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Background: Patients affected by heat stroke (HS) develop myocardial injury at
an early stage and exhibit a significantly higher risk of death than those without
myocardial injury.

Methods: We used WGCNA and myocardial tissue transcriptome sequencing to
identify candidate DEGs associated with HS-induced myocardial injury. Immune
infiltration and functional enrichment analyses were performed to investigate the
correlation between candidate DEGs and immune cell populations and their
biological functions. Protein—protein interaction (PPI) network analysis was used
to identify hub genes. Clinical validation was performed through ELISA of blood
samples from patients with HS, followed by construction of a hub gene-based
prognostic nomogram. Additionally, the LIOOOFWD platform was used to screen
potential small-molecule therapeutic drugs. Finally, we established HS mice
models and cellular models to validate the therapeutic efficacy and underlying
mechanisms of the selected compounds.

Results: Thirteen candidate DEGs were identified in the HS myocardial tissues.
Immune infiltration analysis showed significant positive correlations between
these DEGs and macrophages, NK cells, and dendritic cells. Functional
enrichment analysis indicated that the candidate DEGs were predominantly
enriched in the MAPK signaling pathway. PPl network analysis identified JUN as
a key hub gene in HS-induced myocardial injury. Clinical validation showed that
c-Jun levels were significantly elevated in patients with than in those without HS
myocardial injury (p < 0.001) with an area under the curve (AUC) of 0.781 that
indicated diagnostic accuracy. A prognostic nomogram based on c-Jun
achieved an AUC of 0.906 for predicting patient outcomes. Furthermore, the
L1000FWD platform identified ZG-10 as a potential therapeutic drug. /n vivo and
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in vitro experiments showed that ZG-10 improved cardiac function in HS mouse
models, alleviated c-Jun-mediated inflammatory responses and apoptosis in
myocardial tissues, and inhibited the INK/p38 MAPK pathway to downregulate c-

Jun expression.

Conclusions: This study has systematically elucidated the central role of c-Jun in
HS-induced myocardial injury. We have provided a novel biomarker for early
diagnosis and prognostic evaluation of HS-induced myocardial injury.
Additionally, we have identified ZG-10 as a potential therapeutic drug for HS-
induced myocardial injury, which is a new treatment strategy for this condition.

heat stroke, myocardial injury, c-Jun, ZG-10, INK/p38MAPK signaling

Introduction

Recently, global warming has led to a continuous increase in the
frequency, intensity, and duration of extreme heat events during
summer (1), which have resulted in a significant rise in heat-related
diseases worldwide (2). Heat stroke (HS) is the most severe type of
heat-related illness. It is a life-threatening condition caused by
prolonged exposure to high-temperature environments and is
characterized by central nervous system dysfunction, rapid
increase in core body temperature (typically >40°C), and multi-
organ dysfunction including cardiovascular, hepatic, and renal
impairments (3). The case fatality rate remains alarmingly high
and ranges from 26.5-63.2% despite modern medical
interventions (4).

Heat exposure increases the risk of cardiovascular mortality (5).
The heart is one of the primary organs initially damaged in HS (6), as
evidenced by approximately 43.4-74.6% of patients with HS
exhibiting cardiovascular dysfunction (7-10). Cardiovascular
abnormalities often manifest early in HS and are characterized by
heart failure, focal myocardial necrosis, and arrhythmias (6). A meta-
analysis of patients with HS showed that pre-existing cardiovascular
disease induced a significant 2.5-fold increase in risk of mortality (11).
Moreover, survivors of HS may develop long-term cardiovascular
sequelae (12). These findings highlight the profound impact of
cardiac injury on the prognosis of patients with HS and the need
for focused studies on therapeutic or preventive strategies for HS-
induced myocardial injury. Currently, rapid cooling remains the only
effective intervention for HS in clinical practice (4). However, no
definitive treatment exists for HS-induced myocardial injury.
Although aspirin alleviates heat-induced myocardial injury in avian
cardiac tissues, it does not show any clinical benefits and may
exacerbate liver dysfunction (13). HS is often accompanied by
systemic inflammatory response during its progression (14) and
shares pathophysiological mechanisms with sepsis (15). During HS
progression, systemic inflammatory activation occurs through
excessive release of pro-inflammatory cytokines such as interleukin
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(IL)-1B, IL-6, IL-2, and tumor necrosis factor-o. (TNF-ot) (16). These
cytokines stimulate granulocyte migration and adhesion, which
triggers an inflammatory cascade that leads to tissue damage (17).
Simultaneously, injured myocardial tissue releases pro-inflammatory
factors, which further amplify the systemic inflammatory response
(16). Therefore, suppression of inflammatory response is a promising
therapeutic approach for mitigating HS-induced myocardial injury.

The JUN gene is located on chromosome 1 and encodes the c-Jun
transcription factor protein (18, 19). ¢-Jun is an oncogene and one of
the most active transcriptional activators in the Jun family (20). c-Jun
forms a dimeric complex with other proteins to constitute the
activator protein-1 (AP-1) transcription factor, which responds to a
variety of extracellular or intracellular stimuli by regulating gene
expression, inflammatory responses, and cellular functions (21). c-
Jun N-terminal kinase (JNK) is a member of the mitogen-activated
protein kinase (MAPK) family. It is activated by oxidative stress, heat
stress, and radiation (22). JNK promotes the phosphorylation of the
transcription factor c-Jun, thereby inducing cell apoptosis or survival
(23-25). In cardiomyocytes, JNK and its downstream target c-Jun are
phosphorylated and activated. Subsequently, they participate in
myocardial injury induced by ischemia-reperfusion, sepsis, and
drug exposure (26-29). However, findings on the role of ¢-Jun in
HS-induced myocardial injury are limited.

In this study, we performed bioinformatic analysis using public
databases and sequencing data from HS myocardial tissues to
identify key genes associated with HS-induced myocardial injury.
Furthermore, we validated these findings in clinical samples, and c-
Jun was identified as a diagnostic biomarker for HS-induced
myocardial injury; additionally it showed predictive value for the
prognosis of patients with HS. Finally, we used the identified key
genes to screen for potential therapeutic drugs for HS-induced
myocardial injury. Furthermore, we validated the efficacy of the
identified drug by evaluating the therapeutic effects of ZG-10 both
in vivo and in vitro. Additionally, we elucidated the potential
underlying mechanisms. The study flowchart is presented
in Figure 1.
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FIGURE 1
Study flowchart.

Materials and methods

Acquisition of HS datasets from GEO
database and preprocessing

We accessed the Gene Expression Omnibus (GEO) database
and downloaded the HS-related transcriptomic dataset GSE64778.
Specifically, this dataset includes whole-blood samples from 6
normal control and 16 HS rats induced with high temperature
(39°C). The raw sequencing data of the GSE64778 dataset were
obtained from the Sequence Read Archive (SRA). Next, fastp tool
was used to perform quality control and preprocess the raw
sequencing data to remove low-quality sequences and adapter
contamination and trim the reads. Subsequently, the high-quality
reads were aligned to the rat reference genome using Hisat2
software to determine gene expression levels. Next, the
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featureCounts tool was used to calculate the expression level of
each gene in the samples. The results were used to generate an
expression matrix.

Weighted gene co-expression network
analysis

WGCNA is a bioinformatics method for constructing gene co-
expression networks based on gene expression data. We calculated the
expression correlation between genes and assigning weights. This was
used to cluster genes with similar expression patterns into modules.
WGCNA is widely applied for biomarker identification and drug target
discovery (30). In this study, we used the “WGCNA” R package to
analyze the 22 rat whole-blood samples in the GSE64778 dataset. First,
hierarchical clustering was performed to identify potential outliers.
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Next, the scale-free topology fit index was analyzed to determine the
appropriate soft threshold . Based on the optimal B value, the
topological overlap matrix (TOM) was calculated, and a hierarchical
clustering dendrogram was constructed. The branches of the
hierarchical clustering tree were divided into co-expression modules,
and each module contained at least 30 genes. To merge similar-colored
modules, the mergeCutHeight parameter was set to 0.25. Finally, the
correlation and significance of all genes within each module with
respect to the phenotypic traits were calculated, and the most
significantly correlated and relevant modules were selected as
core modules.

Transcriptomic analysis of HS-induced
myocardial tissue

Total RNA was extracted from HS mice, and its concentration
and purity were assessed using a Nanodrop 2000 spectrophotometer.
RNA integrity was evaluated using agarose gel electrophoresis, and
the RNA Quality Number (RQN) was determined using the Agilent
5300 platform. mRNA was isolated from total RNA and reverse-
transcribed into cDNA. Subsequently, adapter sequences were ligated
onto the cDNA, and the adapter-ligated products were purified and
size-selected. The size-selected products were amplified via PCR, and
the final library was purified. After library preparation, sequencing
was performed on the NovaSeq X Plus platform. Raw data were
subjected to quality control and aligned against the reference genome
using fastp and Hisat2. The sequencing data has been uploaded to the
GEO database (GSE303366). To identify differentially expressed
genes (DEGs), the “DESeq2” R package was used to perform
statistical analysis, for which the threshold was set at |log,FC| > 1
and p-value < 0.05. The “ggplot2” and “pheatmap” R packages were
used to generate volcano plots and heatmaps, respectively.
Additionally, we retrieved the genes associated with HS from the
GeneCards database (https://www.genecards.org/). Specifically,
genes with a GeneCards correlation score > 3 were considered
HS-related targets. The “ggvenn” R package was used to screen
candidate DEGs for HS-induced myocardial injury. The
“pheatmap” and “corrr” R packages were used to visualize the
correlation heatmap and network of candidate DEGs, respectively.

Immune infiltration analysis and correlation
between candidate DEGs and immune
cells

ImmuCellAT is a tool that is based on the single sample Gene Set
Enrichment Analysis (ssGSEA) method and is used to evaluate the
abundance of 24 immune cell-types from gene expression data (31).
The “ImmuCellAI” R package was used to assess immune cell
infiltration in the HS and control groups from the GSE64778
dataset. The “corrplot” and “ggplotify” R packages were used to
determine and visualize the correlations between immune cells,
whereas the “ggplot2” R package was used to generate heatmaps to
illustrate the correlations between candidate DEGs and immune cells.
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Functional enrichment and protein—protein
interaction network analysis of candidate
DEGs

To gain a deeper understanding of the biological significance
and potential molecular regulatory mechanisms of the candidate
DEGs in HS-induced myocardial injury, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses. Additionally, the
“enrichplot” R package was used to visualize the top 5 enriched
GO terms and the top 10 enriched KEGG pathways. In the
enrichment analysis, p-value < 0.05 was considered
statistically significant.

The candidate DEGs were imported into the STRING database
(https://cn.string-db.org/) to obtain protein-protein interaction
(PPI) network information. Subsequently, the PPI data were
imported into Cytoscape software for analysis and visualization.
The MCC algorithm was used to identify the top 10 genes with the
highest scores. The colors and sizes of the visualized nodes
represent the strength of the interaction with other proteins.
Additionally, the candidate DEGs were ranked based on their
degree values.

Sample and study respondents

This study was approved by the Ethics Committee of Deyang
People’s Hospital (2024-04-003-K01). We adhered to the guidelines
of the Declaration of Helsinki. All participants were recruited
between April 1, 2024 and October 31, 2024 at Deyang People’s
Hospital. All participants provided informed consent (Clinical trial
number: not applicable). HS was diagnosed based on the expert
consensus on the diagnosis and treatment of HS in China (32). The
diagnostic criteria were as follows—Medical history: (1) Exposure
to high temperature and high-humidity environments and (2) High
intensity exercise; Clinical manifestations: (1) Central nervous
system dysfunction (e.g., coma, convulsions, delirium, and
abnormal behavior), (2) Core temperature > 40°C, (3) Multiple
organ dysfunction (= 2), and (4) Severe coagulopathy or
disseminated intravascular coagulation. HS diagnosis was
considered when any one item from the medical history and any
one item from the clinical manifestations lists were satisfied and the
condition could not be explained with other reasons. Exclusion
criteria included pregnant women; patients with a history of
cardiovascular disease (such as coronary heart disease,
cardiomyopathy, valvular heart disease, congenital heart disease,
arrhythmia, and acute coronary syndrome) and immune-related
diseases; and patients with incomplete clinical data. Myocardial
injury was defined as serum cardiac troponin I (c¢Tnl) levels > 99™
percentile reference upper limit (33). As these reference limits are
assay-dependent, we specified that all measurements had to be
performed using the ADVIA Centaur System (Siemens). In this
study, the specific cutoff value was ¢Tnl > 0.04 ng/ml (ADVIA
Centaur Systems, Siemens, Germany).

frontiersin.org


https://www.genecards.org/
https://cn.string-db.org/
https://doi.org/10.3389/fimmu.2025.1679750
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xiang et al.

Enzyme-linked immunosorbent assay

All blood samples were collected on day 1 after the patients were
diagnosed with HS. The collected blood samples were centrifuged at
3000 rpm and stored at —80°C until required for further analysis.
Total c-Jun level in human serum sample was measured using the
Total c-Jun ELISA Kit (23176C, Cell Signaling Technology, USA).

Establishment and evaluation of prognostic
model

Clinical data and serum c-Jun concentrations in patient samples
were obtained to identify the prognostic factors. We determined the
independent prognostic factors for patients with HS by performing
a univariate logistic regression analysis to select variables with
statistical significance. Variables with p < 0.05 were included in
the multivariate logistic regression analysis to identify the
independent prognostic factors. Receiver operating characteristic
(ROC) curves were plotted for these independent prognostic
factors, and the area under the curve (AUC) was determined to
evaluate their specificity and sensitivity. Subsequently, a prognostic
nomogram was developed using the “rms” R package based on the
identified independent prognostic factors. ROC curves were plotted,
and AUC values were calculated. Additionally, calibration curves
were constructed, and decision curve analysis (DCA) was
performed to assess the nomogram. The DCA curves are used to
guide clinical decisions such as identifying high-risk patients who
need to receive interventions and low-risk patients who need to
avoid unnecessary treatments (to prevent overtreatment). Thus, this
evaluation method indicates the clinical utility of the prognostic
model. A perfect calibration curve should overlap with the 45°
diagonal line. In fact, higher concordance between the calibration
curve and the 45° diagonal line indicates more accurate predictive
ability of the model.

Identification of candidate drugs

The L1000 Fireworks Display (L1000FWD) provides an
interactive visualization of gene expression profiles for > 16,000
drugs and small molecules (34). We used the LIOOOFWD tool to
analyze the DEGs that exhibited either high or low expression levels
in HS-induced myocardial injury. Through this analysis, we
screened drugs that showed opposite correlations with the
candidate DEGs.

Construction of HS animal model

This study used 6-8-week-old C57BL/6N male mice (body
weight: 20-25 g) provided by DOSSY Experimental Animal Co.
Ltd. (Chengdu, China). All mice were acclimated for 1 week under
standard housing conditions including 22-25°C temperature, 12-h
light/dark cycle, and free access to food and water. The mice were
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divided into five groups: Control, HS, HS+DMSO, HS+ZG-10, and
HS+ZG-10+ANI. The Control group was maintained in a normal
environment (22-25°C and 60-65% humidity) with fasting and
water deprivation. The HS group was exposed to high temperature
intervention in a climate-controlled chamber. The temperature was
set to 40 + 0.5°C, and humidity was maintained at 60-65%. During
this period, the mice were fasted and water-deprived. Additionally,
rectal temperature was measured every 30 min using a rectal
thermometer until the core body temperature reached 42°C. At
this point the mice were immediately transferred to a recovery
environment (22-25°C; 60-65% humidity). The HS+DMSO group
mice were administered intraperitoneal injections of DMSO
(concentration <1%) for 7 days prior to high-temperature
exposure. The final dose was administered 1 h before
administering the heat challenge. The remaining procedures were
same protocol as those followed for the HS group. The HS+ZG-10
group mice were administered intraperitoneal injections of ZG-10
(T26349, Targetmol, USA) at a dose of 10 mg/kg for 7 days before
high-temperature exposure. The final dose was administered 1 h
before administering the heat challenge; the remaining procedures
were the same as those followed for the HS group. The HS+ZG-10
+ANI group mice were administered intraperitoneal injections of
ZG-10 and ANT (57409, Selleck, Shanghai, China) for 7 days before
high-temperature exposure. The ZG-10 dose was the same as that
used earlier, and the ANI dose was 50 mg/kg. The final dose was
administered 1 h before administering the heat challenge, and the
remaining procedures were the same protocol as those followed for
the HS group. All animal experiments were conducted in
accordance with the National Institutes of Health Guidelines on
the Use of Laboratory Animals and were approved by the Animal
Welfare Ethics Committee of Chongqing University Affiliated
Central Hospital (2411005, Chongqing, China). Maximum effort
was made to reduce the number of animals and their suffering.

Echocardiographic assessment of cardiac
function in mice

A depilatory cream was applied to the left precordial area of the
mice to remove hair, followed by anesthesia with isoflurane. A
sufficient amount of coupling agent was applied to the left
precordial region, and a linear array transducer was used to locate
the parasternal long-axis view of the left ventricle. The mouse heart
was assessed using real-time echocardiogram. M-mode
echocardiography was used to measure cardiac output (CO), left
ventricular stroke volume (SV), left ventricular posterior wall
thickness during systole (LVPWs), and left ventricular posterior
wall thickness during diastole (LVPWd). Each group included five
mice, and three consecutive cardiac cycles were measured per mouse.

Cell culture and intervention

H9C2 rat cardiomyocytes were purchased from the Chinese
Academy of Sciences Cell Bank. The cells were cultured in DMEM
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(SH30243.02, HyClone, USA) supplemented with 10% FBS
(A5256701, Gibco, USA) and 1% penicillin-streptomycin
(15140148, Thermo Scientific, USA). The H9C2 cells were
maintained under standard conditions of 37°C and 5% CO.,.
According to the experimental design, the H9C2 cells were
divided into five groups: Control, Heat Stress, Heat Stress
+DMSO, Heat Stress+ZG-10 and Heat Stress+ZG-10+ANI The
Control group cells were cultured at 37°C. The HS group cells were
exposed to high-temperature intervention at 43°C for 2 h, followed
by recovery at 37°C for 3 h (35). The HS+DMSO group received
DMSO (concentration <0.1%) prior to high-temperature
intervention. The HS+ZG-10 group was treated with ZG-10,
which was dissolved and diluted to the following concentrations:
5, 10, 20, 50, 100, and 500 uM. Then, ZG-10 was added to 96-well
plates and incubated at 37°C or 43°C for 2 h to screen for the
optimal concentration. The HS+ZG-10+ANI group was treated
with ZG-10 (20uM) and ANI (1pM) prior to high-
temperature intervention.

Cell counting Kit-8 assay

The CCK-8 assay (C0038, Beyotime, Shanghai, China) was used
to assess cardiomyocyte viability. Briefly, 5,000 cells were seeded
onto 96-well plates according to the manufacturer’s instructions.
H9C2 cells under different temperature conditions were treated
with different concentrations of ZG-10. After intervention, CCK-8
reagent (10 uL) was added to each well, and the plates were
incubated at 37°C for 2 h. Finally, the optical density (OD) at 450
nm was measured using a microplate reader.

RNA extraction and analysis

Total RNA was extracted from tissues or serum using an RNA
extraction kit (R0017S, Beyotime, Shanghai, China). Then, RNA
concentration and purity were measured using a spectrophotometer
with the A,g0/Asg0 ratio ranging from 1.8-2.0. The extracted total
RNA was reverse transcribed into ¢cDNA using a reverse
transcription kit (RR047A, TaKaRa, Osaka, Japan). Quantitative
RT-PCR was performed using the SYBR® Premix Ex TaqTM kit
(DRRO041A, TaKaRa, Osaka, Japan). B-actin was used as the internal
control for mRNA expression, and the relative gene expression
levels were calculated using the 274" method. The mRNA primer
sequences are listed in Supplementary Table 1.

TUNEL fluorescent staining

The TUNEL cell apoptosis detection kit (C1088, Beyotime,
Shanghai, China) was used according to the manufacturer’s
instructions. H9C2 cells or mouse cardiac tissue sections were
fixed with 4% paraformaldehyde, washed with PBS buffer, and
permeabilized with Triton-X-100. After washing, the samples were
equilibrated in the equilibration buffer for 10 min. Next, they were

Frontiers in Immunology

10.3389/fimmu.2025.1679750

incubated at 37°C in the TUNEL reaction mixture for 60 min,
followed by washing thrice in PBS. Finally, the samples were
mounted with anti-fluorescence quenching mounting medium,
and the results were observed and photographed under a
fluorescence microscope.

Immunofluorescence staining

Cells on coverslips or frozen heart sections were fixed with
paraformaldehyde, washed thrice with PBS buffer, permeabilized
with 0.5% Triton X-100 for 30 min, and blocked with 0.5% casein
for 1 h at room temperature. Next, the cells were incubated
overnight at 4°C with the primary antibodies against c-Jun, ¢TnT,
IL-1B, and p-p38 MAPK. The next day, the appropriate fluorescent
secondary antibodies were added and incubated at room
temperature, followed by staining with DAPI. Finally, the sections
were observed under a fluorescence microscope or
confocal microscope.

Western blotting

Total protein was extracted from the tissues or cells using RIPA
lysis buffer (PO013K, Beyotime, Shanghai, China) containing
protease inhibitors and phosphatase inhibitors (78440, Thermo
Scientific, USA). BCA was quantified by performing a BCA
protein assay (P0011, Beyotime, Shanghai, China). Identical
quantities of protein samples were electrophoresed on a 10%
SDS-PAGE gel and transferred onto PVDF membranes
(IPVH00010, Millipore, USA), which were blocked using 5% BSA
for 60 min at room temperature. Then, the blots were incubated
overnight at 4°C with primary antibodies against Cleaved Caspase-3
(9579T, Cell Signaling Technology, USA), Caspase-3 (14220T, Cell
Signaling Technology, USA), Bax (5023T, Cell Signaling
Technology, USA), Bcl-2 (3498T, Cell Signaling Technology,
USA), c-Jun (9165T, Cell Signaling Technology, USA), JNK
(4668T, Cell Signaling Technology, USA), P-JNK (4671T, Cell
Signaling Technology, USA), p38 MAPK (8690T, Cell Signaling
Technology, USA), P-p38 MAPK (92118, Cell Signaling
Technology, USA), and B-actin (4967S, Cell Signaling
Technology, USA). Next, the blots were probed with HRP-
conjugated secondary anti-rabbit antibody (31460, Thermo
Scientific, USA) or anti-mouse antibody (31430, Thermo
Scientific, USA) at room temperature for 1 h. The bands were
visualized using an enhanced chemiluminescent substrate
(PO018AM, Beyotime, Shanghai, China) detection system (Image
Lab, Bio-Rad). Quantification was performed using Image J
Software, followed by statistical analysis.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
(version 8.0) and R v4.3.2 software. First, the Shapiro-Wilk test
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and Levene’s test were performed to assess the normality and
homogeneity of variance, respectively. If the data met the criteria
for normal distribution and equal variance, two-group comparisons
were performed using a t-test, and multiple-group comparisons
were performed using ANOVA. For data that did not meet the
assumptions of normality, non-parametric tests were applied.
Spearman correlation analysis was used to assess associations
between variables. Univariate and multivariate logistic regression
analyses were performed to examine the relationships between
independent variables and outcome variable. A p-value < 0.05
was considered statistically significant.

Results

Identification of HS-related genes via
WGCNA

First, a WGCNA was performed on the public dataset
GSE64778 related to HS. In total, 22 samples were included in
this analysis (HS group, n = 16; Control group, n = 6). Hierarchical
clustering analysis of the samples showed no obvious outliers in the
clustering dendrogram (Figure 2A). Subsequently, a soft threshold

Sample dendrogram and trait heatmap

140
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of B = 12 (scale-free R = 0.85) was selected to construct the scale-
free network (Figure 2B). Based on the optimal (3 value, a gene co-
expression matrix was built, and module clustering was performed
to generate a gene clustering dendrogram (Figure 2C). The
relationship between trait data and gene modules was calculated.
As a result, 17 co-expressed modules were identified (Figure 2D).
Among these, the turquoise module (containing 2114 genes)
showed the closest correlation with HS (Figure 2E).

Identification of candidate DEGs associated
with HS-induced myocardial injury

Next, we constructed an HS mouse model and performed
transcriptome sequencing analysis on the myocardial tissues of
the HS mice. Based on the predefined thresholds, 321 DEGs were
identified in the myocardial tissues of the control and HS groups. Of
these, 20 were downregulated and 301 were upregulated genes. The
DEGs were visualized using a volcano plot (Figure 3A). The
intersection of the turquoise module genes, HS-related genes
obtained from the GeneCards database, and DEGs from HS
myocardial tissue sequencing helped identify 13 candidate DEGs
(Figure 3B). These were BAG3, DNAJB1, EDNI, EGRI, FOS,
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HSPAI1A, HSPBI, IRS2, JUN, LAG3, PTGS2, TUBB3, and C3. A
heatmap was constructed, and it illustrated the expression levels of
these candidate DEGs in the myocardial tissues from the control
and HS groups; additionally, all candidate DEGs showed high
expression in the HS myocardial tissues (Figure 3C).
Furthermore, the correlation heatmap and network diagram
showed that the expression of all candidate DEGs was positively
correlated (Figures 3D, E).

Correlation of immune infiltration with
candidate DEGs

Heat stress activates the immune system, which leads to
significant changes in the quantity and function of immune cells
to maintain homeostasis (36-38). Therefore, we evaluated the
correlation between immune cell infiltration and candidate DEGs.
We found that 12 of the 24 immune cell-types exhibited significant
differences between the control and HS groups (Figures 4A, B).
Additionally, significant correlations were observed among the 24
immune cell types (Figure 4C). Specifically, the HS group was
enriched in monocytes (fold change: 2.49), macrophages (fold
change: 1.62), and gamma delta T cells (old change: 3.27),
whereas the control group showed higher levels of CD8" T cells
(fold change: 2.28), NKT cells (fold change: 1.24), and Tr1 cells (fold
change: 4). To elucidate the relationship between the candidate
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DEGs and individual immune cells, we constructed a correlation
heatmap, which showed that that candidate DEGs positively
correlated with macrophages, NK cells, and DCs but negatively
correlated with Trl cells, CD8" T cells, exhausted T cells, and
cytotoxic T cells (Figure 4D).

Functional enrichment analysis and
identification of hub gene

We performed GO and KEGG enrichment analyses to identify
the signaling pathways and biological functions associated with the
candidate DEGs. GO enrichment analysis showed that the
biological processes were primarily enriched in response to heat
or temperature stimulus and response to abiotic stimulus. The
analysis of cellular components showed a significant focus on
transcription factor AP-1 complex. Additionally, terms such as
protein folding chaperone, unfolded protein binding, and
transcription regulator inhibitor activity were significantly
enriched in the functional analysis (Figure 5A). KEGG analysis
indicated that the candidate DEGs were predominantly enriched in
pathways such as Leishmaniasis, TNF signaling pathway, Kaposi
sarcoma-associated herpesvirus infection, and MAPK signaling
pathway (Figure 5B). We identified the hub gene associated with
HS-induced myocardial injury by importing the candidate DEGs
into the STRING database and performing PPI analysis to obtain
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FIGURE 4

Immune infiltration analysis of candidate DEGs. (A) The box plot illustrates the levels of immune cell infiltration and their differential patterns
between HS and normal samples. (B) Cluster heatmap of 24 immune cell proportions in GSE64778 dataset. (C) Matrix diagram of 24 immune cell
correlations. green denote positive associations, red indicate inverse relationships, and chromatic intensity scales with correlation magnitude.

(D) Heatmap of the correlation between candidate DEGs and immune cells, asterisk indicating the significance of the correlation.

the protein interaction network information (Figure 5C). Next, the
protein interaction data were imported into Cytoscape software,
and the top 10 genes were identified using the MCC algorithm to
construct the PPI network (Figure 5D). Based on the degree values,
the candidate DEGs were ranked as follows: JUN, HSPA1A, FOS,
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DNAJBI, EGRI1, HSPB1, PTGS2, EDN1, BAG3, and IRS2. Among
these, JUN exhibited the highest degree value and was identified as
the hub gene. Furthermore, JUN exhibited an AUC of 1 in the ROC
curve for diagnosing HS, which indicates its exceptional accuracy in
predicting HS occurrence (Figures 5E, F).
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Expression of hub gene and construction
of prognostic models

In total, 80 patients with HS were enrolled in this study, including
41 patients with myocardial injury and 39 patients without
myocardial injury. Initially, we compared the baseline
characteristics of the patients with HS between those with and
without myocardial injury (Table 1). The results showed that the
patients with myocardial injury exhibited significantly higher levels of
¢-Jun and cardiac troponin I (cTnl) compared with those without
myocardial injury (p < 0.001). Additionally, the Sequential Organ
Failure Assessment (SOFA) score, which is used to evaluate the
severity of multiple organ dysfunction syndrome (MODS) in
critically ill patients, was significantly high in the myocardial injury
group (p = 0.001). Notably, the 28-day mortality rate reached 78% in
the myocardial injury group, whereas it was 20.5% in the non-
myocardial injury group (p < 0.001). Box plots showed that c-Jun
levels were significantly elevated in patients with HS presenting
myocardial injury compared with that of those without (p < 0.001);
furthermore, a positive correlation was observed between c-Jun and
0.5058, p < 0.001), which indicates a strong
association between c-Jun and severity of myocardial injury

cTnl levels (r =

(Figures 6A-B). To validate the diagnostic potential of c-Jun in
distinguishing HS-related myocardial injury, the AUC of the ROC
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curve was calculated and found to be 0.781, which suggests that c-Jun
is a promising biomarker for myocardial injury in HS (Figure 6C).
Furthermore, serum c-Jun levels were significantly higher in patients
who died within 28 days compared with that of the survivors (p <
0.001) (Figure 6D). Next, we identified the prognostic factors for 28-
day mortality in patients with HS by performing univariate logistic
regression analysis by integrating clinical data, laboratory findings,
and SOFA scores. The results indicated that the presence of
myocardial injury, c-Jun levels, and SOFA scores were statistically
significant predictors (Supplementary Table 2). Furthermore, we
evaluated the predictive performance of these factors using ROC
analysis. The AUC values for myocardial injury status, c-Jun levels,
and SOFA scores were 0.787, 0.756, and 0.796, respectively, which
indicates their robust predictive capabilities (Figure 6E). Additionally,
a multivariate logistic regression analysis was performed to account
for confounding variables. Forest plots confirmed that the presence of
myocardial injury (p = 0.020), c-Jun levels (p = 0.008), and SOFA
scores (p = 0.002) remained independent prognostic factors
(Figure 6F). Based on the multivariate logistic regression results, we
developed a nomogram to predict 28-day mortality in patients with
HS. As indicated by the red markers in the nomogram, a patient with
HS who has myocardial injury, a serum c-Jun level of 16.9 ng/ml, and
a SOFA score of 10 would achieve a total score of 131, which
corresponds to an 80% 28-day mortality risk (Figure 6G).
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TABLE 1 Baseline characteristics of heat stroke patients.

HS without
myocardial
injury (N=39 )

HS induced
myocardial
injury (N=41)

Characteristic

C-Jun (ng/ml),

9.06 [6.70-11.5 16.5 [10.6-19.6 <0.001
Median (Q1, Q3) [ 1 ( ]
cTnl (ng/ml),
0.02 [0.01-0.02 0.26 [0.09-1.20 <0.001
Median (Q1, Q3) [ 1 ( ]
Sex, n (%) 0.273
Male 20 (51.3%) 27 (65.9%)
Female 19 (48.7%) 14 (34.1%)
Age, Median (Q1,
Qi: edian (Q 70.0 [58.5-79.0] 66.0 [52.0-78.0] 0.419
WBC (K/uL), Mean
15.3 (+6.01) 16.7 (+7.29) 0.343
+SD
PLT (K/u), 115 [58.5-156] 95.0 [59.0-130] 0.381
Median (Q1, Q3) " s ’
MONO (K/uL),
0.92 [0.33-1.56 0.92 [0.48-1.65 0.59
Median (Q1, Q3) ! ! ( ]
NEUT (K/uL),
(K/uL) 13.4 (£5.51) 14.0 (+6.80) 0.656
Mean + SD
Sofa, Mean + SD 9.00 [7.00-11.0] 11.0 [9.00-13.0] 0.001
28-d tality,
ay mortaity, n 8 (20.5%) 32 (78.0%) <0.001

(%)

WBC, white blood cell; PLT, platelet; MONO, monocyte; NEUT, Neutrophils.

The nomogram demonstrated excellent predictive accuracy with an
AUC 0f 0.906 (95% CI: 0.84-0.97) (Figure 6H). To assess the clinical
utility of the model, we generated decision curve analysis (DCA) and
calibration curves. DCA results showed that the net benefit of the
model consistently exceeded that of treating all patients (“All”) or
none (“None”), which highlights its strong clinical applicability
(Figure 6I). Calibration curves further confirmed the reliability of
the model, as evidenced by the close alignment of the predicted
probabilities with the observed outcomes along the 45° diagonal
line (Figure 6]).

HS activates c-Jun-mediated inflammatory
environment and apoptosis in myocardial
tissue

The JUN gene encodes the c-Jun transcription factor. Upon
activation, the transcription factor induces the expression of pro-
inflammatory ligands such as FasL and TNF. This triggers the
activation of caspase-3 and initiates apoptosis via the death receptor
pathway. Additionally, c-Jun upregulates BH3-only proteins, activates
pro-apoptotic proteins like Bax, and mediates mitochondrial pathway
apoptosis. To investigate the changes in JUN expression and its role in
HS-induced myocardial injury, we assessed relevant markers using
qRT-PCR, western blotting, and immunofluorescence. The results
showed that the mRNA levels of JUN, TNF-q, IL-6, and IL-1J were
significantly elevated in the HS group compared with those in the Sham
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group (p < 0.01) (Figures 7A-D). Immunofluorescence analysis showed
a pronounced increase in c-Jun fluorescence intensity in myocardial
tissue (p < 0.01) (Figures 7E, F). Western blotting analysis confirmed
the upregulation of c-Jun expression in HS-induced myocardial injury
accompanied by significant increase in the expression of pro-apoptotic
markers such as cleaved caspase-3 and Bax, whereas the expression of
the anti-apoptotic protein BCL2 was downregulated (p < 0.01)
(Figures 7G-L). TUNEL staining further validated the occurrence of
apoptosis in HS-induced myocardial injury (p < 0.0001) (Figures 7M-
N). These findings suggest that c-Jun is activated in HS-induced
myocardial injury and mediates both inflammatory responses and
apoptosis. To further validate this hypothesis, we subjected H9C2
cardiomyocytes to heat stress at 43°C, followed by recovery at 37°C
for 3 h. Similar to that observed in the myocardial tissue, TUNEL
staining confirmed that heat stress induced apoptosis in HOC2 cells
(p < 0.0001) (Figures 70-P). Moreover, heat-stressed HIC2 cells
exhibited increased c-Jun expression compared with that in the
control group accompanied by elevated levels of the pro-apoptotic
markers cleaved-caspase 3 and Bax; additionally, the anti-apoptotic
protein BCL2 was downregulated (p < 0.01), whereas inflammatory
markers such as IL-1f were upregulated (p < 0.01) (Figures 7Q-Z). In
summary, c-Jun is significantly upregulated in HS-induced myocardial
injury along with the activation of apoptotic signaling pathways and
presence of an inflammatory microenvironment.

L1000 FWD screening for small-molecule
drug

We used the L1000 FWD online platform to screen for drug
candidates to target the DEGs associated with HS-induced myocardial
injury. As all candidate DEGs were upregulated in HS-induced
myocardial injury, we identified small molecules with opposite
correlation profiles. The top 10 candidate drug are listed in Table 2.
Wortmannin is a steroid metabolite derived from Penicillium
funiculosum. It influences cell cycle progression and apoptosis by
inhibiting the PI3K-AKT signaling pathway (39). Mitoxantrone, an
anthracycline-like drug, is widely used in the treatment of various
cancers. It functions by inhibiting DNA topoisomerase II (40).
Tosedostat is an oral aminopeptidase inhibitor. It is primarily used
in the treatment of acute myeloid leukemia (41). ZG-10 is a covalent
inhibitor of c-Jun N-terminal kinase (JNK). ZG-10 irreversibly binds to
its target protein via covalent bonding and induces conformational
changes, which inhibit JNK activity (42, 43). After integrating drug
ranking, potential mechanism of action and accessibility, ZG-10 was
selected as the potential therapeutic drug for heat stroke-induced
myocardial injury.

ZG-10 ameliorates HS-induced myocardial
injury
JNK is a key regulator of apoptosis. Upon activation, JNK

translocates from the cytoplasm to the nucleus and phosphorylates
and activates the transcription factors such as c-Jun, c-Fos, and EIk-1,
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HS triggers c-Jun-mediated myocardial inflammation & apoptosis. (A—D) The mRNA levels of JUN, TNF-a, IL-6and IL-1f in myocardial tissue were
determined using qRT-PCR, n = 5. (E, F) The fluorescence images and relative fluorescence intensity of c-Jun in myocardial tissue, scale bar = 100
um, n = 5. (G-L) Representative western blot bands of c-Jun, cleaved-caspase 3, caspase 3, Bax and Bcl2 in myocardial tissue. Quantitative analysis
of protein expression levels (normalized to B-actin), n = 5. (M, N) TUNEL staining of cardiomyocyte apoptosis in mice myocardial tissues across each
groups. Quantitative analysis of apoptotic cells, scale bar = 100 um, n = 8. (O, P) TUNEL staining of apoptosis in HOC2 cardiomyocytes across each
groups. Quantitative analysis of apoptotic cells, scale bar = 100 um, n = 8. (Q-V) Representative western blot bands of c-Jun, cleaved-caspase 3,
caspase 3, Bax and Bcl2 in H9C2 cardiomyocytes. Quantitative analysis of protein expression levels (normalized to B-actin), n = 5. (W-2) The
fluorescence images and relative fluorescence intensity of IL-1p and c-Jun in H9C2 cardiomyocytes, scale bar = 25 um/100 pm, n = 5.
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TABLE 2 The top ten candidate drugs of opposite relevance in the LLOOOFWD.

Drug Similarity score p-value q-value Z-score Combined score
wortmannin -0.7000 6.91e-11 2.14e-08 1.82 -18.53
SB-218078 -0.7000 8.78e-11 2.42e-08 1.81 -18.17
tyrphostin-AG-1478 -0.6000 5.55e-09 5.62e-07 1.81 -14.98
ZG-10 -0.6000 6.09e-09 5.63e-07 1.73 -14.21
GSK-1070916 -0.6000 6.26e-09 5.63e-07 1.73 -14.20
PP-110 -0.6000 4.78e-09 5.62e-07 1.84 -15.33
mitoxantrone -0.6000 3.26e-09 5.62e-07 1.87 -15.90
staurosporine -0.6000 7.59e-09 6.10e-07 1.66 -13.48
BRD-K05649647 -0.6000 4.53e-09 5.62e-07 1.82 -15.16
tosedostat -0.6000 5.86e-09 5.62e-07 1.81 -14.92

which results in the modulation of the expression of downstream
apoptotic genes (44-46). Based on these mechanisms, we hypothesize
that ZG-10 alleviates HS-induced myocardial injury by suppressing c-
Jun expression. To validate this hypothesis, we administered ZG-10 (10
mg/kg) via intraperitoneal injection to mice 7 days before exposure to
heat stress. First, we performed echocardiographic analysis. The results
showed that the HS+DMSO group mice exhibited significant decrease
in SV and CO (p < 0.05) compared with those of the Sham group mice
along with substantial increase in LVPWd and LVPWs (p < 0.05). ZG-
10 significantly improved cardiac function under heat stress, as
evidenced by the significant increase in SV and CO (p < 0.05),
substantial decrease in LVPWs (p < 0.05), and decreasing trend for
LVPW(d, although the difference was not statistically significant (p =
0.3303) (Figures 8A-E). qRT-PCR results showed that ZG-10
significantly downregulated JUN mRNA expression and suppressed
the levels of the pro-inflammatory cytokines TNFq, IL-6, and IL-1f
(Figures 8F-I). Furthermore, TUNEL staining confirmed that ZG-10
alleviated HS-induced myocardial apoptosis (Figures 8]-K). As c-Jun
expression is significant in HS-induced myocardial injury and a
potential predictive biomarker for myocardial damage severity
and 28-day mortality in patients with HS, we performed
immunofluorescence and western blotting analyses to assess c-Jun
expression. We found that ZG-10 significantly inhibited c-Jun
expression in HS-induced myocardial tissue (p < 0.05) (Figures 8L-
0O). Western blotting results confirmed that ZG-10 reduced the
expression of pro-apoptosis proteins such as cleaved-caspase 3 and
Bax, whereas it upregulated the anti-apoptotic protein BCL2 compared
with that in the DMSO control group (p < 0.05) (Figures 8P-S).
Collectively, these findings provide clear evidence that ZG-10 mitigates
HS-induced myocardial injury by suppressing c-Jun-mediated
apoptosis and inflammatory responses.

ZG-10 ameliorates heat stress-induced
cardiomyocyte injury

Furthermore, we validated the protective effects of ZG-10 on
HS-induced myocardial injury. Initially, we pre-treated normal
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HIC2 cells with ZG-10 at different concentrations to establish its
cytotoxicity. No effect was observed on cell viability at low ZG-10
concentrations (5, 10, and 20 uM), whereas cell viability decreased
significantly in a dose-dependent manner at high ZG-10
concentrations (50 and 100 uM) (p < 0.001) (Figure 9A).
Therefore, we selected the low ZG-10 concentrations (5, 10, and
20 uM) for the pre-treatment of H9C2 cells, followed by heat stress
for 2 h and recovery at 37°C for 3 h. The results showed that
pretreatment with 20 pM ZG-10 significantly improved cell
viability (p < 0.05) and ameliorated heat stress-induced
morphological changes in H9C2 cells (Figures 9B-C).
Furthermore, TUNEL staining confirmed that ZG-10 significantly
alleviated heat stress-induced cardiomyocyte apoptosis
(Figures 9D-E). Immunofluorescence analysis showed that ZG-10
produced a pronounced reduction in the expression of c-Jun and
IL-1fB in heat stress-induced cardiomyocytes (Figures 9F-I).
Western blotting results corroborated these findings and showed
that ZG-10 inhibited c-Jun expression and significantly attenuated
the expression of pro-apoptosis proteins such as cleaved-caspase 3
and Bax in HS-induced cardiomyocytes, whereas it upregulated the
anti-apoptotic protein BCL2 (p < 0.05) (Figures 9J-O). These
results confirmed that ZG-10 mitigates heat stress-induced
cardiomyocyte injury by suppressing c-Jun-mediated apoptosis
and inflammatory responses.

ZG-10 ameliorates HS-induced myocardial
injury by modulating JNK/p38 MAPK
pathway

KEGG enrichment analysis showed significant enrichment of
the DEGs associated with HS-induced myocardial injury in
inflammatory, TNF, and MAPK signaling pathways. GSEA
showed substantial upregulation of the MAPK signaling pathway
in HS-induced myocardial tissues (Figure 10A). In mammals, the
MAPK family can be divided into three main subfamilies:
extracellular signal-regulated kinases (ERK), c-Jun N-terminal
kinases (JNK), and p38/stress-activated protein kinases (p38/
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SAPKSs) (47). Different MAPK subfamilies are involved in distinct
signaling pathways with specific functions. For instance, the ERK
pathway primarily regulates cell growth and differentiation (48). In
contrast, both the JNK and p38 MAPK pathways play crucial roles
in stress responses, such as inflammation and apoptosis (49, 50).
Therefore, we hypothesize that ZG-10 alleviates HS-induced
myocardial injury by suppressing apoptosis and inflammation
through the inhibition of the JNK/p38 MAPK signaling pathway.
Western blotting and immunofluorescence analyses confirmed JNK
and p38 activation in heat stress-induced cardiomyocytes, whereas
ZG-10 significantly reduced their phosphorylation (p < 0.001)
(Figures 10B-F). Next, we validated the indispensable role of the
JNK/p38 MAPK pathway in mediating the therapeutic effects of
ZG-10 on HS-induced myocardial injury using the pharmacological
JNK and p38 MAPK pathway activator Anisomycin (ANI) (51-53).
TUNEL staining results showed that ANT partially abolished the
therapeutic effects of ZG-10 against heat stress-induced
cardiomyocyte injury (Figures 10G-H). We further introduced
ANI into the heat stroke mouse model treated with ZG-10.
Western blotting analysis confirmed that ANI counteracted ZG-
10-mediated inhibition of c-Jun expression by reactivating JNK and
p38 MAPK signaling (p < 0.001) (Figures 10I-L). Collectively, these
findings confirmed that ZG-10 alleviates HS-induced myocardial
injury through the suppression of the JNK/p38 MAPK
signaling pathway.

Discussion

Myocardial injury occurs as early as day 1 of HS with significant
increase in serum cTnl levels (54). Heat injury leads to myocardial
cell degeneration and necrosis, myocardial structure alteration, and
cardiac conduction system and circulatory function damage (55).
Most patients with HS initially exhibit a typical hyperdynamic
hemodynamic state; however, as the disease progresses, stroke
volume and maximal oxygen uptake gradually decrease (56).
Moreover, HS-induced myocardial damage is not limited to acute
phases, and patients exhibit signs of myocardial edema and fibrosis
on cardiac magnetic resonance imaging (57). Furthermore, patients
with HS complicated by myocardial injury often show poor
prognosis and face higher treatment costs (58). Therefore, timely
identification and intervention for management of myocardial
injury in HS are critical.

In this study, WGCNA and transcriptome sequencing of HS-
induced myocardial tissue helped identify 13 candidate DEGs. Liu
et al. (59) characterized inflammation- and oxidative stress-related
genes in a HS model and proposed that immune cells such as
macrophages are critical determinants of HS prognosis. Therefore,
we performed immune infiltration analysis on the candidate DEGs
and found that the HS group was enriched in monocytes,
macrophages, and other immune cells. HS is frequently
accompanied by a massive release of inflammatory factors (60).
Activated monocytes and macrophages are the central drivers of the
cytokine storm and produce large quantities of pro-inflammatory
cytokines including TNF-ca, IL-1B, and IL-6. Furthermore, these
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cytokines propagate the inflammatory response, which ultimately
leads to systemic inflammatory response syndrome (SIRS) (36, 61).
The candidate DEGs exhibited negative correlation with Trl cells,
CD8" T cells, exhausted T cells, and cytotoxic T cells. T cells exert a
suppressive effect on inflammatory cytokine production from
innate immune cells during HS. The T-cell depletion observed in
the HS mouse models indicate higher mortality and exacerbated
inflammation, which could be rescued by T-cell transfer for
mitigating disease severity (37). This is similar to the role of T
cells in endotoxemia and sepsis (62, 63). These findings suggest that
the candidate DEGs are key regulatory genes involved in the
inflammatory response during HS. To identify the hub genes
associated with HS-induced myocardial injury, we performed PPI
analysis on the candidate DEGs. The results showed that JUN
occupied a central position in the PPI network (with the highest
degree value), which indicates its potential pivotal role in the
pathogenesis and progression of HS-induced myocardial injury.

JUN encodes the c-Jun transcription factor, which primarily
functions by forming homodimers or heterodimers with other
transcription factors to bind to DNA and regulate gene
expression. It plays an indispensable role in cellular processes
such as proliferation, apoptosis, survival, and tissue
morphogenesis (19, 43, 64). JNK-mediated phosphorylation of c-
Jun activates downstream signaling pathways, and inhibition of the
JNK/c-Jun axis alleviates myocardial injury induced by ischemia-
reperfusion, doxorubicin, and sepsis (28, 29, 65). In this study, we
collected blood samples from 80 patients with HS and found that
the serum c-Jun levels were significantly higher in patients with HS-
induced myocardial injury compared with the levels in those
without. Furthermore, c-Jun levels positively correlated with ¢Tnl
levels with an AUC of 0.781 for diagnosing HS-induced myocardial
injury. This indicates a strong association between c-Jun and
severity of myocardial damage. Currently, few studies have
explored diagnostic biomarkers for heat stroke-induced
myocardial injury. Animal studies have identified a positive
correlation between Hsp-72 levels and extent of myocardial
damage, although this finding is yet to be validated in human
samples (66). A retrospective clinical study has shown a U-shaped
relationship between the triglyceride-glucose (TyG) index and
myocardial injury in patients with HS with a decreasing trend in
risk observed at TyG values < 8.897 and pronounced increase in risk
at values > 8.966 (67). We emphasize that c-Jun activation, as an
upstream signaling event, may confer an early diagnostic window
prior to substantial cell death, potentially enabling earlier
intervention. Notably, serum c-Jun levels were significantly high
in patients who died within 28 days compared with that of the
survivors. Based on these findings, we have developed a prognostic
nomogram by integrating c-Jun levels, myocardial injury status, and
SOFA scores. The model demonstrated excellent predictive
accuracy with an AUC of 0.906, which highlights its clinical
utility in forecasting HS outcomes.

Currently, prognostic biomarkers for patients with HS
predominantly focus on hematological, biochemical, and clinical
parameters such as WBC count, PLT count, comorbidities, body
temperature, heart rate, and GCS score (68-71). To our knowledge,
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this study is the first to identify c-Jun as both a diagnostic and
prognostic biomarker for HS-induced myocardial injury. Although
we evaluated the performance of the model using DCA and
calibration curves, which confirmed its clinical applicability and
accuracy, several limitations remain. First, the clinical samples were
sourced from a single center; therefore, they lacked external
validation. Second, the sample size was limited. Nevertheless, the
use of c-Jun as a biomarker via blood-based ELISA, which is a
readily accessible method, warrants further investigation and
broader application.

Direct thermal injury and secondary septic reactions occur in HS,
owing to which patients with HS often develop severe systemic
inflammatory responses that are characterized by excessive release
of pro-inflammatory cytokines, activation of immune system, and
subsequent infiltration of inflammatory cells, which lead to multi-
organ damage (60, 72, 73). Hence, suppressing inflammatory
responses is a critical strategy for treating HS-induced myocardial
injury. Lin et al. (74) demonstrated have shown that myricetin may
prevent HS-induced myocardial injury by alleviating oxidative stress
and inflammation. Chen et al. (35) that inhibiting TLR4 could reduce
inflammation and ferroptosis, thereby mitigating HS-induced
myocardial injury. Furthermore, the JNK/c-Jun signaling pathway
is closely associated with inflammatory responses and apoptosis
revealed (75-77). Additionally, the current study has shown that
heat stress significantly upregulates c-Jun expression in myocardial
tissues and cells, accompanied by the activation of c-Jun-mediated
inflammatory factors and apoptosis. Based on these findings, we
screened potential therapeutic small molecules using the L1000 FWD
database and identified ZG-10 as a potential therapeutic drug.
Further in vivo and in vitro experiments showed that ZG-10
inhibited c-Jun-mediated inflammatory factors and apoptosis,
which ameliorated HS-induced myocardial cell injury and cardiac
dysfunction. Currently, no therapeutic agents have been explicitly
recommended for myocardial injury-induced HS in clinical practice.
However, similar to that observed during sepsis, heat stroke is often
accompanied by a systemic inflammatory storm. This implies that
corticosteroids may inhibit the release of pro-inflammatory factors
(such as TNF-a and IL-6) and upregulate the expression of the anti-
inflammatory factor IL-10, which would balance the excessive
immune activation in the early stage of septic myocardial injury
(78). Additionally, treatment with corticosteroids would regulate
mitochondrial function in cardiomyocytes, reduce oxidative stress
damage, and improve myocardial contractility (79). Nevertheless,
high doses of corticosteroids may increase the risk of infection (80).
Ulinastatin is a broad-spectrum anti-inflammatory agent that
mitigates myocardial inflammation and microvascular endothelial
injury (81), as evidenced by the reduction in the extent of myocardial
damage in patients with myocardial injury after treatment with
ulinastatin (82). However, caution is warranted because of its
potential side effect of severe leukopenia (83). In contrast, JNK
inhibitors are well tolerated by patients even after long-term use
(24 weeks) with the most common adverse effects being diarrhea,
nausea, and vomiting (84).

ZG-10 is a covalent JNK inhibitor that simultaneously targets
JNK1, JNK2, and JNK3 with IC50 values of 809, 1140, and 709 nM,
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respectively (42, 43). In this study, KEGG enrichment and GSEA
analyses showed significant enrichment of the MAPK signaling
pathway. The JNK signaling pathway is a member of the MAPK
family and is activated through a MAPK cascade, which leads to the
translocation of JNK from the cytoplasm to the nucleus. This process
results in the phosphorylation of the serine residues (Ser63 and
Ser73) in the amino-terminal transactivation domain of c-Jun (85).
Activated c-Jun binds to DNA and initiates the transcription of
apoptosis-related genes by modulating the promoter activity of these
genes and ultimately triggering cell apoptosis (47). p38 is one of the
three major subunits of the MAPK family. p38 participates in a wide
range of complex biological processes including cell proliferation,
apoptosis, and differentiation (86, 87). The JNK and p38 signaling
pathways jointly regulate the mitochondrial apoptotic pathway by
altering the expression of specific pro-apoptotic and anti-apoptotic
targets. Thus, they contribute to apoptotic response (88-90).
Inhibiting the JNK/p38 MAPK signaling pathways may alleviate
apoptosis in myocardial injury caused by ischemia-reperfusion (91,
92). These findings concur with our inference that ZG-10
significantly suppressed JNK and p38 MAPK phosphorylation in
both in vivo and in vitro experiments under HS conditions.
Collectively, our results show that ZG-10 ameliorates HS-induced
myocardial inflammation and apoptosis by inhibiting JNK/p38
MAPK pathway activity and downregulating c-Jun expression.
Thus, this study has systematically elucidated the central
regulatory role of c-Jun in HS-induced myocardial injury through
integrated bioinformatics analysis, clinical sample validation, and in
vivolin vitro experiments. Finally, we constructed a prognostic
model based on c-Jun and identified ZG-10 as a potential
therapeutic agent for HS-induced myocardial injury. Nevertheless,
this approach has certain limitations. First, the predictive model was
developed using a limited clinical sample-size of single-center
origin, which necessitates validating using a large sample-size of
multicenter origin. Second, although ZG-10 improved myocardial
injury in HS mice, its long-term effects on cardiovascular sequelae
in human HS survivors remain unclear. Third, although ZG-10
inhibited the JNK/p38 MAPK pathway and downregulated c-Jun
expression, the specific molecular targets (e.g., JNK isoform
selectivity) and downstream effector molecules remain unclear.
Future studies are warranted for identifying these components.
Finally, the use of a mice model, which may exhibit species-specific
differences in heat-stress responses compared with those of
humans, necessitates validation using non-human primate models.

Conclusion

In this study, we have systematically elucidated the central role of c-
Jun in HS-induced myocardial injury. Consequently, we have
developed a prognostic model based on ¢-Jun and identified ZG-10
as a potential therapeutic agent for HS-induced myocardial injury. ZG-
10 exerts protective effects by inhibiting the JNK/p38 MAPK pathway,
downregulating c-Jun expression, and effectively alleviating myocardial
inflammation and apoptosis while improving cardiac function. These
findings not only provide novel biomarkers for the early diagnosis and
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prognosis of HS-induced myocardial injury but also lay a theoretical
foundation for the development of targeted therapeutic drugs. Future
studies should focus on advancing clinical translation to improve
survival and long-term outcomes in patients with HS.
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