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Background: The four dengue virus serotypes (DENV1-4), Zika virus (ZIKV) and
chikungunya virus (CHIKV) have similar epidemiology and transmission cycles and
are the most prevalent arthropod-borne viruses in humans, with half the world's
population at risk of infection. Although these infections share overlapping clinical
presentations, the immune mechanisms that distinguish these infections, particularly
in children, remain poorly defined. We aimed to characterize the immune responses
to DENV, ZIKV, and CHIKV in a pediatric population and to define the specific
immune signatures associated with each virus.

Methods: We characterized the immune responses to DENV, ZIKV and CHIKV by
measuring cytokine/chemokine/growth-factor profiles in plasma/serum samples,
and immune-cell profiles in peripheral blood mononuclear cells, collected from
children during acute (~1-3 and ~4-6 days) primary infection with DENV1/DENV3
(n=32), ZIKV (n=50) or CHIKV (n=45), and during infection recovery (~14-25 days).
Results: The innate immune responses to CHIKV and DENV were similar in terms
of acute cytokine concentrations and monocyte frequencies. The innate
immune response to ZIKV was mild, and the adaptive response was delayed,
showing much lower concentrations of inflammatory cytokines and delayed T
cell/B cell activation. Overall, the immune response to CHIKV and DENV were
most similar than DENV and ZIKV, despite DENV and ZIKV belonging to the same
flavivirus genus. The immune response to ZIKV was the most distinct, showing
rapid B cell expansion but attenuated/delayed B cell activation.

Conclusion: These findings reveal that early immune responses to arboviruses
are defined more by infection-specific dynamics than by viral taxonomy,
underscoring distinct immunological signatures for each virus.
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Highlights

* Our findings highlight the distinct and nuanced immune
responses elicited by CHIKV, DENV, and ZIKV infections
in pediatric population.

e CHIKV infection triggers a strong innate and adaptive
immune response with significant monocyte and NK cell
involvement, transitioning to a robust humoral response
during recovery from infection.

* DENV infection prompts a prominent T cell-mediated
response with sustained activation.

* ZIKV elicits a more subdued innate response but shows a
unique adaptive profile with rapid expansion of the B-cell
compartment but delayed B cell activation.

Introduction

The four dengue virus serotypes (DENV1-4), Zika virus (ZIKV),
and chikungunya virus (CHIKV) are widely distributed arthropod-
borne viruses (arboviruses). CHIKV and DENV are endemic in tropical
and subtropical regions and pose an ongoing threat to public health and
socioeconomic development in these areas (1, 2). ZIKV was a major
public health concern in 2016, with 89 countries reporting
autochthonous mosquito-borne transmission of ZIKV, including
those in the Pacific Islands, Central and South America, and the
Caribbean, and has recently shown some resurgence in India, with
sporadic cases reported in Latin America (3, 4). More recently, all three
viruses have shown concurrent circulation in Gabon (2021), Thailand
(2018-2020), and Colombia (2019-2020) (5-7). The massive global
burden of these viruses necessitates the development of effective vaccines
and anti-viral treatments; however, despite extensive research, there are
only two licensed DENV vaccines (with one discontinued), one for
chikungunya, and no vaccines available for ZIKV. Additionally, another
dengue vaccine completed phase-3 clinical trials and is awaiting
regulatory decision. Although these viruses are all transmitted by
Aedes mosquitos, CHIKV is an alphavirus (Togaviridae family), whilst
DENV and ZIKV are flaviviruses (Flaviviridae family) (8). Developing
safe vaccines for DENV and ZIKYV is particularly challenging because of
immunological cross-reactivity between these related viruses. Cross-
reactivity among DENV serotypes (DENV1-4) also cause complications
for vaccine development and disease severity. For example, secondary
DENYV infection with a distinct serotype from the primary infection is a
known risk factor for more severe disease, attributable in part to
antibody-dependent enhancement (9-14). This potential for infection
history to influence the severity of subsequent disease has also been seen
for Dengvaxia®, where vaccine recipients with no prior DENV exposure
had a higher risk of hospitalization during a subsequent DENV
infection (15-17). Further, prior ZIKV infection has been shown to
enhance subsequent dengue severity (18-20). This complex relationship
between infection history and disease severity necessitates a deeper
understanding of the immune responses to CHIKV, DENV and ZIKV.

All three viruses broadly share commonly observed clinical
manifestations, including fever, headache, joint pain (arthralgia),
and muscle pain (myalgia); however, they also exhibit distinct
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clinical profiles, particularly in terms of severe and chronic signs
and symptoms (21). The role of T cells in CHIKV, DENV, and
ZIKV infections was reviewed recently (22), where it was noted that
despite many studies on the role of T cells in CHIKV infection,
‘elucidation of the exact function of T cells is hampered by absence
of comprehensive human studies’. In contrast, the role of T cells in
DENV infection has been studied in more detail but is still on-
going. ZIKV stands out with most patients being asymptomatic, but
with potential to cause serious complications in pregnant women,
including fetal demise and congenital abnormalities (23). Studies
examining the role of T cells in ZIKV infection are also limited.

Here we present a comprehensive, multi-omic study comparing
human immunological and inflammatory responses during
infection with CHIKV, DENV, or ZIKV, providing greater insight
into immune mechanisms underlying the clinical profiles of each
virus, with a focus on T-cell, B-cell and NK-cell subpopulations.
The patient samples in this study were analyzed as part of the
Dengue Human Immunology Project Consortium (DHIPC), which
established a program to study DENV using well-characterized
samples from children in ongoing clinical studies in Managua,
Nicaragua. However, during the study period, major epidemics of
chikungunya (2014-2015) and Zika (2016) occurred; thus, samples
from children infected with these viruses were also analyzed. These
data therefore presented a unique opportunity to compare the
immune responses to these three viruses.

We performed immune cell profiling in each patient using mass-
cytometry (CyTOF) to characterize and quantify the immune-cell
profiles of each patient, both during acute infection and recovery
phase. Additionally, we used multiplexed bead-based assays to
measure the concentrations of circulating cytokines, chemokines
and other inflammatory signaling molecules. This provided a
unique opportunity to examine and compare the immune response
at the cellular and cytokine/chemokine/growth-factor level, as well as
apply the multi-omic analysis technique DIABLO (‘Data Integration
Analysis for Biomarker Discovery using Latent cOmponents’) to
unravel the complex interplay between these two systems (24). To
our knowledge, this is the first time that these three viruses have been
analyzed using a similar patient population and the same
experimental protocols and compared within the same study. Thus,
this study provides a unique global view of the cellular and soluble
immune mediators of three major arboviral infections in children.
Characterizing the immune response to these three viruses provides a
deeper understanding of the complex relationship between infection
mechanism, inflammation, immune response, and symptoms and
generates hypotheses that inspire future research studies.

Results

Study design and characteristics of
participants

This study involved 127 pediatric participants of the Pediatric

Dengue Cohort Study (PDCS) or the Pediatric Dengue Hospital-
based Study (PDHS) in Managua, Nicaragua (14, 25-27). Samples
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from a total of 45 CHIKV-, 32 DENV- and 50 ZIKV-infected
children were included in this study; the dengue and chikungunya
cases were from the PDHS and the Zika cases derived from the
PDCS. The 32 dengue cases consisted of 13 children with primary
DENV1 infection and 19 participants with primary DENV3
infection. The ZIKV and CHIKV sample sets have been described
and analyzed previously (28, 29). Participants included in this study
had no history of prior DENV infection. The mean age of the
chikungunya cases was 9.0 (Standard Deviation [SD] 4.5) years) and
that of the Zika cases was 9.0 (SD 3.1) years, with the DENV
patients being somewhat younger (6.6 [3.18] years) (Table 1). The
Zika cases were 48% male, dengue cases were 50% male, and
chikungunya cases had a higher proportion, with 71% male. The
imbalance of age and gender between the three viruses was
accounted for when fitting statistical models (see Methods).
Samples were collected at two time-points: acute (days 1-3 or 4-6
post-symptom onset [p.s.o]), and recovery (days 14-25 p.s.0)
(Table 1). Due to logistical constraints during the ZIKV epidemic,
PBMCs from Zika cases (PDCS) could only be collected and
processed at days 4-6 p.s.o.; thus, CyTOF data from ZIKV
patients are from later days p.s.o. than CHIKV and DENV.
Plasma (DENV, CHIKV) or serum (ZIKV) samples and
peripheral blood mononuclear cells (PBMCs) were collected for
Luminex and CyTOF, respectively, for both time-points. PBMCs
were isolated from whole blood as described previously (28, 30).
Sampling times closely adhered to the targeted acute (standard
deviation [SD] = 1 days) and recovery (SD = 1.7 days) timepoints,
however, the timing of the recovery DENV samples was slightly
more varied (SD = 2.5). Symptom data are summarized in Table 2.
Overall, and as expected, ZIKV patients exhibited the fewest
symptoms, with symptoms such as fever, arthralgia, and
hemorrhagic manifestations all being less common in ZIKV
patients relative to CHIKV and DENV. Retro-orbital pain was
more prevalent in DENV patients (44%), whereas arthralgia was
most common in CHIKV patients (88%).

Infection with CHIKV, ZIKV and DENV leads
to diverse changes in major immune-cell
compartments

We examined and compared the relative frequency of four
broad immune-cell compartments (dendritic cells [DC],

TABLE 1 Characteristics of study population.

10.3389/fimmu.2025.1679566

monocytes, B cells, and T cells) during acute infection and
recovery from each virus (Figure 1). During acute infection,
overall DC frequency was similar for all three virus infections,
with ZIKV having the lowest frequency (Figure 1A). During
infection recovery, DC frequency in chikungunya and Zika cases
decreased significantly but remained elevated in dengue cases. A
high monocyte frequency during the first days of CHIKV infection
(Figure 1B) is consistent with a strong innate immune response to
CHIKV (29). During infection recovery, monocyte frequency
decreased significantly for chikungunya cases, consistent with the
‘switching-off’ of the innate immune response. Interestingly,
monocyte frequency in acute DENV and ZIKV infections was
lower than acute CHIKV infection and was unchanged from
acute to recovery (Figure 1B), suggesting that the monocyte
response may be muted (modulated) during infection with these
two viruses.

The adaptive immune response is thought to begin activation 2—-
3 days post-infection, peaking ~12 days later (31). Accordingly, we
observed differences in T-cell and B-cell frequency during acute
infection, reflecting differences in early activation of the adaptive
immune response among the viruses. For example, T-cell frequency
was much lower than the other viruses during acute CHIKV
infection, but increased significantly during recovery, reaching
similar levels to the other two viruses (Figure 1C). During
CHIKV and DENV infection, B-cell frequencies increased
significantly from acute to recovery phase, perhaps reflecting the
‘ramping-up’ of the adaptive immune response (Figure 1D).
However, B-cell frequencies for ZIKV showed highest levels
during acute infection, and then decreased significantly during
recovery. The later timing of the ZIKV PBMC sample (4-6 days
p.s.0) could explain these higher B-cell frequencies.

Infection with CHIKV, ZIKV and DENV
results in distinct concentration profiles of
cytokines/chemokines

We compared the concentration of 40 cytokines, chemokines,
and growth factors during acute infection with DENV, ZIKV and
CHIKYV, revealing significant (FDR<0.05) differences in
concentration between viruses (Figure 2, Supplementary Figure
S1). Hierarchical clustering revealed groups with distinct acute
cytokine/chemokine response to each virus (Figure 2A). Acute

Characteristic All CHIKV DENV ZIKV P-value
Participants 127 45 32 50
Age (mean (SD)) 8.40 (3.8) 9.0 (4.5) 6.56 (3.18) 9.0 (3.1) 0.006
Male 72 (57%) 32 (71.1%) 16 (50%) 24 (48.0%) 0.051
Days from Symptom onset
1.38 (1.10 1.52 (0.51 2.46 (1.26 0.59 (0.72 0.001
(Acute) mean (SD) (1.10) (0.51) (1.26) 0.72) <
Days from Symptom onset 15.12 (1.88) 14.64 (0.62) 16.10 (2.51) 14.91 (1.98) 0.003
(Recovery) mean (SD)
Frontiers in Immunology 03 frontiersin.org
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TABLE 2 Symptomatic profile of study cohort.

10.3389/fimmu.2025.1679566

Symptom/Sign Overall CHIKV DENV ZIKV P-value
n* 124 43 32 49

Fever n (%) 109 (87.9) 43 (100.0) 32 (100.0) 34 (69.4) <0.001
Headache n (%) 47 (38.8) 13 (31.0) 15 (50.0) 19 (38.8) 0.263
Arthralgia n (%) 61 (49.6) 38 (88.4) 6 (19.4) 17 (34.7) <0.001
Myalgia n (%) 35 (28.7) 17 (40.5) 10 (32.3) 8 (16.3) 0.035
Rash n (%) 107 (86.3) 43 (100.0) 25 (78.1) 39 (79.6) 0.005
Retro-orbital pain n (%) 28 (22.8) 6 (14.3) 14 (43.8) 8 (16.3) 0.004
Facial flushing n (%) 61 (49.2) 36 (83.7) 20 (62.5) 5 (10.2) <0.001
Vomiting n (%) 17 (13.7) 9 (20.9) 7 (21.9) 1(2.0) 0.009
Hemorrhagic Manifestations n (%) 25 (20.2) 6 (14.0) 19 (59.4) 0 (0.0) <0.001
Minimum Platelets (mean (SD)) 204.61 (69.21) 189.56 (51.12) 144.97 (47.12) 256.78 (56.59) <0.001
Average Platelets (mean (SD)) 234.35 (73.94) 205.77 (48.55) 175.10 (45.35) 298.12 (58.28) <0.001

Table shows the number and percentage of participants displaying each symptom, stratified by virus type. Statistical comparisons across the three virus types were performed using chi-squared
test for binary variables and ANOVA for continuous variables. *Data was available for all but one Zika case.

infection with CHIKV was characterized by higher concentrations
of IP-10/CXCL10, IFN-a, IL-6, and TNF-q, all of which are well-
established markers of viral infection and inflammation. Monocyte-
chemotactic protein-3 (MCP-3/CCL7) was also highest during
CHIKYV infection, consistent with the observed high monocyte

frequency. Patients infected with CHIKV also showed higher
concentrations of the interleukins IL-1RA and IL-15, as well as
colony-stimulating factor G-CSF. The cytokine/chemokine
response during the innate immune response to ZIKV was
distinct from the other viruses due to higher concentrations of
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FIGURE 1

Quantification of immune-cell frequencies following arbovirus infection. Violin plots (A-D) show distribution of immune-cell frequencies across
patients during acute infection with CHIKV, DENV and ZIKV, as well as during infection recovery. Black circles indicate the mean immune-cell
frequency +95% confidence interval (Cl). Asterisks above points indicate significant (FDR<0.05) frequency differences between viruses, whilst
asterisks below points indicate significant frequency change from acute infection to recovery. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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the growth factors epidermal growth factor (EGF) and platelet-
derived growth factor AA (PDGF-AA), which are known to have
anti-inflammatory effects (32-34). Interestingly, average platelet
counts were higher in ZIKV patients, consistent with higher
PDGF (Table 2). ZIKV infection also displayed higher
concentrations of sCD40L and macrophage-derived chemokine
(MDC). IL-6 concentration was much lower in ZIKV patients
relative to CHIKV and DENV, consistent with lower prevalence
of fever in ZIKV patients (Supplementary Figure S1, Table 2). The
cytokine profile of acute DENV infection was characterized by
significantly higher concentrations of IL-1f, IL-2, IL-4, and IL-9.
During infection recovery, the concentrations of most cytokines/
chemokines/growth-factors decreased to undetectable for all three
viruses (Figure 2B). The one exception to this was IL-17, which
increased significantly during recovery from CHIKV and ZIKV
infection, suggesting activation of the Th17 axis, which is usually
associated with defense against extracellular bacterial infections

A Acute Concentration

IGHIKVINDENV ZIKV  Virus
TGF-alpha
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(35). IL-17 is associated with CHIKV-induced arthritic
inflammation but it is unclear if IL-17 plays a role in congenial
malformation associated with ZIKV (36-39).

Infection with CHIKV, ZIKV and DENV leads
to diverse changes in DC subsets

Examination of major DC subtypes revealed differences in acute
DC composition among viruses (Figure 3). Plasmacytoid DC (pDC)
frequency during acute infection followed a clear hierarchy with
CHIKV > DENV > ZIKV (Figure 3A). The elevated proportion of
DCs in DENV patients appears to be primarily driven by an
increased frequency of myeloid DCs (mDC (Figure 3B). mDCs
are a major infection target for DENV, and thus DENV might be
expected to affect DCs differently from the other viruses (40). There
was little difference in the proportion of classic type 1 DC (cDC1)
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Quantification and clustering of cytokine/chemokine/growth factor concentrations during acute arbovirus infection and transition towards recovery.
(A) Heatmap showing average concentrations of cytokines/chemokines/growth factors during acute infection, scaled and centered so that O (white)
is the mean concentration of each protein and 1 (red) and -1 (blue) represent 1 standard deviation (SD) above or below the average, respectively. The
heatmap is clustered by row to group proteins with similar concentration profiles. (B) Heatmap showing the average log fold-change in protein
concentration from acute infection to recovery for each protein. Asterisks indicate significant (FDR < 0.05) concentration change, with *p<0.05;
**p<0.01; ***p<0.001; ****p<0.0001. Rows are grouped by ‘protein-type’ as indicated.
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among viruses (Figure 3C); however, classic type 2 DCs (¢cDC2)
proportions were much higher in ZIKV patients (Figure 3D).

Relative frequency of intermediate and
non-classical monocytes is highest during
acute CHIKV and DENV infection, relative
to ZIKV

Circulating monocytes are considered a heterogeneous and
dynamic cell population, comprising multiple subsets of
monocytes. A higher frequency of total monocytes during acute
CHIKYV infection compared to DENV and ZIKV may indicate a
stronger innate immune response to CHIKV (Figure 1B). Closer
examination of the monocyte subset frequencies during acute
infection revealed that acute infection with CHIKV and DENV
showed higher frequency of intermediate (5-10%) and non-classical
(~5%) monocytes relative to ZIKV infection (<5%), suggesting
higher innate immune activity (Figures 3D, E). These
observations are consistent with our previous observations of
significantly higher frequency of CD16" monocytes during DENV
infection relative to ZIKV (41). Additionally, we have demonstrated
high frequency of intermediate monocytes during CHIKV
infection; here, we observe that they are also elevated during
DENV infection, albeit to a lesser extent (41).

10.3389/fimmu.2025.1679566

CHIKV, DENV and ZIKV infections lead to
distinct, but overlapping, NK cell profiles in
acute phase of infection

We measured CD16/CD56 expression to dissect the NK cell
compartment, after gating out CD3+ T cells, CD19+ B cells and
CD14+ monocytes. We identified the canonical NK subsets
CD56"#"CD16"8/P** and CD56*™CD16P°, and six NK
subpopulations: CD56""8"CD16™*8(NK-1), CD56""8"'CD16%™
bright (JK-2), CD56%4™CD16"8 (NK-3), CD56%™CD16"8" (NK-
5), and CD56™8CD 168" (NK-6), as well as an intermediate subset
CD564™CD16%™ (NK-4) that was described by Amand et al. (42)
(Figure 4A). As expected, most NK cells were found in the CD56%™
compartment (Figure 4B, indicating that rapid maturation of
circulating NKs is a shared hallmark of acute arboviral infection.
However, the distribution of circulating NK cell subsets was altered
in a virus-dependent manner (Figures 4B-D). Participants infected
with CHIKV had a higher percentage of CD56""8" NK cells, which
are known for their immunomodulatory role, with a three-fold
higher percentage than observed in DENV or ZIKV infection
(Figure 4B). CHIKV infection was associated with a cytotoxic
response strongly skewed towards antibody-dependent cellular
cytotoxicity, with a proportion of CD56%™CD16"" (NK-5)
two-fold greater than that observed during flavivirus infection
(40% vs. 20% in DENV and ZIKV infection) (Figure 4D). In
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FIGURE 3

Frequency of DC and monocyte subtypes following arbovirus infection. (A-C) Box plots show distribution of DC subtype frequencies across patients
during acute infection with CHIKV (C), DENV (D), and ZIKV (Z). (D) Stacked bar plot shows relative proportions of classical, intermediate, and non-
classical monocytes during acute infection with CHIKV, DENV and ZIKV. (E) Box plots show distribution of monocyte subtype frequencies across
patients during acute infection with CHIKV, DENV and ZIKV. Colored circles, as in (A-C, E), indicate the mean frequency; asterisks indicate significant

(FDR<0.05) differences between viruses. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. ns, not significant.
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contrast, the majority of CD56%™ NK cells in ZIKV-infected
patients were CD569™CD16™® (NK-3), indicative of recent
activation and degranulation (Figure 4D). While a similar
proportion of CD56%™CD16"¢ was observed after both flavivirus
infections, acute dengue was characterized by a marked
overrepresentation of the intermediate subset CD56"™CD16%™
(NK-4, 30%), and the lowest percentage of CD56"8CD16"e8
(NK-1) NK cells (Figure 4D). Of note, CD56"CD16""8"* (NK-6)
cells accounted for roughly one-third of the circulating NK pool in
all three infections and were significantly higher in CHIKV than
DENV (median 35% vs 20%). Because NK-6 cells are highly
FcyRIII-driven and typically arise under sustained Fc engagement,
their enrichment further supports an antibody-skewed innate
response unique to CHIKV (43).

We then analyzed the proportion of NK cells expressing CD57, a
maker of terminal differentiation whose frequency is known to rise
with age (Supplementary Figure S2) (44). CHIKV-infected children
(mean age 9 years) displayed the highest frequency of CD57"* NK
cells in acute phase, mirroring the rapid and robust induction of
CD57 reported in adult population (45). ZIKV-infected children,
who were similar in age to the CHIKV infection group (mean age 9
years), showed a significantly lower frequency of CD577** NK cells
frequency, whereas the younger DENV cohort (mean age 6.8 years)
exhibited the lowest levels. While the frequency of CD16P*° NK cells

10.3389/fimmu.2025.1679566

was comparable between the two flaviviral infection groups
(Figure 4B), a significantly higher proportion of CD57°*° NK cells
was observed in ZIKV-infected individuals compared to those
infected with DENV. Moreover, the number of CD57 P° NK cells
increased between acute and recovery phase of Zika (but not in
CHIKYV and DENV), suggesting slower NK cell maturation kinetics.
Together, these data show that although age contributes to baseline
CD57 expression, the magnitude and kinetics of CD57 induction
display different patterns depending on the infecting virus.

Infection with CHIKV, DENV or ZIKV results
in distinct T-cell responses, including
highest T-cell activation in DENV

Overall, T cells were the most abundant of the cell types
measured, accounting for >50% of total PBMCs during infection
recovery (Figure 1C). The frequency of activated T cells (CD38"
HLA-DR") was highest during DENV infection (>2% of T cells)
(Figure 5A). T-cell activation appeared to be sustained from acute to
recovery phases in CHIKV and DENV infection (Figure 5A). When
examining the relative proportions of CD4" and CD8" in the
activated T-cell compartment, acute DENV and ZIKV infection
were predominantly CD8" (Figure 5B, C). In comparison, acute
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FIGURE 4

Frequency of NK cell subtypes during acute infection with CHIKV, DENV and ZIKV. (A) Scatter plot for a representative PBMC sample shows
fluorescence of CD16 and CD56 measured by mass-cytometry. NK cell subtypes 1-6 are indicated. (B) Box plot shows distribution of the two
canonical compartments within total NK cells: CD56brightCD16neg/pos (left) and CD56dimCD16pos (right) during acute infection with CHIKV (C),
DENV (D), and ZIKV (Z). (C) Stacked bar plot shows the percentage of NK cell subtypes within the NK cell compartment during acute infection with
CHIKV, DENV and ZIKV. (D) Box plots show the percentage of NK cell subtypes within the NK cell compartment during acute infection with CHIKV,
DENV and ZIKV. Colored circles, as in B and D, indicate the mean frequency; asterisks indicate significant (FDR<0.05) differences between viruses.

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. ns, not significant.
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CHIKYV infections showed the highest proportion of CD4" cells, as
well as activated CD4" Tfh cells (Figures 5B, H, I), suggesting a
stronger focus on activation of long-term, antibody-dependent,
adaptive immunity via B-cell activation. This is in further
agreement with the hypothesis that the innate response to
CHIKV clears viremia early, and thus fewer cytotoxic T cells are
needed to kill infected cells. Within the active CD8" compartment,
central memory (CM) T cells were the most activated, with acute
CHIKYV and ZIKV infection showing slightly higher activated CM
(~55%) than DENV infection (~45% activated) (Figures 5D, E). In
comparison, the activated CD4* compartment was predominantly
composed of Terminal effector memory T cells re-expressing
CD45RA (TEMRA) cells, although the proportion of TEMRA
cells within the active CD4" compartment was significantly
higher during acute CHIKV and DENV infection compared to
ZIKV (Figure 5F, G). Instead, ZIKV cases exhibited a significantly
larger contribution of EM cells in the activated CD4 " compartment.

CHIKYV infection shows increased
frequency of plasma B cells during CHIKV
recovery

We examined the composition of the B-cell compartment
following acute infection with CHIKV, DENV and ZIKV, as well as
during infection recovery. We identified five sub-populations of B cells
- naive, activated, memory, and two types of plasmablasts, Plasma 1
(CD27* CD38") and Plasma 2 (CD27" CD38") - based on the
abundance of CD27 and CD38 surface markers (Figures 6A, B).
During acute infection, activated B cells were the largest compartment
for all three viruses, followed by Plasma 1 cells (Figure 6B). B-cell
composition was similar during acute CHIKV and DENV infection,
both showing higher B-cell activation and Plasma 2 composition than
ZIKV (Figure 6C). In contrast, acute ZIKV infection was characterized
by lower B-cell activation and higher proportions of naive B-cells,
Plasma 1 cells, and memory B cells. Examining the changes in B-cell
composition from acute infection to recovery revealed some
interesting similarities and differences among the viruses
(Figure 6D). Transition to recovery was similar for CHIKV and
DENV, both of which showed a decrease in activated B cells, a
decrease in Plasma 2 cells, and an increase in memory B cells.
Despite these similarities, we observed a large increase in the Plasma
1 compartment (10%-17%) during recovery from CHIKV that was
not observed for DENV. In contrast, recovery from ZIKV showed an
increase in activated B cells and a decrease in naive and memory B
cells, perhaps indicative of a delayed or attenuated B-cell response.

Multi-omic analysis identifies immune
components that differentiate the acute
immune responses to CHIKV, DENV and
ZIKV

To achieve a deeper understanding of the interplay between
cell-type abundance and cytokine/chemokine/growth-factors
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profiles, we conducted a multi-omic analysis using Data
Integration Analysis for Biomarker discovery using Latent
cOmponents (DIABLO). DIABLO is a multi-omic analysis tool
that identifies combinations of ‘features’ from different omics
platforms (e.g., proteomics, CyTOF) that best explain the
differences between sample groups. We utilized DIABLO to
identify the combinations of cytokines/chemokine and immune
cell types that best characterize the immune response to each virus,
providing a more integrated understanding of the complex
relationship between viral infection, inflammatory signaling and
immune-cell behavior.

We initially focused our multi-omic analysis on the acute
immune response and included all monocyte and NK subtypes,
DC subtypes, activated T-cell subpopulations, and B-cell subtypes,
as well as all cytokines/chemokines. This analysis revealed a strong
correlation (r=0.75) between cytokine/chemokine protein
concentrations and immune-cell frequencies, indicating a strong
relationship between these immune components during the acute
response (Figure 7A). This analysis reveals that chikungunya and
dengue cases were more similar in terms of immune-cell and
inflammatory profiles, whilst Zika cases had a more distinct
immune response (Figure 7A). The absolute value of the feature
weighting represents the ‘importance’ of that feature for
differentiating between the immune responses to each virus
(Figures 7B, C). Intermediate monocytes were the most important
cell type for differentiating the immune responses to each virus,
showing highest frequency during acute CHIKV infection. cDC2
and activated CD4" T-cells were the second and third most
important differentiators, showing highest frequency during ZIKV
and DENV infection, respectively. EGF and IFN-02 were the two
most important inflammatory proteins, with EGF concentration
being highest during ZIKV infection and IFN-02 being highest in
CHIKV. The key conclusion of this analysis is that the acute
immune response to CHIKV and DENV are more similar,
characterized by high IFN-a, intermediate monocytes, and CD4
activation, whilst the ZIKV response is more distinct from these,
characterized by high levels of EGF and high levels of ¢cDC2.

A network diagram based on the DIABLO analysis shows
immune-cell types and inflammatory proteins with high
correlation (Figure 7D). Notable network features include
intermediate monocytes as a hub-node negatively correlated with
EGF and PDGF-AA and positively correlated with IL-15 and IFN-
02. It is notable that intermediate monocytes, IL-15 and IFN-o. are
all important differentiators for the immune responses to each virus,
showing highest frequency/concentration during acute CHIKV
infection, suggesting that these three features strongly characterize
the CHIKV immune response. Similarly, EGF and PDGF-AA form
a hub that positively correlated with frequency of cDC2, classical
monocytes, naive B cells and memory B cells, characterizing the
immune response to ZIKV. In contrast, the frequency of activated
CD4" T cells and activated B cells characterized the DENV immune
response and were negatively correlated with EGF/PDGF-AA.
Overall, the DIABLO analysis highlights key characteristics of
each viral infection response and reveals interesting relationships
between immune features. This network diagram provides an
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FIGURE 5

T-cell composition during acute infection with CHIKV, DENV and ZIKV and recovery. (A) Scatter plots show mean frequency (+95% Cl) of activated

T cells within the T-cell compartment during acute infection and recovery. (B) Bar plot shows proportions of CD4+ and CD8+ T cells within the
activated T-cell compartment. (C) Scatter plots show mean frequency (+95% Cl) of activated CD4+ and activated CD8+ cells, within the activated
T-cell compartment, during acute infection and recovery. (D) Stacked bar plot shows relative proportions of Naive, TEMRA, EM and CM cells within the
activated CD8+ T-cell compartment. (E) Box plot shows the distribution of Naive, TEMRA, EM and CM CD8+ T cells within the activated CD8+ T-cell
compartment during acute infection with CHIKV (C), DENV (D), or ZIKV (2). (F) Stacked bar plot shows relative proportions of Naive, TEMRA, EM

and CM cells within the active CD4+ T-cell compartment. (G) Box plot shows the distribution of Naive, TEMRA, EM and CM CD8+ T cells within the
activated CD4+ T-cell compartment, during acute infection with CHIKV (C), DENV (D), or ZIKV (Z). (H) Box plots show relative frequency of activated
T-follicular-helper (Tfh) cells (% of helper-cell compartment) during acute infection with each virus. (I) Scatter plots show relative frequency of
activated Tfh cells (% of helper-cell compartment) during acute infection and recovery for each virus. Colored symbols, as in (A, C, 1), indicate the
mean frequency; asterisks indicate significant (FDR<0.05) frequency change from acute infection to recovery (A, C, 1) or significant differences between
viruses (E, G, F). *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. ns, not significant.

Frontiers in Immunology 09 frontiersin.org



https://doi.org/10.3389/fimmu.2025.1679566
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tomalin et al.

10.3389/fimmu.2025.1679566

A B B cells subsets (Acute)
) 100% =
= Naive
. g
RI = Activated g 7%
>
8 = Plasmabilast 1 (CD27*CD38") g 00,
= Plasmablast 2 (CD27**CD38"*) 2
T 0
Memory o 2%
4
0% =
L
CHKV DENV ZIKV
CD38
C = Naive = Activated = Plasmablast 1 = Plasmablast 2 Memory
‘ o 6
e - 30 ey TR
5 d0- e 100 ns e DS _weew 154 e
3 ]
2 30+ . 4-
8 % . 80 - 20 - 104
© © 20~ s
2m 2
T . . J . 10
laad ELNE:
-
R e S B e B P SE
D Cc D z C D Zz C D z (03 D z C D z
m Naive m Activated m Plasmablast 1 u Plasmablast 2 Memory
= 85 54 7
o0 20 4 [
S 80 o x
go - 754 T 15 i N T | s |
E o l T o4 24 T A DENV
o2 1 l l . ZIKV
ﬁ o 5- l 65 = T [ 10 }/}ns 24 1= 1
Sm T
& ‘s ; r:s 60 = . 1 . - *I 1 ot e 0 f/,%,,
Acute Recovery Acute Recovery Acute Recovery Acute Recovery Acute Recovery
FIGURE 6

Frequency of B-cell subtypes following arbovirus infection. (A) Contour plot of distribution of CD27 and CD38 CyTOF signal across a representative
PBMC sample. Colored regions indicate Naive, Activated, Plasma 1, Plasma 2 and Memory B cells. (B) Stacked bar graph shows relative frequency of
B-cell subtypes within the activated B-cell compartment during acute infection with CHIKV, DENV, or ZIKV. (C) Box plot shows the distribution of
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DENV (D), or ZIKV (Z). Colored circles indicate the mean frequency; asterisks indicate significant (FDR<0.05) differences between viruses. (D) Scatter
plots show mean frequency (+95% ClI) of B-cell subtypes within the B-cell compartment during acute infection and recovery. Asterisks indicate
significant (FDR<0.05) frequency change from acute infection to recovery. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. ns, not significant.

overall picture of the inflammatory mediators and immune-cells
that characterize the responses to CHIKV, DENV and ZIKV, and
highlights the associations between them.

Multi-omic analysis identifies immune
components that differentiate the acute-
recovery transition for CHIKV, DENV and
ZIKV infection

We then used DIABLO analysis to examine the acute-recovery
transition, based on the same immune components as the acute
analysis. The PCA plot for this analysis revealed greater overlap in
immune-cell and inflammatory protein profiles for each virus, with
DENV profiles overlapping CHIKV (Figure 7E). The correlation of
immune-cell and cytokine/chemokine/growth-factors profiles
(Pearson’s r=0.61) was lower for the ‘acute-recovery’ transition
compared to the acute infection, suggesting some disconnect
between immune-cell frequency and inflammatory proteins
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during the recovery phase. This could suggest that cytokines/
chemokines proteins play a more important role during the acute
stage of infection but become less important during infection
recovery. Recovery from ZIKV infection showed the biggest
decrease in ¢DC2 and memory B cells, as well as the biggest
decrease in TGF-o. (Figures 7F, G), relative to the other viruses.
Recovery from CHIKYV infection was characterized by the greatest
decrease in intermediate monocytes and activated B cells, whilst a
decrease in IL-1at concentration was most characteristic of DENV
recovery. The network diagram from the recovery transition
analysis revealed 2 distinct clusters of immune components
(Figure 7H). The largest cluster was comprised of 8 nodes, with
IL-15 acting as a hub positively correlated with intermediate
monocytes and activated B cells, indicating that recovery from
CHIKYV is characterized by large decreases in these immune
features. The second cluster showed that decreases in PDGF-AA
during recovery coincide with decreases in plasma B cells, sCD40L,
NK CD56%™, and eotaxin. The key conclusion of this analysis is
that changes in inflammatory profiles and immune cells when
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recovering from CHIKV and DENV are similar to each other,
whereas recovery from ZIKV is more distinct.

Discussion

Our study provides valuable insights into the distinct immune
responses elicited by infection with the alphavirus CHIKV and the
flaviviruses DENV and ZIKV, revealing significant differences in
both the innate and adaptive immune compartments. Interestingly,
our DIABLO analysis revealed that these immune-cell and
inflammatory profiles did not cluster according to viral genus
(Alphaviridae vs. Flaviviridae); rather, CHIKV and DENV cases
exhibited greater similarity to each other, while ZIKV cases
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displayed a more distinct immune signature. By comparing
immune cell frequencies and cytokine concentrations during
acute infection and the transition to recovery, we identified
unique immune strategies employed by each virus. These findings
offer insights into pathogenesis and immune response to
these viruses.

Innate immune response

The innate immune response plays a crucial role in the initial
defense against viral infections. DCs, sentinels of the immune
system, play a pivotal role in the initiation of adaptive immune
responses via cytokine production and antigen presentation, and
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they are among the first cell types to be infected upon a mosquito
bite. Our findings show that CHIKV infection is associated with
higher frequencies of pDCs compared to DENV and ZIKV,
consistent with the strong production of IFN-o and activation of
NK cells observed. This pattern is concordant with human and
mechanistic studies showing that pDC sensing rapidly drives IRF7/
type-I IFN programs during CHIKV and can potentiate
downstream NK IFN-y responses (46-48). This suggests that the
host’s immune system is mounting a robust antiviral response to
control viral spread. In contrast, flavivirus infections showed higher
mDC frequencies, consistent with heightened DC participation.
Prior work indicates that flaviviruses can infect or modulate human
moDCs; notably, ZIKV can suppress NF-kB-driven activation/
maturation and reduce T-cell stimulatory capacity, whereas
DENV tends to induce pro-inflammatory DC programs (49-51).
Consistent with these reports, our results indicate that although
mDC frequency increases in both flavivirus infections, ZIKV-
exposed mDCs appear numerically expanded yet functionally
restrained, whereas DENV-exposed mDCs are both more
abundant and functionally activated, in line with the stronger T-
cell/TFN-vy signatures we observe.

The innate immune response to CHIKV infection was
monocyte-centric, characterized by robust engagement of
monocytes, particularly intermediate monocytes. Independent
patient cohorts likewise report preferential activation of CD16"
monocytes in acute chikungunya with enrichment of TLR7"
intermediates/non-classicals monocyte, increased TLR4 on non-
classicals monocyte, and elevated soluble CD163, supporting
sustained monocyte/macrophage activation. These patterns occur
with acute surges of monocyte-recruiting/activating chemokines
(IP-10, MCP-1), also observed in our study, and with direct CHIKV
infection of circulating monocytes, supporting efficient
mobilization and activation of the monocyte compartment during
acute disease (48, 52). These signatures are consistent with the
strong symptomatic profile associated with CHIKV infection (46,
53, 54). Similarly, DENV infection also showed elevated frequencies
of intermediate monocytes, though to a lesser extent, in line with a
previous report showing expansion of CD14"CD16" monocytes
during acute dengue and their role in promoting plasma blast
differentiation and anti-DENV antibody responses (55). In
contrast, ZIKV infection is associated with a surprisingly high
frequency of classical monocytes. In an independent acute ZIKV
cohort, CD14" monocytes were relatively preserved, with elevated
IP-10/MCP-1 (56), and experimental studies show ZIKV tropism
for CD14" blood monocytes and monocyte-derived macrophages
(57, 58), all pointing to a predominant involvement of
classical monocytes.

Our examination of NK cells further highlights virus-specific
immune strategies. CHIKV-infected participants exhibited elevated
levels of CD56™""™ NK cells, along with a higher percentage of
CD564™CD16™8" (NK-5) NK cells, consistent with a cytotoxic/
ADCC-skewed phenotype and the high IFN-y we observed.
Consistent with these observations, acute human CHIKV cohorts
show early, transient remodeling of NK phenotype and function,
with polarization toward cytotoxicity (59). On the other hand,
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DENV infection was characterized by a marked overrepresentation
of the intermediate CD56“™CD16%™ NK-4 cells and a lower
proportion of CD56"" NK cells, indicating a different mode of
immune modulation. This suggests a balanced NK response that
combines moderate cytotoxic activity with limited cytokine
production, which might help to control the virus while avoiding
excessive inflammation. Human dengue cohorts demonstrated early
NK activation with tissue-homing imprints and type-I-IFN-dependent
NK degranulation against DENV-infected dendritic cells, aligning with
a balanced NK response that tempers cytokine production while
retaining effector capacity (60). Of note, despite the lower frequencies
of CD56"" NK cells in DENV infection, high levels of IEN-y are
observed, indicating that other immune cells, particularly CD8+ T cells,
may also play a substantial role in producing IFN-y in DENV infection
(61). ZIKV infection predominantly featured CD56*™CD16™# NK
cells (NK-3), known for their degranulation capacity, reflecting a
strategy focused on direct killing of infected cells. In both DENV
and ZIKV, the low frequency of CD56™8" NK cells suggests curtailed
inflammatory cytokines. Additionally, ZIKV infection displayed low
levels of IFN-y, consistent with a strategic modulation of the immune
response by ZIKV to evade excessive inflammation and immune-
mediated damage. Mechanistically, ZIKV can upregulate MHC class I
on infected cells, dampening NK activation and killing; together with
functional restraint despite the presence of degranulation-competent
subsets, this provides a parsimonious explanation for muted IFN-
v (62).

Adaptive immune response

T-cell responses further delineate the immune profiles of these
infections. In acute CHIKV infection, we observed lower
frequencies of activated T cells compared to DENV infection,
with a significant increase during recovery. This pattern suggests
that an efficient early innate response controls the virus, thereby
reducing the need for an immediate robust T-cell response.
Notably, other cohorts do report robust CD8" T-cell activation in
acute CHIKV, which might reflect cohort- (adult versus pediatric)
and timing-dependent kinetics that can differ from ours. The
predominance of CD4" T follicular helper (Tth) cells in CHIKV
in our data is compatible with the vigorous CHIKV humoral
response reported in humans, including early neutralizing IgG3
and durable neutralization (63, 64). By contrast, DENV showed the
highest frequency of activated T cells in the acute phase, particularly
CD8" T cells, highlighting a dominant role of T cell-mediated
cytotoxicity, in line with studies reporting HLA-DR'CD38" CD8"
T-cell expansions and strong DENV-specific effector functions in
patients (65). In ZIKV, activated T cells were numerically skewed
toward CD8" in the acute phase, while the activated CD4" pool was
enriched for effector-memory (EM) cells. This pattern is concordant
with a previous report showing broad activation of CD4" and CD8"
T cells and activation across memory subsets (66).

The B-cell compartment also revealed virus-specific responses.
DENV showed high B-cell activation with an expanded plasmablast
compartment during acute infection, followed by a shift to memory
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B cells in recovery, a trajectory consistent with a “plasmablast burst”
and its link to inflammatory monocytes and Tth cells (55, 67).
CHIKYV infection convalescence in our cohort was marked by a rise
in plasma cells CD38+CD27+, compatible with reports of robust
neutralizing antibody responses and maturation of CHIKV-specific
humoral immunity over recovery (64, 68). ZIKV, by contrast,
showed lower acute B-cell activation with higher naive/memory
frequencies and increased activation during recovery, indicative of a
delayed or prolonged humoral response. These findings align with
studies that report smaller or more variable plasmablast expansions
in early acute ZIKV infection and a convalescent strengthening of
ZIKV-specific and cross-flavivirus antibodies (69-72).

Cytokine/chemokine/growth-factor
response

The cytokine profiles further delineate the unique immune
responses to each virus. In our cohort, acute CHIKV infection
was marked by elevated IP-10, IFN-a, IL-6, and TNF-a, indicating
a strong pro-inflammatory state. We also observed high MCP-1 and
MCP-3, consistent with increased monocyte frequencies, along with
strongly elevated IL-1Ra (anti-inflammatory feedback) and IL-15
(supporting NK/T-cell survival and proliferation), indicating
concurrent regulatory feedback and lymphocyte support. IL-8 was
likewise increased. These features are consistent with prior reports
(53, 73, 74). Comparative acute-phase profiling of acute CHIKV
and DENV infection also found IL-8 (and IL-4) upregulation in
both infections, with CHIKV-specific downregulation of IL-13 and
MCP-3 and age-associated differences; ex vivo PBMC infection
recapitulated the IL-8/IL-13/MCP-3 pattern (but not IL-4) (75).
Notably, that study did not restrict dengue to primary infection, so
the higher MCP-3 in CHIKV that we observe may reflect differences
in immune status (primary vs secondary infection) and/or age
distribution between studies. In DENV infection, higher
concentrations of IL-1B, IL-2, IL-4, and IL-9 reflected a mixed
pro-inflammatory and Th2-skewed response. In the literature, IL-
1B elevations in dengue patients align with inflammasome
activation during infection, and meta-analyses/studies show
significant IL-4 and IL-9 increases in acute dengue, consistent
with our Th2-associated signals (76-78). Compared with CHIKV
and DENV, acute ZIKV in our cohort displayed a muted
inflammatory cytokine signature with lower IL-1 family, TNF-o,
IL-6 and IFN-v. Consistent with this restrained pattern, ZIKV also
showed the lowest level of IFN-a, in line with a prior study showing
that ZIKV limits pDC maturation/activation and pDC capacity to
produce type-I IEN (79). Instead, ZIKV showed relatively higher
EGF/PDGF and sCD40L/MDC, pointing to a milieu enriched for
platelet/vascular and tissue-repair signals rather than broad
systemic inflammation. A previous report based on adult patients
also reported growth-factor-rich profiles (e.g., PDGF, VEGF/FGF)
across early-to-late acute phases (38).

During the recovery phase, the concentrations of most immune
proteins decreased to near baseline levels across all three viruses,
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indicating successful resolution of the infection and restoration of
immune homeostasis. An exception was the increased levels of IL-
17 during recovery from CHIKV and ZIKV, but not DENV,
suggesting activation of the Th17 axis. This activation is
potentially linked to autoimmune phenomena or ongoing
inflammation, particularly in the context of CHIKV-induced
arthritic inflammation.

Limitations

This analysis has several limitations, many of which are due the
‘uncontrolled’ nature of working with natural human infections.
Firstly, the sample size of DENV infection was smaller than the
other two viruses and consisted of infection with two distinct
DENV serotypes (DENV1/DENV3). This made it difficult to
disentangle the DENV1 immune response from the DENV3
response, since serotype-specific comparisons would likely be
under-powered. Another issue is that the acute Zika PBMC
samples were collected later than the other two virus types, thus
distorting the comparison with CHIKV and DENV. Similarly, the
timing of the acute plasma samples (for cytokine measurements)
was different (on average) between the three virus types (Table 1)
which might account for some differences. Another issue is the
ambiguous interpretation of ‘cell proportions’ measurements from
the CyTOF data. For example, the lower frequency of naive T cells
during CHIKYV infection could be interpreted as a lower number of
naive or a higher number of other cell types. In this example, we
assume a combination of both interpretations, with lower numbers
of circulating naive cells (due to migration to other tissues),
accompanied by expansion of non-naive cell types such as
effector memory T cell populations; however, the interpretation
for other cell types might be more difficult. In addition, virus-driven
death of circulating leukocytes might contribute to the immune
signatures we report. DENV, ZIKV, and CHIKV infect human
myeloid cells, and infection can precipitate caspase-dependent
apoptosis (80, 81). In dengue, primary monocytes are permissive
to infection, and infection triggers late activation of caspase-1, IL-1j3
release and pyroptosis (82). For ZIKV, productive infection of
myeloid cells and impaired DC activation/IFN responses have
been reported, and transient decline in circulating mDCs has
been documented in patients (50, 69, 79). For CHIKV, productive
monocyte infection occurs and, in patients, very early CD95/Fas-
mediated apoptosis of CD4 T cells accompanies marked
lymphopenia; CHIKV also engages intrinsic/extrinsic apoptotic
programs with potential bystander effects (48, 52, 83).
Collectively, these processes can deplete susceptible or highly
activated subsets from blood and contribute cell-death-linked
mediators (e.g., IL-1 family), such that our PBMC phenotypes
(viability-gated) and cytokines reflect the surviving circulating
compartment at sampling. Apparent reductions or between-virus
differences may therefore reflect a composite of death and tissue
redistribution rather than altered differentiation alone. While our
study did not quantify apoptosis/pyroptosis directly, we note this as
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a limitation and propose future work incorporating annexin V/
active-caspase readouts (or death-pathway transcriptional
programs), absolute leukocyte counts, and tightly time-matched
sampling across etiologies to disentangle depletion by death versus
cell trafficking.

Finally, our study design and sample availability limited the
scope of our study. Complete viral load data were not available for
all the participants included in this study; however, prior work from
our group in Nicaragua demonstrated virus-specific viremia
distributions and clinical correlations across ZIKV, CHIKV, and
DENV (84). Direct assessment of Tregs was also not possible due to
the lack of FOXP3 to identify canonical CD4"FOXP3" Tregs, and
TGF-B was not measured. Accordingly, we interpret PBMC
phenotypes and cytokines without attributing them to Tregs.

Conclusion

In summary, our findings highlight the distinct and nuanced
immune responses elicited by CHIKV, DENV, and ZIKV
infections. CHIKV infection triggers a strong innate and adaptive
immune response with significant monocyte and NK cell
involvement, transitioning to a robust humoral response during
recovery. DENV infection prompts a prominent T cell-mediated
response with sustained activation, while ZIKV elicits a more
subdued innate response but shows a unique adaptive profile with
delayed B-cell activation. These insights provide a deeper
understanding of the immune mechanisms underlying these viral
infections and can inform targeted therapeutic strategies and
vaccine development.

Future perspectives

This work highlights several important questions. Firstly, how
typical is the CHIKV/DENV immune-response relative to other
infections (i.e., not arbovirus); is their response typical of viruses
with similar symptomatic profiles such as influenza and SARS-
CoV2? Certainly, the response to ZIKV seems less typical; are there
other viruses that induce a similar response? Overall, this research
highlights the distinct and nuanced immune responses elicited by
CHIKV, DENV, and ZIKV infections.

Methods
Study participants and samples

Information about age and sex of study participants is shown in
Table 1. A. Zika cases: As part of the Pediatric Dengue Cohort Study
(PDCS) in Managua, Nicaragua, blood samples collected from 50
DENV-naive ZIKV-positive children presenting to the study health
center (Centro de Salud Sécrates Flores Vivas) in July and August
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2016 were included in this study. Samples were collected at three
time-points: early acute (days 1-3 post-symptom onset [p.s.0.]), late
acute (days 4-6 p.s.0.) and early convalescence/recovery (day 14-21
p-s.0.). During the study period, PDCS cases that exhibited any of
four broad clinical profiles suspected of Zika were eligible for
inclusion; there were no exclusion criteria. These clinical profiles
were: fever and at least two of headache, retro-orbital pain, myalgia,
arthralgia, rash, hemorrhagic manifestations, and leukopenia (1997
WHO dengue case definition); fever and at least two of nausea or
vomiting, rash, aches and pains, positive tourniquet test,
leukopenia, and any dengue warning sign (2009 WHO dengue
case definition); undifferentiated fever without evident cause, with
or without any other clinical finding; and afebrile rash, with or
without any other clinical finding. ZIKV infection was confirmed by
real-time RT-PCR in acute-phase blood and/or urine samples
performed at the National Virology Laboratory of the Ministry of
Health in Managua using either of two triplex assays that
simultaneously detect ZIKV, CHIKV and DENV infections: the
ZCD assay (85, 86) or the CDC Trioplex assay (87), with additional
confirmation by virus isolation in select cases. In addition,
seroconversion by ZIKV IgM capture ELISA in paired acute and
convalescent sera was tested (88). Confirmed ZIKV-positive cases
were classified as DENV-naive if they entered the cohort study with
no detectable anti-DENV antibodies, as measured by DENV
inhibition ELISA (iELISA) assay and had no documented DENV
infections (symptomatic or inapparent) during their time in the
cohort (14, 89). B. Chikungunya cases: As part of a study conducted
at the National Pediatric Reference Hospital (Hospital Infantil
Manuel de Jesus Rivera; HIMJR) in Managua, Nicaragua, blood
samples were collected from 43 children who presented with
suspected CHIKV infection between September 2015 and April
2016. Samples were collected at acute (1-2 days p.s.0.) and early
convalescent (15-17 days p.s.0.) time-points. CHIKV infection was
confirmed by real-time RT-PCR (Waggoner et al., 2016).
Additional confirmation included IgM capture ELISA and/or a
>4-fold rise in antibody titers by iELISA between acute and early
convalescent samples (90). All participants were screened for
DENYV infection, and CHIKV/DENYV co-infections were excluded.
Children with severe clinical presentations were excluded. C.
Dengue cases: Blood samples were collected from 32 children who
presented with suspected dengue to the HIMJR from August 2010
to December 2013. Samples were collected at acute (day 1-4 p.s.o.)
and early convalescent (day 13-25 p.s.0.) time-points. DENV
infections were laboratory confirmed by nested RT-PCR or real-
time RT-PCR and serotyped by RT-PCR (91). Only primary
DENVI1 or DENV3 infections—immune status defined by an
acute-phase iELISA titer <10—were included (92). After the
emergence of ZIKV in 2016, participants were screened for ZIKV
infection, and primary DENV cases with prior ZIKV exposure were
excluded. For all three sample sets, we used plasma samples from
early acute and recovery time-points for Luminex and PBMCs at
acute (1-4 days p.s.o; DENV and CHIKV) or late-acute (4-6 days
p.s.0.; ZIKV) and convalescent time-points for CyTOF (Figure 1).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1679566
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tomalin et al.

CHIKYV, ZIKV and DENV PBMCs and plasma samples were stored
at liquid nitrogen or —80°C respectively. CHIKV and ZIKV samples
were assayed within 1 year of collection. DENV samples (collected
2010-2013) were stored at —80°C and assayed 4-7 years after
collection. All specimens were aliquoted to avoid repeat freeze-
thaw and were shipped/handled via cold chain appropriate to

sample type.

Ethics statement

The study protocols for each study were reviewed and approved
by the Institutional Review Boards (IRBs) of the University of
California, Berkeley, and the Nicaraguan Ministry of Health.
Parents or legal guardians of all subjects provided written
informed consent, and subjects 6 years of age and older provided
verbal assent as approved by the IRBs.

PBMC preparation

For PBMC preparation (for mass-cytometry), blood samples
were collected in Vacutainer tubes (Becton-Dickenson) with EDTA
anticoagulant reagent. Upon receipt in the Nicaraguan National
Virology Laboratory, 4-5 mL of blood was transferred into a
Leucosep tube (Greiner Bio- One) containing 3 mL of Ficoll
Histopaque (Sigma) and centrifuged at 500 x g for 20 minutes
(min) at room temperature. The PBMC fraction was collected and
transferred to a 15-mL conical tube containing 9 mL of PBS with 2%
fetal bovine serum (FBS; Denville Scientific) and 1% penicillin/
streptomycin (Sigma). Cells were washed three times in this
solution by centrifugation at 500 x g for 10 min and resuspended
in 10 mL of complete medium. Before the third wash, an aliquot was
used to obtain a cell count using a hematology analyzer (Sismex XS-
1000i). After the third wash, cells were resuspended at a
concentration of 107 cells per ml in freezing medium consisting
of 90% FBS and 10% dimethyl sulfoxide, and aliquoted. Cryovials
containing the cell suspension were placed in isopropanol
containers (Mr. Frosty, Nalgene) at 80°C overnight and
transferred to liquid nitrogen for storage.

Mass-cytometry (CyTOF) sample
processing and acquisition

CyTOF measures up to 41 cell surface analytes at single-cell
resolution using metal-labeled reagents and inductively coupled
plasma mass spectrometry. Cryopreserved PBMC vials were thawed
at 37°C until approximately two-thirds of the volume had thawed,
then slowly transferred into 10 mL pre-warmed RPMI containing
benzonase. Cells were then stained with the Rhodium (Rh)-103
nucleic-acid intercalator added to culture medium and incubated
for 20 min at 37°C Cell viability was determined by Rh103 staining.
PBMC samples showing <30% viable cell frequency or those with
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fewer than 50,000 events were excluded from downstream analyses.
Paired PBMC samples from each time-point were first barcoded
using a CD45 antibody-based barcoding approach (93), and each
acute and recovery paired sample was pooled as a single patient
sample for subsequent processing to minimize technical variability
and potential batch effects. The pooled patient samples were then
stained with a previously tested 37-marker CyTOF antibody panel
for 30 min on ice. The samples were fixed, permeabilized and
barcoded using commercial palladium (Pd) barcoding Kkits
(Fluidigm) and pooled as sets of 20 samples. These pooled
samples were then incubated with Iridium (Ir) nucleic acid
intercalator (Fluidigm) in freshly diluted 2% formaldehyde. The
samples were stored at 4°C in PBS containing 0.1% BSA until
acquisition. Immediately prior to CyTOF acquisition, the samples
were washed with deionized water (diH20), counted and
resuspended in diH20 containing a 1/20 dilution of Equation 4
Element beads (Fluidigm). Following routine auto-tuning, the
samples were acquired on a CyTOF2 mass cytometer (Fluidigm)
equipped with a SuperSampler fluidics system (Victorian Airships)
at an event rate of <400 Hz. Each composite barcoded sample
required approximately 20 hours of acquisition time. Manual gating
was performed to identify distinct cell populations based on marker
expression using the Cytobank version 5.2.0 (Cytobank Inc.)
software. (See Supplementary Table S1 for gating definitions used
for each cell type, as well as Supplementary Methods for more
detailed gating).

Multiplex ELISA (Luminex)

Cytokines, chemokines, and growth factors were measured
using a multiplex bead-based assay (Luminex). Each sample was
run in duplicate in a 96-well microtiter plate using 25 pl serum from
each patient from acute and recovery time-points using multiplex
cytokine panels (Multiplex High Sensitivity Human Cytokine Panel,
Millipore Corp.). Forty analytes (cytokines and chemokines) were
measured using a Luminex-200 system and the XMap Platform
(Luminex Corporation). Acquired mean fluorescence data were
analyzed and calculated by the Beadview software. The lower and
upper detection limits varied for specific proteins but were generally
~3.0 pg/ml and ~15,000 pg/ml respectively. Protein measurements
above or below the limit of detection were imputed at that limit.
Quality control of each sample was performed, and a bead count of
<50 was not used for analysis.

Data harmonization

The samples for each virus were obtained from three separate
clinical studies, and CyTOF (i.e., surface marker quantification) was
performed individually for each study. Thus, there was a risk of
systematic bias due to batch effects in the raw surface marker data.
To help minimize potential systematic bias, identification and
quantification of each cell type was performed using manual
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gating on the combined data set. It is important to note that
although the surface marker MFI values from CyTOF data are
susceptible to batch effects, the cell-type abundance will be less
affected since each cell type is clearly defined by expression of highly
differentiating surface markers and assessed by an expert
immunologist. To aid in detection of any serious batch effects, we
included 4 CHIKV recovery samples as quality control (QC) that
were repeatedly analyzed in all three virus batches during CyTOF
data collection. Although we did observe some variance in cell type
abundance estimates in the QC samples across batch, principal
variance component analysis demonstrated that this variance was
small relative to experimental factors such as time-point and virus.
Thus, we decided against applying batch adjustment to the cell-type
abundance data. We were not concerned about batch effects in the
Luminex data since each experiment included a calibration curve
using samples of known cytokine concentration to estimate protein
concentration from MFI measurements, thus standardizing the data
across experiments.

Statistical analysis

All statistical analyses were performed using R (R-project.org)
version 4.0.2 and available packages. Luminex data were analyzed as
log, of protein concentration obtained from the standard curve.
CyTOF data were analyzed as log;, of cell-type frequency. CyTOF
and Luminex data were modeled using linear mixed-effect models
with gender, age, infection-stage (acute, recovery), and virus as fixed
effects, including an infection-stage:virus interaction term and a
random intercept across patientID. Models were fitted using the
limma package/framework for high-throughput analysis.
Hypotheses of interest were tested from the fitted model using
contrasts and adjustment for multiple hypotheses across immune
cell-types were carried out using the Benjamini-Hochberg
procedure, which controls the FDR.

DIABLO Analysis and visualization

DIABLO analysis was performed using the framework
described in Singh et al, 2019 (24) using functions from the
mixOmics R package [http://mixomics.org/]. In short, DIABLO
extends sparse generalized canonical correlation analysis
(sGCCA) into a supervised framework, identifying correlated
components within and between each omic data type and the
phenotype of interest. We performed DIABLO using
inflammatory marker profiles (Luminex) and immune-cell
profiles (CyTOF) for each patient, with virus (CHIKV, DENV,
ZIKV) as the outcome variable. The first analysis used only the
acute-phase measurements for each feature, whilst the second
analysis used the difference between recovery and acute (recovery
- acute). Network diagrams showing associations between
component features were created using the ‘network’ function
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from the ‘mixOmics’ package and then exported to Cytoscape for
further formatting. The ‘network’ function uses the methods
described in Gonzalez et al., 2012 (94).
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during acute infection with CHIKV, DENV, and ZIKV. Points indicate the
mean protein concentration +95% Cl, and asterisks above points indicate
significant (FDR<0.05) concentration difference between viruses. *p<0.05;
**p<0.01; ***p<0.001; ****p<0.0001.
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Frequency of NK cells expressing CD57 during acute infection with CHIKV,
DENV and ZIKV and recovery phase. (A) Box plots show the percentage of NK
cells expressing CD57 within the NK cell compartment during acute (left) and
recovery (right) phase of infection with CHIKV, DENV and ZIKV. Colored
circles indicate the mean frequency; asterisks indicate significant (FDR<0.05)
differences between viruses. (B) Scatter plot shows changes in mean
frequency (+/- 95% CI) of NK cells expressing CD57 during acute infection
and recovery for each virus. Asterisks indicate significant difference between
each pair of viruses *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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