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Immune cells: the key
mediator between the gut
microbiota and osteoporosis
Tianyi Ma1,2†, Tiantian Zhang2†, Chengqi Peng1†, Ke Liu1,
Yixiao Xiong1, Keru Chen1, Nazi Peng1, Zhentao Wei1,
Jianjun Kuang2,3* and Liang Ou3*

1Hunan University of Chinese Medicine, Changsha, China, 2Hunan Academy of Chinese Medicine,
Changsha, China, 3Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine,
Changsha, China
As the body’s largest immunological interface, the intestine harbors a complex

ecosystem of gut microbiota (GM) that orchestrates mucosal immune

maturation while sustaining local immunological equilibrium. Emerging

evidence reveals the gut’s influence on skeletal homeostasis via neuro-

immune-endocrine pathways—termed the gut-bone axis—though its

mechanistic intricacies remain incompletely defined. Since the concept of

osteoimmunology was proposed in 2000 by Arron & Choi, immune-skeletal

interactions have garnered significant research traction. Immune cells primarily

contribute to the maintenance of bone homeostasis through the release of pro-

and anti-inflammatory factors. Consequently, the immune system represents a

crucial intermediary in understanding the relationship between GM and

metabolic bone diseases. This review synthesizes the interrelationships among

gut microbiota, immune cells, and osteoporosis, and elucidates how GM

modulate bone metabolism in osteoporosis through this critical intermediary.

Furthermore, building upon the microbiome–immune–bone axis, we highlight

several emerging microbiota-targeted interventions—such as probiotics,

prebiotics, dietary modifications, fecal microbiota transplantation, and

engineered microbes—and evaluate their clinical translational potential, with

the aim of advancing diagnostic and therapeutic strategies for metabolic

bone disorders.
KEYWORDS
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1 Introduction

Osteoporosis (OP), a common systemic metabolic bone disease, is characterized by low

bone mass and structural deterioration of bone tissue leading to bone fragility and an

increased risk for fractures (1). Globally, over 200 million people suffer from OP (2). And it

is estimated that OP will be a significant healthcare burden in the future due to the
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increased incidence of the disease with age and female gender.

Currently, the underlying molecular mechanisms of OP

pathogenesis continue to be investigated. With the in-depth study

of gut microbiome (GM), some studies have demonstrated

decreased bacterial richness and diversity in patient with

postmenopausal osteoporosis (PMOP) (3).

The GM is now viewed as a tissue that interacts bidirectionally

with the gastrointestinal, immune, endocrine and nervous systems,

affecting the cellular responses in numerous organs (4, 5).

Accumulating evidence suggests that the GM plays an important

role in the regulation of the bone homeostasis and serves as a

contributing mechanism of OP (5). Current research reveals that

bone homeostasis is linked to a healthy microbiome and that gut

dysbiosis can exacerbate osteoclasts (OCs) activity and promote OP

(6). The GM can affect bone metabolism through multiple pathways

including the intestinal barrier, metabolic pathways, nutrient

absorption such as calcium and phosphorus, the immune system,

and hormonal environment (7). However, the mechanism by which

intestinal flora regulate bone homeostasis remains to be elucidated.

Meanwhile, as the largest immune organ in the human body,

the GM is where most lymphocytes interact with other immune

factors. The GM could regulate the maturation of the mucosal

immune system, whereas the pathogenic microbiome causes

immune dysfunction leading to disease development. In recent

years, a growing number of studies have reported a close

relationship among immune cells, GM and OP. And some studies

indicated that intestinal flora regulates immunity and affects bone

metabolism. Here, we summarize the relationship between immune

cells and GM and OP, and show how the GM regulates OP through

immune cells.
2 Gut microbiota and osteoporosis

The human gastrointestinal tract contains more than 10 trillion

bacteria. As a result, the GM is also known as the second largest

human genome. Recently, accumulating research confirmed that

the diverse community of microorganisms has been recognized as a

profound role in maintaining the bone homeostasis (8). It was

found that the bacterial composition and diversity are altered in

patients with OP compared to normal people, supporting the view

that the pathological process of OP is affected by the GM (9).

Herein, we attempted to explore the intimate connection between

the GM and OP from the following three aspects.
2.1 The gut-bone axis

The intestinal microbiota is actively involved in many necessary

physiological reactions. The gut interacts with most of the organs

through neural, immune and endocrine pathways, a connection

known as the gut-organ axis (10). Among them, the gut-bone axis

mainly refers to the bidirectional relationship between the GM and

bone tissue (11). Recently, the correlation between OP and

intestinal microflora has been studied. Sjögren et al. conducted a
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study on germ-free (GF) mice and found GF mice exhibited

decreased bone mineral density (BMD) compared to

conventionally raised mice. Conversely, when the GM from

conventionally raised mice was transferred to the GF mice,

reduced bone density was reversed (12).

Their interplay tends to emphasize that the GM is a key

regulator of bone health, suggesting its potential therapeutic

targets for multiple bone disorders, especially for OP. A cross-

sectional study reported that increased abundance of Prevotellaceae

was positively associated with systemic inflammation and

rheumatoid arthritis (RA) onset, suggesting that GM dysbiosis

may contribute to bone loss via inflammatory mediators (13). As

we know that intestinal inflammation can be accompanied by OP,

but their relationship remains unclear. A new study induced food-

allergic bowel disease using a non-IgE-mediated food-allergic

enteropathy model of ovalbumin (OVA) 23–3 mice, found that

abnormally activated OVA-specific Th2 cells in the mesenteric

lymph nodes that overproduce IL-4 migrated to the bone

marrow, trigger an inflammatory cascade that promotes bone

damage (14). The findings reveal the mechanism by which the

gut-bone axis plays an important role in bone loss induced by food-

allergic bowel disease. Experimental evidence demonstrates that

Fusobacterium nucleatum modulates M1 macrophage polarization

via the AKT2 signaling pathway, exacerbating colonic inflammation

and revealing a mechanism through which microbes influence

bone metabolism via immune regulation (15). Subsequently,

another research found that gut inflammation promotes OCs

differentiation generation and bone loss by promoting cytokine

changes, and upregulation of OCs precursor surface receptor MDL-

1 expression (16). This work shows a relationship between gut

inflammation and bone health, providing new evidence for gut-

bone axis interactions. Xie Hui’s research team found that children’s

intestinal flora, or the probiotic Akkermansia muciniphila in it, can

promote bone formation and inhibit bone absorption by releasing

extracellular vesicles (EVs) into bone tissue (17). It can reduce bone

loss in PMOP mice. This study reveals a novel “gut-bone axis”

regulatory model of bone metabolism mediated by gut bacteria

functional EVs.

Altogether, the gut-bone axis offers a rationale for a potential

therapeutic option for treating OP.
2.2 Gut microbiota and bone formation

OP occurs when there is an imbalance between bone formation

and bone resorption during bone remodeling. A study employing

integrated 16S rRNA gene sequencing and liquid chromatography-

mass spectrometry metabolomic analysis revealed a positive

correlation between Bacteroides abundance and BMD. The

abundance of Bacteroides was significantly higher in the control

group compared with the OP group, suggesting a potential

regulatory role through the tryptophan-indole metabolic pathway.

This finding indicates that GM dysbiosis may represent a significant

risk factor for OP (18). Dysbiosis of intestinal microflora can lead to

malabsorption of essential elements for bone growth, such as
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calcium, carbohydrates, B vitamins, and vitamin K, and to the

production of metabolites that affect cellular signaling (19).

Changes in the intestinal flora may thereby affect the calcium

regulation and bone density. Studies have demonstrated that

Lactobacillus acidophilus-fermented Astragalus polysaccharides

alter the GM by increasing the relative abundance of specific

beneficial bacteria and stimulating the production of key

metabolites, thereby enhancing calcium absorption and

ameliorating OP (20). Separately, sheep bone protein hydrolysate

was shown to increase Firmicutes abundance, reduce Proteobacteria

and Verrucomicrobia, promote short-chain fatty acids (SCFAs)

production, improve calcium uptake, and ultimately restore

BMD (21).

He W investigated the effect of the GM on calcium absorption

in ovariectomized (OVX) rats, and found that specific species (e.g.

Acinetobacter and Propionibacterium) of gut bacteria were

associated with higher calcium absorption efficiency (22). There is

a decrease in beneficial intestinal bacteria for postmenopausal

women with OP, always accompanied with reduced levels of bone

formation markers (23). Furthermore, studies have revealed that

OVX mice exhibit a significant increase in the Firmicutes/

Bacteroidetes ratio and elevated serum Lipopolysaccharide (LPS)

levels, suggesting that estrogen deficiency may represent a key

mechanism through which GM dysbiosis contributes to bone

loss (24).

One of these studies reported that Lactobacillus rhamnosus GG

regulating the intestinal microbiome and intestinal barrier through

probiotics, stimulating the Th17/Treg balance in the intestine and

bones, and promoting bone formation can improve OP caused by

estrogen deficiency (25). Moreover, the combination of

Butyricicoccus pullicaecorum and 3-hydroxyanthranilic acid (3-

HAA) was shown to prevent PMOP by modulating the Th17/

Treg immune balance, highlighting the potential of targeting the

microbiota-immune axis for OP treatment (26).

Parathyroid hormone (PTH) is a critical regulator of skeletal

development that promotes bone formation. Jau-Yi Li.et showed

that the microbiota was required for PTH to stimulate bone

formation and increase bone mass, and found butyrate, a

metabolite responsible for gut-bone communication, plays in

triggering regulatory pathways, which suggested that

supplementing butyric acid to increase the number of regulatory

T cells may be a new method to treat OP or enhance the anabolic

activity of PTH (27). Supplementation with Pseudobifidobacterium

CECT 7765 has been shown to upregulate the Wnt/b-catenin
signaling pathway, resulting in increased levels of PTH, serum C-

terminal telopeptide (CTX), and osteocalcin (28). In addition, two

independent studies demonstrated that Bacillus subtilis enhances

bone formation either by modulating bacterial communities to

elevate PTH levels or by reducing TNF-a expression, thereby

attenuating inflammatory conditions (29, 30).

Therefore, these studies highlight the potential of targeting GM

to regulate bone formation in OP.
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2.3 Gut microbiota and bone resorption

GM can influence bone resorption by modulating the immune

and endocrine system, affecting inflammation, and producing

metabolites that impact bone cell activity, including OCs.

Ohlsson investigated the role of GM in PMOP in mice (31).

They found that the GM promoted bone loss by increasing the

differentiation and activity of OCs, the cells responsible for bone

resorption. Provided evidence that probiotic supplementation

partially reverses the suppression of bone marrow T-regulatory

cells caused by ovariectomy. The probiotic intake resulted in

reduced levels of bone TNF-a and other pro-inflammatory

cytokines in OVX mice, consistent with the regulation of anti-

inflammatory T-cells (32, 33). Additionally, the researchers

observed an increase in TGF-b1 expression, which is associated

with enhanced T-regulatory cells (32). Li investigated the impact of

GM dysbiosis on bone resorption in a mouse model of PMOP (34).

They found that dysbiosis led to an altered GM profile, increased

inflammation, and enhanced OCs activity, resulting in accelerated

bone loss. The study highlighted the potential of targeting GM to

modulate bone resorption in OP.

Wallimann found that GM and the metabolites they produce,

primarily SCFAs, have been shown to affect almost all organs in

the human body, including bones (35). SCFAs have shown a wide

range of activities in positively affecting bone healing outcomes by

acting directly on cell types involved in fracture healing, such as

osteoblasts (OBs), OCs, chondrocytes, and fibroblasts, or indirectly

on appropriate anti-inflammatory and immunomodulatory

responses (35, 36). It is well documented that the GM can

increase bone mass and improve OP by inhibiting OCs

proliferation and differentiation, inducing apoptosis, reducing

bone resorption, or promoting OBs proliferation and maturation.

Experimental studies have demonstrated that quercetin

supplementation ameliorates bone loss in OVX rats by enhancing

intestinal barrier function through upregulation of tight junction

proteins (ZO-1 and occludin), increasing SCFAs levels, and

reducing pro-inflammatory mediators such as LPS, IL-1b, and
TNF-a (37). These findings underscore the role of microbial-

derived metabolites (e.g., SCFAs) in inhibiting bone resorption,

highlighting a microbiota-metabolite-immune mechanism in

OP intervention.

Peripheral serotonin (5-HT), produced by enterochromaffin

(EC) cells in the gastrointestinal tract, promotes OCs

differentiation and suppresses OBs activity. GM dysbiosis

resulting from chronic ethanol abuse has been shown to increase

5-HT levels and exacerbate bone resorption (38). In contrast,

centrally-derived 5-HT in the brain promotes bone formation by

binding to Htr2c receptors on ventromedial hypothalamic neurons

(39). Experimental supplementation with Clostridium butyricum

and 25-hydroxyvitamin D3 (25-OH-D3) in broilers was found to

increase 5-HT levels, decrease bone Gla protein (BGP) and peptide

YY (PYY) levels, and improve bone metabolism. Metagenomic
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analysis of the cecum further revealed an increased abundance of

Alistipes and significant alterations in metabolic pathways such as

PI3K-AKT signaling and bile acid biosynthesis (40). Additionally,

soybean germ extract and Lactobacillus gasseri exerted positive

effects on skeletal health in OVX rats, significantly improving

alkaline phosphatase (ALP) and bone resorption markers, while

also elevating levels of estrogen, 5-HT, and norepinephrine (41).

In summary, bone loss within the gut-bone axis is primarily

driven by GM dysbiosis through multiple mechanisms, including

inflammatory factor release, metabolite alterations, immune

dysregulation, intestinal barrier impairment, and endocrine

hormone disruption. The mechanisms through which GM

dysbiosis influences bone metabolism are illustrated in Figure 1.
3 Interaction between immune cells
and osteoporosis

3.1 From osteoimmunology to
immunoporosis: immune imbalance
caused bone loss regulate bone
remodeling plays an important role in
regulating bone health and homeostasis

The relationship between the immune system and the bone

system has long been studied. In 2000, Arron et al. proposed the

concept of “osteoimmunology” and pointed out that there is an

intricate interaction between the immune system and the bone

system (42). Since then, immune-related factors have gradually

become a hot research topic in metabolic bone diseases. In fact, the
Frontiers in Immunology 04
regulatory between the immune system and bone is bidirectional

(43). On the one hand, as immune cells form in the bone marrow,

the bone system exerts an important influence on the generation,

function and regulation of the immune system through affecting the

generation and differentiation of hematopoietic stem cells (HSCs)

and the secretion of cytokines (44). On the other hand, the immune

system regulates bone health and homeostasis by modulating the

differentiation of OBs and OCs, as well as the inflammatory

responses (45). It has been shown previously that the RANKL/

RANK/OPG pathway was thought to act as a link between immune

system and bone (46). Activated T cells release RANKL, a crucial

cytokine in osteoclastogenesis and bone resorption, which binds to

RANK and then regulates bone remodeling by activating a series of

signal transduction pathways.

Recently, Srivastava et al. have coined the term “immunoporosis”

to highlight the role of immune cells in the pathology of OP

(47). Immune OP provides a good perspective for understanding

the complex interactions between the immune system and

the skeletal system. It enables us to use immune knowledge to

explain the pathological mechanism of OP and provide important

clues for the development of new treatments and drugs for OP in the

future. A summary of the mechanisms by which immune cells

regulate bone metabolism, as discussed in this article, is provided

in Table 1.
3.2 T lymphocytes and osteoporosis

In particular, T lymphocytes (T cells) play pivotal roles in the

regulation of bone health.
FIGURE 1

Gut microbiota (GM) dysbiosis leads to bone loss. Bone loss driven by GM dysbiosis through multiple mechanisms, including inflammatory factor
release, metabolite alterations, immune dysregulation, intestinal barrier impairment, and endocrine hormone disruption.
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T cells are the core cells of immune regulation, and naïve T cells

can differentiate into Treg cells, Th17 cells and other subsets after

stimulation by exogenous antigens, and can produce different

immune effects by secreting different characteristic cytokines (48).

Th17 cells are essential core links in estrogen deficiency-induced

bone loss (49). In addition, Treg cell deficiency and inactivation are

associated with some chronic inflammatory diseases, and Treg cells

can regulate OCs formation and prevent bone resorption by

secreting IL-4, IL-10, and TGF-b (50).

The imbalance between Th17 cells and Treg cells constitutes

a pivotal mechanism underlying OP pathogenesis (50). Th17

cells secrete IL-17 to activate RANKL expression in bone marrow

stromal cells while suppressing osteoprotegerin (OPG) production,

thereby disrupting the RANKL/OPG equilibrium (51). This ratio

imbalance amplifies OCs differentiation through NF-kB signaling

cascades (52). Experimental studies confirm that phosphorylation

of STAT3, the Th17-specific transcription factor, upregulates
Frontiers in Immunology 05
Cathepsin K expression to enhance osteoclastic bone resorption

activity (53).

Treg cells employ Foxp3-dependent pathways to secrete TGF-b
and IL-10, directly inhibiting RANKL-induced osteoclastogenesis (54).

Their surface molecule CTLA-4 interacts with CD80/CD86 on

dendritic cells, blocking costimulatory signaling and suppressing pro-

osteoclastogenic factors like TNF-a (55). Under physiological

conditions, Treg cells maintain bone equilibrium by balancing Foxp3/

RORgt transcriptional factor expression in CD4+ T cells, thereby

counteracting Th17-mediated bone destruction (54). Postmenopausal

estrogen deficiency reduces bone marrow Treg population and

functional competence, concurrently promoting Th17 differentiation

into IL-23 receptor-high subsets (56). This immunologic shift activates

JAK2/STAT3 pathway to induce OBs apoptosis and enhances OCs

precursor sensitivity to M-CSF, ultimately driving bone mass loss (57).

Elucidation of this regulatory network provides theoretical foundation

for immunologically targeted interventions in OP management.
TABLE 1 Summary of the mechanism by which immune cells regulate bone metabolism.

Immune cells Subtype Regulatory mechanism Effects on bone metabolism

T lymphocytes

Th17
Pro-inflammatory cytokine secretion via STAT3
(e.g., TNF-a, IL-17, IL-6); RANKL activation;
OPG inhibition.

OCs production↑ Bone resorption↑

Tregs
Anti-inflammatory cytokine secretion via Foxp3
(e.g., IL-4, IL-10, and TGF-b); RANKL
inhibition.

OBs production↑; Bone formation↑

B lymphocytes

B cells
OPG production↑; OBs differentiation inhibition
via ERK and NF-kB; OCs differentiation via G-
CSF secretion (Inflammatory condition)

Bone resorption↓(Physiological condition)
Bone resorption↑(Inflammatory condition)

Regulatory B lymphocytes (Bregs)
Anti-inflammatory cytokine secretion (e.g., IL-35,
IL-10, and TGF-b1)

Bone resorption↓

Macrophages

M1 polarization
Pro-inflammatory cytokine secretion (e.g., IL-1,
IL-6, IL-12, TNF-a, NO, ROS)

OCs production↑; Bone resorption↑

M2 polarization
Anti-inflammatory cytokine secretion (e.g., IL-10,
TGF-b); pro-osteogenic molecules secretion (e.g.,
BMP-2)

OBs production↑; Bone formation↑

Dendritic cells (DCs)
Conventional DCs 1 (cDC2)

High expressing CD80/CD86 for antigen
presentation; promote osteoclastogenesis
indirectly through T cell activation

OCs production↑; Bone resorption↑

Conventional DCs 2 (cDC2) OPG secretion; TGF-b secretion Bone resorption↓

Neutrophils –
Phagocytosis, degranulation, and neutrophil
extracellular trap (NET) formation

Bi-directional regulation

Mast cells –
Estrogen deficiency;
pro-osteogenic effects via PDGF secretion

Bi-directional regulation

Natural Killer cells –

Pro-osteogenic molecules secretion (e.g., RANKL,
M-CSF);
IL-15-activated NK cells eliminate OCs via LFA-
1/ICAM-1 and DNAM-1/CD155

Bi-directional regulation

Natural Killer T cells (NKT)
invariant NKT (iNKT)

T cells/macrophages activation via IFN-
gsecretion; enhanced TNF-a secretion; directly
control OCs differentiation OCs production↑; Bone resorption↑

CD56bright NKT Enhanced trafficking to inflammatory sites
Mechanistic insights and functional annotations are based on findings discussed in Section 3 of the main text. Detailed citations can be found in Section 3.
STAT3, signal transducer and activator of transcription 3; RANKL, receptor Activator of Nuclear Factor-kB Ligand; OPG, osteoclastogenesis inhibitory factor; OCs, Osteoclasts; OBs, Osteoblasts;
ERK, extracellular regulated protein kinases; NF-kB, nuclear factor kappa-B; G-CSF, granulocyte colony-stimulating factor; TGF-b, transforming growth factor-b; BMP-2, bone morphogenetic
protein 2; PDGF, platelet-derived growth factor; M-CSF, macrophage-colony stimulating factor.
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3.3 B lymphocytes and osteoporosis

B lymphocytes, pivotal components of humoral immunity,

develop from HSCs precursors in bone marrow and primarily

function through antibody secretion to neutralize pathogens while

enhancing effector functions of other immune cells (58). Emerging

research increasingly implicates B lymphocytes in bone remodeling

pathologies. Critically, these cells produce approximately 50% of

bone marrow-derived OPG, which competitively inhibits RANKL

binding to suppress osteoclastogenesis and prevent excessive bone

resorption (59). Conversely, B lymphocytes secrete C-C motif

chemokine ligand 3 (CCL3) and tumor necrosis factor (TNF) that

impair OBs differentiation via extracellular signal-regulated kinase

(ERK) and nuclear factor kappa-light-chain-enhancer of activated B

cells (NF-kB) pathways (60).
The osteoimmunological impact of B lymphocytes is context-

dependent. Inflammatory conditions polarize B cells toward pro-

osteolytic phenotypes: Activated B lymphocytes secrete granulocyte

colony-stimulating factor (G-CSF) that expands OCs progenitor

pools, while concurrent RANKL and G-CSF production drives OCs

proliferation and differentiation, ultimately driving progressive

osteopenia (61, 62). Clinically, postmenopausal osteoporotic

women exhibit significantly reduced CD19+ B lymphocyte

frequencies versus healthy controls, underscoring the pivotal

contributions of B lymphocytes to OP pathogenesis through

immunomodulatory and osteometabolic pathways (63).

Beyond conventional antibody-secreting subsets, regulatory B

lymphocytes (Bregs) counterbalance OCs activity through anti-

inflammatory mediators (64). IL-35 promotes Breg differentiation

via STAT1/STAT3 signaling (65); IL-10 directly impedes

osteoclastogenesis by disrupting Ca²+ mobilization and NFATc1

signaling in precursors while enhancing OBs differentiation

through miR-7015-5p downregulation (66, 67); and TGF-b1
stimulates osteogenesis via SMAD/MAPK-mediated Runt-related

transcription factor 2 (RUNX2) upregulation while suppressing

osteolytic genes encoding tartrate-resistant acid phosphatase

(TRAP) and cathepsin K (68). Thus, in TGF-b1-deficient
osteoporotic microenvironments, sustained RANKL expression on

OBs coupled with attenuated RUNX2-directed osteogenesis

collectively drives pathologic bone remodeling toward resorption.
3.4 Macrophages and osteoporosis

As pivotal innate immune cells, macrophages orchestrate bone

immunometabolic homeostasis through their remarkable phenotypic

plasticity, dynamically transitioning between polarization states to

regulate tissue balance (69). Proinflammatory cytokines including IL-

1b, IL-6, IFN-g, and TNF-a, along with bacterial components like

LPS, drive M1 polarization of macrophages (70). These classically

activated cells release inflammatory mediators such as IL-1b, IL-6, IL-
12, TNF-a, nitric oxide (NO), and reactive oxygen species (ROS),

which directly or indirectly stimulate osteoclastogenesis and enhance
Frontiers in Immunology 06
bone resorption (71). When sustained, this M1-dominant state

propagates chronic inflammation, triggering a compensatory shift

toward M2 polarization via anti-inflammatory cytokines (e.g., IL-4,

IL-10, IL-13) to restore tissue equilibrium (72).

M2-polarized macrophages contribute to tissue repair through

efferocytosis of apoptotic cells, secretion of anti-inflammatory

cytokines like IL-10, and production of pro-osteogenic molecules

such as bone morphogenetic protein 2 (BMP-2) and transforming

growth factor b (TGF-b) (73). These factors induce bone marrow

mesenchymal stem cells (BMSCs) differentiation into mature OBs,

accelerating bone regeneration (74). Notably, elevated M1/M2

macrophage ratios in OP models underscore macrophage

repolarization as a promising therapeutic target (75).

Recent mechanistic studies reveal novel regulatory pathways:

Huang et al. demonstrated that M2-derived extracellular vesicles

(M2-EVs) reprogram osteoclast precursors (OCPs) into M2-like

macrophages, rebalancing the OC-macrophage axis to attenuate

pathological bone loss (76). This strategy offers a bone-targeting

approach for OP therapy. Complementary work by Qin et al. showed

that bilobalide—a bioactive constituent of Ginkgo biloba—promotes

dose-dependent M2 polarization while suppressing RANKL-induced

osteoclastogenesis through SIRT3 upregulation and NF-kB pathway

inhibition, revealing another promising intervention for OC-

mediated bone loss (77).

Collectively, these advances position M2 macrophages as

central orchestrators of osteogenic activity, with macrophage

phenotype modulation representing a compelling therapeutic

frontier for OP management.
3.5 Others immune cells and osteoporosis

3.5.1 Dendritic cells
Dendritic cells (DCs), specialized antigen-presenting cells

(APCs), serve as pivotal initiators of adaptive immune responses.

Distributed ubiquitously, they continuously monitor danger signals

via pattern recognition receptors (PRRs) while constitutively

expressing high levels of major histocompatibility complex class

II (MHC-II) molecules and co-stimulatory receptors (CD80/CD86),

essential for antigen presentation. Emerging research reveals DCs as

critical regulators of bone homeostasis and pathological

remodeling, demonstrating striking functional duality (78).

Under RANKL and M-CSF stimulation, DCs exhibit

significantly greater efficiency in transdifferentiating into OCs

than monocytes, with transcriptomic analyses confirming fewer

regulatory steps required for this conversion, suggesting close

developmental proximity between these lineages (79). Activated

DCs promote osteoclastogenesis indirectly through T cell activation

—particularly Th17 polarization—triggering IL-17 and TNF-a
secretion that induces RANKL production in bone stromal

cells (78, 80). Furthermore, DCs and T cells form pathological

aggregates that exacerbate osteolytic conditions including

synovitis and periodontitis (81, 82). Significantly, a self-
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amplifying loop emerges wherein newly formed OCs chemoattract

additional DCs to bone resorption sites through chemokine

signaling (83).

Conversely, DCs counterbalance bone destruction via cDC2-

derived OPG—a decoy receptor that competitively inhibits RANKL

binding to suppress OCs activation (59). Under specific conditions,

DCs also secrete TGF-b and other anti-resorptive molecules that

mitigate inflammatory bone loss (84). Crucially, DCs function as

dynamic immunoregulatory buffers that fine-tune the osteolytic-

osteogenic equilibrium during OP initiation (85).

3.5.2 Neutrophils
Neutrophils—polymorphonuclear granulocytes constituting

40%-60% of circulating leukocytes—serve as primary sentinels of

innate immunity. Their production is regulated by G-CSF and

granulocyte-macrophage colony-stimulating factor (GM-CSF),

with mature cells rapidly recruited to inflammatory sites where

they orchestrate local microenvironments through phagocytosis,

degranulation, and neutrophil extracellular trap (NET) formation

(86). Beyond these canonical functions, neutrophils synthesize C-X-

C and C-C chemokines facilitating crosstalk with bone cells and

other cellular constituents (87).

Emerging research reveals neutrophils modulate skeletal

metabolism through multiple pathways, where their senescence or

dysfunction directly/indirectly impacts OCs, OBs, and MSCs (88,

89). Neutrophils exacerbate bone resorption by secreting RANKL,

generating ROS, and releasing pro-inflammatory cytokines that

potentiate osteoclastogenesis (90, 91). Simultaneously, they recruit

pro-osteoporotic cells like Th17 lymphocytes via chemokines (IL-8,

IL-17), further amplifying osteoclastic activity (92). Conversely,

neutrophils enhance bone formation by inducing OBs expression

of mineralization markers including ALP and osteocalcin, thereby

promoting mineral deposition (93). They also regulate MSC

osteogenic differentiation; though notably, in vitro studies

demonstrate neutrophils inhibit MSC-mediated extracellular

matrix production while G-CSF-induced neutrophil expansion

triggers ROS-mediated apoptosis in MSCs and OBs, collectively

attenuating osteogenesis (94, 95).

3.5.3 Mast cells
Mast cells (MCs) exhibit unique spatial positioning in

osteoporotic bone, predominantly accumulating within endosteal

marrow regions while closely adjacent to OCs surfaces (96). The

resulting osteometabolic imbalance manifests initially as enhanced

endosteal resorption within metaphyseal compartments,

subsequently progressing to affect cortical endosteal surfaces in

epiphyseal and diaphyseal regions. Estrogen deficiency constitutes a

key permissive condition for MC-mediated osteopathology, as

evidenced by significant MC expansion in OVX rat marrow

compared to sham controls (97). Mechanistically, MC-deficient

mice resist OVX-induced bone loss through suppressed OCs

numbers and activity (98). Critically, mast cell accumulation in

OVX mice directly correlates with elevated OCs numbers (99),

exhibiting frequent spatiotemporal co-localization with OCs (96).
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Consequently, estrogen deficiency functions as a crucial molecular

switch unlocking mast cell-mediated osteolytic activity.

Compared to OC interactions, MC influences on OBs remain

less characterized. Lind et al. demonstrated elevated bone mass,

formation markers, and mineralization rates in female mice lacking

the MC protease chymase Mcpt4, suggesting chymase inhibits

osteogenesis (100). Further supporting an anti-osteogenic role,

MCs suppress OB differentiation via IL-1 secretion (96).

However, conflicting reports indicate pro-osteogenic effects:

Turner et al. identified MC-derived platelet-derived growth factor

(PDGF) promoting stromal cell differentiation toward

osteoprogenitors (101), and MC-deficient mice exhibit reduced

OBs activity (102), revealing context-dependent regulatory duality.

3.5.4 Natural Killer cells
Natural killer (NK) cells, traditionally derived from bone

marrow HSCs, now demonstrate maturation capacity within

secondary lymphoid tissues (SLTs) where they acquire adaptive

features including memory functions (103). Beyond canonical

tumor-lytic activity, NK cells eliminate virus-infected and stress-

altered cells (104, 105) through balanced signaling via activating/

inhibitory receptors (106). These lymphocytes further sculpt local

microenvironments by mediating antibody-dependent cellular

cytotoxicity (ADCC) and secreting pro-inflammatory mediators

(e.g., IFN-g, chemokines) that regulate neighboring immune

cells (107).

Notably, NK cells exhibit context-dependent functional duality

in inflammatory osteopathies. In RA, synovial-infiltrating NK

cells highly express osteoclastogenic factors RANKL and M-CSF

—levels further augmented by IL-15 (108). Clinically, RA synovial

fluid NK cells drive monocyte differentiation into functional

OCs, with IL-15 conferring enhanced resorptive capacity (109).

Correspondingly, NK cell depletion in collagen-induced arthritis

(CIA) models significantly attenuates bone destruction (109).

Conversely, IL-15-activated NK cells eliminate OCs via LFA-1/

ICAM-1 and DNAM-1/CD155 contact-dependent cytolysis, an

effect abrogated by receptor blockade (110). This phenotypic

plasticity indicates NK cell OC-regulatory behavior depends

critically on microenvironmental cues. Supporting clinical

significance, bioinformatic analyses reveal expanded T and NK

cell frequencies in PMOP bone (111).

3.5.5 Natural Killer T cells
Natural killer T (NKT) cells constitute critical regulators of

skeletal metabolism, exhibiting a hybrid T-NK phenotype that

enables both cytotoxic clearance of compromised cells (112) and

cytokine-mediated modulation of T/B cell immunity (113, 114) and

myeloid functions (115). Recent advances reveal invariant NKT

(iNKT) subsets directly control OCs differentiation through

specialized pathways (116). Within rheumatoid RA pathology,

synovial NKT cells expand dramatically—comprising ≤ 20% of

lymphocytes (117)—with CD56bright subsets exhibiting enhanced

chemokine receptor-mediated trafficking to inflammatory sites

(118). These infiltrating NKT cells activate monocytes to promote
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osteoclastogenesis (117), while concurrently secreting RANKL and

M-CSF (potentiated by IL-15) (119). Significantly, NKT-derived

IFN-g stimulates T cells/macrophages to amplify TNF-a release

(120), which subsequently drives osteoprogenitor differentiation

through RANKL-dependent mechanisms while inducing OBs to

secrete additional RANKL/M-CSF (121, 122). This multi-layered

cooperativity establishes NKT cells as principal orchestrators of

inflammatory bone loss.

Taken together, these findings indicate that both innate and

adaptive immune cells persistently shape OCs and OBs functions.

This interaction is crucial for deciphering physiological bone

metabolic equilibrium and pathological remodeling processes

in OP.
4 Gut microbiota influences immune
system

The GM orchestrates maturation and functional development

of the early human immune system from birth. Gnotobiotic models

provide definitive evidence: studies comparing GF and specific

pathogen-free mice reveal significant developmental impairments

in gut-associated lymphoid tissue and defective formation of

isolated lymphoid follicles—critical sites for IgA response

induction (123). Critically, the GM further modulates systemic

immunity and self-antigen responsiveness, with microbiota

alterations reported across preclinical and clinical models of

chronic diseases underscoring its influence on immune

dysregulation during pathogenesis (124).

GM-immune crosstalk in extraintestinal organs operates

through three interconnected mechanisms (125): firstly through

direct cellular interactions where microbes engage immune cells via

surface adherence or phagocytic uptake, and bind pattern-

recognition receptors on mucosal epithelia and macrophages to

trigger pro-inflammatory cascades that amplify immune activity;

mechanistically through metabolite-mediated signaling where

SCFAs and other immunomodulatory molecules directly govern

immune cell proliferation, differentiation, and effector function;

furthermore through barrier-dependent segregation wherein

epithelial structures physically and chemically sequester luminal

communities to maintain host-commensal homeostasis by

preventing aberrant lymphocyte activation.

Thus, the immune-GM axis pivots on these molecular

pathways, warranting detailed examination of their collective

impact on immune regulation.
4.1 Gut microbiota and Immune cells

The GM primarily colonizes the gastrointestinal tract, with

highest density in the colorectum, and is predominantly

composed of Firmicutes and Bacteroidetes (collectively

representing ~90% of total abundance), alongside minor

constituents including Proteobacteria and Actinobacteria (126).

Gut homeostasis is characterized by dominance of obligate
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anaerobes from Firmicutes and Bifidobacteriaceae, whereas

expansions in facultative anaerobes of the Enterobacteriaceae

family commonly signify dysbiosis (127). Functionally, Firmicutes

abundance positively correlates with calcium absorption (128),

while Bacteroidetes orchestrate immune equilibrium by restoring

Th1/Th2 balance, redirecting lymphoid organogenesis in

gnotobiotic animals, and directing cellular/physical maturation of

the developing immune system (129).

The intestinal epithelium establishes sophisticated physical and

chemical barriers that spatially segregate GM from immune cells,

preventing excessive immune activation while concurrently

functioning as a critical communication interface between these

compartments (130). A subset of bacterial species adhere tightly to

small intestinal epithelial cells (IECs), exploiting this unique niche

colonization to induce specific gene expression programs in IECs

that subsequently promote immune cell differentiation. This is

exemplified by segmented filamentous bacteria (SFB), whose

attachment to IECs triggers epithelial production of serum

amyloid A (SAA), thereby driving Th17 response differentiation

and enhancing antimicrobial defense against bacterial

pathogens (131).

While most GM remain non-adherent to the intestinal

epithelium, immune cells and IECs deploy PRRs for microbial

surveillance, recognizing bacterial components through Toll-like

receptors (TLRs) and NOD-like receptors (NLRs) (132, 133).

Specific bacterial components—including lipopolysaccharide

(LPS), flagellin, and Bacteroides fragilis capsular polysaccharide A

(PSA)—are detected by these PRRs, orchestrating downstream

innate immune signaling cascades.

4.1.1 Lipopolysaccharide
Gram-negative bacterial LPS exemplifies this signaling cascade:

initially complexing with LPS-binding protein (LBP), it transfers to

CD14 on myeloid cells before engaging the TLR4-MD2 complex.

This binding induces TLR4 dimerization and conformational

change, triggering dual signaling axes through myeloid

differentiation factor 88 (MyD88) and IL-1R-associated kinase

(IRAK) (134). Downstream activation of NF-kB and MAPK

pathways drives production of pro-inflammatory mediators (IL-

1b, IL-6, TNF-a, NO), promotes M1 macrophage polarization (70),

and enhances DCs antigen presentation via upregulated MHC-II

and co-stimulatory molecules (CD80/86) (135), while concurrently

stimulating neutrophil recruitment through CXCL1/2 chemokine

release (136). Concomitantly, the TLR4/TRIF axis phosphorylates

TANK-binding kinase 1, which phosphorylates interferon

regulatory factor 3 to drive type I interferon (IFN-b) production
(137). This IFN-I signaling potentiates cytotoxic programs in NK

cells and CD8+ T lymphocytes (138, 139).

4.1.2 Flagellin
Flagellin from Gram-negative bacteria (including invasive

pathogens) is primarily recognized by lamina propria-resident

DCs with high TLR5 expression, triggering MyD88-dependent

signaling to generate abundant pro-inflammatory cytokines (140).

Select pathogens like Salmonella further leverage type III secretion
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1680021
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1680021
systems to translocate flagellin into host cytosol (141). During

intracellular delivery, flagellin is initially sensed by NAIP5/6

proteins (NLR family apoptosis inhibitory proteins), which recruit

NOD-like receptor NLRC4 to assemble inflammasomes. This

cascade activates caspase-1, cleaving pro-interleukin-1b/18 into

mature IL-1b/IL-18 to induce pyroptosis (142).

Intriguingly, commensal-derived flagellins exhibit distinct

immunomodulatory properties, as demonstrated by Clasen et al.

(143). While binding TLR5 with comparable affinity to pathogenic

flagellins, these “silent flagellins” evade inflammatory activation—

revealing novel recognition paradigms within innate immunity.

Beyond innate sensing, TLR5 coordination extends to humoral

immunity: Intestinal epithelial TLR5 engagement activates NF-kB,
stimulating B-cell activating factor and proliferation-inducing

ligand secretion (144). These cytokines drive B-cell differentiation

into IgA-producing plasma cells that neutralize pathogens (145).

4.1.3 Fragilis polysaccharide A
Bacteroides fragilis, a commensal bacterium inhabiting the

colonic mucosa, PSA—an immune-tolerant symbiosis factor

conferring therapeutic benefits against intestinal inflammation

and systemic immune-mediated disorders like experimental

autoimmune encephalomyelitis (EAE) (146, 147). PSA engages

TLR2/TLR1 heterodimers on DCs to induce IL-10+/TGF-b+ Tregs

while suppressing pro-inflammatory cytokines, establishing an

immunosuppressive niche (129, 148).

Ertürk-Hasdemir et al. demonstrated that PSA-mediated EAE

protection requires functional TLR2/TLR1 signaling (149).

Concurrently, PSA activates Dectin-1 lectin receptors, triggering

Syk kinase phosphorylation that converges with TLR2 signaling at

PI3K (149). Notably, ablation of either receptor ablates PI3K-

dependent Akt phosphorylation, disrupting anti-inflammatory

gene programs.

Mechanistically, PSA-driven Akt phosphorylation inhibits

GSK3b, preventing NF-kB/CBP complex formation while

promoting CREB-dependent transcription of immunosuppressive

mediators (IL-10, MHC-II, ICOS-L) (150). This epigenetic

reprogramming initiates Foxp3+ IL-10+ Treg expansion,

completing a multi-receptor immunosuppressive circuit (151).
4.2 Gut microbiota metabolites and
Immune cells

Beyond the GM themselves, their metabolites significantly

contribute to intestinal homeostasis and inflammation regulation

by modulating immune responses.

4.2.1 Short-chain fatty acids
SCFAs—predominantly acetate, propionate, and butyrate—are

abundantly produced in the colon through microbial fermentation

of dietary fiber (152). SCFAs suppress inflammation and

carcinogenesis by directly or indirectly inhibiting histone

deacetylase (HDAC) activity, primarily via activation of G
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protein-coupled receptors (GPCRs), thereby influencing immune

cell differentiation and function (152).

Specifically, butyrate and propionate enhance histone H3

acetylation, opening the promoters of the Foxp3 and IL-10 genes

to drive Treg differentiation (153, 154). Concurrently, they activate

the aryl hydrocarbon receptor (AhR), synergistically augmenting

the anti-inflammatory effects of tryptophan metabolites (155).

Functional evidence demonstrates that propionate mediates its

protective effects through GPR43 signaling: GPR43-knockout

mice with chronic inflammation exhibit reduced intestinal Tregs,

elevated Th17 cell proportions, and aggravated experimentally

induced colitis compared to wild-type mice following propionate

administration (156). This establishes that propionate inhibits

HDAC via GPR43 to enforce anti-inflammatory activity against T

cell-driven colitis.

In innate immunity, butyrate-activated GPR109A signaling

induces arginase-1 (Arg1) and IL-10 expression in macrophages

and DCs, polarizing them toward an anti-inflammatory phenotype

that promotes IL-10-producing CD4+ T cells and Treg

differentiation in the colon (157). Furthermore, acetate binding to

GPR43 on IECs stimulates potassium efflux and membrane

hyperpolarization, triggering NLRP3 inflammasome activation.

The consequent release of IL-18 contributes to intestinal

homeostasis and colitis prevention (158).
4.2.2 Tryptophan
Tryptophan, an essential dietary amino acid, serves as a

precursor for diverse metabolic transformations through direct

microbial metabolism or conversion via the kynurenine pathway

into indole derivatives, kynurenine (Kyn), and downstream

metabolites (159). The AhR—a ligand-activated transcription

factor expressed across immune cell populations—represents a

central mechanism whereby tryptophan metabolites regulate

immunity (160). Indole-3-propionic acid (IPA) activates AhR

signaling in CD4+ T cells, driving differentiation of RORgt+ Tregs

(161). Concurrently, AhR inhibits Th17 differentiation by

suppressing STAT3 phosphorylation, consequently reducing IL-

17A secretion (162). Substantiating AhR’s critical role in gut

immunity, intestinal Tregs exhibit significantly higher AhR

expression than Tregs at other anatomical sites (163).

Regarding innate immunity, in vitro studies demonstrate that

tryptophan metabolites inhibit inflammatory responses by

suppressing histamine production in macrophages (164). Kyn

further induces M2 macrophage polarization via AhR activation,

promoting expression of anti-inflammatory mediators IL-10 and

arginase-1 (Arg1) (165). This mechanism confers protection against

septic colonic injury through the PPARg/NF-kB axis (166). The

downstream Kyn metabolite 3-HAA suppresses dendritic cell

maturation by downregulating CD40/CD80/CD86/I-A expression

and reducing IL-6, IL-12, and TNF-a production in LPS-stimulated

bone marrow-derived DCs (BMDCs). It concurrently inhibits

phospho-JNK and phospho-p38 levels in both DC2.4 cells and

BMDCs, collectively demonstrating that 3-HAA impairs CD4+ T

cell activation and proliferation through DC suppression (167).
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4.2.3 Secondary bile acids
Secondary bile acids (SBAs), including deoxycholic acid (DCA),

lithocholic acid (LCA), and ursodeoxycholic acid (UDCA), are

primarily generated by GM (e.g., Clostridium spp.) via 7a-
dehydroxylation of primary bile acids (168). These metabolites

regulate immune cell function primarily through activation of the

farnesoid X receptor (FXR) and G protein-coupled bile acid

receptor 1 (TGR5) (169).

SBAs interact with TGR5 in macrophages, inhibiting NLRP3

inflammasome assembly and suppressing NF-kB signaling through

the cAMP-PKA pathway (170). This promotes IL-10 secretion and

induces an M2-polarized phenotype (171, 172). The SBA 3b-
hydroxydeoxycholic acid (isoDCA), produced via microbial

epimerization of cholic acid, attenuates immunostimulatory

properties in DCs through FXR signaling (173). This enhances

Foxp3 induction, thereby promoting Treg generation and

differentiation. Supporting this mechanistic insight, engineered

minimal microbial consortia containing Bacteroides strains

expanded intestinal RORgt+ Treg populations (173).

Notably, isoallolithocholic acid (isoalloLCA) amplifies Treg

differentiation through mitochondrial ROS generation, elevating

Foxp3 expression (174). Beyond Treg modulation, 3-oxolithocholic

acid (3-oxoLCA) directly binds the transcription factor RORgt to
inhibit Th17 cell differentiation (174). Thus, bile acid metabolites

control host immunity by directly balancing Th17 and Treg

responses. Crucially, RORg+ Treg homeostasis depends on the

collective intestinal bile acid pool rather than individual SBAs,

underscoring the host-microbial biliary network’s role in gut

immune homeostasis (175).

In the liver, SBAs reduce CXCL16 expression on sinusoidal

endothelial cells, limiting hepatic recruitment of CXCR6-expressing

NKT cells (176). Consistent with this immunomodulatory function,

selective FXR agonists significantly suppress liver tumor growth in

murine models (177, 178). Notably, an obeticholic acid (OCA, a

clinically approved FXR agonist) nanoemulsion prepared via

ultrasonication demonstrated superior efficacy to oral free

OCA (178).
4.3 Gut microbiota and Intestinal epithelial
cells

As the intermediary layer of the gut barrier, IECs physically

separate the underlying lamina propria from luminal pathogenic

threats and commensal microorganisms. This compartmentalization

is essential for executing protective immune functions. Luminal

antigens and microbiota-derived signals transmit information to

IECs, mediating adaptation to intestinal environmental shifts

through mucosal barrier modulation. Gut microbial signals

engaging IECs are broadly categorized into three classes: bacteria

themselves, bacterial components, and bacteria metabolites (125).
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4.3.1 Bacteria themselves and bacterial
components

As previously described, IECs express TLRs and NLRs for

immune surveillance (179). These receptors rapidly detect

bacterial components like LPS and flagellin, driving epithelial

proliferation while inducing expression and secretion of

cytokines, antimicrobial molecules, and mucus in IECs (125). The

Regenerating Islet-derived 3 (Reg3) protein family—secreted by

Paneth cells—constitutes a critical class of antimicrobial effectors

that spatially segregate GM from the epithelial surface (180). In the

small intestine, Paneth cells secrete antimicrobial molecules

(including Reg3 proteins and a-defensins) via TLR/MyD88

signaling, thereby reducing pathogen colonization and

maintaining microbial ecology (181). Within the colon, LPS and

flagellin induce goblet cells to secrete mucin-2 (MUC2) through

TLR ligand engagement (182). Critically, Myd88 deficiency in IECs

reduces MUC2 expression and Reg3g production, exacerbating

susceptibility to colitis and impairing resistance to Salmonella

Typhi or Citrobacter rodentium infections (180, 183).

Cytosolic NLR receptors further uphold mucosal barrier

integrity. Lactobacillus reuteri (L. reuteri) activates NOD2

signaling in IECs to stimulate Paneth cell secretion of

antimicrobial peptides (e.g., a-defensins), indirectly suppressing

Th1/Th17 responses while enhancing Treg function (184).

Moreover, NLRP6 promotes mucin exocytosis by goblet cells

through autophagy-mediated vesicle trafficking, which crucially

restricts colonization by pathobionts like Prevotellaceae and

candidate phylum TM7 (185, 186).

4.3.2 Bacteria metabolites
SCFAs, particularly butyrate, serve not only as the preferred

energy substrates for IECs but also as critical modulators of IEC and

immune cell physiology. They play pivotal roles in maintaining

epithelial integrity and repairing mucosal damage (187). Through

activation of GPR41, GPR43, and GPR109A expressed on IECs,

SCFAs induce expression of tight junction proteins (e.g., ZO-1,

occludin, claudin-1), thereby reducing intestinal permeability (188).

Notably, butyrate primarily signals via GPR109A on IECs or lamina

propria dendritic cells, whereas acetate and propionate function

through GPR43/GPR41 activation (189). Additionally, SCFAs

enhance mucosal barrier function by promoting histone

acetylation at the MUC2 locus to increase mucus layer thickness

while simultaneously stimulating Paneth cell exocytosis of AMPs

(190). This coordinated action—fortifying physical barrier integrity

through enhanced intercellular junctions and reinforcing chemical

defenses via AMP secretion—demonstrates how SCFAs regulate

IEC-microbial crosstalk to prevent pathogen invasion.

AHR is constitutively expressed across IECs, enabling detection

of indole and its derivatives derived from tryptophan metabolism.

Animal studies demonstrate that AHR deficiency in IECs

significantly reduces MUC2 and carbonic anhydrase 4 (Car4)
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expression, consequently compromising resistance to pathogenic

infections (191). Additionally, AHR modulates the Wnt/b-catenin
signaling pathway in IECs, thereby regulating the specification of

epithelial and crypt stem cells (191). Crucially, AHR governs group

3 innate lymphoid cell (ILC3) development, where indole

metabolites stimulate ILC3s to secrete IL-22—a cytokine essential

for enhancing barrier function through induction of AMPs

production and intestinal infection defense (192). Intriguingly,

indole compounds concurrently activate the pregnane X receptor

(PXR), upregulating junctional proteins including occludin and

claudin-1 through ligand binding (193). These findings establish

that indole-mediated barrier enhancement operates through

coordinated AHR and PXR activation in IECs, playing

indispensable roles in maintaining epithelial barrier integrity.

Bile acids exert dual effects on intestinal barrier integrity (194).

Primary bile acids (e.g., cholic acid and chenodeoxycholic acid)

exert cytotoxic effects on IECs (195), whereas secondary bile acids

(e.g., DCA and LCA) enhance barrier function by modulating

expression of tight junction proteins including claudin-1, claudin-

4, and occludin (196). Specifically, DCA inhibits IEC proliferation

and wound healing through FXR activation (197). Additionally,

DCA stimulates TGR5 on enteroendocrine cells, triggering release

of 5-hydroxytryptamine (5-HT) and calcitonin gene-related peptide

(CGRP) to promote colonic motility (198).

Collectively, GM and their bioactive metabolites continuously

shape IEC activity and proliferation. This dynamic regulation is

indispensable for maintaining barrier competence—preventing

bacterial translocation and mucosal damage while ensuring

efficient pathogen exclusion.
5 Immune changes resulting from
disruption of the microbiome
composition can affect bones

The human GM encompasses approximately 1,000 species

across 28 distinct phyla—exceeding human cell counts while

expressing ~100-fold more genes than the human genome—

illustrating remarkable complexity and diversity (199).

Consequently, compositional shifts in this microbial community

can exert either beneficial or detrimental effects on human

health (200).

Animal studies reveal that GF mice—exhibiting GM dysbiosis—

display reduced CD4+ T cells and OCs alongside diminished TNF-a
and IL-1 expression compared to conventional counterparts.

Remarkably, GF mice colonized with normal microbiota restored

bone mass to physiological levels (12). Similarly, colonization with

microbiota-derived SCFAs normalized bone mass in GF mice,

potentially mediated via GM-induced insulin-like growth factor 1

(IGF-1) production that stimulates osteogenesis (201). Clinically,

malnourished and growth-stunted children exhibit compromised

microbiota relative to healthy controls (202). Critically,

administering two bacterial strains (Ruminococcus and

Clostridium symbiosum) rectified growth impairment in mice
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transplanted with malnourished children’s microbiota (202). A

randomized double-blind trial demonstrated that six-month

multi-species probiotic supplementation significantly decreased

bone-specific ALP and CTX levels—key biomarkers of bone

turnover—in PMOP patients, attenuating bone resorption (203).

Collectively, these findings demonstrate that microbiota dysbiosis

triggers immune alterations impacting skeletal integrity and

development, whereas probiotic interventions can restore

microbial ecology to promote bone health—though precise

mechanistic details remain elusive.

Beyond microbial complexity, limited culturability poses

fundamental challenges to delineating GM regulatory mechanisms.

Of approximately 1000 resident microbial species, fewer than 40% are

currently culturable in vitro, leaving >60% of functional potentials

unexplored. The discovery of “silent flagellins” —mutated bacterial

proteins evading innate immune recognition—reveals novel

microbial evasion strategies while underscoring critical knowledge

gaps in host-microbe interactions (143). Advancements in molecular

tools and technologies—such as metagenomics, metabolomics,

lipidomics, and metatranscriptomics—have enabled the gradual

deciphering of complex interactions between GM, their

metabolites, and bone metabolism. These developments allow us to

extend beyond classical immunology, thereby deepening our

understanding of the gut-bone axis. All microbial species discussed

herein and their mechanisms of bone metabolism regulation are

summarized in Table 2.

A metagenomic study conducted in both Chinese and

American populations revealed that Bacteroides vulgatus (B.

vulgatus) was negatively correlated with BMD, while the

metabolite serum valeric acid (VA) showed a positive correlation

with BMD. Subsequent animal experiments confirmed that VA

suppresses the production of the pro-inflammatory factor RELA

and enhances the mRNA expression of the anti-inflammatory

cytokine IL-10, thereby inhibiting bone resorption. In contrast, B.

vulgatus was found to promote bone resorption by inhibiting VA

production, highlighting the potential of the Bacteroides-valeric

acid axis as a therapeutic target (204). A Mendelian

randomization analysis further demonstrated that the abundance

of Burkholderiales was strongly positively correlated with bone

formation markers, gut barrier indicators (e.g., claudin-1,

Claudin), and bone density parameters (e.g., Tb.N, ALP).

Conversely, the genus Ruminococcus exhibited strong positive

correlations with bone resorption markers and gut inflammatory

factors (e.g., LPS, TNF, TRACP-5b). The study also identified

Akkermansia, Parabacteroides, Alistipes, Parasutterella, and

Muribaculum as potential mediators for the clinical diagnosis and

treatment of OP (205). Additionally, metabolomic investigations

revealed that L. reuteri promotes the production of hormones such

as serotonin, GIP, and PYY, including vasopressin and luteinizing

hormone subunit beta—newly identified hormones produced in gut

epithelial cells—thereby broadening our understanding of microbial

regulatory mechanisms in bone metabolism (206).

In addition to predicting potential therapeutic targets and

biomarkers for OP, omics approaches have been utilized to validate

the efficacy of pharmacological treatments, providing robust
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experimental evidence and offering new directions for elucidating

microbial mechanisms. For instance, studies have demonstrated that

Lactobacillus plantarum and curcumin increase beneficial GM while

reducing harmful species, thereby ameliorating glucocorticoid-

induced OP (207, 208). Another study revealed that alginate

oligosaccharides alleviate estrogen-deficient osteosarcopenia by

modulating bile acid metabolism, reducing Th17 cell prevalence

and systemic inflammation (209). Additionally, a Chinese herbal

extract, Isaria felina, was found to improve bone metabolism by

correcting gut dysbiosis (particularly in Bacteroides and

Ruminococcus), restoring Th17/Treg balance, and lowering levels of

inflammatory cytokines such as IL-17 and TNF-a. Metabolomic

analyses further indicated alterations in nucleotide and lipid

metabolism (210).

The rational application of these advanced biotechnologies will

facilitate the discovery of novel biomarkers and therapeutic targets,
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paving the way for the development of safer and more

effective interventions.
6 How does gut flora affect bone
metabolism through the immune
system

Through comprehensive analysis of the GM-immune cell-OP

relationship, we have established that the Th17/Treg equilibrium,

Breg cells, and macrophage polarization profiles play key roles in

maintaining bone homeostasis. As gut microbes continuously

stimulate these immune cells, the GM thus indirectly influences

bone metabolism via the immune system. The crosstalk

mechanisms within the GM-immune cells-OP axis is described in
TABLE 2 Summary of the major functions of gut microbiota in the gut-bone axis.

Gut microbiota
species

Phylum Major functions in the gut-bone axis References

Prevotellaceae Bacteroidetes Positive correlations with the development of systemic inflammation and the onset of RA (13)

Fusobacterium nucleatum Fusobacteria
M1 macrophage polarization modulation via the AKT2 signaling pathway, exacerbating
colonic inflammation

(15)

Akkermansia muciniphila Verrucomicrobiota Bone formation promotion and bone absorption inhibition by releasing EVs into bone tissue (17)

Lactobacillus acidophilus Firmicutes
Relative abundance increasing (e.g., Lactobacillus, Allobaculum, and UCG-005); Metabolites
production (e.g., indicaxanthin, chlorogenic acid, and 3-hydroxymelatonin) ; scalcium
absorption improvement; regulation of Th17/Treg immune homeostasis

(20, 216)

Lactobacillus rhamnosus GG Firmicutes Regulation of Th17/Treg immune homeostasis (25)

Butyricicoccus pullicaecorum Firmicutes Regulation of Th17/Treg immune homeostasis (26)

Filamentous bacteria Bacillota Th17 differentiation promotion via SAA production (131)

Salmonella Enterobacteriaceae Flagellin translocation via type III secretion systems (141)

Bacteroides fragilis Bacteroidetes Induction of anti-inflammatory factor production (e.g., TGF-b, IL-10) in DCs and Tregs. (129, 148)

Lactobacillus reuteri (L. reuteri) Firmicutes
Antimicrobial peptides secretion via NOD2 signaling;
hormones production (e.g., serotonin, GIP, PYY, vasopressin and luteinizing hormone
subunit beta)

(184, 206)

Ruminococcus Firmicutes Positive correlations with LPS, TNF and TRACP-5b (205)

Burkholderiales Betaproteobacteria
Strong positive correlations with Tb.N, ALP, claudin-1, and occludin; repairing the intestinal
barrier; increased BMD;elimination of potentially pathogenic cytokines

(205)

Parabacteroides Bacteroidetes
Positive regulation in glucose and lipid metabolism.;strong positive correlations with Tb.BMD
and Tb.N

(205)

Alistipes Bacteroidetes Strong positive correlations with Intestinal barrier markers (205)

Parasutterella Betaproteobacteria Strong positive correlations with ALP and BGP (205)

Muribaculum Bacteroidetes
Regulation of T cells; exhibited strong negative correlations with intestinal inflammatory
factors and bone resorption factors; strong positive correlations with intestinal barrier
proteins and bone formation factors.

(205)

Lactobacillus plantarum Firmicutes Dysbiosis correction (207)

Bacillus clausii Firmicutes Regulation of Th17/Treg immune homeostasis (217)

Faecalibacterium prausnitzii Firmicutes Osteogenic differentiation suppression via butyrate production (220)
RA, rheumatoid arthritis; AKT2, serine/Threonine Kinase 2; EVs, extracellular vesicles; LPS, Lipopolysaccharide; TNF, Tumor necrosis factor; TRACP, tartrate resistant acid phosphatase; Tb.N,
trabecular number; ALP, alkaline phosphatase; BMD, bone mineral density; BGP, bone-g-Carboxyglutamic Acid-Containing protein; SAA, serum amyloid A; TGF-b, transforming growth
factor-b; IL-10, interleukin 10; DCs, dendritic cells; NOD2, nucleotide-binding oligomerization domain 2; GIP, glucose - dependent insulinotropic polypeptide; PYY, peptide YY.
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Figure 2. Although mechanistic links between GM and skeletal

health involve profound complexity, current hypotheses remain

overwhelmingly focused on T-lymphocyte-mediated pathways.

Research on non-T immune cells is critically underexplored.

Beyond this T cell-centric paradigm, emerging evidence reveals

that macrophages and DCs constitute a pivotal regulatory

triumvirate with B lymphocytes. Neutrophils, NK, and NKT cells

likewise function as putative modifiers of microbe-directed

osteometabolic regulation.

While the mechanisms linking GM to skeletal homeostasis

remain elusive, current hypotheses derived from recent literature

have predominantly focused on T lymphocytes. Besides the
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mainstream proposed T-cell-mediated interactions, we have

found that macrophages and dendritic cells may play pivotal

roles, while B lymphocytes, neutrophils, NK cells, and NKT cells

could also serve as potential targets in microbiota-mediated

regulation of bone metabolism.

As delineated, bacterial flagellin activates B-lymphocyte

proliferation/differentiation, triggering IgA-mediated pathogen

neutralization. LPS polarizes macrophages toward pro-osteolytic

M1 phenotypes that secrete bone-resorptive cytokines; conversely,

microbial metabolites (e.g., SCFAs, tryptophan derivatives,

secondary bile acids) induce anti-inflammatory M2 polarization

while suppressing Th17 expansion. LPS and flagellin provoke DC
FIGURE 2

Mechanisms by which gut microbiota regulates bone metabolism through immune cells. Bacteria themselves, bacterial components, and bacteria
metabolites can induce immune cells to produce pro-/anti-inflammatory factors, thereby promoting either bone resorption or bone formation.
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inflammatory cascades via TLR/MyD88 pathways, whereas

microbial metabolites (butyrate, kynurenine, isoDCA) attenuate

DC immunogenicity by inducing IL-10 and Treg differentiation.

Additionally, LPS releases CXCL1/2 to recruit neutrophils and

primes NK cytolytic function. Thus, current limited evidence

unequivocally underscores an urgent need for comprehensive

investigations into multicellular crosstalk mechanisms

orchestrating immune functions within the gut-bone axis.

Elucidating gut-immunological pathways and decoding dysbiosis-

induced pathophysiological cascades may unlock mechanistic

insights into osteometabolic disorders.

Furthermore, microbial metabolites act directly on IECs,

modulating gut barrier integrity and functionality—thereby

indirectly governing microbiota-immune interplay. Compromised

epithelial barrier integrity precipitates pathogen translocation into

systemic circulation, triggering sterile inflammation and

potentiating gastrointestinal pathologies (211). Critically, gut

barrier dysfunction accelerates bone mass deterioration as

demonstrated in preclinical models (212). A recent study

analyzing fecal samples from postmenopausal women revealed a

significant reduction in the abundance of Prevotella compared to

healthy controls. Subsequent animal experiments demonstrated

that treatment with Prevotella histicola partially restored bone

mass in OVX mice, a effect potentially mediated through the

modulation of intestinal permeability (213). Another study

indicated that overexpression of neuropeptide Y exacerbates

colonic inflammation and impairs gut barrier integrity in OVX

rats, thereby increasing the systemic translocation of GM-derived

metabolites such as LPS. These adverse effects were reversed
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following administration of a Y1 receptor antagonist (214).

Furthermore, in a diabetic mouse model, treatment with

angiotensin- (1-7) increased the abundance of Firmicutes,

promoted the restoration of intestinal stem cells, and ameliorated

diabetes-induced impairment of colonic barrier function (215).

Collectively, these findings underscore the importance of

intestinal permeability as a critical factor in elucidating the

regulatory mechanisms of the gut-bone axis.
7 Intervention strategies based on the
microbiome-immune-bone axis

Conventional anti-OP drugs are primarily classified into two

categories: anti-resorptive and anabolic agents. However, their

clinical utility is limited by adverse effects. In contrast, emerging

microbiota-targeted therapies offer unique advantages, which are

summarized in Figure 3.
7.1 Probiotics, prebiotics and diet

In the second section, we summarize the mechanisms by which

various probiotics and prebiotics ameliorate OP, including

reduction of inflammatory factors, alteration of metabolites,

regulation of immune and endocrine systems, and enhancement

of the intestinal barrier. Animal studies have demonstrated that

Lactobacillus acidophilus, Bacillus clausii, and Lactobacillus

rhamnosus alleviate inflammatory bone loss in osteoporotic
FIGURE 3

Intervention strategies based on the microbiome-immune-bone axis. Current strategies for gut microbiota-targeted therapy mainly include the
following four approaches: 1. probiotics and prebiotics; 2. dietary interventions; 3. fecal microbiota transplantation; 4. engineered microbes. These
strategies aim to improve bone metabolism by restoring gut microbiota dysbiosis, modulating immune responses, enhancing the gut barrier
function, and regulating the endocrine system.
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mouse models by modulating Treg/Th17 cell balance, highlighting

the therapeutic potential of the microbiota-immune axis (216–218).

Additionally, the indole-derived metabolite melatonin significantly

increases SCFAs production and reduces trimethylamine N-oxide

(TMAO)-related metabolites. By restoring M1/M2 macrophage

equilibrium and lowering pro-inflammatory cytokine levels, MLT

ultimately attenuates OP-related clinical symptoms and reverses gut

dysbiosis, supporting the microbial-metabolite-immune network as

a promising therapeutic target (219). Notably, butyrate produced by

Faecalibacterium prausnitzii competitively inhibits lactylation at

lysine 263 of GAPDH via induction of butyrylation at the same site,

thereby suppressing the osteogenic differentiation of human aortic

valve interstitial cells. This mechanism reveals the potential of

butyrate in treating calcific aortic valve disease and offers novel

insights into metabolite-mediated regulation of osteogenesis (220).

Further evidence indicates that L. reuteri prevents bone loss by

reversing antibiotic-induced gut dysbiosis and restoring intestinal

barrier integrity, underscoring the importance of microbiota-

modulated gut permeability in skeletal health (221). Moreover,

synbiotics—formulations combining probiotics and prebiotics—

modulate multiple gut microbial metabolites and improve bone

metabolic markers, positioning them as promising next-generation

interventions for OP (222).

Dietary patterns exert a decisive influence on the composition,

diversity, and function of the GM (126). Experimental studies have

demonstrated that a high-fiber diet restores Th17/Treg balance,

enhances intestinal barrier integrity, and increases the abundance of

SCFAs, thereby ameliorating autoimmune pathology in RA and

significantly reducing bone loss (223, 224). A randomized

controlled trial (RCT) revealed that blackcurrant supplementation

increased the relative abundance of Ruminococcus 2 and effectively

improved BMD in patients with PMOP (225). Another large three-

year RCT involving 924 elderly participants demonstrated that a

low-calorie Mediterranean diet intervention effectively mitigated

age-related decline in BMD, confirming the efficacy of dietary

therapy in ameliorating bone loss (226). Therefore, dietary

strategies should be incorporated into clinical practice as

foundational adjuvant treatments to enhance therapeutic

outcomes in OP patients.
7.2 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is a therapeutic

approach that involves extracting and transplanting beneficial

microbial communities from healthy donor feces into the

gastrointestinal tract of recipients to remodel gut microbial

composition (227). The efficacy of FMT in treating OP primarily

operates through improved intestinal barrier function, correction of

GM dysbiosis, and modulation of immune responses to regulate

bone metabolism (228). Animal studies have demonstrated that

FMT upregulates tight junction proteins—such as zonula

occludens-1 (ZO-1) and occludin—and inhibits the release of

pro-osteoclastic cytokines, including TNF-a and IL-1b. It also

optimizes the composition and abundance of GM, concomitantly
Frontiers in Immunology 15
elevating levels of acetate and propionate (229). Another study

revealed that combining exercise with FMT enhances the

enrichment of bile acid metabolites, including taurocholic acid

and ursodeoxycholic acid, thereby mediating protective effects on

bone mass (230).

Currently, the application of FMT in anti-OP therapy remains

in the experimental stage, with limited clinical data available. The

lack of standardized treatment protocols—including administration

routes, donor selection, microbiota preparation, and storage

methods—may influence treatment outcomes (227). Furthermore,

FMT entails safety concerns such as the transmission of infectious

diseases, adverse immune reactions, and long-term complications

related to dysbiosis. Its therapeutic effects are often transient,

necessitating repeated transplants or adjunct interventions to

sustain microbial homeostasis, which presents ongoing challenges

for clinical standardization. Future clinical studies should adhere to

high safety standards, extend follow-up periods beyond one year to

monitor potential long-term risks, and establish unified and

standardized procedural guidelines.
7.3 Precision targeting therapies of
engineered microbes

The engineering of probiotics using synthetic biology for

precision-targeted therapy has emerged as a representative next-

generation biotherapeutic strategy (231). A biomimetic self-

adjuvating vaccine developed from programmable macrophage-

derived vesicles significantly enhanced the activation rate of

antigen-presenting cells by nearly fourfold at equivalent dosages

against monkeypox virus, demonstrating substantial potential of

engineered biological systems (232). Through a co-culture system,

intestinal organoids (IOs) and their EVs were applied in

combination, resulting in enhanced intestinal barrier integrity,

reduced expression of inflammatory factors, and effective

amelioration of inflammatory bowel disease-associated OP. This

finding highlights the clinical translational potential of IOs and

their EVs (233). Another research team improved microbial-based

delivery methods by developing a colon-targeted drug delivery

system using shellac resin-coated polyvinyl butyral nanoparticles,

enabling sustained release of the postbiotic butyrate in the

colorectum. This system effectively suppressed macrophage-

mediated inflammation and modulated GM composition,

highlighting its promise for targeted immuno-microbial therapy

(234). In OVX mice, outer membrane vesicles (OMVs) derived

from Proteus mirabilis inhibited osteoclastogenesis by elevating

ROS and inducing mitochondrial dysfunction, thereby mitigating

experimental bone loss (235). Researchers also constructed a

recombinant probiotic Escherichia coli strain and isolated

engineered BEV-BMP-2-CXCR4 vesicles (BEVs-BC), which

markedly promoted osteogenic differentiation of BMSCs (236).

Additionally, engineered small EVs modified with EXOmotif

(CGGGAGC) and loaded with anti-miR-6359 exhibited precise

targeting toward OCPs and ameliorated valproic acid-induced

bone loss (237).
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Collectively, these studies underscore the encouraging progress

in employing engineered microbes to restore bone metabolic

homeostasis, though clinical translation will require the

establishment of stringent standardized protocols.
7.4 Clinical translation

Intervention strategies based on the microbiota-immune-bone

axis have emerged as a promising approach for the clinical

management of OP. A RCT demonstrated that supplementation

with L. reuteri effectively prevented the deterioration of GM and

inflammatory status in elderly women with low BMD (238). However,

another double-blind, randomized, placebo-controlled clinical trial

using L. reuteri did not yield positive outcomes, potentially due to

insufficient dosage or viability of the probiotic strain (239). Combined

supplementation with Bifidobacterium lactis subsp. Probio-M8,

calcium, and calcitriol proved more effective than conventional drug

therapy alone, providing a theoretical foundation for synergistic

probiotic/prebiotic-mineral matrix combination strategies (240).

Traditional Chinese medicine has also shown potential in

modulating the gut-bone axis; clinical trials revealed that integrative

therapy with conventional treatment and Chinese herbal medicine

improved GM composition and modulated metabolite profiles—such

as diclofenac, carbamazepine, D-pyroglutamic acid, and tamsulosin—

facilitating recovery in OP patients (241).

Despite these promising findings, existing clinical trials are limited

by small sample sizes, short follow-up durations, and considerable

microbial heterogeneity. Safety concerns regarding GM interventions

also warrant careful consideration, as complications from FMT may

lead to unpredictable outcomes. Moreover, probiotics often influence

bonemetabolism throughmultiple pathways and targets, and systemic

administration frequently results in low bioavailability at the intended

sites and off-target effects. Therefore, achieving precise microbial

intervention remains a significant challenge for clinical translation.

Future advances in nanodelivery systems for engineeredmicrobes may

provide a viable solution.
8 Conclusions and future directions

The GM regulates bone metabolism through multiple mechanisms,

including modulation of inflammatory factors, alterations in

metabolites, and interactions with the immune and endocrine

systems, as well as maintenance of intestinal barrier integrity. This

review focuses on the interactions between GM and immune cells, and

between immune cells and OP, aiming to elucidate and establish a

comprehensive GM-immune cell-OP crosstalk network. Intervention

strategies based on the microbiota-immune-bone axis show therapeutic

potential in OPmanagement, with promising applications of probiotics,

prebiotics, dietary patterns, FMT, and engineered microbes.

Nevertheless, numerous challenges remain unresolved, and future

efforts should prioritize the following aspects.

Although preliminary insights into the GM-immune-bone axis

have been established, the precise regulatory mechanisms remain to
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be fully elucidated. The considerable heterogeneity of GM and their

metabolites, coupled with their multi-pathway, multi-receptor, and

multi-target modes of action, make it exceptionally challenging to

decipher their exact mechanisms. Future mechanistic studies should

prioritize understanding how specific microbial species influence

bone metabolism through distinct immune cells. Microbiome

research may hold the key to accelerating progress in this area.

Although multi-omics approaches—as discussed in Section 5—have

helped correlate microbial and immune signatures with bone

metabolic markers, the underlying mechanisms remain elusive.

Future investigations should employ integrated biological animal

models, combining advanced transcriptomic, proteomic, and multi-

omics technologies to systematically unravel the mechanisms of

microbial communities and their metabolites, thereby facilitating

the development of robust biomarkers for precision medicine.

On the other hand, a substantial body of preclinical evidence

supports the role of the GM in indirectly improving skeletal health

through immune cell mediators, corroborating the mechanisms

discussed herein. However, translating these foundational insights

into effective and clinically viable applications remains a major

challenge. In contrast, clinical studies in this area remain scarce and

have produced inconsistent outcomes, particularly due to a lack of

high-quality trials. Interindividual variability and microbial

heterogeneity likely contribute to these discrepancies. For instance,

to address compositional variability in the microbiome, future

approaches could employ personalized bacterial profiling to select

appropriate microbial consortia for precision therapeutics aimed at

restoring skeletal health. Equally critical is the design of microbial

interventions—such as FMT and engineered microbes—that can

safely, precisely, and effectively target the immune system to

maintain bone metabolic homeostasis. There is an urgent need for

large-scale, multicenter RCTs with long-term follow-up, which must

incorporate appropriate patient stratification based on complex

microbial or metabolic signatures to rigorously evaluate the impact

of microbiota-targeted therapies on key clinical outcomes and enhance

the scientific rigor and translational credibility of the evidence.
Author contributions

TM: Writing – original draft. TZ: Writing – original draft,

Visualization. CP: Writing – original draft. KL: Writing – original

draft, Methodology. YX: Writing – original draft, Supervision.

KC: Writing – original draft. NP: Writing – original draft.

ZW: Writing – original draft. JK: Writing – review & editing,

Resources. LO: Writing – review & editing, Conceptualization,

Funding acquisition.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. The work was supported

by National Natural Science Foundation of China (82405447), Hunan

Provincial Administration of Traditional Chinese Medicine

(A20240125), Hunan Provincial Health Commission (20230479),
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1680021
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1680021
Natural Science Foundation of Hunan Province (2023JJ60118), Natural

Science Foundation of Changsha City (kq2403132), and Hunan

University of Chinese Medicine (2024CX135).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that Generative AI was used in the

creation of this manuscript. We used generative AI for the

polishing work of the article.
Frontiers in Immunology 17
Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible.

If you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Langdahl BL. Overview of treatment approaches to osteoporosis. Br J Pharmacol.
(2021) 178:1891–906. doi: 10.1111/bph.15024

2. Guo M, Xu Y, Ren L, He S, Pang AX. A systematic study on DNA barcoding of
medicinally important genus epimedium L. (berberidaceae). Genes. (2018) 9:637.
doi: 10.3390/genes9120637

3. He J, Xu S, Zhang B, Xiao C, Chen Z, Si F, et al. Gut microbiota and metabolite
alterations associated with reduced bone mineral density or bone metabolic indexes in
postmenopausal osteoporosis. Aging (Milano). (2020) 12:8583–604. doi: 10.18632/
aging.103168

4. Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends
Microbiol. (2018) 26:563–74. doi: 10.1016/j.tim.2017.11.002

5. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N
Engl J Med. (2016) 375:2369–79. doi: 10.1056/NEJMra1600266

6. Guo H, Bi Y, Zhang G, Luo S, Jia X, Yang R, et al. Alcohol-induced bone loss
driven by dysregulated spatial distribution of gut microbiota and PGD2-IL17 pathway-
mediated osteoclast activation. Front Microbiol. (2025) 16:1551028. doi: 10.3389/
fmicb.2025.1551028

7. Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J. (2021)
35:e21740. doi: 10.1096/fj.202100451R

8. Pacifici R. Bone remodeling and the microbiome. Cold Spring Harb Perspect Med.
(2018) 8:a031203. doi: 10.1101/cshperspect.a031203

9. Wang J, Wang Y, GaoW, Wang B, Zhao H, Zeng Y, et al. Diversity analysis of gut
microbiota in osteoporosis and osteopenia patients. PeerJ. (2017) 5:e3450. doi: 10.7717/
peerj.3450

10. Fukasawa N, Tsunoda J, Sunaga S, Kiyohara H, Nakamoto N, Teratani T, et al.
The gut-organ axis: clinical aspects and immune mechanisms. Allergol Int: Off J Jpn Soc
Allergol. (2025) 74:197–209. doi: 10.1016/j.alit.2025.01.004

11. Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial
metabolites bridge the distance. J Clin Invest. (2019) 129:3018–28. doi: 10.1172/
JCI128521

12. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al.
The gut microbiota regulates bone mass in mice. J Bone Miner Res. (2012) 27:1357–67.
doi: 10.1002/jbmr.1588

13. Wells PM, Adebayo AS, Bowyer RCE, Freidin MB, Finckh A, Strowig T, et al.
Associations between gut microbiota and genetic risk for rheumatoid arthritis in the
absence of disease: a cross-sectional study. Lancet Rheumatol. (2020) 2:e418–27.
doi: 10.1016/S2665-9913(20)30064-3

14. Ono-Ohmachi A, Yamada S, Uno S, Tamai M, Soga K, Nakamura S, et al.
Effector memory CD4+T cells in mesenteric lymph nodes mediate bone loss in food-
allergic enteropathy model mice, creating IL-4 dominance. Mucosal Immunol. (2021)
14:1335–46. doi: 10.1038/s41385-021-00434-2

15. Liu L, Liang L, Liang H, Wang M, Lu B, Xue M, et al. Fusobacterium nucleatum
aggravates the progression of colitis by regulating M1 macrophage polarization via
AKT2 pathway. Front Immunol. (2019) 10:1324. doi: 10.3389/fimmu.2019.01324

16. Peek CT, Ford CA, Eichelberger KR, Jacobse J, Torres TP, Maseda D, et al.
Intestinal inflammation promotes MDL-1+ osteoclast precursor expansion to trigger
osteoclastogenesis and bone loss. Cell Mol Gastroenterol Hepatol. (2022) 14:731–50.
doi: 10.1016/j.jcmgh.2022.07.002
17. Liu J-H, Chen C-Y, Liu Z-Z, Luo Z-W, Rao S-S, Jin L, et al. Extracellular vesicles
from child gut microbiota enter into bone to preserve bone mass and strength. Adv Sci
(weinh Baden-wurtt Ger). (2021) 8:2004831. doi: 10.1002/advs.202004831

18. Yan L, Wang X, Yu T, Qi Z, Li H, Nan H, et al. Characteristics of the gut
microbiota and serum metabolites in postmenopausal women with reduced bone
mineral density. Front Cell Infect Microbiol. (2024) 14:1367325. doi: 10.3389/
fcimb.2024.1367325

19. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell
Mol Life Sci: CMLS. (2017) 74:2959–77. doi: 10.1007/s00018-017-2509-x

20. Zhou J, Cheng J, Liu L, Luo J, Peng X. Lactobacillus acidophilus (LA)
fermenting astragalus polysaccharides (APS) improves calcium absorption and
osteoporosis by altering gut microbiota. Foods (basel Switz). (2023) 12:275.
doi: 10.3390/foods12020275

21. Hu G, Sun X, Hao S, Li X, Qian M, Dou L, et al. Effect of sheep bone protein
hydrolysate on promoting calcium absorption and enhancing bone quality in low-
calcium diet fed rats . Food Chem . (2024) 446:138763. doi : 10.1016/
j.foodchem.2024.138763

22. He W, Xie Z, Thøgersen R, Rasmussen MK, Zachariassen LF, Jørgensen NR,
et al. Effects of calcium source, inulin, and lactose on gut-bone associations in an
ovarierectomized rat model. Mol Nutr Food Res. (2022) 66:e2100883. doi: 10.1002/
mnfr.202100883

23. Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q, et al. Intestinal microbiota: a
potential target for the treatment of postmenopausal osteoporosis. Bone Res. (2017)
5:17046. doi: 10.1038/boneres.2017.46

24. Guan Z, Xuanqi Z, Zhu J, Yuan W, Jia J, Zhang C, et al. Estrogen deficiency
induces bone loss through the gut microbiota. Pharmacol Res. (2023) 196:106930.
doi: 10.1016/j.phrs.2023.106930

25. Guo M, Liu H, Yu Y, Zhu X, Xie H, Wei C, et al. Lactobacillus rhamnosus GG
ameliorates osteoporosis in ovariectomized rats by regulating the Th17/treg balance
and gut microbiota structure. Gut Microbes. (2023) 15:2190304. doi: 10.1080/
19490976.2023.2190304

26. Zhu F, Liu H, Cao Y, Dai B, Wu H, Li W. The combination of butyricicoccus
pullicaecorum and 3-hydroxyanthranilic acid prevents postmenopausal osteoporosis
by modulating gut microbiota and Th17/treg. Eur J Nutr. (2024) 63:1945–59.
doi: 10.1007/s00394-024-03400-3

27. Li J-Y, Yu M, Pal S, Tyagi AM, Dar H, Adams J, et al. Parathyroid hormone-
dependent bone formation requires butyrate production by intestinal microbiota. J Clin
Invest. (2020) 130:1767–81. doi: 10.1172/JCI133473

28. Fernández-Murga ML, Olivares M, Sanz Y. Bifidobacterium pseudocatenulatum
CECT 7765 reverses the adverse effects of diet-induced obesity through the gut-bone
axis. Bone. (2020) 141:115580. doi: 10.1016/j.bone.2020.115580

29. Yang H-J, Zhang T, Yue Y, Jeong S-J, Ryu M-S, Wu X, et al. Protective effect of
long-term fermented soybeans with abundant bacillus subtilis on glucose and bone
metabolism and memory function in ovariectomized rats: modulation of the gut
microbiota. Foods (basel Switz). (2023) 12:2958. doi: 10.3390/foods12152958

30. Yan F-F, Wang W-C, Cheng H-W. Bacillus subtilis-based probiotic promotes
bone growth by inhibition of inflammation in broilers subjected to cyclic heating
episodes. Poult Sci. (2020) 99:5252–60. doi: 10.1016/j.psj.2020.08.051
frontiersin.org

https://doi.org/10.1111/bph.15024
https://doi.org/10.3390/genes9120637
https://doi.org/10.18632/aging.103168
https://doi.org/10.18632/aging.103168
https://doi.org/10.1016/j.tim.2017.11.002
https://doi.org/10.1056/NEJMra1600266
https://doi.org/10.3389/fmicb.2025.1551028
https://doi.org/10.3389/fmicb.2025.1551028
https://doi.org/10.1096/fj.202100451R
https://doi.org/10.1101/cshperspect.a031203
https://doi.org/10.7717/peerj.3450
https://doi.org/10.7717/peerj.3450
https://doi.org/10.1016/j.alit.2025.01.004
https://doi.org/10.1172/JCI128521
https://doi.org/10.1172/JCI128521
https://doi.org/10.1002/jbmr.1588
https://doi.org/10.1016/S2665-9913(20)30064-3
https://doi.org/10.1038/s41385-021-00434-2
https://doi.org/10.3389/fimmu.2019.01324
https://doi.org/10.1016/j.jcmgh.2022.07.002
https://doi.org/10.1002/advs.202004831
https://doi.org/10.3389/fcimb.2024.1367325
https://doi.org/10.3389/fcimb.2024.1367325
https://doi.org/10.1007/s00018-017-2509-x
https://doi.org/10.3390/foods12020275
https://doi.org/10.1016/j.foodchem.2024.138763
https://doi.org/10.1016/j.foodchem.2024.138763
https://doi.org/10.1002/mnfr.202100883
https://doi.org/10.1002/mnfr.202100883
https://doi.org/10.1038/boneres.2017.46
https://doi.org/10.1016/j.phrs.2023.106930
https://doi.org/10.1080/19490976.2023.2190304
https://doi.org/10.1080/19490976.2023.2190304
https://doi.org/10.1007/s00394-024-03400-3
https://doi.org/10.1172/JCI133473
https://doi.org/10.1016/j.bone.2020.115580
https://doi.org/10.3390/foods12152958
https://doi.org/10.1016/j.psj.2020.08.051
https://doi.org/10.3389/fimmu.2025.1680021
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1680021
31. Ohlsson C, Engdahl C, Fåk F, Andersson A, Windahl SH, Farman HH, et al.
Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. (2014)
9:e92368. doi: 10.1371/journal.pone.0092368

32. Tsai W-H, Lin W-C, Chou C-H, Yang L-C. The probiotic lactiplantibacillus
plantarum attenuates ovariectomy-induced osteoporosis through osteoimmunological
signaling. Food Funct. (2023) 14:6929–40. doi: 10.1039/d3fo00681f

33. Zhang Y-W, Cao M-M, Li Y-J, Sheng R-W, Zhang R-L, Wu M-T, et al. The
preventive effects of probiotic prevotella histicola on the bone loss of mice with
ovariectomy-mediated osteoporosis. Microorganisms. (2023) 11:950. doi: 10.3390/
microorganisms11040950

34. Li Y, Zhuang Q, Tao L, Zheng K, Chen S, Yang Y, et al. Urolithin B suppressed
osteoclast activation and reduced bone loss of osteoporosis via inhibiting ERK/NF-kB
pathway. Cell Proliferation. (2022) 55:e13291. doi: 10.1111/cpr.13291

35. Wallimann A, Magrath W, Thompson K, Moriarty T, Richards RG, Akdis CA,
et al. Gut microbial-derived short-chain fatty acids and bone: a potential role in fracture
healing. Eur Cells Mater. (2021) 41:454–70. doi: 10.22203/eCM.v041a29

36. Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, et al. Short-
chain fatty acids regulate systemic bone mass and protect from pathological bone loss.
Nat Commun. (2018) 9:55. doi: 10.1038/s41467-017-02490-4

37. Feng R, Wang Q, Yu T, Hu H, Wu G, Duan X, et al. Quercetin ameliorates
bone loss in OVX rats by modulating the intestinal flora-SCFAs-inflammatory
signaling axis. Int Immunopharmacol . (2024) 136:112341. doi: 10.1016/
j.intimp.2024.112341

38. Liu Z, Xu X, Shen Y, Hao Y, Cui W, Li W, et al. Altered gut microbiota and
metabolites profile are associated with reduced bone metabolism in ethanol-induced
osteoporosis. Cell Proliferation. (2022) 55:e13245. doi: 10.1111/cpr.13245

39. Yadav VK, Oury F, Suda N, Liu Z-W, Gao X-B, Confavreux C, et al. A serotonin-
dependent mechanism explains the leptin regulation of bone mass, appetite, and energy
expenditure. Cell. (2009) 138:976–89. doi: 10.1016/j.cell.2009.06.051

40. Cao G, Yu Y, Wang H, Yang H, Tao F, Yang S, et al. Dietary clostridium
butyricum and 25-hydroxyvitamin D3 modulate bone metabolism of broilers through
the gut-brain axis. Poult Sci. (2024) 103:103966. doi: 10.1016/j.psj.2024.103966

41. Lee S-H, Lim T-J, Yun EJ, Kim KH, Lim S. Anti-menopausal effect of soybean
germ extract and lactobacillus gasseri in the ovariectomized rat model. Nutrients.
(2023) 15:4485. doi: 10.3390/nu15204485

42. Arron JR, Choi Y. Bone versus immune system. Nature. (2000) 408:535–6.
doi: 10.1038/35046196

43. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology:
interplay between the immune system and bone metabolism. Annu Rev Immunol.
(2006) 24:33–63. doi: 10.1146/annurev.immunol.24.021605.090646

44. Taichman RS. Blood and bone: two tissues whose fates are intertwined to create
the hematopoietic stem-cell niche. Blood. (2005) 105:2631–9. doi: 10.1182/blood-2004-
06-2480

45. Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-
immune interactions in health and disease. Nat Rev Immunol. (2019) 19:626–42.
doi: 10.1038/s41577-019-0178-8

46. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and
remodeling. Arch Biochem Biophys. (2008) 473:139–46. doi: 10.1016/j.abb.2008.03.018

47. Srivastava RK, Dar HY, Mishra PK. Immunoporosis: immunology of
osteoporosis-role of T cells. Front Immunol. (2018) 9:657. doi: 10.3389/
fimmu.2018.00657

48. Buck MD, O’Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp
Med. (2015) 212:1345–60. doi: 10.1084/jem.20151159

49. Yu M, Pal S, Paterson CW, Li J-Y, Tyagi AM, Adams J, et al. Ovariectomy
induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and
Th17 cells. J Clin Invest. (2021) 131:e143137. doi: 10.1172/JCI143137

50. Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C. The correlation between the
Th17/treg cell balance and bone health. Immun Ageing. (2020) 17:30. doi: 10.1186/
s12979-020-00202-z

51. Cho K-A, Park M, Kim Y-H, Ryu K-H, Woo S-Y. Mesenchymal stem cells
inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via
osteoprotegerin activity. Oncotarget. (2017) 8:83419–31. doi: 10.18632/
oncotarget.21379

52. Zeng X, He L, Wang S, Wang K, Zhang Y, Tao L, et al. Aconine inhibits RANKL-
induced osteoclast differentiation in RAW264.7 cells by suppressing NF-kB and
NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin. (2016) 37:255–
63. doi: 10.1038/aps.2015.85

53. Ledesma-Colunga MG, Adán N, Ortiz G, Solıś-Gutiérrez M, López-Barrera F,
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