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The recent advancement of mRNA technology has opened new therapeutic
avenues for treating hematologic malignancies, offering innovative approaches
to enhance existing immunotherapies. This review examines the expanding role
of in vitro transcribed (IVT)-mRNA-based platforms in hemato-oncology,
focusing on key areas: monoclonal antibody production, bispecific antibody
development, and CAR-T cell engineering. Unlike conventional biologics, mRNA
allows for in vivo expression of therapeutic proteins, reducing manufacturing
complexity and expanding access through scalable, cell-free synthesis. IVT-
MRNA-encoded monoclonal and bispecific antibodies can overcome
limitations such as short half-life and the need for continuous infusion, while
enabling innovations like Fc silencing, protease-activated masking, and
combinatorial immunotherapies. In CAR-T cell therapy, IVT-mRNA provides
transient, safer alternatives to viral vector-based approaches and facilitates
emerging strategies such as in vivo CAR programming and IVT-mRNA vaccine-
like boosters. Despite these advantages, challenges remain, including delivery
precision, durability of therapeutic effects, and limited clinical trial success.
Beyond therapeutic mechanisms, the integration of bioinformatics and Al in
IVT-mRNA design is accelerating the development of personalized and efficient
cancer treatments. Overall, mRNA technology is redefining immunotherapy in
hematology and holds the potential to broaden access to advanced
treatments globally.
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1 Introduction

Hematologic malignancies encompass a group of cancers that
stem from lymphohematopoietic system. These malignancies
include such categories as: acute and chronic leukemias,
lymphomas, multiple myelomas (MM), myelodysplastic
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syndromes (MDS), and myeloproliferative neoplasms (MPNs).
Acute lymphoblastic leukemia (ALL) is defined by an abnormal
expansion of immature lymphocytes (1). The most prevalent form
of acute leukemia in adults is acute myeloid leukemia (AML). It
arises from hematopoietic stem cells (HSCs) or more differentiated
myeloid progenitor cells, and is driven by genetic mutations that
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contribute to its extensive heterogeneity (2, 3). Lymphomas are a
class of hematologic neoplasms that can form solid tumors. They
are generally classified as either Hodgkin lymphoma (HL), which
represents ca. 10% of lymphomas, or non-Hodgkin lymphoma
(NHL). Among NHL subtypes, diffuse large B-cell lymphoma
(DLBCL), mantle cell lymphoma (MCL), and follicular
lymphoma (FL) belong to the most frequently diagnosed (4). HL
displays unique histological, immunophenotypic, and clinical
characteristics, with classical HL (cHL) and nodular lymphocyte
predominant HL as its main forms (5). MM, MDS, and MPN are
mostly diagnosed in older adults - MM alone accounts for around
10% of hematologic cancers and currently lacks a curative therapy.
It often begins as silent precursors such as monoclonal gammapathy
of undetermined significance (MGUS) or smoldering MM (SMM)
(6). MDS, meanwhile, is a clonal disorder marked by defective
hematopoiesis and an inherent risk of progression to AML (7).

Blood cancers encompass a highly diverse spectrum of diseases,
posing serious risks to patients, imposing substantial burdens on
healthcare systems, and presenting major challenges for the
development of effective curative therapies (8).A precise
understanding of these processes occurring in cancer cells is
essential for designing new treatments for the diseases, that have
so far remained beyond the reach of successful therapeutic outcomes.

The emergence of immunotherapy has transformed the
treatment of hematologic malignancies, offering lasting remission,
especially in relapsed or refractory (R/R) cases. These cancers
interact constantly with immune cells, shaping an immune
microenvironment that, simultaneously, supports surveillance and
enables tumor survival. Originating in the immune system, they
exhibit both immunostimulatory and immunosuppressive traits (9).
Various immunotherapies aim to boost the body’s immune
response, each with unique advantages and limitations that
require further refinement.

One innovative therapeutic approach of immunotherapy is the
use of mRNA technology. Following the success of in vitro
transcribed (IVT)-mRNA-based coronavirus disease 2019
(COVID-19) vaccines, IVT-mRNA therapeutics have gained
significant traction within the biopharmaceutical field. Due to their
capacity for rapid production, personalization, and strong
reactogenicity, IVT-mRNA applications are now being explored in
oncology. Current applications of IVT-mRNA-based therapeutics in
oncology can be categorized into four main areas: (1) IVT-mRNA
vaccines designed to elicit immune responses against tumor-specific
antigens, (2) IVT-mRNA-encoded monoclonal antibodies that
enable transient in vivo production of antibodies, (3) IVT-mRNA-
engineered chimeric antigen receptor (CAR)-T cell therapies, where
IVT-mRNA is used to transiently express chimeric antigen receptors
in T cells, and (4) IVT-mRNA coding for functional proteins, such as
cytokines, immune checkpoint inhibitors, or pro-apoptotic factors,
aimed at modulating the tumor microenvironment or directly
inducing tumor cell death (10).

This review summarizes the development of IVT-mRNA
therapeutics, from their early experimental foundations through
the advances achieved during the COVID-19 pandemic to
subsequent refinements in platform design. Applications in
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hematology are then considered, with attention to their
integration into monoclonal antibodies (mAbs), bispecific
antibodies (bsAbs), and chimeric antigen receptor (CAR) T-cell
therapies. T-cell engagers (TCEs), a subclass of bsAbs, are
highlighted as an example of how mRNA delivery may be applied
to address current challenges. The review concludes with
perspectives on future directions, including the use of artificial
intelligence (AI) for molecular optimization, strategies to support
scalable clinical translation, and the development of next-
generation RNA formats with expanded functionality.

2 Principles of mRNA therapeutics

mRNA serves as a crucial intermediary in gene expression,
transmitting genetic information from DNA in the nucleus to
ribosomes in the cytoplasm, where proteins are synthesized. This
process underlies the regulation of nearly all cellular functions (11).
Beyond its natural role, mRNA is now being harnessed as a
therapeutic tool, offering new strategies for treating cancer,
infectious diseases, and genetic disorders.

2.1 Molecular design

The development of IVT was pivotal technological
breakthrough for mRNA research. In 1990, Wolf et al.
demonstrated that IVT of DNA into mRNA could generate
transcripts capable of serving as translational templates in
transfected cells. However, the resulting IVT-mRNA was
inherently unstable and rapidly degraded by ubiquitous intra- and
extracellular ribonucleases. The therapeutic limitation was later
addressed through strategic chemical and structural modifications
to the IVT-mRNA molecule, which greatly improved its stability
and translational efficiency. These advances laid the foundation for
the use of IVT-mRNA vaccines, gene therapies, and other
innovative medical treatments (12).

The initial therapeutic aim of IVT-mRNA was to replace or
supplement missing or defective proteins in patients (13). In 1992,
early studies of Jirikowski et al. showed that intracerebral injecting
vasopressin IVT-mRNA could partially reverse diabetes insipidus in
rats (14). Soon after, IVT-mRNA was also explored as an antigen
source in vaccines against infectious diseases and cancer. One of the
earliest applications of IVT-mRNA in cancer immunotherapy
occurred in the mid-1990s, when Gilboa’s group pioneered the
use of IVT-mRNA-pulsed dendritic cells to present tumor antigens
- a groundbreaking step in the development of IVT-mRNA-based
cancer vaccines (15). Subsequently, it was proposed that IVT-
mRNA could serve as an antigen source in vaccines for both
infectious diseases and cancer, ultimately leading to the creation
of IVT-mRNA vaccines (12, 16). Consequently, the European
Medicines Agency (EMA) has designated IVT-mRNA-based
therapeutics as Advanced Therapy Medicinal Products (ATMPs),
and more specifically, as Gene Therapy Medicinal Products
(GTMPs) (17).
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The COVID-19 pandemic significantly boosted interest in IVT-
mRNA-based therapies (18). On December 11, 2020, the U.S. Food
and Drug Administration (FDA) granted emergency use
authorization for the COVID-19 vaccine, Comirnaty (BNT162b2),
developed by BioNTech and Pfizer using IVT-mRNA technology
(19-21)., followed by the Moderna’s Spikevax (mRNA-1273), granted
by FDA on December 18, 2020. Since then, IVT-mRNA vaccines
have been widely administered, playing a crucial role in curbing the
spread of COVID-19 globally (22). In 2022-2023, updated bivalent
formulations of both Spikevax and Corminaty targeting Omicron
subvariants were authorized by the FDA." (23) Beyond COVID-19, in
May 2024, Moderna’s mRNA 1345 (mRESVIA) was approved by the
FDA as the first IVT-mRNA-based vaccine targeting a non-COVID-
19 indication, namely the prevention of respiratory syncytial virus
(RSV).? The platform’s versatility was further evidenced by Japan’s
November 2023 approval of Arcturus/CSL’s self-amplifying Spikevax
alternative, Kostaive, authorized in the European Union (EU) in
February 2025

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic highlighted the immense potential of IVT-
mRNA as a therapeutic agent, driven by the urgent need for
rapid vaccine development. This swift progress was made possible
due to the extensive experience and advancements in mRNA
technology over the past three decades (24). (Figure 1).

The primary sensors of the innate immune response, which play
a crucial role in detecting IVT-mRNA within cells, are pattern
recognition receptors (PRRs). mRNA is recognized by PRRs such as
Toll-like receptors (TLRs) 3, 7, and 8, as well as retinoic acid-
inducible gene I (RIG-I) and melanoma differentiation-associated
protein 5 (MDAD5), leading to the upregulation of pro-inflammatory
cytokines and activation of the inflammasome (25, 26). TLR3
detects double-stranded RNA (dsRNA), while TLR7/8 recognizes
single-stranded RNA (ssRNA) (27). Systemic administration of
unmodified and unpurified IVT-mRNA can strongly activate the
immune system, triggering the production of pro-inflammatory
cytokines and type I interferons. This challenge arises primarily
because IVT-mRNA does not follow the natural nuclear-to-
cytoplasmic export pathway of endogenous mRNA, but instead
enters cells via endocytosis and must escape from endosomes into
the cytoplasm - a step that is both inefficient and a major bottleneck
in IVT-mRNA delivery. Endosomes typically degrade IVT-mRNA
before it can reach the cytoplasm, thus reducing its therapeutic
potential (28).

To address this, several strategies have been developed to
enhance endosomal escape. One approach involves the use of
lipid nanoparticles (LNPs), which are engineered to protect IVT-
mRNA from degradation while facilitating cellular uptake. These

1 https://www.fda.gov/news-events/press-announcements/fda-
approves-and-authorizes-updated-mrna-covid-19-vaccines-better-
protect-against-currently, access 05.08.2025.

2  https://www.fda.gov/vaccines-blood-biologics/vaccines/mresvia,
access 05.08.2025.

3 https://www.ema.europa.eu/en/medicines/human/EPAR/kostaive,
access 05.08.2025.
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LNPs can be modified with ionizable lipids, which become
protonated in the acidic environment of the endosome, leading to
the destabilization of the endosomal membrane and enabling the
mRNA to escape into the cytoplasm. This approach has proven
critical in the successful delivery of IVT-mRNA vaccines and other
therapeutic IVT-mRNA applications (29-31).

Another problem is that IVT-mRNA typically exhibits a
different pattern of base modifications compared to the cell’s own
mRNA. The pivotal discovery by Kariké and Weissman showed,
that incorporation of specific nucleoside modifications allows IVT-
mRNA to partially evade recognition by PRRs, thereby reducing
innate immune activation while enhancing translation efficacy. For
example, modifications such as pseudouridine, 2-thiouridine, 5-
methylcytidine, N;-methylpseudouridine, or 5-methylpyridine can
diminish TLR7- and TLR8-mediated sensing (32). Additionally,
activation of RIG-I and protein kinase RNA-activated (PKR) can be
mitigated through the introduction of pseudouridine and 2-
thiouridine (33-37).

Indeed, earlier studies demonstrated that replacing uridine with
pseudouridine throughout the IVT-mRNA sequence could yield
non-reactogenic IVT-mRNA (32, 34, 38). By combining various
nucleotide substitution strategies, researchers achieved reduced
activation of PRRs - such as TLR3/7/8 and RIG-I - in human
peripheral blood mononuclear cells (PBMCs). The incorporation of
N;-methylpseudouridine into IVT-mRNA molecules not only
diminished their reactogenicity but also enhanced their
translational efficiency both in vitro and in vivo. Chemical
modification of nucleoside sites has thus emerged as a
cornerstone in the optimization of therapeutic IVT-mRNA
production (33, 35). However, it is important to note that while
chemically modified uridines may not directly improve
translational efficacy - since ribosomes may often read
unmodified uridine more efficiently than its modified
counterparts — the primary benefit of these modifications lies in
the reduction of mRNA-induced immune activation. The decreased
immune recognition prevents the activation of innate immune
responses that would otherwise hinder translation and protein
expression. Besides the codon-optimized coding sequence, the
current literature identifies four additional key regions of IVT-
mRNA that are targeted for modifications during its production
(39-41): (1) the 5 cap structure, (2) the 5 untranslated region
(UTR), (3) the 3* UTR, and (4) the poly-A tail (Figure 2).

Despite these advancements, even fully modified IVT-mRNA
containing optimally altered nucleosides retains some capacity to
activate the immune system. Modifications do not entirely eliminate
the ability of IVT-mRNA to trigger PRR sensors, partly due to
impurities in the material. For instance, double-stranded RNA
(dsRNA) contaminants can activate RIG-I, MDA5, PKR, and 2’-5
oligoadenylate synthetase. High-performance liquid
chromatography (HPLC) is one established method for purifying
IVT-mRNA from such impurities. Purified IVT-mRNA exhibits
significantly lower immunogenicity, reduced induction of type I
interferons (IFNs) and tumor necrosis factor oo (TNF-o), and
enhanced translational capacity of the encoded proteins (16, 32,
34, 42, 43).
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FIGURE 1

The rise and bloom of mMRNA therapeutics in hematology. (A) Timeline of milestones in the development of mMRNA for CAR-T and BiTE therapies.
The development of mMRNA encoding CAR-T and BiTE therapies began with the discovery of mRNA in 1961 %8 1n 19609, the first in vitro translation of
mRNA was achieved *°, followed by the discovery of the poly (A) tail (1971) °© and the mRNA cap (1975) ®*. In the 1980s and 1990s, techniques for
mRNA transcription and transfection were developed ®2 ®*. In 1990, in vivo translation of mMRNA was achieved ®4, and by 1993, an immune response
to synthetic MRNA was documented °. In 2002, the first clinical trials with synthetic MRNA took place ©¢, and in 2008, CAR-T therapy was tested in
mice . The first clinical CAR-T trials using mRNA began in 2011 8. In 2017, tumor elimination using mRNA-encoded bispecific antibodies was
achieved ©°. In 2020, CAR-mRNA delivery was advanced with nanocarriers and lipid nanoparticles (LNPs) . By 2023, LNP-mediated delivery of
mMRNA encoding BiTEs was reported 7%, and in 2024, circular mRNA-based CAR-T therapies and organ-specific delivery of mRNA-encoded BiTEs
were introduced 72 7%, (B) Publications Mentioning mRNA Therapeutics in Hematological MalignanciesBased on PubMed, keywords: “mRNA
therapeutics,” "hematological malignancies.” Created with BioRender.
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Even with these purification and optimization techniques, the
protein products of the IVT-mRNA retain some immunogenic
properties, particularly the potential to elicit anti-drug antibodies
(ADA) and pro-inflammatory cytokine responses, which may
interfere with the desired therapeutic outcome. However, in
certain contexts, such immunogenicity can be advantageous,
serving i.e. as an intrinsic adjuvant in IVT-mRNA-based vaccines
(42, 44).

2.2 Delivery platforms

Another critical consideration is the IVT-mRNA delivery
method into target cells. Like all nucleic acid-based therapeutics,
IVT-mRNA faces challenges related to its negative charge, high
molecular weight, and inability to passively cross the hydrophobic
cell membranes. To overcome these barriers, various delivery
strategies have been developed, including: (1) optimized injection
protocols - e.g. intramuscular or intradermal routes that leverage
local immune cells for uptake, (2) physical methods - such as
electroporation or gene gun-based delivery, which facilitate cellular
entry via mechanical or electrical disruption, (3) chemical
complexation - with cationic polymers or protamine, which
condense IVT-mRNA into more stable, positively charged
particles, (4) adjuvants that enhance immunogenicity when co-
delivered with IVT-mRNA, or (5) nanocarrier encapsulation,
particularly LNPs, which protect IVT-mRNA from degradation
and promote endosomal escape into the cytosol. LNPs, composed of
four main lipid types - (1) cholesterol, (2) PEGylated lipids, (3)
ionizable lipids, (4) phospholipids, and IVT-mRNA—form globular
structures under acidic conditions, enabling IVT-mRNA transport
to a cell in an endosome-like manner (16, 45). The first in-human
study evaluating the immunogenicity and safety of LNP-
encapsulated IVT-mRNA, conducted by Moderna using an
influenza HA mRNA vaccine (NCT03076385), demonstrated an
acceptable safety profile and sufficient immunogenicity in 2017
(46). Nevertheless, LNP formulations require further optimization,
and their composition remains a focus of ongoing research aimed at
developing advanced IVT-mRNA delivery systems (47-50).

IVT-mRNA-based therapeutics hold immense promise for
advancing treatment strategies, particularly in infectious diseases
and oncology. Infectious diseases, characterized by their rapid
evolution and spread - as exemplified by the COVID-19
pandemic and other historical outbreaks - benefit from the
relative ease and cost-effectiveness of IVT-mRNA production,
which facilitates rapid response to emerging pathogens (16). In
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hemato-oncology, the diversity and individuality of cancer targets
make IVT-mRNA an attractive platform for personalized therapies
and precision delivery systems.

Oncology-focused IVT-mRNA therapeutics employ approaches
such as genome editing, cytokine-based immunotherapy, transient
ex vivo engineering of T cells, and in vivo production of
conventional or bispecific antibodies. These strategies have the
potential to reduce the toxicity associated with traditional high-
dose treatments (51, 52). However, challenges remain, including
delivery efficiency, durability of effects, and potential off-target

immune activation.

3 Applications in hematology
3.1 Monoclonal antibodies

mAbs are pivotal components of cancer immunotherapy,
functioning through multiple mechanisms to mobilize the
immune system against tumor cells. These mechanisms include:
1) direct induction of programmed cell death (PCD), driving cancer
cells into apoptosis, and 2) activation of immune-mediated
pathways such as antibody-dependent cellular cytotoxicity
(ADCC), complement-dependent cytotoxicity (CDC), and
macrophage-mediated phagocytosis (53-56). These cellular
pathways rely heavily on interactions between the Fc region of
the antibody and the Fc gamma receptors (FcyRs) on tumor cells,
making mAbs powerful therapeutic agents for targeting cancer cells
in various hematologic malignancies (57, 58).

First-generation mAbs were murine-derived proteins, IgG
molecules targeting single antigenic epitopes on cancer cells.
These antibodies were traditionally produced using hybridoma
technology, which involves fusing antigen-activated murine B
lymphocytes with myeloma cells. The B lymphocyte component
enables the hybridoma to secrete highly specific antibodies, while
the myeloma component allows for their mass production.
However, a significant drawback of these murine-derived
antibodies is their potential to trigger a human anti-mouse
antibody (HAMA) response, which can reduce therapeutic
efficacy and increase adverse effects (59, 60). This limitation
spurred the development of increasingly humanized mAbs.

Second-generation mAbs, such as chimeric antibodies (e.g.,
rituximab), combine murine variable regions with human
constant domains, significantly reducing but not entirely
eliminating the HAMA response (61, 62). Further advancements
led to humanized mAbs, where only the complementarity-
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Biorender.

determining regions (CDRs) are murine, and the majority of the
sequences are of human origin, further minimizing
immunogenicity. Fully human mAbs exhibit the lowest
immunogenicity and are produced using the following platforms:
(1) phage display libraries, (2) yeast display systems, (3) transgenic
mice hybridomas, (4) human hybridoma technology, (5) single B
cell cloning, (6) glycoengineering. While fully human mAbs rarely
induce ADAs, isolated cases of anti-idiotypic responses have been
reported (63-65).

The development and implementation of mAbs in hemato-
oncology have significantly expanded therapeutic options and
improved clinical outcomes for many diseases. By targeting
specific antigenic epitopes on cancer cells and mediating immune
system activation, mAbs offer a vast array of therapeutic
approaches, establishing them as a cornerstone in the fight
against hematologic cancers.

The aforementioned rituximab, a chimeric mAb targeting
CD20, marked the entry of mAbs into the treatment of
hematologic malignancies (62). Initially approved by the FDA in
1997 for R/R CD20-positive B-cell NHL, rituximab’s indications
have since expanded significantly. As of 2025, its FDA-approved
uses include: (1) NHL - first line and R/RFL, DLBCL in
combination with chemotherapy, maintenance therapy for FL
after response to initial treatment; (2) CLL - in combination with
chemotherapy for previously untreated or relapsed CLL; (3)
autoimmune diseases: rheumatoid arthritis and granulomatosis
with polyangiitis and microscopic polyangitis. Over time, newer
generations of anti-CD20 antibodies emerged, such as ofatumumab,
a fully human mAb that binds to a different CD20 epitope than
rituximab. Ofatumumab received FDA approval in 2009 for the
treatment of CLL, which was later expanded in 2014 for use in
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combination with chlorambucil (66). Another anti-CD20 antibody,
obinutuzumab, gained FDA approval in 2013 for CLL treatment in
combination with chlorambucil and in 2016 with bendamustine for
R/R FL (67, 68). Daratumumab, an anti-CD38 mAD, is used in MM
therapy (69), and elotuzumab, an anti-signaling lymphocytic
activation molecule 7 (SLAMF7)/CDS1 mAb, received FDA
approval in 2015 for R/R MM in combination with lenalidomide
and dexamethasone (70). These and other antibodies have laid the
foundation and set the direction for the development of novel
therapies in hemato-oncology (Table 1).

However, the production of monoclonal antibodies for clinical
use is constrained by several practical challenges. High production
costs, difficulties in protein purification, the need for post-
translational modifications, and the formation of aggregates
during long-term storage limit their broader application (71, 72).
both antibodies and antibody fragments often have short half-lives,
requiring frequent administration or continuous infusion via i.v.
infusion pumps, or i.v. drip infusions, which are burdensome for
patients and increases the risk of adverse effects. These factors
further escalate treatment costs (73).

In light of these challenges, IVT-mRNA technology emerges as
a simple and elegant solution, offering the potential to overcome the
limitations of protein-based monoclonal antibody therapies. The
drawbacks of protein storage and administration can be bypassed
by delivering the genetic information encoding the antibody,
enabling the patient’s body to produce its own therapeutic
protein (74, 75). This approach could significantly reduce
production, storage, and treatment costs, thereby expanding
access to advanced therapies for underserved populations and
developing countries where access to costly treatments is limited
or nonexistent (76-78).
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TABLE 1 Standard mAbs, BiTEs, and CAR-T cells available for hematologic malignancies.

10.3389/fimmu.2025.1680071

Active Indication First-Based Approval-Based Clinical Trials;
ingredient FDA/ EMA Number of Participant
and Brand Registriation
Name Date
Unconjugated mAbs
Daratumumab CD38 R/R MM November 2015/ MMY3003 (NCT02076009)% n = 286 (efficacy = ORR =
Darzalex April 2017 group) 91,3%,
CR =
42,3%
Elotuzumab SLAMF7 R/R November 2015/ ELOQUENT-2 (NCT01239797)% n = 321 ORR =
Empliciti MM May 2016 (efficacy group) 79%,
CR =
4%
Isatuximab CD38 R/R MM March 2020/ May ICARIA-MM (NCT02990338)% n = 154 ORR =
Sarclisa 2020 (efficacy group) 93%,
CR =
7%
Mogamulizumab CCR4 R/R mycosis August 2018/ Study 0761-010 (NCT01728805)"; n=186 ORR =
Poteligeo fungoides or November 2018 (efficacy group) 52%,
Sézary syndrome CR =
2%
Obinutuzumab CD20 CLL November 2013/ CLL11 (NCT01010061)% n = 238 (efficacy ORR =
Gazywa July 2014 group) 78,2%,
CR =
28,2%
R/R FL February 2016/ GADOLIN (NCT01059630)% n = 155 (efficacy | ORR =
June 2016 group) 78,7%,
CR =
15,5%
Ofatumumab CD20 R/R October 2009/ HuMax-CD20 (NCT00349349)'%; n= 138 ORR =
Azerra CLL April 2010 42%,
CR =
0%
Previously untreated =~ April 2014/ July =~ COMPLEMENT 1 (NCT00748189)''; n =221 | ORR =
CLL 2014 (efficacy group) 82%,
CR =
14%
Rituximab CD20 NHL November 1997/ N=166" OR =
MabThera June 1998 48%,
CR =
4%
CLL February 2010/ CLL8 (NCT00281918)"% n = 408 (efficacy ORR =
October 2009 group) 90%,
CR =
44%
Tafasitamab CD19 R/R DLBCL July 2020/ August L-MIND trial (NCT02399085)"%; n = 80 ORR =
Monjuvi 2021 48%,
CR =
34%
Conjugated mAbs
Brentuximab CD30 Hodgkin’s August 2011/ A Pivotal Open-Label Trial of Brentuximab ORR =
vedotin lymphoma October 2012 Vedotin for Hodgkin Lymphoma 75%,
Adcetris (NCT00848926)"; n = 102 CR =
33%
ALCL A Phase 2 Open Label Trial of Brentuximab ORR =
Vedotin (SGN-35) for Systemic Anaplastic 86%,
(Continued)
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TABLE 1 Continued

Active
ingredient

and Brand
Name

Indication

First-Based
FDA/ EMA
Registriation
Date

Conjugated mAbs

10.3389/fimmu.2025.1680071

Approval-Based Clinical Trials;
Number of Participant

Large Cell Lymphoma (NCT00866047)'%; n = CR =
58 57%
Gemtuzumab CD33 AML May 2000/ April Study 201/202/203"7, n = 142 (total) ORR =
ozogamicin 2018 30%,
Mylotarg CR =
16%
Ibritumomab CD20 R/R NHL February 2002/ Phase I/1I trial of IDEC-Y2B8 ORR =
tiuxetan January 2004 radioimmunotherapy for treatment of relapsed 80%,
Zevalin or refractory CD20(+) B-cell non-Hodgkin's CR =
lymphoma'®; n=73 (efficacy group) 30%
Inotuzumab CD22 R/R ALL August 2017/ June INO-VATE ALL (NCT01564784)"%; n=164 ORR =
ozogamicin 2017 (efficacy group) 80,7%,
Besponsa CR =
35,8%
R/R ALL March 2024/ WI203581 study (NCT02981628)*% n = 53 ORR =
March 2023 82,5%,
CR =
42%
Loncastuximab CD19 R/R DLBCL NOS, April 2021/ August LOTIS-2 (NCT03589469)*"; n = 145 ORR =
tesirine DLBCL arising from 2021 48,3%,
Zynlonta low-grade CR =
lymphoma and 24,1%
HGBCL
Polatuzumab CD79B R/R DLBCL June 2016/ January Study GO29365 (NCT02257567)* n = 40 ORR =
vedotin POLIVY 2020 (efficacy group) 45%;
CR =
40%
BIiTEs
Blinatumomab CD19 x CD3 Ph(-) R/R B-ALL December 2014/ MT103-211 (NCT01466179)**; n = 189 ORR =
Blincyto November 2015 43%;
CR =
33%
MRD (+) BCP ALL | March 2018/ June BLAST Study, (NCT01207388)*; n = 116 CR=
2018 77%
Elranatamab CD3 x BCMA R/R MM August 2023/ MagnetisMM-3 (NCT04649359)*%; n = 123 ORR =
Elrexfio December 2023 61%,
CR =
35%
Epcoritamab CD20 x CD3E R/R DLBCL November 2022/ EPCORE NHL-1 (NCT03625037)*% n = 157 | ORR =
Epkinly September 2023 63,1%,
CR =
38,9%
R/R FL June 2024/ August EPCORE NHL-2 NCT04663347”; n = 62 ORR =
2024 95%,
CR =
73%
Glofitamab CD20 x CD3 R/R DLBCL, NOS or ~ June 2023/ July NP30179 (NCT03075696)%% n = 154 ORR =
Columvi LBCL arising from 2023 52%,
FL CR =
39%
(Continued)

Frontiers in Immunology

09

frontiersin.org



https://doi.org/10.3389/fimmu.2025.1680071
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hunia et al.

TABLE 1 Continued

10.3389/fimmu.2025.1680071

Active Indication First-Based Approval-Based Clinical Trials;
ingredient FDA/ EMA Number of Participant
and Brand Registriation
Name Date
BiTEs
Mosunetuzumab CD20 x CD3 R/R FL December 2022/ GO29781 (NCT02500407)*% n = 906 ORR =
Lunsumio June 2022 72%,
CR =
60%
Teclistamab BCMA x CD3 R/R MM October 2022/ MajesTEC-1, ( NCT03145181 [Phase 1] ORR =
Tecvayli August 2022 and NCT04557098 [Phase 2])*’, n = 165 63%,
CR =
39,4%
Talquetamab GPRC5D x CD3 R/R MM August 2023/ MonumenTAL-1 (NCT03399799, ORR =
Talvey August 2023 NCT04634552)*'*% n = 288 73,6%,
CR =
12,4%
Linvoseltamab- BCMA x CD3 R/R MM February 2025/ LINKER-MM1 (NCT03761108)*%; n=117 ORR =
gept April 2025 71%,
Lynozyfic CR=
50%
CAR-T
Generic Name Target Indication First-Based FDA/ Approval-Based Clinical Trials, Number of CR or
and Brand Name EMA Registriation Participant ORR
Date rate
Axicabtagene CD19 R/R PMBCL October 2017/ ZUMA-1 (NCT02348216)**, n=101 ORR =
ciloleucel August 2018 83%,
Yescarta R/R DLBCL CR =
(including DLBCL 549
arising from FL)
R/R FL March 2021/ ZUMA-5 (NCT03105336)*% n = 84 ORR =
March 2022 92%,
CR =
79%
Brexucabtagene CD19 R/R MCL July 2020/ ZUMA-2 (NCT02601313)*%; n = 60 (efficacy | ORR =
autoleucel December 2020 group) 93%,
Tecartus CR =
67%
R/R B-ALL October 2021/ July ZUMA-3 (NCT02614066)*”; n = 55 ORR =
2022 71%,
CR =
56%
Ciltacabtagene BCMA R/R MM February 2022/ CARTITUDE-1 (NCT03548207)*% n = 97 ORR =
autoleucel May 2022 97%,
Carvykti CR =
67%
Indecbtagene BCMA R/R MM March 2021/ KarMMa, (NCT03361748)*; n = 128 ORR =
vicleucel August 2021 73%,
Abecma CR =
33%
Lisocabtagene CD19 R/R LBCL February 2021/ TRANSCEND NHL 001 (NCT02631044)*, n ORR =
maraleucel (including DLBCL April 2022 =256 73%,
Breyanzi arising from CR =
indolent lymhoma) 56%
R/R HGBCL
R/R PMBCL
(Continued)
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TABLE 1 Continued

Active Indication First-Based Approval-Based Clinical Trials;
ingredient FDA/ EMA Number of Participant
and Brand Registriation
Name Date
CAR-T
R/R FL (grade 3B)
R/R MCL May 2024/ not yet ~ TRANSCEND-MCL (NCT02631044)*'; n = 83 = ORR =
registered (efficacy group) 83,1%,
CR =
72,3%
R/R CLL/SLL March 2024/ not ~ TRANSCEND CLL 004 (NCT03331198)* n  ORR =
yet registered = 65 (efficacy group) 48%,
CR =
20%
Obecabtagene CD19 R/R B-ALL November 2024/ FELIX (NCT04404660)*; n = 127 ORR =
autoleucel not yet registered 78%
Aucatzyl
Tisagenlecleucel CD19 R/R B-ALL August 2017/ ELIANA, (NCT02435849)44; n=75 ORR =
Kymriah August 2018 82%
CR =
60%
R/R DLBCL May 2018/ August JULIET (NCT0244524)*% n = 93 ORR =
2018 53%,
CR =
40%
R/R FR May 2022/ May ELARA (NCT03568461)"% n = 97 CR =
2022 69%,
ORR =
86,2%,

ALCL, anaplastic large cell lymphoma; AML, acute myeloid leukemia; B-ALL, B cell acute lymphoblastic leukemia; BCP-ALL, B-cell precursor acute lymphoblastic leukemia; CLL, chronic
lymphocytic leukemia; CR, complete response; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; HGBCL, high grade B cell lymphoma; LBCL, large B cell lymphoma; MM,
multiple myeoloma; MRD, minimal residual disease; NHL, non-hodgkin's lymphoma; NOS, not otherwise specified; ORR, overall response rate; Ph, Philadelphia chromosome; PMBCL, primary
mediastinal large B cell lymphoma; R/R, relapse/refractory.
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The feasibility of producing fully bioactive monoclonal
antibodies in vivo through IVT-mRNA delivery has been
demonstrated in numerous studies. Unlike proteins, which
require complex optimization during production, IVT-mRNA is
composed of simple, repetitive building blocks, making it relatively
straightforward to produce and optimize. Proteins, constructed
from 20 different amino acids, exhibit vast physicochemical and
biological variability, complicating their optimization. In contrast,
IVT-mRNA, built from only four nucleosides, follows consistent
physicochemical principles regardless of the protein it encodes.
Furthermore, in vivo expression of IVT-mRNA encoding mAbs can
be detected as early as 2 hours post-administration and can persist
for hours, days, or even weeks in some tissue-targeted delivery
systems, like intramuscular administration.

The concept of encoding antibodies using IVT-mRNA, rather
than producing mAbs directly, was first introduced into reality in
2008 by Hoerr et al. in a patent titled “RNA-coded antibody” (EP
2101823 Bl), filed by CureVac AG. This innovative approach
gained scientific credibility in 2017 when Pardi et al. published a
groundbreaking study demonstrating the potential of mRNA for
passive immunization. Their work showed that mRNA encoding
VRCO1, an antibody effective against human immunodeficiency
virus 1 (HIV1), could be packaged into lipid nanoparticles (LNPs)
and administered intravenously. In mice, a single 30 pg dose of
IVT-mRNA-LNPs led to significant antibody production in the
liver, with peak levels in the bloodstream at 24 hours, gradually
declining by day 11. The IVT-mRNA-LNPs encoding VRCO1
outperformed traditional recombinant VRC01 mAbs in
preventing HIV1 infection in a mouse model (79).

Later the same year, Thran et al. expanded on this concept,
demonstrating the versatility of IVT-mRNA-based antibody
delivery across various disease models. Their research highlighted
the effectiveness of IVT-mRNA-LNPs encoding mAbs or camelid-
derived heavy-chain antibodies (VHHs) in treating infections (e.g.
rabies), toxin exposure (e.g. botulism), and cancers (e.g.
lymphoma). A single injection of IVT-mRNA-LNPs generated
rapid and sustained antibody responses, providing complete
protection against viruses and toxins, and even eliminating tumor
cells in mice. The treatment was well-tolerated, with only a brief,
mild increase in cytokine levels and no evidence of liver damage or
inflammation, underscoring the safety of the delivery method (80).

One prominent example was an IVTmRNA-encoded rituximab.
Thran et al. engineered plasmids to produce mRNA for rituximab’s
heavy (H) and light (L) chains, identifying an optimal H-to-L chain
ratio 1.5:1 for effective antibody production. When administered
repeatedly via LNPs in a mouse model of non-Hodgkin lymphoma,
the IVT-mRNA-encoded rituximab significantly impaired tumor
growth, showcasing its therapeutic potential (80).

While most studies focused on intravenous IVT-mRNA-LNPs
delivery, which relies on the liver for antibody production, Tiwari
et al. explored a more targeted approach for respiratory infections.
They delivered IVT-mRNA encoding anti-RSV antibody
(palivizumab) and VHHs directly to the lungs using intratracheal
aerosols. This method proved highly effective, as RSV protection
requires localized antibody presence in the lungs rather than
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systemic distribution. Up to 45% of lung cells produced
detectable antibodies, leading to a significant reduction in RSV
infection within 4 days for secreted antibodies and 7 days for
membrane-anchored VHHs. Importantly, the treatment did not
trigger significant lung inflammation, as cytokine levels remained
stable for 24 hours after administration (81).

Collectively, these studies demonstrate the potential of IVT-
mRNA-based antibody delivery as a versatile and effective
alternative to traditional mAb therapies, with applications ranging
from infectious diseases to cancer treatment.

3.2 Bispecific antibodies

3.2.1 Structure and formats

The design of bsAbs originates from the structural and
functional principles of natural bivalent immunoglobulins.
Advances in antibody engineering have enabled the development
of a wide array of bsAb formats, each tailored for specific
pharmacological and clinical purposes, as no single format is
universally optimal (82, 83).

BsAbs are generally classified into Fc-based and fragment-based
formats, depending on the presence of the Fc region. Fc-based
bsAbs, including IgG-like or IgG-appended molecules, maintain the
classical IgG structure, which confers extended serum half-life and
favorable tissue distribution. In contrast, fragment-based bsAbs lack
the Fc domain, resulting in smaller, more modular proteins
composed of at least two variable domains capable of
simultaneous dual antigen binding (84).

Molecularly, bsAbs are engineered by pairing two different heavy
and light chains or assembling antibody fragments with distinct
antigen-binding domains. Fragment-based constructs often utilize
single-chain variable fragments (scFvs)—where VH and VL domains
are joined by a flexible linker—or single-domain antibodies (sdAbs or
nanobodies), comprising only the VHH domain (85, 86).

Several clinically relevant fragment-based formats have
been developed:

1. BiTEs® (bispecific T cell engagers) consist of two scFvs, one
binding a tumor antigen and the other engaging CD3 on T
cells (87).

2. DARTs® (dual-affinity retargeting molecules) employ a
stabilized diabody framework, enhancing structural
integrity and T cell activation (88).

3. TandAbs® are tetravalent constructs formed by linking two
diabodies, achieving bivalent binding to each antigen and
extended half-life due to increased size (89).

4. BiKEs® and TriKEs® are NK cell engagers; TriKEs
incorporate an IL-15 moiety to further stimulate NK cell
proliferation and cytotoxicity (90, 91).

3.2.2 Mechanism of action
The mechanism of action of bsAbs can be illustrated using the
fragment-based BiTE® format, which functions as a T-cell engager
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(TCE). BiTE® molecules, a key subclass of bsAbs, are composed of
two scFvs linked by a flexible peptide, with a molecular weight of
~55 kDa. One scFv targets CD3e on T cells, and the other
recognizes a tumor-associated antigen (92, 93) major
histocompatibility complex (MHC)-independent T cell activation
and cytotoxicity via perforin and granzyme release. Due to their
lack of Fc regions, BiTEs® avoid Fc receptor-mediated off-target
effects and possess enhanced tumor penetration. However, their
short half-life (~2.1 hours) necessitates continuous intravenous
infusion, complicating clinical use and increasing production
demands (83, 94-96) (Figure 3) As for 2025, eight bsAbs are
FDA-approved, targeting four antigens across five indications in
four hematological malignancies: (A) Blinatumomab (BiTE®) (97,
98) targets CD19 in B-ALL, both in minimal residual disease
(MRD) and R/R settings.; (B) Elranatamab (99), Teclistamab
(100), Linvoseltamab (101) - target B-cell maturation antigen
(BCMA) in R/R MM; (C) Talquetamab (102) - targets G protein-
coupled receptor class C group 5 member D (GPRC5D) in MM; (D)
Mosunetuzumab (103), Epcoritamab (104), Glofitamab (105) target
CD20 in FL and DLBCL.

3.2.3 Clinical challenges

The use of bsAbs and their analogs presents several challenges
related to adverse effects. A comprehensive understanding of their
cellular mechanisms of action and the biochemical pathways
underlying these side effects is crucial for developing effective
prevention and management strategies at the bedside.

3.2.3.1 Modulating antibody-dependent cellular
cytotoxicity

Antibody-dependent cellular cytotoxicity (ADCC) can be
modulated through several strategies. Selection of IgG subclasses
such as IgG2 or IgG4, which have lower affinity for Fc gamma
receptors (FcyRs) compared to IgG1, can help reduce ADCC (106).
Additionally, Fc-silent mutations (e.g., L234F, L235E, N297G) can
prevent nonspecific immune activation via CD3/FcyR crosslinking,
enhancing T cell recruitment to the tumor microenvironment
(TME) and limiting complement activation. Fc silencing is
particularly advantageous for bsAbs focused on immune
modulation, such as TCEs and immune checkpoint-targeting
bsAbs (107). Conversely, enhancing FcyR interactions can
potentiate immune activation for bsAbs that block tumor-
promoting pathways (e.g., epidermal growth factor (EGFR) or
human epidermal growth factor receptor 2 (HER2)), boosting
antitumor efficacy (108). Reducing or eliminating core fucose in
Fc N-glycans increases IgG1-FcyRIIIa binding, further enhancing
ADCC, as demonstrated in monoclonal antibodies like trastuzumab
and bsAbs such as amivantamab (EGFR x ¢cMET DuoBody)
(109, 110).

3.2.3.2 Pharmacokinetics and biodistribution

Modifications to bsAb molecular structures also influence
biodistribution and pharmacokinetics (PK). BsAbs are recycled
via the neonatal Fc receptor (FcRn) pathway, which protects IgGs
from degradation by binding them in acidic endosomes and
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releasing them back into circulation at neutral pH, thus
prolonging half-life (111). FcRn binding site mutations (e.g.,
Q311R, M428L) can enhance dissociation at pH 7.4, improving
serum persistence and efficacy. IgG subclass choice also impacts
half-life (112, 113). Fragment-based bsAbs, although smaller and
better at penetrating the TME, exhibit shorter half-lives and faster
clearance, necessitating frequent dosing or continuous infusion
(83). Strategies to extend half-life include fusion to human serum
albumin (half-life ~19 days) or incorporation of Fc domains into
fragment-based bsAbs (e.g., HLE-BiTEs®, DART®-Fc formats,
NCT05740666) (114, 115). Subcutaneous administration, as
explored in blinatumomab (NCT04521231), is another method
that can prolong drug exposure by mimicking continuous infusion.

3.2.3.3 On-target, off-tumor toxicity

BsAbs are also associated with unique toxicities, notably on-
target, off-tumor effects. Dual targeting approaches may
inadvertently affect healthy tissues expressing the target antigen
(116). Designing the second binding arm to recognize tumor-
specific antigens can shift activity toward malignant cells. For
instance, 4-1BB-targeting bsAbs minimize hepatotoxicity by
requiring TME-specific activation. ABL503 (PD1 x 4-1BB, IgG-
scFv2) demonstrated reduced liver toxicity and superior antitumor
activity compared to mAb combinations in preclinical models
(117-119). TG-1801 (CD47 x CD19, kA body) combines a high-
affinity CD19 arm with a low-affinity CD47 arm, selectively
targeting malignant B cells overexpressing CD47, while sparing
normal cells. Early clinical results show promising safety and
efficacy (120). Another approach involves protease-cleavable
masking of bsAbs, allowing activation specifically within hypoxic,
protease-rich TME (121). TAK-280 (CD3 x B7H3, COBRA TCE),
currently in phase 1 trials for metastatic solid tumors, exemplifies
this strategy.

3.2.3.4 Effects on regulatory T-cells and immune memory

The impact of TCEs on regulatory T cells (Tregs) remains
unclear, though there is a concern that Tregs may suppress TCE
activity. TCEs activate T cells, induce T cell margination (TCM) and
proliferation, reshape the TME, and trigger cytokine release, which
attracts additional immune cells (94). Although originally believed
to be MHC-independent, TCEs may exhibit enhanced T cell
expansion via peptide-MHC class I interactions, as seen in CD3 x
BCMA bsAbs for multiple myeloma (122). Their effect on long-
term T cell memory, however, remains under investigation. Novel
TCE designs are emerging, including LAVA-051 (Vy9Vé2 T cell
engager x CD1d) for leukemia/myeloma (123). NK cell-directed
bsAbs, such as BiKEs® (e.g., AFM13: CD30 x CD16A; RO7297089:
BCMA x CD16A), are also under development (124, 125).

3.2.3.5 Cytokine release syndrome

Cytokine release syndrome (CRS) is a potentially severe, though
rare, complication of TCE therapy, characterized by excessive
secretion of inflammatory cytokines (IL-6, IFN-y, TNF-c). Severe
CRS can lead to hypotension, capillary leak syndrome, and multi-
organ failure. While all-grade CRS is common (e.g.,, 75-79% with
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FIGURE 3

The general concept of mMRNA-encoded BiTEs and their comparison with conventional therapeutics. (A) Schematic representation of the molecular
structure of a bispecific T-cell engager (BiTE), consisting of two single-chain variable fragments (scFvs), connected by a flexible linker — one
targeting a tumor-associated antigen (TAA) on cancer cells, and the other targeting CD3 on T-cells. (B) Mechanism of action of the BiTE molecule
and comparison of delivery methods: continuous IV infusion of conventional recombinant BiTE vs mRNA-encoded BiTE encapsulated in LNPs: the
BIiTE simultaneously binds to the TAA on tumor cells and CD3 on T-cells, leading to the formation of a cytolytic synapse, T-cell activation, and
subsequent tumor cell lysis. (C) Conceptual overview of mRNA-based BIiTE therapy: synthetic mRNA encoding the BiTE molecule is delivered in to
host cells, enabling in situ production and secretion of BiTE that can engage T-cells to target and eliminate cancer cells. Created with BioRender.

talquetamab), grade >3 events are rare (0-3%). CRS onset varies by
therapy: minutes to hours for rituximab, days to weeks for CAR-T
cells, and typically within 48 hours of first bsAb dose (102, 126, 127).

3.2.3.6 Immune effector cell-associated neurotoxicity
syndrome

Immune effector cell-associated neurotoxicity syndrome
(ICANS) may co-occur with CRS but involves distinct
mechanisms. Its pathogenesis involves more directly the central
nervous system (CNS), disrupting the brain-blood barrier (BBB) via
the CNS endothelial activation. Key cytokines involve IL-1 and IL-6.
Triggered by excessive immune activation, ICANS presents with
tremors, aphasia, apraxia, and in severe cases, seizures or coma. Risk
factors include small molecule size, TCE mechanisms, and tumor
antigen expression in neural tissue (128-130).
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3.2.3.7 Infusion-related reactions

Infusion-related reactions (IRRs), including chills, dyspnea,
flushing, and nausea, typically arise within 10 minutes to 4 hours
of infusion onset. IRRs are Type B (bizarre) reactions, unpredictable
and unrelated to dose or pharmacology. They are more common
with mAbs than bsAbs but increase with bsAbs targeting dual
signaling pathways or immune checkpoints, as seen with MCLA-
129 (anti-EGFR/MET, 90% IRRs) and amivantamab (67%)
(131-133).

3.2.3.8 Infection risk and immunosuppression

Patients with hematologic malignancies often experience
immunosuppression due to disease or prior treatments (e.g.,
cytopenias, hypogammaglobulinemia, CAR-T therapy, bone
marrow transplant), increasing susceptibility to opportunistic
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infections (fungi, CMV, Gram-negative bacteria). BsAb-induced
lymphocyte activation and on-target off-tumor effects (e.g., plasma
cell aplasia from BCMA/GPRC5D/FcRH5-targeting bsAbs), as well
as immunosuppressive agents used for CRS management, may
further compromise immunity (134-136).

3.2.3.9 Resistance mechanisms

Resistance to bsAbs can arise through multiple mechanisms.
Immune checkpoint upregulation, such as PD-L1 expression,
reduces TCE efficacy. For example, AMG 330 (CD3 x CD33
BiTE®) showed reduced cytotoxicity in AML due to PD-LI
induction. PD-1/PD-L1 blockade restored TCE activity, increasing
AML lysis, T cell proliferation, and IFN-y secretion (137, 138). In B-
NHL, low baseline PD-1 expression correlated with response to
glofitamab (CD3 x CD20) (139), while combining odronextamab
(CD3 x CD20) with anti-PD1 antibodies enhanced antitumor
effects (140). These findings suggest that immune checkpoint
upregulation is a reversible resistance mechanism, and dual TCE-
ICI targeting may improve outcomes. Several trials (e.g.,
NCT02879695, NCT03340766, NCT03512405) are investigating
this approach.

Antigen loss also contributes to resistance. CD19 loss occurs in
6-30% of R/R B-ALL cases, mainly via disrupted membrane
trafficking (141). While alternative targets like CD20 or CD22
remain, antigen loss also affects efficacy of therapeutics like
glofitamab. Strategies to overcome this obstacle include dual-
antigen targeting (e.g., blinatumomab + inotuzumab,
NCT03739814), or preventing antigen loss through epigenetic
modulation. In multiple myeloma, BCMA downregulation post-
TCE therapy, as observed with AMG 420 (CD3 x BCMA), leads to
resistance (142). BCMA loss also limits CAR-T efficacy (143).

BsAb therapy introduces challenges, particularly in sequencing
with CAR T-cell therapies, especially when targeting the same
antigen. In B-ALL, CD19 antigen loss following blinatumomab
may compromise subsequent CD19-directed CAR-T therapy (144,
145), although early response to blinatumomab may predict CAR-T
success (146). Conversely, small studies suggest blinatumomab
remains effective post-CAR-T (147), though further data are
required. In MM, bsAbs are being explored as bridging therapies
prior to CAR-T to enhance T cell expansion and improve CAR-T
persistence. However, due to limited clinical evidence, these decisions
remain largely individualized (100, 148, 149). Notably, no curative
potential has yet been demonstrated for MM. In DLBCL, the issue of
antigen escape is minimized as CAR-T targets CD19 and bsAbs target
CD20. Emerging data suggest that prior or subsequent use of either
modality does not significantly impair efficacy (105, 150).

Impaired IFN-y signaling, particularly through JAK2
downmodulation, reduces tumor sensitivity to T cell-mediated
killing, as reported in HER2-targeting bsAbs (151). Whether this
resistance extends to non-HER2 bsAbs or hematologic
malignancies remains unclear.

ADAs may target bsAb variable regions, blocking antigen
binding, altering pharmacokinetics, or inducing immune
toxicities. ADA development is influenced by bsAb
immunogenicity (e.g., foreign sequences, aggregation-prone
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motifs), administration route, and patient immune status (152).
Subcutaneous delivery poses higher ADA risk due to dendritic cell
activation in the skin, making IV delivery preferable in most
cases (153).

3.2.4 mRNA-enabled therapies

Unlike recombinant proteins, IVT-mRNA enables in situ
production of therapeutic bsAbs following a single
administration. This results in transient, self-limited expression,
eliminating the logistical burden of continuous infusion required
for short-lived BiTE® formats and reducing pharmacokinetic
extremes that contribute to toxicity (92, 154). The transient
expression also enables step-up or fractionated dosing strategies
to mitigate CRS and IRRs (102, 127) without the production
burdens inherent to protein-based therapies.

By encoding Fc-silent or Fc-free- bsAbs, IVT-mRNA constructs
avoid Fcy receptor-mediated off-target effects and complement
activation, addressing ADCC modulation strategies such as Fc
mutations (L234F, L235E, N297G) used to reduce toxicities (106,
107). This strategy preserves high local tumor efficacy without
systemic immunologic collateral damage.

mRNA-coded constructs can incorporate protease-activated
masking, similar to COBRA or TAK-280 formats, ensuring
activation only within the protease-rich tumor microenvironment
and thereby minimizing systemic or hepatic toxicities related to on-
target - off-tumor binding (121).

The versatility of IVT-mRNA platforms further supports multi-
specific or costimulatory formats. For example, mRNA can co-
encode tri-specific agents targeting simultaneously CD38, CD3, and
CD28 or combine TCE with immune checkpoint blockade (PD-1/
PD-L1 or 4-1BB), confronting resistance mechanisms such as
antigen loss, checkpoint upregulation, and lack of memory T cell
generation. These modular combinations, previously shown to
restore BiTE® efficacy when paired with immune checkpoint
inhibitors (137, 138), can now be delivered via a single IVT-
mRNA platform. Preclinical data validating Fc-free bsAb IVT-
mRNAs, such as EGFR x CD3 LiTE and PD-L1 x 4-1BB Albu-
LiTCo, confirm this approach’s feasibility (155).

Pharmacokinetically, IVT-mRNA-encoded antibodies exhibit a
controlled, depot-like profile. LNPs enable efficient uptake and
endosomal escape, while no genome integration ensures safety
(79, 80, 155). Subcutaneous or intramuscular delivery, particularly
in engineered depot formulations, mimics continuous infusion
without sustained high serum peaks, reducing CRS and IRRs risk
(93, 94).

Regarding cytokine release syndrome, IVT-mRNA-encoded
bispecific molecules have demonstrated favorable safety profiles.
In the preclinical CLDN6 mRNA-BiTE® studies, only low, transient
cytokine elevations were detected, with no evidence of systemic CRS
in mice and cynomolgus models (154). In humans, the BNT14201
Phase I/II trial of an mRNA-LNP - encoded CLDN6 x CD3
bispecific reported mild cytokine elevations in 22% of patients,
with only one case of grade 3 CRS among 65 patients - an acceptable
safety profile compared to protein-based bsAbs (154)(Stadler et al.,
2024; OncoDaily Jun 1 2025).
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Beyond systemic delivery, local IVT-mRNA strategies, such as
intra-tumoral injection of LNPs encoding IL-12, IFN-o,, and IL-7,
generate robust antitumor immunity and depot-like expression
while minimizing systemic exposure - offering potential to avoid
IRRs, ICANS, and infections associated with systemic
immunomodulation (156).

Furthermore, the manufacturing advantages of IVT-mRNA are
significant. Rapid, cell-free synthesis bypasses costly protein
expression, folding, glycosylation, and cold-chain transportation,
facilitating scalable production - even for personalized or regionally
targeted therapies (71, 76).

Finally, IVT-mRNA’s transient expression profile helps
minimize long-term immunosuppression and infection risk by
allowing recovery of normal B and T cell populations post-
treatment (134). It also avoids persistent ADA responses that are
more likely with protein therapeutics or prolonged exposure of
fragment-based bsAbs (153).

In summary, IVT-mRNA enabled bispecific therapies seem to
directly address each clinical challenge of bsAbs: by modulating Fc
biology, controlling pharmacokinetics, reducing toxicities including
CRS/ICANS, optimizing dosing strategies, preventing resistance,
easing manufacturing burdens, and preserving immune
competence. The BNT142 program serves as a proof of concept
that these advantages can be realized safely in humans. Continued
clinical development and combination studies will clarify their
long-term potential in hematologic and solid tumor indications.

3.3 CAR-T cells

In parallel with the rapid development of IVT-mRNA
technology and its therapeutic applications, CAR-T cells have
revolutionized the treatment of R/R hematological malignancies.
It is associated with impressive response rates, ranging up to 54%
for large B-cell lymphoma (LBCL) (157) and up to 93% for B-ALL
(158). However, many patients relapse, with various mechanisms
responsible for the failure. Moreover, safety concerns regarding
transgene integration or uncontrolled proliferation are raised. On
top of that, the manufacturing cost is high and often makes the
therapy unaffordable.

The challenges mentioned above are somewhat attributable to
the manufacturing process and the technology itself. Currently, the
CAR-T product is based on autologous (or allogeneic in some
studies) cells which are ex vivo transduced with CAR-coding viral
DNA. Importantly, viral DNA is incorporated into the genome of
T-cells. As a result, CAR-T cell therapy is dependent on a single
batch of lymphocytes that are programmed to constantly target
specific antigens and have limited in vivo persistence.

The incorporation of IVT-mRNA technology into CAR-T
therapy creates an opportunity to bypass these limitations and
provides new solutions for more flexible therapy. (Figure 4) These
stem from the transient expression of IVT-mRNA-encoded CARs.
Currently evaluated mRNA-based approaches to CAR-T cell
therapy include the following:
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1. ex vivo manufacturing of IVT-mRNA CAR-T cells,
2. in vivo generation of IVT-mRNA CAR-T cells.

By default, all these approaches rely on transient CAR-T cells
that are capable of time-limited tumor killing. The main advantage
is that the IVT-mRNA-based approach could mitigate long-term
adverse events such as B cell aplasia and pancytopenia. Moreover,
with the use of IVT-mRNA there is no risk of unwanted genome
integration of CAR-encoding genes (159).

However, transient expression may necessitate repeated
infusions of ex vivo-manufactured CAR-T cells or IVT-mRNA
boosters, when the tumor is not cleared (159). This may lead to
an increased financial burden. Nevertheless, each IVT-mRNA-
based approach offers some advantages over conventional CAR-T
cells, but at the same time each has its drawbacks.

3.3.1 Ex vivo manufacturing of mRNA CAR T cells

The first approach, namely ex vivo manufacturing of IVT-
mRNA CAR-T cells, is the most similar to the conventional
DNA-based approach as the cells must be collected from the
donor and processed in the laboratory. In the production process,
mRNA is delivered to T-cells using either electroporation
techniques or IVT-mRNA delivery carriers such as LNPs (160).
Electroporation is a relatively straightforward and therefore the
most common technique for manufacturing ex vivo IVT-mRNA
CAR-T cells (160, 161). However, it is associated with poor
transfection rates and is toxic to T-cell (162) Combined with the
IVT-mRNA instability and need for thorough purification, ex vivo
manufacturing of IVT-mRNA CAR-T cells is costly and labor-
intensive (160). In the field of hematology, the discussed approach
has been implemented in the NCT03448978 trial investigating IVT-
mRNA CAR-T cells targeting BCMA in MM (163, 164). However,
only data regarding one patient who achieved a very good partial
response (VGPR) have been published so far (163).

3.3.2 In vivo generation of mRNA CAR T-cells

The second approach, namely in vivo production of IVT-
mRNA CAR-T cells, is more appealing as it allows to shorten the
waiting time and could be administered off-the-shelf. The most
common choice of in vivo IVT-mRNA delivery are IVT-mRNA
nanocarriers targeting specific antigens (160). Parayath et al.
conducted a seminal study on the production of IVT-mRNA
CAR-T cells in vivo (165). In a mouse model of lymphoma (mice
inoculated with CD19" Raji cells), they proved that lymphocyte-
targeted IVT-mRNA nanoparticles could deliver IVT-mRNA to T-
cells and achieve comparable responses to conventional DNA-based
CAR-T cells manufactured ex vivo. Crucially, the IVT-mRNA CAR-
T cells did not contribute to acute systemic toxicities. However, this
approach required repeated infusions of IVT-mRNA carrier
nanoparticles. Unfortunately, the authors emphasize that the
development of effective IVT-mRNA CAR-programming
nanoparticles is very complex and therefore could affect the
clinical application of this approach (165). Both in vivo and ex
vivo CAR-T approaches face a fundamental limitation: they depend
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Strategies involving mRNA-engineered CAR-T cell therapies. (A) Comparison of CAR-T receptor configurations. The panel illustrates three structural
formats: (1) a conventional CAR with a single target specificity, (2) a dual CAR system comprising two separate receptors for two distinct tumor-
associated antigens, and (3) a bispecific CAR consisting of a single construct that integrates two antigen-recognition domains targeting different
antigens. These configurations are designed to enhance tumor recognition and reduce antigen escape. (B) Mechanisms of tumor cell elimination by
CAR-T cells. The CAR-T cell engages the tumor cell via its chimeric antigen receptor, leading to immune synapse formation, cytokine release, and
tumor cell lysis. (C) mMRNA-based applications in CAR-T cell therapy. C.1. Transient CAR expression via mRNA transfection. Autologous T-cells are
collected from the patient’s blood and transfected ex vivo with mRNA encoding CAR receptors using methods such as electroporation. The resulting
CAR-T cells, expressing the receptor transiently, are reinfused into the patient. These modified T-cells can then recognize and kill tumor cells. Over
time, CAR expression wanes as the mRNA degrades, providing a controlled and reversible therapeutic effect. C.2. mRNA as a vaccine-like to boost
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The reactivated CAR-T cells then eliminate tumor cells more effectively. Created with BioRender.
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on the patient’s endogenous T-cell function, which is often
compromised by prior therapies. While ex vivo methods allow for
T-cell selection and expansion, neither strategy can fully overcome
poor lymphocyte quality in heavily pretreated patients, highlighting
the need for alternative solutions like immune reconstruction
therapies (166).

Finally, IVT-mRNA technology can be applied to CAR-T cell
therapy by delivering IVT-mRNA encoding a target tumor antigen
in a vaccine-like manner to stimulate CAR-T cells in vivo. In this
approach, IVT-mRNA-LNPs are taken up by various cells,
primarily macrophages and other antigen-presenting cells (APCs),
which then express the encoded membrane-bound tumor antigen.
This antigen - often a conformational epitope of the native protein
— can engage and activate CAR-T cells when they encounter the
APCs or other expressing cells. A seminal phase-1 study by
Mackensen et al. demonstrated that IVT-mRNA vaccine-like
boosting could enhance CAR-T cell expansion in vivo (167).
However, the precise location of this stimulation - whether in
lymphoid organs (e.g. lymph nodes) or peripheral tissues — remains
unclear. Importantly, the study focused on solid tumor, and given
these promising results, similar investigations in hematological
malignances are highly anticipated.

4 Clinical translations and challenges

Building on the mechanistic insights and preclinical
innovations described in previous sections, this section
consolidates the current clinical landscape, focusing on the
translation of IVT-mRNA-based approaches into hematologic
oncology trials. As summarized in Table 2, early mRNA-based
CAR-T and bispecific trials demonstrate feasibility and manageable
safety but limited persistence and efficacy compared with
conventional platforms. Clinical data are categorized and
analyzed across the principal modalities - CAR-T cells and
bispecific antibodies - highlighting their potential, limitations, and
lessons for future development.

4.1 mRNA-engineered CAR-T cells

While viral vector-based CAR-T cells have transformed the
treatment landscape for B-ALL, DLBCL, and MCL, their limitations
in cost, safety, and long-term antigen persistence have driven
exploration of IVT-mRNA-based CAR-T platforms. As described
previously, IVT-mRNA enables transient CAR expression,
mitigating risks of genomic integration and prolonged immune
activation (160).

Clinical data, however, remain limited. In MM, the Descartes-08
program (NCT03448978 (163),) evaluated ex vivo-transfected anti-
BCMA CAR-T cells in a small Phase I cohort (<20 patients). A case
report documented a very good partial response (VGPR),
suggesting early activity, although CAR expression was transient.
In HL, two Phase I studies of anti-CD19 mRNA CAR-T cells

Frontiers in Immunology

19

10.3389/fimmu.2025.1680071

(NCT02277522 in adults; NCT02624258 in pediatric patients)
reported no unexpected grade >3 toxicities, but responses were
transient and no durable remissions were achieved (168). Similarly,
an anti-CD123 IVT-mRNA CAR-T program in acute myeloid
leukemia (NCT02623582) enrolled seven patients but failed to
generate sustained responses; the trial was terminated early due to
manufacturing issues and lack of efficacy (169).

These early trials highlight the feasibility and short-term safety
of IVT-mRNA CAR-T products, but underscore persistent
challenges with manufacturing reliability, CAR persistence, and
clinical efficacy - particularly in heavily pretreated or myeloid
malignancy settings. Novel strategies, including in vivo CAR-T
programming (165) and IVT-mRNA vaccine boosters for CAR-T
expansion (167), warrant further investigation to overcome
these barriers.

By contrast, conventional viral vector-engineered CAR-T
therapies have demonstrated robust and durable activity in large
B-cell lymphomas. In the pivotal ZUMA-1 study of axicabtagene
ciloleucel (axi-cel), the objective response rate (ORR) was ~83% with
a complete remission (CR) rate of ~58%, findings later reproduced in
>2,000 real-world patients (157). Likewise, the JULIET trial of
tisagenlecleucel (tisa-cel) in diffuse large B-cell lymphoma reported
an ORR of ~52% and a CR rate of ~40% (170). These outcomes
underscore the therapeutic gap between transient mRNA CAR-T
products and durable viral CAR-T platforms.

4.2 mRNA-encoded bispecific antibodies

The success of bispecific antibodies (bsAbs) such as
blinatumomab and teclistamab has paved the way for exploring
IVI-mRNA as a means of in vivo bsAb production, potentially
overcoming the pharmacokinetic and production constraints of
protein-based therapies. The BNT142 program (Phase I/II) tested a
lipid nanoparticle-encapsulated IVT-mRNA encoding a
CLDN6xCD3 bispecific in patients with CLDN6-positive solid
tumors. While outside hematology, the trial reported encouraging
safety—only one of 65 patients experienced grade 3 CRS, and
cytokine elevations were transient in ~22% of patients (154).
These findings support the feasibility of IVT-mRNA-encoded
bispecifics, with the potential to achieve controlled local activity
and reduced systemic toxicity through stepwise dosing or protease-
activated masking.

In hematologic malignancies, conventional bispecifics have set a
high efficacy benchmark. The CD19xCD3 BiTE blinatumomab
achieved an ORR and CR rate of 81% in a Phase III trial in B-
ALL but requires continuous infusion due to its short half-life (171).
Newer IgG-like half-life-extended (HLE) bispecifics combine
potent activity with more convenient administration. Teclistamab
(BCMAxCD3, MajesTEC-1) demonstrated an ORR of ~63% with
durable responses beyond 30 months in R/R MM (100).
Talquetamab (GPRC5DxCD3, MonumenTAL-1) produced an
ORR of ~70% in heavily pretreated myeloma (172). In aggressive
B-cell lymphomas, epcoritamab (CD20xCD3, EPCORE NHL-1)
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TABLE 2 Overview of mRNA-based and conventional adoptive cell therapies and bispecific antibodies in clinical development or practice.

Platform | Product / Malignancy Phase Group Key Main Toxicities (with frequencies)
Trial (NCT) Size (n) Outcomes
(ORR/CR
etc.)
mRNA- Descartes-08", BCMA Multiple I <20 Case report: Mostly grade 1-2 AEs; no >G3 CRS/
engineered NCT03448978 Myeloma VGPR; early neurotoxicity reported
CAR-T (ex activity
Vivo)
mRNA- NCT02277522 CD19 Hodgkin 1 <20 Transient no persistent severe adverse events
engineered (adult) / Lymphoma responses, no
CAR-T (ex NCT02624258 durable
Vivo) (pediatric)48 remissions
mRNA- NCT02623582*° | CD123 AML 1 7 No sustained Mild/moderate CRS; no severe neurotoxicity;
engineered responses early cytopenias
CAR-T (ex
vivo)
mRNA- NCT05262530”° | CLDN6xCD3 CLDNG6+ solid /11 65 Early activity TRAEs 63%; >G3 TRAEs 23%; CRS 22% (1
encoded tumors (DCR/PR in >G3); AST/ALT119% (12% >G3)
bispecific (in CLDNG6+)
vivo)
Conventional =~ ZUMA-1 — CD19 LBCL 11 101 ORR ~83%, CR  CRS all-grade ~93%; CRS >G3 ~11%; ICANS
CAR-T (viral) | Axicabtagene (pivotal); ~58% all-grade ~42%; ICANS >G3 ~32%; neutropenia
ciloleucel (axi- >2000 >G3 ~24%; thrombocytopenia >G3 ~43%;
cel) real-world infections ~32%
NCT02348216°"
Conventional JULIET— CD19 DLBCL I 115 ORR ~52%, CR = CRS all-grade ~58%; CRS >G3 ~6%; ICANS
CAR-T (viral) | Tisagenlecleucel ~40% >G3 ~12%; cytopenias common; infections
tisa-ce ~20%
( 1)
NCT02445248%
Conventional | Blinatumomab CD19xCD3 B-ALL 111 224 ORR 81%, CR CRS ~2%; neurotoxicity 52%, neutropenia,
bispecific NCT02003222> 81% thrombocytopenia
(BiTE)
Conventional | Teclistamab BCMAxCD3 Multiple /11 165 ORR ~63% (30 CRS 72% (2G3 0.6%); neurotoxicity 57%;
bispecific (MajesTEC-1) Myeloma mo follow-up) ICANS 6% (>G3 ~2.4%); pneumonia 15%; sepsis
(IgG-like NCT04557098°* 6%
HLE)
Conventional | Talquetamab GPRC5DxCD3 = Multiple /11 288 ORR ~70% in CRS ~75% (2G3 <1%); ICANS ~10% (rare
bispecific (MonumenTAL- Myeloma heavily >G3); skin/nail/taste toxicities ~60-70%
(IgG-like 1) pretreated MM
HLE) NCT03399799°°
Conventional Epcoritamab CD20xCD3 DLBCL /11 157 ORR ~63%, CR = CRS 49% (2G3 ~2%); ICANS ~6% (rare >G3);
bispecific (EPCORE NHL- ~39% neutropenia >G3 ~30%
(IgG-like 1)
HLE) NCT03625037°
Conventional Glofitamab CD20xCD3 DLBCL /11 155 ORR ~52%, CR CRS 63% (=G3 ~4%); ICANS ~3% (rare >G3);
bispecific (NP30179) ~39% cytopenias frequent
(IgG-like NCT03075696°7
HLE)

The table summarizes key early-phase trials of mRNA-engineered CAR-T cells (ex vivo) and mRNA-encoded bispecifics (in vivo), alongside pivotal studies of conventional viral CAR-T therapies
and IgG-like bispecific antibodies. Reported outcomes include objective response rates (ORR), complete response (CR) rates, and selected toxicities such as cytokine release syndrome (CRS),
neurotoxicity (ICANS), cytopenias, and infections. mRNA-based approaches demonstrate transient activity with favorable safety in early trials, while conventional CAR-Ts and bispecific
antibodies show established efficacy with characteristic toxicity profiles.
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and glofitamab (NP30179) achieved ORRs of ~63% and ~52%, with
CR rates of ~39% each (104, 105).

used to identify conformations that enhance translational efficiency.
Complementary to this, molecular dynamics simulations
implemented in platforms including GROMACS, NAMD,
AMBER, and CHARMM enable the examination of IVT-mRNA
three-dimensional architecture and folding dynamics (173-175).

5 Future perspectives

Codon optimization represents another critical layer of design, with

5.1 mRNA, bioinformatics and artificial
intelligence

Therapeutic IVT-mRNA requires optimal design to ensure
stability, efficient translation, and targeted activity. Recent
progress in bioinformatics and artificial intelligence (AI) has
significantly advanced the prediction and optimization of IVT-
mRNA therapeutics, and their integration is emerging as a key
driver of innovation. The growing demand for optimized IVT-
mRNA highlights the indispensable role of computational tools in
therapeutic development.

Traditionally, IVT-mRNA sequence optimization has relied on
foundational bioinformatics approaches. For secondary structure
prediction, tools such as RNAfold, mFold, and IPKnot are widely
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algorithms such as GeneOptimizer and JCAT tailoring coding
sequences to host-specific codon usage and tRNA availability,
thereby maximizing protein output (176, 177).

Delivery systems, LNPs, also benefit from in silico optimization.
Recent studies have employed molecular dynamics simulations to
investigate lipid self-assembly and protonation behavior of
ionizable lipids, while high-throughput screening and platforms
such as NANOdesign, POLYVIEW-3D, pyMOL, and COMSOL
NanoAssembler have been used to optimize PEG-lipid ratios,
improving stability, biodistribution, and therapeutic index (178-
180). These insights are directly relevant to preclinical hematology
and oncology applications: optimized LNP formulations have
successfully delivered nucleic acids in CML models, reducing
leukemic burden with minimal toxicity (181, 182), while novel
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ionizable lipids have enhanced IVT-mRNA retention at injection
sites and reduced off-target accumulation in the liver, improving the
safety and efficacy of tumor vaccines (182-184).

Understanding IVT-mRNA folding and function requires
predictive models that capture both thermodynamic and kinetic
parameters. Tools such as RNAfold, mFold, and IPKnot anticipate
higher-order structures using thermodynamic and entropic criteria
(185-187). Deep learning models are increasingly able to predict
IVT-mRNA folding pathways and structural conformations,
complementing experimental techniques such as NMR
spectroscopy, cryo-electron microscopy, and chemical probing,
which provide high-resolution validation but are more resource-
intensive (188). Beyond secondary structure, IVT-mRNA
modifications such as N6-methyladenosine (mP®A) exert critical
regulatory influence. In hematopoietic malignancies, altered m°A
landscapes impact IVT-mRNA stability, translation, and splicing,
representing both a biological challenge and a therapeutic
opportunity (189, 190).

AT and machine learning are becoming integral to IVT-mRNA
therapeutic development. General algorithms such as XGBoost,
Graph Convolutional Networks (GCNs), and deep neural
networks (DNNs) are methodological cornerstones. Frameworks
such as TensorFlow and PyTorch enable DNNs to refine vaccine
design using in vivo data (191-195). In hematology, machine
learning has been applied to predict immunogenic epitopes and
optimize LNP formulations for hematopoietic targeting. These
approaches have accelerated candidate selection, though fully
end-to-end demonstrations of deep learning-designed AML
IVTmRNA vaccines with in-vivo validation are still limited in the
published literature (183, 196). Most recently, GEMORNA, a
generative Al platform, has demonstrated the ability to design
novel linear and circular RNA sequences with markedly improved
expression, durability, and in vivo immunogenicity compared to
existing benchmarks (197).

Several breakthroughs illustrate the translational relevance of
computational design. The LinearDesign algorithm, which
simultaneously optimizes codon usage and secondary structure,
has been experimentally validated to improve IVT-mRNA half-life,
protein expression, and immunogenicity in vivo (198). Coarse-
grained simulations have provided valuable insights into the self-
assembly of LNPs, revealing how lipid composition and pH influence
LNP morphology and IVT-mRNA release. These simulations offer
predictive frameworks that can guide the design of LNPs with
enhanced in vivo delivery efficiency (199). Al-powered tools such
as gRNAde predict mRNA 2D and 3D conformations with high
accuracy, while Wong et al. (2024) introduced a structural AI
platform that generates RNA sequences based on target 3D
architectures, significantly reducing experimental costs (200, 201).
Collaborative initiatives such as RNA-Puzzles and CASP15 continue
to benchmark predictive accuracy across the field (202, 203).

Taken together, these advances demonstrate that bioinformatics
and AI are no longer speculative additions but validated tools in
IVT-mRNA therapeutic design. Their role is particularly evident in
hematology, where codon usage studies, RNA modification
research, and LNP delivery improvements are supported by
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preclinical data in leukemia and lymphoma. As these
computational frameworks continue to integrate with
experimental validation, they are poised to accelerate the
development of next-generation IVT-mRNA therapies in
oncology and hematology.

5.2 Large-scale population studies and
broader accessibility of mRNA

Hematologic malignancies represent a heterogeneous group of
cancers, with genetic mutations playing a central role in their
classification. The dynamic and diverse nature of these diseases
necessitates a deeper understanding of their genomic and
environmental determinants to enable early risk detection and
personalized therapies.

A persistent challenge is the lack of diversity in clinical trials.
For example, teclistamab/talquetamab trials included only 10-14%
Black participants, while Hispanic representation was unreported
(102). Similarly, elranatamab trials featured 20% Black participants,
with no Hispanic data (99). Many BsAb trials, including those for
mosunetuzumab, epcoritamab, and glofitamab, omitted racial/
ethnic breakdowns (103, 105, 204). Disparities are stark: non-
Hispanic Black individuals face twice the risk of MM yet have
limited trial access (205).

In Europe, aging populations and rising hematologic cancer
incidence strain healthcare systems, underscoring the need for
systemic innovations. A 2023 study analyzing 30 years of global
data revealed 1.34 million new cases in 2019, with declining mortality
rates reflecting therapeutic advances (8). However, data gaps persist
in low-income regions. Gender disparities were evident, with higher
incidence among males (MM: 1.4:1; NHL: 1.6:1). Advances in new
generation sequencing (NGS) and flow cytometry have refined cancer
subtyping (e.g., breakpoint cluster region — Abelson murine leukemia
viral oncogene homolog 1 (BCR-ABLI) detection in AML), though
diagnostic reclassifications in high-income countries may artificially
inflate case numbers. Targeted therapies and immunotherapy have
driven progress, but comprehensive epidemiological analyses remain
critical for equitable healthcare (206).

CAR-T therapies remain inaccessible in many regions due to
cost and infrastructure constraints, a challenge also affecting BsAbs.
mRNA-based production could increase access to these therapies
(78, 207). However, the global scientific community must still learn
how to effectively implement lessons from the COVID-19
pandemic. During that time, the COVID-19 Vaccines Global
Access Facility (COVAX) aimed to ensure equitable vaccine
distribution but, due to insufficient funding, failed to meet even
half of its 2021 target of delivering 2 billion doses, particularly in
low-income countries (208).

To date, IVT-mRNA manufacturing has been dominated by
three major corporations and their contract manufacturers,
primarily based in North America and Europe. In reality, IVT-
mRNA technology does not require advanced biologics
manufacturing expertise, presenting an opportunity for expansion
to new companies and production facilities across Asia, Africa and
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Latin America (209, 210). While vaccine hesitancy toward IVT-
mRNA-based COVID-19 vaccines persists in many low-income
countries (as reported by GLP (211)), the technology’s versatility
and scalability offer promise for broader applications, including
hematological malignancies, potentially enabling more regions to
achieve independent production and deployment.

5.3 Beyond mRNA: other forms of RNA

Further optimization of mRNA-based therapeutics remains an
active area of research, with circular mRNA (circRNA) emerging as
a promising platform.

Circular RNA (circRNA), a single-stranded RNA with a
covalently closed loop, offers advantages over linear mRNA,
including enhanced stability (due to exonuclease resistance),
lower immunogenicity, and simplified production. Key elements
like internal ribosome entry sites (IRES) and open reading frame
(OREF) regions facilitate efficient translation, positioning circRNA as
a promising platform for hematologic and other diseases (212-216).

Challenges include declining circularization efficiency with
longer sequences and suboptimal methods (e.g., PIE system, T4
RNA ligase), which often yield contaminants. Novel approaches like
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Clean-PIE and group II intron-based methods are under
exploration. Purification remains a hurdle, as current techniques
(HPLC, RNase R) are insufficient (217).

Notably, IVT-mRNA optimization strategies do not directly
apply to circRNA. For instance, ,,;'¥ modification, beneficial in
IVT-mRNA vaccines, offers no advantage for circRNA. Enhancing
circRNA translation requires: Locked Nucleic Acids (LNAs) to
modulate structure; eIF4G-recruiting aptamers to boost translation
initiation, and IRES optimization to improve efficiency, or cap
incorporation, as in the work of Wasinska-Kalwa et al. (218).

Proof-of-concept studies demonstrate circRNA-encoded
erythropoetin (EPO) sustaining physiological effects in mice for
over four days, validating its therapeutic potential (219). However,
circRNA’s unique structure demands specialized databases and
adapted bioinformatics tools to unlock its full potential (220).

Another innovative direction involves combining IVT-mRNA
with regulatory RNA-based strategies, including non-coding RNAs
(e.g. siRNA and miRNA) that fine-tune antitumor immunity. For
example, synthetic miR-16 mimics (designed to restore the function
of this naturally occurring tumor suppressor miRNA) are being
evaluated in phase I trials for malignant tumor mesothelioma and
non-small lung cancer (NSCLC) (221, 222).

The future perspectives of this area are summarized in Figure 5.
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6 Conclusions

The vast heterogeneity of hematologic malignancies presents a
significant therapeutic challenge, on both clinical and molecular
level. The molecular mechanisms underlying these disorders are
actively being investigated by research centers worldwide.
Immunotherapy has revolutionized hematologic cancer treatment,
offering new possibilities for patients. Simultaneously,
advancements in therapeutic IVT-mRNA technology have created
opportunities for encoding vaccines and anticancer proteins.

The IVT-mRNA technology has been largely accelerated during
the COVID-19 pandemic, which drove research centers to optimize
production methods. Nonetheless, this monumental leap forward
was only possible because it was built upon decades of incremental
experimental refinements, like in the work of Krawczyk et al. (223).
The same mRNA sequence can behave differently depending on
cellular conditions - a challenge highlighted by the work of Kariko
and Weissman, who discovered that pseudouridine modification
was critical to evading immune detection. This kind of insight
would have been nearly impossible to predict computationally
without prior empirical evidence.

IVT-mRNA, with its inherent structural and functional
advantages, is an ideal platform for delivering vaccines in diseases
characterized by high heterogeneity and rapid evolution. Besides
infectious diseases, where IVT-mRNA vaccines have become well
established, these technologies hold promise for oncology, including
hematologic malignancies. However, despite these advantages, an
effective cancer vaccine - the Holy Grail of oncology - remains
undiscovered. Still, never before have researchers been closer to
achieving this goal.

Optimizing IVT-mRNA delivery remains a key challenge.
LNPs, protein-based carriers, and targeted nanoparticles are
among the methods being explored to enhance delivery precision.
Continuous improvements aim to balance effective dosing with
minimizing the inevitable cytotoxicity.

In summary, IVT-mRNA technology presents a viable alternative
to traditional protein-based therapies, including monoclonal
antibodies and CAR T cells. Ongoing research will determine
whether IVT-mRNA can establish itself as an independent and
transformative therapeutic approach in hematologic oncology.
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