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Background: Osteoporosis (OP), as a systemic bone disorder, has a complex
pathogenesis and faces significant challenges in clinical treatment. Oligomeric
proanthocyanidin (OPC), a type of natural polyphenolic flavonoid compound,
demonstrates outstanding therapeutic potential due to its excellent antioxidant
and anti-inflammatory properties and good safety. The breakthrough advances
in single-cell RNA sequencing (scRNA-seq) technology have provided a powerful
research tool for elucidating the multitarget mechanisms of OPC in the
treatment of OP.

Methods: This study first screened the active components of OPC leveraging the
TCMSP database. The protein—protein interaction network of OPC target
proteins was generated through the STRING database, and visual analysis was
accomplished using the Cytoscape software. The ClusterProfiler R package and
ClueGO plugin were employed for functional enrichment analysis and network
visualization. At the same time, scRNA-seq data from the GEO database were
integrated, and cell-type identification was attained using the Seurat tool. The
differentiation trajectories of subtypes were inferred using Monocle and Slingshot
software. The cell communication network was analyzed using CellChat.
Results: This study utilized scRNA-seq to identify C2 NR4A1+ MSCs with distinct
metabolic features and differentiation potential in the bone microenvironment
during the early stage of OP, namely, osteopenia. The natural component OPC
can precisely target this subtype and exert therapeutic effects through two
mechanisms: inhibiting the transcriptional activity of NR4A1 to suppress the
expression of PTGS2 in MSCs and simultaneously activating the B-catenin-
dependent NR4A1-Runx2 signaling axis to promote osteogenesis and inhibit
osteoclastogenesis. These findings establish a new therapeutic paradigm of
“targeting cell subtypes—multipathway regulation,” providing an important basis
for the development of novel anti-OP drugs.
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Conclusion: Our research integrated multilevel approaches, including single-cell
transcriptomics, network pharmacology, cellular experiments, and animal
models, to systematically reveal the dual mechanism of OPC in treating OP.
This discovery not only established C2 NR4A1+ MSCs as key mediators in the
pathological process of OP but also clarified the molecular mechanism of
multitarget synergy of natural active compounds in restoring bone
homeostasis, providing a theoretical basis and practical guidance for the
development of new OP therapies.

osteoporosis, oligomeric proanthocyanidin, PTGS2, NR4A1, scRNA-seq

Introduction

Osteoporosis (OP) is a systemic bone disease typified by
decreased bone mass, deteriorated bone microstructure, and
heightened bone fragility (1-3). It affects approximately 200
million people worldwide and causes 9 million fractures each year
(4). Tt is the fourth most common chronic disease after
cardiovascular disease, dementia, and lung cancer (5), imposing a
heavy socioeconomic burden. OP is caused by factors such as aging,
osteoarthritis, and estrogen insufficiency, and it mainly occurs in
postmenopausal women and the elderly (6, 7). Among women over
50, the risk of fracture is as high as one in three (8).

Current treatments for OP mainly follow two major principles:
anti-bone resorption and pro-bone formation. Drugs like
bisphosphonates and denosumab are used to inhibit osteoclast
activity, while parathyroid hormone; 34 (PTH, 34) and romosozumab
are used to activate osteogenic pathways (4, 9, 10). However, existing
therapies still face severe challenges in clinical application. In terms of
drug safety, bisphosphonates have a 40% treatment failure rate, and
long-term use may lead to atypical fractures (4, 11, 12), while
romosozumab has a risk of cardiovascular events (9). Secondly, the
efficacy is limited. Existing drugs cannot fully restore bone
microstructure (13), and anti-resorption agents can only delay bone
loss but not promote new bone formation (9). More importantly,
targeted therapy faces multiple bottlenecks. The complex bone
immune microenvironment makes it difficult for a single target (such
as RANKL) to achieve comprehensive regulation (6). At the same time,
the high heterogeneity of bone marrow mesenchymal stem cells
(BMSC:s) and the interference of multiple factors make it difficult to
target osteogenic differentiation pathways (such as Wnt) (14). In
addition, clinical needs have not been fully met. On the one hand,
early diagnosis still relies on bone density testing and lacks sensitive
biomarkers (15). On the other hand, individualized treatment has not
been fully realized, and the application of genetic and immune typing
data is insufficient (9).

Oligomeric proanthocyanidin (OPC), a type of naturally
occurring polyphenolic flavonoid compound, is widely found in
various plants such as grape seeds, pine bark, and hawthorn (16,
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17). It is one of the most abundant polyphenols in the plant
kingdom (18). Research has shown that OPC possesses significant
biological activities and is renowned for its powerful antioxidant,
anti-inflammatory, anticancer, and anti-aging properties (19, 20). It
has been developed as a nutritional supplement and applied in
various health fields (18). Notably, OPC demonstrates great
therapeutic potential in various chronic diseases such as
inflammation, metabolic disorders, and cardiovascular diseases
(21, 22). Meanwhile, oral OPC helps regulate intestinal
homeostasis (23), and its metabolites have higher concentrations
and longer durations of action in the body (24). However, the
mechanism of action of OPC in OP has yet to be fully elucidated,
but existing studies suggest that it has a strong bone-protective
effect and can successfully prevent bone mass loss brought on by
ovariectomy (OVX) (25).

In recent years, single-cell RNA sequencing (scRNA-seq)
technology has demonstrated significant technical advantages in
the field of OP research by providing high-resolution analysis of
cellular heterogeneity in the bone tissue microenvironment (4, 9).
This technology can precisely identify various cell populations in
the bone marrow microenvironment, particularly the specific
molecular characteristics of functional subtypes such as BMSCs
and osteoblasts, providing potential targets for exploring new
diagnostic and therapeutic strategies. At the same time, it reveals
the dynamic changes of these cell populations during the
pathogenesis of OP, highlighting the complexity of the bone
immune environment. In the bone microenvironment, the
differentiation and activation of osteoclast precursors depend on
the regulation of RANKL and various cytokines secreted by
osteoblasts and immune cells (such as T cells, B cells, and
macrophages) (26) and are also supported by the nutrition and
inflammatory regulation provided by the vascular network
constructed by endothelial cells (27). In this complex network,
MSCs not only are an important source of osteoblasts but also play a
core role in bone homeostasis and repair by secreting growth factors
and regulating immune responses (7).

This study successfully identified a subtype of C2 NR4AI+
MSCs with distinct metabolic features and differentiation potential
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in the bone microenvironment of osteopenia using scRNA-seq. This
subtype forms a specific intercellular communication network with
osteoblasts through the FGF7-FGFR1 ligand receptors. More
importantly, we found that the natural active component OPC
can precisely target this key cell subtype and exert therapeutic effects
through a dual synergistic mechanism: on the one hand, in vitro
experiments confirmed that OPC effectively inhibits PTGS2
expression by interfering with NR4AI-mediated transcriptional
regulation; on the other hand, OPC activates the P-catenin-
dependent NR4AI-Runx2 signaling axis, promoting osteogenic
differentiation while inhibiting osteoclastic activity. Animal
experiments further confirmed that OPC treatment can
significantly improve bone microstructure parameters and restore
the balance of bone metabolism markers. These systematic
discoveries not only reveal new mechanisms of OP at single-cell
resolution but also, more importantly, establish a therapeutic
paradigm of “precisely targeting key cell subtypes and
multipathway coordinated regulation,” providing an important
theoretical basis and transformation direction for the
development of a new generation of OP treatment regimens
based on natural products.

Materials and methods
Obtaining the target gene dataset of OPC

We searched for the target proteins related to the OPC drug
molecule in the Traditional Chinese Medicine Systems
Pharmacology (TCMSP) database. Using the UniProt (https://
www.uniprot.org/) database, we performed gene conversion and
standardization of the target proteins and constructed the OPC
target gene dataset.

Network construction and analysis

We constructed the protein—protein interaction (PPI) network (28)
of OPC target genes using the STRING database (https://string-db.org/
) and then visualized and analyzed the network using the Cytoscape
software (v3.10.3) (29, 30). To learn more about the biological
functions of the key targets, we carried out Gene Ontology (GO)
(31, 32) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(33) enrichment analyses using the ClueGO plugin (34).

Acquisition and processing of data

The scRNA-seq data of osteopenia were sourced from the Gene
Expression Omnibus (GEO) database (https://www.ncbinlm.nih.gov/
geo/) (accession number: GSE147390). Given that the data used in
our study came from a public source, it was considered unnecessary
to conduct an ethical review. Data preprocessing and quality control
were accomplished using R software (v4.3.3) in conjunction with
the Seurat package (v4.3.0). Subsequently, high-quality cells were
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selected upon these strict criteria: nFeature (300-7,500), nCount
(500-100,000), mitochondrial gene expression (<25% of total
counts), and erythrocyte gene expression (<5% of total counts).
The data were normalized via the “NormalizeData” function, and
the top 2,000 highly variable genes were extracted with the
“FindVariableFeatures” function (35). After data standardization
using the “ScaleData” function, principal component analysis
(PCA) was performed (36, 37). Finally, the top 30 principal
components were selected for subsequent analysis, and data
dimensionality reduction and visualization were achieved through
the uniform manifold approximation and projection (UMAP) (38,
39). All analyses were completed based on single-cell data that had
undergone strict quality control, ensuring the reliability of the
research results.

Cell-type identification and annotation

Cell clustering analysis was conducted via the “FindClusters”
and “FindNeighbors” functions in Seurat, and the differentially
expressed genes (DEGs) of each cell cluster were identified using the
“FindAllMarkers” function. Subsequently, cell-type annotation was
carried out by combining the CellMarker database (http://
xteam.xbio.top/CellMarker/) and published literature.

Enrichment analysis

By adopting a systematic functional enrichment analysis method,
the biological significance of DEGs was comprehensively analyzed.
Firstly, GO (40, 41) analysis was performed with the ClusterProfiler R
package (v4.6.2) (42-44), and the DEGs were functionally classified at
the biological process (BP) level (45). At the same time, the KEGG
database was combined to conduct metabolic pathway enrichment
analysis, thereby systematically clarifying the functional characteristics
of the DEGs at the biological process and metabolic pathway levels. On
this basis, gene set enrichment analysis (GSEA) (46, 47) was further
employed to conduct weighted analysis on predefined gene sets. By
computing the enrichment score of the gene sets in the expression
profile, gene sets showing coordinated expression changes in specific
biological processes were identified.

Analysis of pseudotime and lineage
trajectory of MSC subtypes

To better comprehend the differentiation dynamics and
developmental trajectory of MSCs, we employed Monocle (v2.24.0)
(48, 49) to construct a pseudotime trajectory and identify distinct states
revealed by it. Through the chronological sorting, we revealed the
regularity of the continuous evolution of cell states. To further analyze
the lineage relationships among different subtypes, we utilized the
“getLineages” function of Slingshot (v2.6.0) (37, 50) to establish a
lineage architecture based on the minimum spanning tree (MST) and
then fitted smooth differentiation trajectory curves using the
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“getCurves” function. The biological background of MSC subtypes and
the expression of their respective marker genes were incorporated in
defining the starting and ending points of the trajectories.

Analysis of the intercellular communication
network

We used the CellChat package (v1.6.1) (51, 52) to conduct
quantitative analysis of the intercellular interaction network based
on scRNA-seq data. Based on the principle of ligand-receptor
interaction, relevant signaling pathways and receptor-ligand pairs
were identified through the CellChatDB database (http://
www.cellchat.org/), applying a P-value threshold of 0.05.

Transcriptional regulation analysis

In order to systematically analyze the gene regulatory network
characteristics of MSC subtypes, we used the pySCENIC package
(v0.10.0) (53-55) in Python (v3.7) for single-cell regulatory network
analysis. With GRNBoost, co-expression modules involving
transcription factors (TFs) and their predicted target genes can be
inferred. Additionally, we constructed an AUCell matrix for this
study to reveal the regulatory mechanisms of key TFs.

Animal model preparation and
experimental design

Osteoblast-specific B-catenin conditional knockout mice
(Ctnnb %1%, Collal-Cre) were established via Cre-loxP
recombination. Floxed Ctnnbl mice (Stock No. 004152) and
Collal-Cre transgenic mice (Stock No. 016237), both obtained
from the Cancer Hospital, Chinese Academy of Medical Sciences,
were intercrossed. Heterozygous offspring (Ctnnb?™*; Collal-
Cre) were bred to generate experimental mice (Ctnnbl™Mo%
Collal-Cre) and Cre-negative littermates as controls. Genotyping
was performed on genomic DNA isolated from tail biopsies using
PCR with specific primers for the floxed Ctnnb]l allele and Collal-
Cre transgene. All animal procedures were reviewed and approved
by the Institutional Animal Care and Use Committee of Anhui
Medical University and conducted under SPF conditions in
compliance with ARRIVE guidelines.

Eight-week-old female C57BL/6 mice were purchased from the
Animal Laboratory Center, Anhui Medical University and acclimated
under specific pathogen-free conditions. Age-matched [B-catenin
conditional knockout mice (osteoblast-specific, Cre-loxP system)
were used as genetic controls and subjected to the same
experimental procedures. Mice were randomly assigned to the
following groups: sham, OVX, OVX + vehicle, OVX + OPC (20
mg/kg), and OVX + OPC (50 mg/kg). Bilateral OVX was performed
under isoflurane anesthesia during the second week, while sham-
operated mice underwent identical procedures without ovary
removal. Postoperative recovery lasted 2 weeks, during which OVX
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model establishment was confirmed. From the fifth week onward,
mice in treatment groups received daily oral gavage of OPC at either
20 or 50 mg/kg; OVX control mice were given an equivalent volume
of vehicle. Sham mice received no treatment. Drug administration
continued for 12 weeks. At week 17, all mice were humanely
euthanized by CO, inhalation (20% chamber volume per minute
flow rate, gradually increased until loss of consciousness), followed by
cervical dislocation to ensure death, in accordance with the AVMA
Guidelines for the Euthanasia of Animals (2020).

Mesenchymal stem cell isolation and
culture

Human mesenchymal stem cells (hMSCs) were purchased from
Cyagen Biosciences (Santa Clara, CA, USA) and cultured in low-
glucose DMEM (Thermo Fisher Scientific, Waltham, MA, USA, Cat.
No. 11885-084) supplemented with 10% fetal bovine serum (Gibco,
Waltham, MA, USA, Cat. No. 10099-141) and 1% penicillin-
streptomycin (Gibco, Waltham, MA, USA, Cat. No. 15140-122) at
37°C in a humidified incubator with 5% CO,. For murine primary
MSC isolation, C57BL/6 mice were euthanized, and femurs and tibias
were harvested under sterile conditions. Bone marrow was flushed
with PBS (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No.
10010-023) using a 26G needle, and the cell suspension was passed
through a 70-um cell strainer (Corning Incorporated, Corning, New
York, USA, Cat. No. 352350). Cells were plated in culture flasks with
complete MSC medium and incubated at 37°C with 5% CO,. Non-
adherent cells were removed after 48 h, and the medium was replaced
every 2-3 days. When cells reached 70%-80% confluence, they were
passaged using 0.25% trypsin-EDTA (Thermo Fisher Scientific,
Waltham, MA, USA, Cat. No. 25200-056) for expansion and
downstream applications.

CCK-8 assay

hMSCs were cultured in low-glucose DMEM (Thermo Fisher
Scientific, Waltham, MA, USA, Cat. No. 11885-084) supplemented
with 10% fetal bovine serum (Gibco, Waltham, MA, USA, Cat. No.
10099-141) and 1% penicillin-streptomycin (Gibco, Waltham, MA,
USA, Cat. No. 15140-122) at 37°C in a humidified incubator with 5%
CO,. Cell viability was assessed using the Cell Counting Kit-8 (CCK-8,
Abcam, Cambridge, United Kingdom, Cat. No. ab228554), adhering to
the manufacturer’s protocol. MSCs were seeded in 96-well plates at a
density of 5 x 10? cells per well in 100 pL of complete medium. After
treatment with the indicated conditions for 24, 48, 72, and 96 h, 10 uL
of CCK-8 reagent was placed in each well and incubated for 2 h.
Absorbance at 450 nm was measured using a microplate reader (BioTek
Instruments, Winooski, VT, USA, Synergy H1) to evaluate cell viability.

Scratch wound healing assay

hMSCs were seeded in 6-well plates and cultured in complete
medium (low-glucose DMEM, Thermo Fisher Scientific, Waltham,
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MA, USA, Cat. No. 11885-084) supplemented with 10% FBS
(Gibco, Waltham, MA, USA, Cat. No. 10099-141) and 1%
penicillin-streptomycin (Gibco, Waltham, MA, USA, Cat. No.
15140-122) until reaching 90% confluence. A linear scratch was
formed with a sterile 200-pL pipette tip, and the wells were gently
rinsed with PBS (Thermo Fisher Scientific, Waltham, MA, USA,
Cat. No. 10010-023) to remove detached cells. Cells were then
incubated in serum-free medium and imaged at 0 and 24 h via a
light microscope (Leica Microsystems, Wetzlar, Germany,
DM3000). The wound area was measured using Image] software,
and the migration (healing) rate was calculated by comparing the
residual wound area at 24 h to the initial area.

Colony formation assay

MSCs were seeded into 6-well plates at a density of 500 cells per
well in complete growth medium (low-glucose DMEM, Thermo
Fisher Scientific, Waltham, MA, USA, Cat. No. 11885-084)
supplemented with 10% FBS (Gibco, Waltham, MA, USA, Cat.
No. 10099-141) and 1% penicillin-streptomycin (Gibco, Waltham,
MA, USA, Cat. No. 15140-122). Cells were incubated at 37 °C with
5% CO, for 10-14 days, with the medium refreshed every 3 days. At
the end of the incubation period, colonies were immobilized with
4% paraformaldehyde (Thermo Fisher Scientific - Waltham, MA,
USA, Cat. No. 28908) for 15 min and stained with 0.1% crystal
violet solution (Abcam plc, Cambridge, United Kingdom, Cat. No.
ab246784) for 30 min. Colonies containing more than 50 cells were
counted under a light microscope (Leica Microsystems, Wetzlar,
Germany, DM3000).

Western blot analysis

MSCs were lysed using RIPA buffer (Thermo Fisher Scientific,
Waltham, MA, USA, Cat. No. 89900) containing protease and
phosphatase inhibitors (Cell Signaling Technology (CST),
Danvers, MA, USA, Cat. No. 5872) on ice for 30 min. Total
protein concentration was determined by BCA assay (Thermo
Fisher Scientific, Waltham, MA, USA, Cat. No. 23225). Equal
amounts of protein (20-30 pg) were separated by SDS-PAGE and
transferred onto PVDF membranes (Millipore, Cat. No.
IPVHO00010). Membranes were blocked with 5% non-fat milk in
TBST for 1 h at room temperature and incubated overnight at 4°C
with primary antibodies against PTGS2 (Cell Signaling Technology
(CST), Danvers, MA, USA, Cat. No. 12282), NR4AI (Abcam plc,
Cambridge, United Kingdom, Cat. No. ab13851), RANKL
(Proteintech Group, Rosemont, IL, USA, Cat. No. 66610-1-Ig),
OPG (Abcam plc, Cambridge, United Kingdom, Cat. No.
ab73400), RUNX2 (Cell Signaling Technology (CST), Danvers,
MA, USA, Cat. No. 12556), and OCN (Abcam plc, Cambridge,
United Kingdom, Cat. No. ab93876). After washing, membranes
were incubated with HRP-conjugated secondary antibodies (Abcam
plc, Cambridge, United Kingdom, Cat. No. ab97051) for 1 h at
room temperature. Protein bands were visualized using enhanced
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chemiluminescence reagents (Thermo Fisher Scientific, Waltham,
MA, USA, Cat. No. 34577) and imaged with a chemiluminescence
detection system. B-Actin was used as the internal control.
Densitometric analysis was performed using Image] software.

Quantitative real-time PCR

Total RNA was extracted from MSCs using TRIzol reagent
(Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. 15596026)
following the manufacturer’s instructions. RNA concentration and
purity were determined using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). ¢cDNA was
synthesized from 1 pg of total RNA using the PrimeScript RT
Reagent Kit (TaKaRa Bio Inc., Kusatsu, Shiga, Japan, Cat. No.
RRO037A). Quantitative PCR was performed using SYBR Green
Master Mix (Applied Biosystems, Foster City, CA, USA, Cat. No.
4309155) on a 7500 Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA). Gene-specific primers targeting PTGS2, NR4A1,
RANKL, OPG, RUNX2, and OCN were synthesized by Sangon Biotech
(Sangon Biotech Co., Ltd., Shanghai, China) (primer detailed in
Supplementary Table SI). B-Actin was used as the internal reference.
Relative expression levels were calculated using the 274" method.

Dual-luciferase reporter assay

To evaluate the binding of NR4AI to the PTGS2 promoter,
dual-luciferase reporter assays were performed using the Dual-
Luciferase® Reporter Assay System (Promega Corporation,
Madison, WI, USA, Cat. No. E1910). The wild-type PTGS2
promoter sequence and three mutant constructs (each harboring
a single site-directed mutation at predicted NR4A1 binding motifs)
were cloned into the pGL3-Basic luciferase reporter vector
(Promega Corporation, Madison, W1, USA, Cat. No. E1751). All
constructs were verified by Sanger sequencing. HEK293T cells were
seeded into 24-well plates and co-transfected with 400 ng of
reporter plasmid and 100 ng of pRL-TK Renilla luciferase vector
(Promega Corporation, Madison, WI, USA, Cat. No. E2241) as an
internal control via Lipofectamine 3000 (Thermo Fisher Scientific,
Waltham, MA, USA, Cat. No. L3000008). Additionally, cells were
co-transfected with 300 ng of NR4A1 overexpression plasmid or an
empty vector control. After 48 h, firefly and Renilla luciferase
activities were measured sequentially using a microplate
luminometer (Promega Corporation, Madison, WI, USA,
GloMax® Discover). Relative promoter activity was calculated as
the ratio of firefly to Renilla luciferase activity.

Chromatin immunoprecipitation-qPCR
assay

Chromatin immunoprecipitation (ChIP) assays were

performed using the SimpleChIP® Enzymatic Chromatin IP Kit
(Cell Signaling Technology, Danvers, MA, USA, Cat. No. 9003)
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following the manufacturer’s protocol. MSCs were treated with
recombinant human NR4AI protein (rhNR4Al, R&D Systems,
Minneapolis, MN, USA, Cat. No. 8456-NR), OPC compound at
the indicated concentration, or anti-NR4AI neutralizing antibody
(Abcam plc, Cambridge, United Kingdom, Cat. No. ab13851) for 24
h. Cells were crosslinked with 1% formaldehyde for 10 min and
quenched with glycine. Chromatin was enzymatically digested
and sonicated to yield DNA fragments of 150-900 bp.
Immunoprecipitation was performed using anti-NR4AI antibody
(Cell Signaling Technology (CST), Danvers, MA, USA, Cat. No.
13851) or normal IgG as a negative control. After reverse
crosslinking, DNA was purified and analyzed by quantitative PCR
using primers targeting the PTGS2 promoter region. Enrichment
was calculated relative to input DNA and normalized to
IgG controls.

ELISA for serum bone turnover markers

Serum levels of bone turnover markers, including C-terminal
telopeptide of type I collagen (CTX) and procollagen type I N-
terminal propeptide (PINP), were quantified leveraging commercial
enzyme-linked immunosorbent assay (ELISA) kits in accordance
with the manufacturers’ instructions. CTX was measured using the
RatLaps ELISA kit (Immunodiagnostic Systems, Boldon, Tyne and
Wear, United Kingdom, Cat. No. AC-06F1), and PINP was detected
with the Human PINP ELISA kit (Cloud-Clone Corp., Wuhan,
Hubei, China, Cat. No. SEA957Hu). Blood samples were collected,
allowed to clot at room temperature, and centrifuged at 3,000xg for
10 min to isolate serum. Samples were stored at —80°C until
analysis. Absorbance was measured at 450 nm using a microplate
reader (BioTek Instruments, Winooski, VT, USA, Synergy H1), and
concentrations were calculated based on standard curves.

Micro-CT and histological analysis

Femurs were harvested and immersed in 4% paraformaldehyde
(Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. 28908) for
48 h, followed by micro-computed tomography (micro-CT)
scanning using a SkyScan 1176 system (Bruker Corporation,
Billerica, MA, USA) at a resolution of 9 um. Three-dimensional
reconstruction and quantitative analysis were performed using
CTAn software (Bruker Corporation, Billerica, MA, USA) to
evaluate trabecular bone parameters, including bone volume to
tissue volume ratio (BV/TV), trabecular thickness (Tb.Th), and
trabecular separation (Tb.Sp). For histological assessment, fixed
samples were decalcified in 10% EDTA (pH 7.4) for 2-3 weeks,
embedded in paraffin, and sectioned at 5 um. Tartrate-resistant acid
phosphatase (TRAP) staining was carried out with a TRAP staining
kit (Sigma-Aldrich, St. Louis, MO, USA, Cat. No. 387A) according
to the manufacturer’s protocol to identify osteoclasts. TRAP-
positive multinucleated cells were counted under a light
microscope (Leica Microsystems, Wetzlar, Germany, DM3000).
All analyses were conducted in a blinded manner.
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Co-immunoprecipitation assay

To examine the interaction between NR4A1 and Runx2 in MSCs,
co-immunoprecipitation (co-IP) assays were conducted using the
Pierce Co-Immunoprecipitation Kit (Thermo Fisher Scientific,
Waltham, MA, USA, Cat. No. 26149) according to the
manufacturer’s instructions. Briefly, MSCs were lysed in IP lysis
buffer supplemented with protease and phosphatase inhibitors (Cell
Signaling Technology (CST), Danvers, MA, USA, Cat. No. 5872) on
ice. Equal amounts of total protein (500-800 pg) were incubated
overnight at 4°C with anti-NR4AI antibody (Abcam plc, Cambridge,
United Kingdom, Cat. No. ab13851) or control IgG, followed by
incubation with AminoLink " Plus resin for 2 h at room temperature.
Immunoprecipitated complexes were eluted, resolved by SDS-PAGE,
and assessed by Western blotting via anti-Runx2 antibody (Cell
Signaling Technology (CST), Danvers, MA, USA, Cat. No. 12556).
Input lysates and IgG controls were included to validate specificity. All
experiments were independently repeated at least three times.

Statistical analysis

R software was used for statistical analyses. Significance was
evaluated using two-tailed P-values, with criteria defined as *P <
0.05, **P < 0.01, and **P < 0.001.

Results

Mapping of the target sites and functional
pathways of OPC based on network
pharmacology

Through a systematic network pharmacology analysis, we
successfully identified 10 key target genes involved in the action of
OPC, among which the target proteins corresponding to nine genes
were able to form a stable PPI network (Supplementary Figure S1A).
Notably, PTGS2 was situated in the hub of the network of interactions,
with the largest number of connection nodes and the highest
connectivity. This suggested that it could have a significant regulatory
function within the OPC action network. To provide further light on
these target genes’ biological importance, we executed GO and KEGG
pathway enrichment analysis (Supplementary Figures S1B, C), and the
results were significantly enriched in the biological process of “positive
regulation of nucleocytoplasmic transport” and the pathway of
“regulation of lipolysis in adipocytes.” Based on this finding, we
designed an integrated research plan including scRNA-seq, network
pharmacology, cell experiments, and animal validation. Figure 1 shows
the entire workflow.

Single-cell resolution reveals cellular
heterogeneity in osteopenia and drug
response features of OPC-targeted MSCs

We used scRNA-seq technology to analyze osteopenia,
successfully constructing a single-cell map of early OP (Figures 2A,
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B). After quality control screening, a total of 7,743 high-quality cells
were acquired. Dimensionality reduction and clustering identified
four major cell types, namely, pericytes, osteoblastic cells, MSCs, and
myeloid cells, and embedded pie charts were used to display the
variations in each cell type’s distribution at various phases of the cell
cycle (Figures 2C, D). Further analysis revealed that compared with
other cell types, the proportion of MSCs was higher in osteopenia
(Figure 2E), hinting that they might be crucial to aberrant bone
metabolism. We identified the top 5 marker genes for each cell type
and genes that were highly upregulated and downregulated in order
to better investigate the molecular traits of various cell types
(Figures 2F, G). In Figure 2H, we found that pericytes were
predominantly concentrated in muscle- and ion-related processes,
while osteoblastic cells were involved in morphogenesis and
osteoblast-related processes. Myeloid cells showed strong
associations with leukocyte-related processes and activation,
whereas MSCs were closely associated with leukocyte-related and
cell-substrate processes. Moreover, MSCs were significantly enriched
in a series of key biological processes, including extracellular matrix
organization, extracellular structure organization, external
encapsulating structure organization, cell-substrate adhesion, and
ossification. In terms of key biological pathways, MSCs were
mainly involved in protein processing in the endoplasmic
reticulum, cytoskeleton in muscle cells, focal adhesion, cell
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adhesion molecules, and antigen processing and presentation
(Figure 2I). Further analysis showed that OPC showed a high
active expression level in MSCs (Figure 2]), and its key target gene
PTGS2 was also highly expressed in MSCs (Figure 2K), further
supporting its important role in bone metabolism regulation. Based
on this, we believe that the functional state and heterogeneity changes
of MSCs may be an important pathological basis for the progression
from osteopenia to OP.

Single-cell profiling revealed the
heterogeneity of MSC subtypes and their
functional characteristics in osteopenia

To further analyze the diversity of MSCs in osteopenia and their
potential functional differentiation, we conducted a detailed subtype
analysis and identified three MSC subtypes with different molecular
characteristics and functional states: C1 SIXI+ MSCs, C2 NR4AI+
MSCs, and C3 KLF4+ MSCs (Figure 3A). We identified the five most
DEGs with the highest mean expression levels in each MSC subtype
(Figure 3B) and validated the uniqueness of each MSC subtype
through signature gene distribution analysis (Figure 3C). Pathway
activity analysis showed that these subtypes exhibited distinct
functional differentiation: C1 SIXI+ MSCs were primarily involved
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Single-cell atlas of osteopenia and cell-type-specific expression features of OPC target genes. (A, B) UMAP plots displayed the cellular distribution
stratified by sample source and group (osteopenia). (C) The UMAP plot delineated the distribution of four cell types, accompanied by the embedded
pie charts that further illustrated their proportional distribution across different cell cycle phases (G1, G2/M, S). (D) Four UMAP plots respectively
depicted the distribution of each cell type. (E) The stacked bar plot showed the proportional distribution of four cell types within osteopenia. (F) The
bubble plot depicted the expression levels of the top 5 marker genes across different cell types. The pie charts illustrated the proportional
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represented the percentage of gene expression, and the color indicated the z-score (normalized counts). (G) The volcano plots displayed
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in cell-substrate and bone-related processes, C2 NR4A 1+ MSCs were
closely associated with differentiation and leukocyte-related
functions, while C3 KLF4+ MSCs participated in mRNA regulation
and apoptotic processes (Figure 3D). Further GO-BP enrichment
analysis (Figure 3E) supported this functional distinction. C1 SIXI+
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MSCs were mainly enriched in cell-substrate adhesion, extracellular
matrix organization, extracellular structure organization, external
encapsulating structure organization, and substrate adhesion-
dependent cell spreading. C2 NR4AI1+ MSCs were significantly
involved in fat cell differentiation, muscle tissue development,
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depicting the distribution of each subtype. The outer, middle, and inner axes represented the log-scaled clusters, groups, and cell cycle phases of each
subtype, respectively. (B) The bubble plot displayed the mean expression levels of the top 5 DEGs in each MSC subtype. The bubble size corresponded
to the percentage of gene expression, while the color represented normalized data. (C) UMAP plots illustrated the distribution of signature genes across
three MSC subtypes. Contour density lines were overlaid to highlight regions with higher gene expression intensity. (D) The word cloud graphs
presented the activity of different pathways in each MSC subtype. (E) The heatmap demonstrated the enrichment analysis results of the top 5 GO-BP
terms for the three types of cells. (F) The GSEA enrichment analysis revealed the GO-BP terms related to the DEGs in C2 NR4A1+ MSCs. ***P < 0.001.
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intrinsic apoptotic signaling pathway, regulation of fat cell  pathway, regulation of apoptotic signaling pathway, and cellular

differentiation, and renal system development. C3 KLF4+ MSCs  response to chemical stress. Based on GSEA analysis, we found that
fat cell differentiation, rhythmic process, and circadian rhythm were

significantly upregulated in C2 NR4AI+ MSCs (Figure 3F).

were closely related to cytoplasmic translation, intrinsic apoptotic
signaling pathway, regulation of intrinsic apoptotic signaling
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&
Pseudo-time

Single-cell profiling revealed the differentiation trajectory of MSCs. (A) Monocle analysis revealed the developmental trajectory of MSCs. (B) Cells
were color-coded by pseudotime to visualize the trajectory distribution of three MSC subtypes. (C) The cell development trajectory was divided into
13 time states based on the pseudotemporal sequence. (D) Ridge plots demonstrated the pseudotime-dependent dynamic changes across MSC
subtypes. (E) The UMAP plot illustrated the distribution of lineage 1 along the inferred pseudotemporal sequence. (F) UMAP plot revealed
differentiation trajectories and lineages of three MSC subtypes through Slingshot analysis. (G) The dynamic trend plots showed the relative

expression of signature genes for each MSC subtype across pseudotime.

Moreover, C2 NR4AI+ MSCs showed significant enrichment in
multiple metabolic pathways, including taurine and hypotaurine
metabolism, oxidative phosphorylation, metabolism of xenobiotics
by cytochrome P450, arachidonic acid metabolism, and glutathione
metabolism (Figure 3G). These results showed that C2 NR4AI+
MSCs may be essential for regulatory and metabolic integration
during the early stage of osteopenia, laying the foundation for
further investigation into their role in disease progression.

Analysis of differentiation characteristics of
three MSC subtypes

To elucidate the differentiation dynamics of MSC subtypes under
osteopenia conditions, we performed pseudotime trajectory analysis
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using both Monocle and Slingshot. The developmental trajectory of
MSC:s originated in the upper right quadrant and extended along the
main path toward the left side (Figures 4A-C). The results showed
that C2 NR4A1+ MSCs were chiefly situated at the inception of the
developmental trajectory (Figures 4C, D) and exhibited a
differentiation path of C2—Cl1—C3 along the major lineage
(lineage 1) (Figures 4E, F). This trajectory suggested that C2
NR4A1+ MSCs might represent the initial state of MSC
differentiation, with C1 SIXI+ MSCs as an intermediate functional
transition stage and C3 KLF4+ MSCs as a more terminal state.
Signature gene expression analysis further confirmed the high
expression profile of C2 NR4AI+ MSCs at the early stage
(Figure 4G), indicating their potential pivotal role in directing MSC
differentiation and functional shift. Therefore, focusing on C2 NR4A 1
+ MSCs not only helped to deepen our understanding of MSC fate
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determination but also provided clues for identifying critical time
windows to intervene in the progression of osteopenia.

Intercellular communication network
within the osteopenic bone marrow niche

Based on the central role of C2 NR4A1+ MSC in the early stages
of MSC differentiation, we further investigated their intercellular
communication within the osteopenia-associated microenvironment.
Through cell interaction analysis, we found significant signal
exchange between C2 NR4AI+ MSC and osteoblastic cells
(Figure 5A). Analysis of outgoing and incoming signaling patterns
revealed that the relative strength of the fibroblast growth factor
(FGF) signaling pathway was particularly prominent between these
two cell types (Figure 5B). Systematic analysis showed that under the
FGF signaling network, the communication probability between C2
NR4A1+ MSC and osteoblastic cells was markedly increased
(Figure 5C). Moreover, these two cell types exhibited a clear
functional division within the signaling network: C2 NR4AI+
MSCs primarily acted as signal senders, mediators, and influencers,
while osteoblastic cells mainly functioned as receivers (Figure 5D). By
analyzing the expression of key ligand and receptor, we ascertained
that FGF7 and FGFR1 were strikingly upregulated in both C2 NR4A1
+ MSCs and osteoblastic cells (Figure 5E), providing a molecular
basis for explaining the specific communication between the two.
Integrated analysis of the FGF signaling network revealed that C2
NR4A1+ MSCs and osteoblastic cells formed a specific signaling
connection (Figure 5F), with the communication network established
through the FGF7-FGFRI signaling axis displaying significant
interactive characteristics (Figure 5G). These findings not only
highlighted the critical role of the C2 NR4A I+ MSCs in regulating
bone metabolic balance but also revealed a highly specific regulatory
network within the bone marrow microenvironment, offering
potential targets for future therapeutic intervention.

Transcriptional regulatory features of MSC
subtypes

To further explore the upstream regulatory mechanisms
underlying the function of C2 NR4A1+ MSCs, we systematically
analyzed their transcriptional regulatory network. This study first
revealed a subtype-specific distribution pattern based on the
activation levels of TFs (Figure 6A) and identified two
functionally distinct regulatory modules (M1 and M2) using
pySCENIC regulatory rules and AUCell similarity scores
(Figure 6B). We observed that C2 NR4AI+ MSC displayed a
marked regulatory advantage in M1 compared with M2
(Figures 6C-E). Specifically, C2 NR4AI+ MSC in M1 showed
higher AUC scores, increased TF expression, and enhanced
regulon activity relative to those in M2. Subsequently, we
identified the top 5 TFs of C2 NR4AI+ MSC—REL, FOSLI1,
FOSL2, CREM, and NFIL3—highlighting their unique epigenetic
regulatory landscape (Figure 6F).
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Identification of key target genes for OPC
treatment in OP

To further elucidate the role of OPC, we focused on
investigating the response characteristics of different MSC
subtypes to OPC. Through a systematic analysis of the expression
profiles of the OPC target genes, we noticed that PTGS2 and
PRKACA were significantly expressed in C2 NR4AI+ MSC
(Figure 6G). UMAP dimensionality reduction and quantitative
expression comparisons further confirmed this discovery
(Figures 6H, I). These findings suggested that OPC may regulate
the bone marrow microenvironment by acting on C2 NR4AI+
MSC, thereby participating in the pathological process
of osteopenia.

OPC suppresses PTGS2 expression in MSCs
via inhibition of NR4A1 transcriptional
activity

To evaluate the effect of OPC on MSCs, we first assessed cell
viability via the CCK-8 assay. As shown in Figure 7A, OPC
treatment significantly enhanced MSC viability in a dose-
dependent manner, with the most notable increase observed at
10-20 puM, while 40 uM caused a slight reduction. Colony
formation assays further confirmed that OPC promoted MSC
proliferation, with increased colony numbers up to 20 uM
(Figures 7B, G).

Western blot analysis revealed that OPC treatment markedly
suppressed the expression of PTGS2 and NR4A1 proteins in MSCs
(Figures 7C, D), which was further validated at the mRNA level by
RT-qPCR (Figure 7E). Scratch wound healing assays demonstrated
that OPC enhanced MSC migration at appropriate doses
(Figure 7F), suggesting a pro-regenerative effect.

To determine the underlying regulatory mechanism, we
identified three NR4AI binding sites (TFBS1-3) located in the
distal promoter region of PTGS2 (Figure 7H). Site-directed
mutagenesis was performed to generate mutants for each
predicted binding site.

Overexpression of NR4AI was confirmed by Western blotting
in MSCs (Figure 7I), and RT-qPCR showed that NR4AI
upregulation significantly increased PTGS2 mRNA levels
(Figure 7]). Furthermore, ChIP-qPCR revealed that NR4AI
directly binds to the PTGS2 promoter, while OPC treatment or
anti-NR4A1 antibody abrogated this interaction (Figure 7K),
indicating that OPC inhibits PTGS2 expression by interfering
with NR4A1-mediated transcriptional regulation.

OPC attenuates OVX-induced bone loss via
a B-catenin-dependent NR4A1-Runx2
signaling axis

To investigate the therapeutic effect of OPC in OP, an OVX-
induced bone loss model was employed. Micro-CT uncovered that
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OPC suppresses PTGS2 expression in MSCs via inhibition of NR4A1 transcriptional activity. (A) The CCK-8 assay showing the effects of various
concentrations of OPC (1-40 uM) on MSC viability. (B) Representative images of crystal violet-stained colonies formed by MSCs treated with
increasing concentrations of OPC. (C, D) Western blot and quantification showing reduced protein levels of PTGS2 and NR4A1 upon OPC treatment.
(E) RT-gPCR results confirming the downregulation of PTGS2 and NR4A1 mRNA in OPC-treated MSCs. (F) Representative images of wound healing
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followed by a decline at 40 uM. (H) Schematic representation of the PTGS2 promoter indicating three NR4A1-binding sites (TFBS1-3) and their
mutated sequences. (I) Western blot confirming NR4A1 overexpression in MSCs. (J) RT-qPCR showing increased PTGS2 transcription upon NR4A1
overexpression (P < 0.01). (K) ChIP-gPCR demonstrating NR4A1 binding to the PTGS2 promoter, which is reduced by OPC or anti-NR4A1 treatment.
Data are presented as mean + SEM. **P < 0.01, ***P < 0.001 versus control; **P < 0.01 versus the OP group.

Frontiers in Immunology 14 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1679987
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Huang et al.

OPC significantly restored bone volume/total volume (BV/TV),
trabecular thickness (Tb.Th), and spacing (Tb.Sp) compared to
OVX controls (Figures 8A-C). Histological TRAP staining
manifested a conspicuous reduction in osteoclast number in
OPC-treated mice (Figure 8D), while biochemical markers of
bone turnover, including CTX and PINP, were favorably
modulated (Figures 8E, F).

Western blotting demonstrated that OVX increased PTGS2,
NR4A1, and RANKL expression, while decreasing osteogenic
markers such as OPG, Runx2, and OCN (Figure 8G). OPC
treatment reversed these molecular changes in a dose-dependent
manner. RT-qPCR data further confirmed the regulatory effects of
OPC on these genes (Figure 8H), suggesting its potential to
modulate both osteoclastogenic and osteogenic signaling.

To explore the mechanistic pathway, we performed co-
immunoprecipitation in B—cateninﬂ/ﬂ and Osx—Cre—ﬁ—cateninﬂ/ﬂ
MSCs. The interaction between NR4A1 and Runx2 was confirmed
in wild-type MSCs but was markedly reduced in B-catenin-deficient
cells (Figure 8I), indicating that B-catenin is required for NR4AI-
Runx2 complex formation.

In Osx-Cre-B-catenin™” mice, OPC failed to suppress PTGS2/
NR4A1/RANKL or restore OPG/Runx2/OCN expression (Figure 8J).
Furthermore, serum PINP and CTX levels showed no significant
improvement with OPC in 3-catenin-deficient mice (Figures 8K, L),
confirming that the bone-protective effects of OPC are B-
catenin dependent.

Discussion

OP is a common metabolic bone disorder (15). Its pathological
core lies in the persistent imbalance of bone homeostasis,
manifested as the long-term dominance of osteoclast-mediated
bone resorption and relatively insufficient osteoblast-driven bone
formation capacity (4, 5). This imbalance is not only the result of
local bone metabolic abnormalities but also a comprehensive
manifestation of the systemic dysregulation of the bone
microenvironment, involving multiple levels of interactions such
as cellular heterogeneity, immune inflammation, and oxidative
stress (1, 13, 56). Current clinical therapies, such as anti-
resorption drugs and anabolic agents, can partially alleviate
symptoms, but due to their single-target mechanisms, significant
side effects during long-term use, and the difficulty in truly
promoting bone structure regeneration, their therapeutic efficacy
has obvious limitations.

OPC, as a class of natural plant pigments, is significantly
different from traditional anti-OP drugs due to its outstanding
safety features. It demonstrates unique advantages in the long-term
intervention of chronic bone metabolic diseases. Its therapeutic
potential lies in a multidimensional mechanism of action involving
“inhibition of bone resorption, encouragement of bone formation,
anti-inflammatory, and antioxidant effects” (16, 25). Previous
studies have shown that various natural small molecules can
improve bone homeostasis imbalance through different molecular
pathways. For instance, luteolin, a natural flavonoid, can upregulate
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the expression of osteogenic-related proteins such as Runx2 by
activating the PI3K/Akt pathway, thereby reducing bone loss (57).
Gastrodin mainly promotes osteogenic differentiation by
stimulating the Wnt/B-catenin signaling and enhancing Runx2
expression (58). Baicalein improves bone quality by upregulating
SIRTI, AR, and ESRI and downregulating PTGS2 expression (59).
The small molecule drug metformin can restore NR4AI-mediated
autophagic flux, showing significant protective effects against
postmenopausal OP (60). Compared with these mechanisms
mainly based on single pathways or local links, the action of OPC
presents more comprehensive and bidirectional regulatory
characteristics, highlighting its uniqueness and potential
advantages in the treatment of OP.

To deeply reveal the specific mechanism of OPC in treating OP,
we employed scRNA-seq to systematically study the bone
microenvironment of OP. Osteopenia (bone mineral density T-score
between —1.0 and —2.49), as a precursor stage to OP (T-score <-2.5)
(61, 62), affects over 60% of individuals over the age of 60, with a
prevalence approximately three times higher than that of OP (63).
Notably, although osteopenia does not meet the diagnostic criteria for
OP, more than half of osteoporotic fractures actually occur in
individuals with osteopenia, while patients with OP account for only
20%-30% of the total fracture burden (63, 64). Osteopenia represents
a critical window of intervention due to its rapid rate of bone loss,
particularly in early postmenopausal stages or following the cessation
of hormone therapy. Therefore, to elucidate the potential mechanisms
by which OPCs treat OP, we performed a systematic analysis of the
bone microenvironment in osteopenia samples using scRNA-
seq technology.

From the data acquisition, we identified four major cell types in
osteopenia. Among them, MSCs showed a significantly increased
proportion in osteopenia, suggesting that they may play a key
driving role in the imbalance of bone homeostasis. As the core
stromal cell population in the bone marrow microenvironment,
MSCs possess unique self-renewal capabilities and multidirectional
differentiation potential and can differentiate into various lineages
such as osteoblasts/bone cells, chondrocytes, and adipocytes,
playing an irreplaceable role in maintaining the homeostasis of
bone tissue (7, 56, 65). Particularly noteworthy is that as the direct
source of osteoblasts, the balance of differentiation of MSCs into
osteoblasts and adipocytes directly regulates bone metabolism (7,
66). Their differentiation imbalance (such as insufficient
osteogenesis or excessive adipogenesis) is a major driver of the
formation and progression of bone metabolic diseases such as OP
(67). Therefore, MSCs are not only key regulators for understanding
the mechanisms of bone metabolism but also represent potential
therapeutic targets for OP.

This study further evaluated the pharmacological response
characteristics of OPCs targeting MSCs. The results showed that
OPCs exhibited relatively high activity in MSCs, suggesting that
MSCs may serve as the primary targets through which OPCs exert
their effects on OP. Additionally, the key target gene PTGS2 was
also highly expressed in MSCs, indicating that it may be an
important molecular mediator of the bone-protective effects of
OPCs. These observations provide a new molecular basis for
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MSCs. (J) Protein expression of target genes in femurs from [-catenin-deficient mice treated with OPC. (K, L)
versus Osx-Cre-p-catenin™™ mice. Data are shown as mean + SEM. *P < 0.05, **P < 0.01
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understanding how OPCs intervene in OP by modulating
MSC function.

In-depth analysis revealed that MSCs can be divided into three
functionally heterogeneous subtypes. Among them, C2 NR4A 1+ MSCs
exhibited unique metabolic and rhythmic regulatory characteristics.
This subtype was enriched in fat cell differentiation and circadian
rhythm pathways. Previous studies showed that lipid metabolic
abnormalities, including enhanced fat cell differentiation, regulated
the functions of osteoblasts and osteoclasts (68, 69). In addition,
circadian rhythm also influenced bone remodeling and bone
metabolism, thereby accelerating osteopenia and the progression of
OP (70, 71). At the same time, it has advantages in oxidative
phosphorylation and glutathione metabolism, indicating its role as a
metabolic hub coordinating energy metabolism and antioxidant
defense, maintaining the balance between osteoblast and osteoclast
(72-74). Difterentiation trajectory analysis also revealed that C2 NR4A1
+ MSCs are primarily located at the early stage of differentiation and
participate in early differentiation regulation through specific lineage
trajectories, presenting a new perspective on the mechanisms of MSC
differentiation in OP.

In the analysis of the cellular communication network within the
bone marrow microenvironment, we further found that under the FGF
signaling pathway network, C2 NR4AI+ MSCs and osteoblasts
exhibited significantly elevated signaling intensity and communication
probability. The FGF signaling pathway is one of the core mechanisms
regulating bone development and metabolism, playing a crucial role in
maintaining the homeostasis of bone tissue (the dynamic balance
between bone formation and bone resorption) (75). Meanwhile, the
FGF signaling pathway regulates bone formation and resorption
through the collaboration of multiple genes and is significantly
associated with the pathogenesis of bone diseases such as OP (76).
Subsequently, the transcriptional regulatory network of C4 NR4AI+
MSCs was thoroughly examined, and the top 5 TFs (REL, FOSLI,
FOSL2, CREM, and NFIL3) with the highest activity in this subtype
were found. This finding not only reveals the regulatory hub driving the
unique functions of C2 NR4A1+ MSCs but also further supports their
potential as key cellular targets for OP therapy. Notably, we discovered
that OPCs can specifically target and act on C2 NR4AI+ MSCs, with
this specificity being particularly evident at two key OPC targets: PTGS2
and PRKACA.

PTGS2 (Prostaglandin Endoperoxide Synthase 2/COX-2) is the
rate-limiting enzyme in prostaglandin production and participates in
physiological processes (like embryonic development and
transportation of the reproductive system), as well as a key
regulatory node in the pathogenesis of OP (77). Current research has
revealed that PTGS2 drives bone homeostasis imbalance through two
pathways: on the one hand, its high expression promotes the release of
inflammatory mediators (such as PGE2), activates osteoclast
differentiation, and inhibits osteogenesis (78, 79); on the other hand,
as a key gene in ferroptosis, PTGS2 directly induces ferroptosis in
BMSCs, leading to accumulation of ROS, iron overload, and
mitochondrial damage, thereby blocking osteogenic differentiation
and mineralization (80). Targeted therapy against PTGS2 has
become a new strategy for the intervention of OP. Natural
compounds such as curcumin inhibit PTGS2 expression through
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molecular binding, reverse ferroptosis in BMSCs, and restore
osteogenic ability (80). Baicalein (BN) significantly downregulates
PTGS2 protein in bone tissue in the OVX rat model, cooperatively
regulates the SIRT1/AR/ESR1 pathway to improve bone loss (59). The
active components of elderberry (such as kaempferol, quercetin) inhibit
PTGS2 and activate the PI3K-Akt pathway to promote bone matrix
calcification (79). It is worth noting that the physiological necessity of
PTGS2 in the reproductive system suggests that its inhibitors should
also have bone-targeting specificity (77). In summary, PTGS2, as a key
target for OPC and a dual driver of “inflammation-bone resorption
activation” and “ferroptosis-bone formation inhibition” in the process
of OP, has become a common target for various natural anti-OP drugs.

On the other hand, NR4AI (Nuclear Receptor Subfamily 4 Group
A Member 1, also known as Nur77) is an orphan nuclear receptor
that plays a central regulatory role in postmenopausal OP through
multiple mechanisms (81). It inhibits the differentiation of BMSCs
into osteoblasts while promoting their differentiation into adipocytes,
leading to increased bone marrow adiposity and reduced bone
formation (60, 81, 82). Additionally, as a negative regulator of
osteopontin, the loss of NR4A1 enhances osteopontin-mediated
migration and recruitment of osteoclast precursors to the bone
surface, thereby accelerating trabecular bone resorption (81, 83). In
contrast, pharmacological activation of NR4AI can suppress this
process and slow bone loss (84). Under oxidative stress conditions,
NR4A1I influences osteoblast function by regulating autophagic flux;
its downregulation exacerbates autophagy blockage, further
impairing bone formation (60). Therefore, by disrupting the
balance between bone formation and resorption, promoting bone
marrow adipogenesis, and responding to oxidative stress, NR4AI has
emerged as a critical therapeutic target in postmenopausal OP.

Our experimental results show that OPC effectively inhibits the
expression of PTGS2 by interfering with the transcriptional regulation
mediated by NR4A1. In animal model studies, we not only observed the
significant improvement effect of OPC on bone microstructure but also
found that it could coordinate the regulation of bone turnover markers
and restore bone metabolic balance. Mechanism studies indicate that
this protective effect of OPC depends on the B-catenin-mediated
NR4A1-Runx2 signaling axis. This finding offers a fresh molecular
viewpoint for comprehending OPC’s mode of action. Overall, OPC
exerts therapeutic effects through a multilevel regulatory network,
providing a new paradigm for natural products to target
subpopulations of BMSCs to improve bone homeostasis.

However, this study still has several limitations that need attention:
Firstly, although the OVX mouse model mimics some characteristics of
postmenopausal OP to a certain extent, it still has significant differences
from the complex pathophysiological process of human diseases. In
particular, factors such as age, gender, and comorbidities were not
considered, which may limit the clinical inference of the research
results. Secondly, the research mainly focuses on MSCs and their
subtypes, but the interaction mechanisms with other cell types in the
bone microenvironment (like osteoclast precursors and immune cells)
have not been adequately explored. Additionally, the current sample
size is small, and in vitro experiments cannot fully replicate the
complex physiological or microenvironmental conditions in vivo. At
the clinical translation level, the optimal administration regimen of
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OPCs, their long-term safety, and potential synergistic effects with
existing anti-OP drugs are still unclear, and natural products have
inherent limitations in bioavailability and the long-term medication
requirements for chronic diseases. Therefore, the current conclusions
still need to be verified in large animal models with larger sample sizes
and subsequent clinical trials. Future studies should concentrate on
creating targeted treatment plans using MSC subtype molecular typing,
optimizing the delivery system of OPC to enhance its bone targeting,
and exploring its synergistic combination effects with other natural
active components. These in-depth explorations will provide more
universal scientific evidence supporting the clinical practice of OPC.

Conclusion

In summary, our research indicates that OPC may serve as a
potential therapeutic candidate by targeting and regulating C2
NR4AI+ MSCs in osteopenia, thereby playing a role in the
prevention and treatment of OP. Specifically, it achieves a
synergistic effect of “osteoclast inhibition and osteoblast
promotion” through a dual signaling axis of NR4AI-PTGS2 and B-
catenin-dependent NR4AI-Runx2. This unique regulatory pattern
not only explains the mechanism of OPC in preventing and treating
OP but also provides new potential therapeutic targets for the
development of OPC-based OP treatment strategies. Future
research should focus on exploring the clinical translation pathways
of OPC, including optimizing the administration methods, exploring
its combined application with existing anti-OP drugs, and developing
targeted delivery strategies for the bone microenvironment. These
efforts will provide more practical guidance for the application of
OPC in the prevention and treatment of OP and lay the foundation
for subsequent clinical research.
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