (AUC = 0.944), and the
validation cohort GSE7429 (AUC = 0.720), yielding an average AUC of
0.888 (Figures 3A-C). Based on these optimal models, a set of 18
lactylation-related DEGs with the highest classification performance
was identified, including TPM4, RRP1B, AKRIAI, HISTIH2BO,
GPR87, DDX21, MPHOSPH6, CCNA2, CRABP2, ABCB6, SCO2,
SET, FABP5, HMOXI, PC, TRIM28, COX6A2, and SLC7A7
(Figure 3D). Among these, RRPIB and AKRIAI were selected as key
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Enrichment analysis of lactylation-related DEGs. (A, B) GO enrichment results presented as a bubble plot (A) and bar chart (B). (C, D) KEGG pathway

enrichment results shown as a bubble plot (C) and bar chart (D).

lactylation-related DEGs for further analysis, as they exhibited both
AUC > 0.7 and top-five SHAP importance rankings (Figures 3E, F). In
the training dataset, RRPIB was significantly downregulated in
osteoporotic samples compared with healthy controls (P < 0.001),
while AKRIA was markedly upregulated in osteoporotic samples (P <
0.001) (Figure 3G). Correlation analysis between the two genes revealed
a weak negative association (r = —0.15, P > 0.05) (Figure 3H). Using the
GeneMANIA database, we further explored the co-expression and
functional interaction network of RRP1B and AKRIAI. The two genes
were involved in a complex protein—protein interaction (PPI) network,
in which physical interactions accounted for 77.64%, co-expression for
8.01%, predicted associations for 5.37%, co-localization for 3.63%,
genetic interactions for 2.87%, pathway relationships for 1.88%, and
shared protein domains for 0.60% (Figure 3I).

3.4 GSEA and GSVA analyses of key genes

GSEA was performed to explore the pathway enrichment
characteristics of high- and low-expression subgroups of AKRIAI
and RRPIB (Figures 4A, B). In the AKRIAI low-expression group,
pathways such as cell cycle, cytokine—cytokine receptor interaction,
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hematopoietic cell lineage, p53 signaling, and T cell receptor
signaling were enriched. Conversely, the high-expression group
was enriched in pathways related to drug metabolism, glycolysis/
gluconeogenesis, oxidative phosphorylation, primary bile acid
biosynthesis, and tyrosine metabolism (Figure 4A). For RRPIB,
the low-expression group was enriched in neuroactive ligand-
receptor interaction, olfactory transduction, ubiquitin-mediated
proteolysis, pantothenate and CoA biosynthesis, and tryptophan
metabolism. The high-expression group was enriched in cell cycle,
fructose and mannose metabolism, non-small cell lung cancer, p53
signaling pathway, and small cell lung cancer (Figure 4B). GSVA
was further applied to systematically assess functional pathway
enrichment in different expression groups of AKRIAI and RRPIB
(Figures 4C, D). The AKR1A1I high-expression group was enriched
in various metabolic pathways including pantothenate and CoA
biosynthesis, drug metabolism (other enzymes), selenoamino acid
metabolism, phenylalanine metabolism, nucleotide sugar
metabolism, and fructose/mannose metabolism. The low-
expression group was enriched in cancer-related pathways such as
non-small cell lung cancer, colorectal cancer, cell cycle, and T cell
receptor signaling (Figure 4C). In the RRPIB high-expression
group, enrichment was observed in cell cycle, sulfur metabolism,
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thyroid cancer, bladder cancer, and non-small cell lung
cancer pathways. The low-expression group was enriched in lipid
and amino acid metabolic pathways including sphingolipid
biosynthesis, linoleic acid metabolism, ether lipid metabolism,
nicotinate metabolism, pantothenate and CoA biosynthesis, and
tryptophan metabolism (Figure 4D).

3.5 Immune infiltration analysis via
CIBERSORT

The CIBERSORT algorithm was used to evaluate the immune
cell infiltration landscape in the training dataset. We compared the
composition of immune cells between the healthy control (Control)
and osteoporosis (Treat) groups (Figure 5A). Monocytes were the
most abundant immune cell type across all samples, suggesting their
predominant role in the local immune milieu. Macrophage subsets
(MO, M1, and M2) were also widely distributed in both groups. A
Spearman correlation heatmap was constructed to visualize
interrelationships among immune cell subsets (Figure 5B). The
results indicated both positive and negative correlations between
various cell types. Notably, T cell subsets (e.g., CD4 naive T cells,

Frontiers in Immunology

CD4 memory resting T cells) showed a negative correlation with
macrophage subsets (MO0, M1, and M2), suggesting potential
reciprocal regulation between T cell infiltration and macrophage
dynamics. Monocytes were positively correlated with all
three macrophage subsets, implying that monocytes may serve as
a source for macrophage infiltration and polarization.
Boxplot analysis (Figure 5C) revealed that the proportion of M1
macrophages was significantly elevated in the osteoporosis group (P
< 0.01), while no statistically significant differences were observed
for other immune cell types (p > 0.05).

3.6 Clustering and visualization of key
lactylation-related DEGs

Dimensionality reduction and clustering were performed using
the Uniform Manifold Approximation and Projection (UMAP)
algorithm. A total of 16 cell clusters were identified with the
FindClusters function, and the UMAP plot illustrated their spatial
distribution, with each color representing a distinct cell population
(Figure 6A). Differentially expressed marker genes for each cluster
were determined using the FindAllMarkers function, and the top 10
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Clustering, annotation, and pseudotime analysis of key lactylation-related DEGs. (A) UMAP visualization of 16 identified cell clusters using the
FindClusters function. (B) Heatmap showing the top 10 highly expressed marker genes per cluster. (C) Cell type annotation results displaying major
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and state. (J) Expression trends of AKRIA1 and RRP1B along the pseudotime trajectory.

highly expressed marker genes per cluster were visualized in a
heatmap (Figure 6B). Cell-type annotation revealed that the sample
mainly contained B cells, chondrocyte precursors, erythroid cells,
macrophages, monocytes, mesenchymal stem cells (MSC),
neutrophils, plasmacytoid dendritic cells (pDC), plasma cells,
proliferating cells, and T cells (Figure 6C). Visualization of key
lactylation-related genes showed that AKRIAI was markedly
upregulated in macrophages, monocytes, pDCs, and proliferating
cells, whereas RRPIB was predominantly upregulated in T cells
(Figures 6D-F). Pseudotime trajectory analysis demonstrated clear
differentiation trends along the developmental continuum among
distinct cell clusters (Figures 6G-I). The overall trajectory exhibited a
branched tree-like structure, suggesting multiple potential
differentiation routes. Cells progressively transitioned from early to
mature states, with major trajectories indicating differentiation from
MSCs and chondrocyte precursors toward immune-related
subpopulations such as macrophages, monocytes, and neutrophils.
In the state-based visualization, cells were divided into five states
(State 1-5); early-stage cells were mainly distributed in MSCs and
erythroid cells, whereas late-stage cells were enriched in macrophages
and monocytes, indicating a distinct temporal pattern of lineage
progression. Further analysis revealed that AKRIAI expression
markedly increased during the late pseudotime stages (mainly
corresponding to macrophage and monocyte phases), whereas
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RRPIB exhibited a relatively stable expression pattern without
pronounced time dependence (Figure 6]).

3.7 Results of cell-cell communication
analysis

Cell-cell communication analysis was performed using the
CellChat package to construct interaction networks based on
ligand-receptor pairs. The results revealed that intercellular
communication occurred primarily through three major modalities:
secreted signaling (61.8%), extracellular matrix (ECM)-receptor
interactions (21.7%), and cell-cell contact (16.5%) (Figure 7A).
Among the cell populations, Monocytes and Macrophages
exhibited particularly active interactions, reflecting robust
communication activity. Quantitative evaluation of interaction
count (Figure 7B) and communication strength (Figure 7C)
indicated that the interaction frequency and intensity between
Monocytes and Macrophages were remarkably elevated, suggesting
a key role for these cell types in modulating the immune
microenvironment. A ligand-receptor network illustrating
directional relationships among different cell types was constructed
(Figure 7D), revealing major signaling pairs across cell subsets. The
bubble plot displayed the critical ligand-receptor interactions along
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with their corresponding communication probabilities and P-values
(Figure 7E). Notably, ligand-receptor pairs from Macrophages to
Monocytes included CXCLI2-CXCR4, LGALS9-CD44, LGALS9-
CD45, SPP1-(ITGA4+ITGBI), and SPP1-CD44. All detected
signaling pathways were identified, including SPP1, RESISTIN,
CXCL, MK, ANNEXIN, MIF, ANGPTL, GALECTIN, IL16, FGF,
BAFF, CD40, CCL, CHEMERIN, CSF, BTLA, and FLT3. Given that
SPP] plays a direct role in bone remodeling by modulating osteoblast
and osteoclast activity, it was selected for further analysis. The major
cell types participating in the SPP1 signaling network included B cells,
BM cells, Erythroblasts, Macrophages, Monocytes, Myelocytes,
Neutrophils, T cells, and Tissue stem cells. A heatmap revealed
strong signaling between Macrophages and Monocytes (Figure 8A).
Role analysis showed that Macrophages functioned as Senders and
Influencers, while Monocytes acted as Mediators, Influencers, and
Receivers in the SPP1 pathway (Figure 8B). Contribution analysis of
ligand-receptor interactions highlighted SPPI-CD44 as a key
signaling axis (Figure 8C). Violin plots showed that SPPI was
highly expressed in Macrophages, while CD44 was enriched in
Monocytes (Figure 8D). The chord diagram and network plot
further demonstrated frequent and directional communication,
particularly between Macrophages and Monocytes (Figures 8E, F),
indicating that the SPP1-CD44 axis may serve as a critical bridge in
their interaction.
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3.8 Changes in RAW264.7 cell morphology,
AKR1A1 expression, and lactylation levels
under lactate intervention

After 48 hours of PMA (100 nM) induction, RAW264.7 cells
exhibited adherent growth with a uniform morphology, indicating
successful differentiation into MO-type macrophages. Distinct
morphological differences were observed under different treatment
conditions. In the control group (Ctrl), cells were densely arranged
with regular morphology. The lactate-treated group (LAC) showed a
comparable density to the control, with clear boundaries and slightly
shrunken cell bodies. In contrast, the osteoporosis serum group (OP)
exhibited reduced adhesion, sparse distribution, and irregular shapes,
with some cells showing shrinkage or detachment. Notably, the OP
+LAC group demonstrated markedly improved morphology
compared with the OP group, characterized by enhanced adhesion
and tighter arrangement (Figure 9A). These findings suggest that
lactate exerts a protective and regulatory effect on RAW264.7 cell
morphology under osteoporosis-related stress.

RT-qPCR analysis revealed significant differences in AKRIAI
mRNA expression among the four groups (Figure 9B). Compared
with the Ctrl group, both the LAC and OP groups exhibited
significantly increased AKRIAI mRNA levels (P < 0.05), with
the OP+LAC group showing the most pronounced elevation
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(P < 0.001). Further comparison indicated that AKRIAI expression
in the OP+LAC group was significantly higher than in either the
LAC or OP group (both P < 0.05), while no statistical difference was
observed between the LAC and OP groups (P > 0.05). These results
indicate that both lactate and osteoporosis serum upregulate
AKRIAI transcription, and their combined treatment produces a
synergistic enhancement effect.

Western blot analysis showed results consistent with the mRNA
expression pattern (Figure 9C). Compared with the Ctrl group,
AKRIAI protein expression was significantly increased in both the
LAC and OP groups (P < 0.05), with the OP+LAC group showing a
further marked increase (P < 0.001). Protein expression in the OP
+LAC group was significantly higher than in either the LAC or OP
group (both P < 0.05), while no significant difference was observed
between the latter two (P > 0.05). These findings demonstrate that
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both lactate and osteoporosis serum promote AKRIAI protein
expression, with a clear synergistic effect when combined.

To further assess lactylation modification of AKRIAI, co-
immunoprecipitation (Co-IP) was performed to detect the relative
expression of pan-Kla/AKRIAI (Figure 9D). Compared with the
Ctrl group, lactylation levels were significantly elevated in the LAC
and OP groups (P < 0.05) and were most pronounced in the OP
+LAC group (P < 0.001). The lactylation level in the OP+LAC
group was significantly higher than in either the LAC or OP group
(both P < 0.05), whereas no significant difference was found
between the LAC and OP groups (P > 0.05). These results suggest
that under osteoporotic conditions, lactate intervention further
enhances AKRIAI lactylation modification, with the combined
effects of lactate and osteoporotic serum exhibiting a pronounced
synergistic upregulation.
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RAW264.7 cells under different treatment conditions (optical microscopy, x200). Ctrl group: normal culture; LAC group: treated with lactate (10 mM)
for 24 h; OP group: treated with serum from osteoporotic patients (10%) for 24 h; OP+LAC group: co-treatment with osteoporotic patient serum
(10%) and lactate (10 mM) for 24 h. (B) mRNA expression levels of AKR1A1 in the four groups of RAW264.7 cells. (C) Protein expression levels of
AKR1A1 in the four groups of RAW264.7 cells, with B-actin used as an internal reference. (D) Lactylation levels of AKRIAL in the four groups. AKR1A1
was used as the immunoprecipitation antibody (IP: AKR1A1), and pan-Kla antibody was used to detect lactylation modification (IB: pan-Kla). The
lower panel shows the internal control for AKR1A1 expression (IB: AKR1A1). *p < 0.05, **p < 0.01, ***p < 0.001.

4 Discussion

Osteoporosis is a prototypical age-related chronic bone
metabolic disorder, traditionally characterized by an imbalance
between bone formation and resorption. In recent years,
the emerging concept of “immunometabolism” has garnered
increasing attention, highlighting the pivotal role of immune cell
metabolic reprogramming in modulating the inflammatory
microenvironment of bone tissue (16, 17). Lactate, a terminal
product of glycolysis, not only functions as a metabolic
intermediate but also acts as an epigenetic regulator via protein
lactylation (Kla), thereby influencing chromatin remodeling and
gene transcription (18). Zhang et al. were the first to identify
lactylation modifications on histone lysine residues, revealing its
role in gene activation (19). Subsequent studies demonstrated that
Kla exerts broad regulatory functions in macrophage polarization,
inflammatory responses, and tumor microenvironment remodeling
(20). Although several reviews have postulated that Kla may be
involved in the regulation of bone mineral density, the specific
target proteins and signaling pathways remain largely unexplored.
Aldo-keto reductase family 1 member Al (AKRIAI) is an
important enzyme involved in aldehyde metabolism and the
maintenance of redox homeostasis (21). Zhou et al. reported that
AKRIAI regulates oxidative stress and protein S-nitrosylation
under diabetic and hyperlipidemic conditions, suggesting a
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cytoprotective role in metabolic homeostasis (22). Emerging
evidence has indicated that AKRIAI expression modulates the
metabolic activity and differentiation capacity of osteoprogenitor
cells; however, its functional role in lactylation has not been
examined in the context of bone metabolism (23). To date, no
studies have systematically evaluated the lactylation status of
AKRIAI or its potential role in the metabolic-immune axis of
osteoporosis pathogenesis. In this study, we comprehensively
focused on the lactylation of AKRIAI, integrating multi-omics
analyses, single-cell RNA sequencing, and in vitro stimulation
assays using RAW264.7 macrophages treated with lactate
and osteoporotic serum. Our findings elucidate the involvement
of AKRIAI in the metabolic-immune regulatory axis of
osteoporosis, providing both theoretical insights and experimental
evidence for its potential as a therapeutic target.

In this study, a total of 1,347 lactylation-related genes were
cross-analyzed by integrating five GEO microarray datasets, leading
to the identification of 37 differentially expressed lactylation-related
genes (DEGs). Subsequently, a predictive model was constructed
using 113 combinations of machine learning algorithms, from
which 18 genes with high discriminative power were selected.
Among them, AKRIAI and RRPIB demonstrated exceptional
classification performance, with AUC values reaching 1.000 in the
training set and 0.944 and 0.720, respectively, in two independent
validation datasets, indicating stable predictive capabilities.
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AKRIAI was significantly upregulated in osteoporotic samples and
exhibited promising diagnostic and subclassification potential.
Single-cell transcriptomic analysis further revealed that AKRIAI
was highly expressed in monocytes and macrophages, suggesting its
potential role in modulating the local immune microenvironment
within the bone marrow. Protein-protein interaction (PPI) network
analysis based on the GeneMANIA database demonstrated that
AKRIAI was centrally positioned within a highly connected
network, functionally associated with glycolysis/gluconeogenesis,
pantothenate and CoA biosynthesis, and the p53 signaling pathway.
Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses consistently supported its
involvement in metabolic regulation. Previous studies have shown
that AKRIAI maintains redox homeostasis by catalyzing the
reduction of reactive aldehyde and ketone intermediates and plays
a cytoprotective role under conditions of oxidative stress and
metabolic dysregulation (24). Under hyperglycemic conditions,
AKRIAI modulates macrophage metabolism and inflammatory
status, implicating its dual role in metabolic-immune crosstalk
(25, 26). In parallel, lactate-induced protein lactylation has been
demonstrated to regulate macrophage polarization, inflammatory
transcriptional programs, and bone homeostasis (27, 28).
In conjunction with our findings, these results suggest that the
lactylation of AKRIAI may mediate its immunometabolic
regulatory function, thereby playing a critical role in the
pathogenesis of osteoporosis.

In our in vitro experiments using RAW264.7 cells, both lactate
(LAC) stimulation and serum derived from osteoporotic patients
(OP) independently induced a significant increase in AKRIAI
lactylation levels. Notably, the combined treatment with OP
serum and lactate (OP+LAC) exerted a synergistic enhancing
effect. RT-qPCR and Western blot analyses demonstrated that the
mRNA and protein expression levels of AKRIAI were highest in the
OP+LAC group, significantly exceeding those observed in the
single-treatment groups (P < 0.05), indicating that lactate and
pathological stimuli cooperatively upregulate AKRIAI expression.
Furthermore, Co-immunoprecipitation (Co-IP) assays measuring
the pan-Kla/AKRIAI ratio revealed a significant increase in
lactylation in the OP+LAC group (P < 0.01), providing the first
experimental evidence of lactate-dependent post-translational
modification of AKRIAI. These results support the notion that
lactate functions not merely as a metabolic byproduct, but as a
functional epigenetic modulator involved in protein modification
and signaling regulation. Previous studies have demonstrated
that lactate-induced protein lactylation in macrophages can
activate specific inflammatory gene programs and modulate
transcriptional activity via p300-mediated mechanisms (29, 30).
Our findings, for the first time, identify AKRIAI as a direct target of
lactylation, with its modification levels driven by the synergistic
effects of lactate and pathological signals, highlighting a distinct
physiological-pathological interplay. This conclusion addresses a
critical knowledge gap regarding the lactylation of AKRIAI and its
regulatory role in the context of osteoporosis.

Single-cell RNA sequencing analysis revealed a highly specific
expression pattern of AKRIAI within bone marrow-derived
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immune cells, predominantly localized in monocytes and
macrophages, suggesting its potential role in the regulation of the
osteoporotic immune microenvironment. Integrating these
findings with CIBERSORT-based immune infiltration analysis, we
observed a significant increase in M1 macrophage proportions in
osteoporotic samples, indicating a shift toward pro-inflammatory
polarization. The immune cell correlation heatmap further
demonstrated a marked negative correlation between T cell
subsets (e.g., CD4+ naive and memory resting) and M1/M2
macrophages, implying that T cell functionality may be
dynamically influenced by macrophage activity within the bone
marrow. Previous studies have confirmed that M1 macrophages, in
the context of osteoporosis and inflammatory bone loss, can
facilitate osteoclastogenesis and bone resorption by secreting pro-
inflammatory cytokines such as IL-13 and TNF-¢¢ (31). Notably, a
recent single-cell level study identified an OLRI+ macrophage
subset (Mac_OLR1) in osteoporotic bone marrow tissues
exhibiting typical M1 characteristics, accompanied by the
activation of chemokine and osteoclast-associated signaling
pathways, thereby contributing to osteoclast recruitment
and microenvironmental remodeling (1). Moreover, lactate
metabolism has been shown to modulate macrophage
polarization profiles and induce the expression of AKR family
enzymes, positioning these enzymes as potential metabolic-
immune regulatory hubs (28, 32). Our study further links
AKRIAI lactylation to specific immune phenotypes, suggesting
that it may mediate inflammatory amplification during M1
polarization via a metabolic enzyme-epigenetic modification-
signaling axis.

Cell-cell communication analysis based on CellChat revealed a
markedly enhanced interaction frequency between macrophages
and monocytes exhibiting high AKRIAI expression. Ligand-
receptor pair identification highlighted the SPPI1-CD44 axis as the
dominant signaling pathway. Specifically, SPP1 was highly
expressed in macrophages, whereas its receptor CD44 was
markedly upregulated in monocytes, suggesting a core interactive
bridge between these two immune subsets. Supporting this finding,
bubble plots, chord diagrams, and pathway heatmaps consistently
demonstrated a prominent communication density along this
bidirectional axis. Contribution analysis further confirmed
that the SPP1-CD44 signaling route held the highest weight in
the overall communication network. In this context, macrophages
acted primarily as signal “senders” and monocytes as predominant
“receivers,” reinforcing the directionality and functional polarity of
this intercellular communication axis. Previous studies have
established that SPPI plays a critical role in osteoclast adhesion
and differentiation, promoting bone resorption via activation of the
osteoclastogenesis pathway (33). CD44, a widely expressed adhesion
molecule on stem and immune cells, has been implicated in
macrophage migration and intercellular adhesion processes (34,
35). Moreover, the SPP1-CD44 axis has been shown to drive
macrophage polarization and immune signal transduction in both
tumor and tissue immune microenvironments, inﬂuencing immune
cell infiltration and local inflammatory states (36). This study,
for the first time, links AKRIAI lactylation—a candidate
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immunometabolic marker—to the SPPI-CD44-mediated bone
marrow immune communication network, proposing the
“AKRIAI1-SPP1-CD44” axis as a novel signaling pathway
involved in osteoporosis pathogenesis.

Multi-omics enrichment analyses revealed that high AKRIAI
expression was significantly associated with multiple metabolic
pathways, including drug metabolism, bile acid biosynthesis, fructose
metabolism, and phenylalanine metabolism, encompassing glucose,
lipid, and amino acid metabolism. Concurrently, KEGG pathway
enrichment also implicated immune-related mechanisms such as the
P53 signaling pathway and T cell receptor signaling, suggesting that
AKRIAI may exert a coupling regulatory function at the interface
between energy metabolism and immune responses. Both GSEA and
GSVA analyses consistently supported the potential regulatory role of
AKRIAI in the metabolic dysregulation underlying osteoporosis.
Previous studies have demonstrated that bone metabolism is
intricately dependent on mitochondrial activity, glycolysis, and
nutrient stress responses, with metabolic reprogramming emerging
as a core pathological component of osteoporosis (5, 37, 38). In both
osteoblasts and osteoclasts, remodeling of metabolic pathways directly
influences their differentiation and functional states (39). AKRIAI, as a
member of the aldo-keto reductase family, has been established to play
a critical role in maintaining redox homeostasis and detoxification of
metabolic intermediates (21, 40). However, its mechanistic
involvement within the metabolic network of bone tissue remains
largely unexplored. This study is the first to propose that AKRIAI-
mediated lactylation is closely linked to metabolic reprogramming,
thereby constructing a tripartite regulatory framework of “lactylation-
metabolism-immunity” and offering a novel perspective on the
metabolic pathology of osteoporosis.

This study systematically elucidates the multifaceted role of the
lactylation-associated enzyme AKRIAI in the pathogenesis of
osteoporosis and, for the first time, proposes that it orchestrates
disease progression through metabolic reprogramming, immune
modulation, and intercellular communication. By integrating multi-
omics analysis, machine learning-based feature selection, single-cell
annotation, and in vitro functional validation, a comprehensive
research framework was established spanning from biomarker
discovery to mechanistic verification. AKRIAI lactylation was
markedly upregulated in osteoporotic conditions, exhibiting
strong diagnostic performance and potential value for molecular
subtyping and therapeutic intervention. These findings broaden the
research scope and target landscape of metabolic bone disorders.

Despite the robust findings, several limitations remain in this
study. First, the in vitro experimental system cannot fully
recapitulate the complex cell-microenvironment interactions
present in osteoporotic bone tissue, and the physiological
relevance of the results requires further in vivo validation. Second,
the specific lysine residues subjected to AKRIAI lactylation have
not yet been identified, and the structural basis and functional
consequences of these modifications remain unclear. Third, the lack
of AKRIAI knockdown or mutational intervention experiments
limits the causal interpretation of its role in the pathophysiological
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process. Future studies should aim to construct lactylation-deficient
AKRIAI mutants to delineate critical modification sites and assess
their functional impact. In vivo validation using osteoporotic
animal models would help confirm the pathogenic role of
AKRIAI in bone metabolism. Moreover, elucidating its regulatory
effects on the dynamic balance between osteoclasts and osteoblasts
may offer mechanistic insights. On this basis, the development of
selective small-molecule inhibitors targeting AKRIAI lactylation
could represent a novel therapeutic strategy for osteoporosis.

5 Conclusion

This study identifies AKRIAI as a key lactylation-modified gene
involved in the pathogenesis of osteoporosis. Through integrated
multi-omics analysis, machine learning-based feature selection,
single-cell transcriptomic annotation, and in vitro functional
validation, we demonstrate that AKRIAI is significantly upregulated
and exhibits enhanced lactylation under osteoporotic conditions. It is
predominantly expressed in monocytes and macrophages, where it
participates in metabolic reprogramming, immune polarization, and
SPP1-CD44-mediated intercellular communication. Functional
enrichment analyses further reveal strong associations between
AKRIAI and glycolytic as well as inflammatory signaling pathways.
Collectively, these findings suggest that AKRIAI lactylation plays a
central role in the metabolism-immunity regulatory axis of
osteoporosis, and highlight its potential as an early molecular
biomarker and therapeutic target.
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