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Introduction: There is a need for mucosal vaccines that can fight pathogens at
the site of infection. At present, there are no approved adjuvants for mucosal
vaccines. Among different immunization routes, oral delivery is the natural choice
because of its ease of administration. However, oral administration has two main
drawbacks: proteolytic digestion and immune tolerance.

Methods: In this study, a systematic in silico screening of putative protease
inhibitors (Pls) from bacteria to identify novel oral vaccine adjuvants was
conducted. Selected candidates were then evaluated for their ability to inhibit
gastrointestinal proteases and to stimulate murine dendritic cells. Finally, promising
candidates were incorporated as adjuvants into oral vaccine formulations
containing model (OVA) or real antigens, such as the cholera toxin B subunit
(CTB) and tetanus toxoid and tested in in vivo experiments. In addition, a proteomic
analysis to assess their effects on dendritic cells was performed.

Results: This approach led to the selection of 11 Pls from human pathogenic bacteria,
representing diverse families of Pls. These proteins were then expressed in E. coli; five
of them demonstrated soluble expression and efficient purification. Three candidates
-Ecotin from Salmonella, APRin from Pseudomonas, and STA (staphostatin A) from
Staphylococcus aureus- exhibited both protease inhibition and TLR4-independent
dendritic-cell activation. In vivo studies demonstrated that Ecotin, APRin, and STA
enhanced immune responses when orally co-administered with OVA, promoting
T-cell proliferation and antibody production. Further evaluation with real antigens,
confirmed their adjuvant effect by inducing mucosal and systemic immunity.
Proteomic analysis of dendritic cells treated with these proteins revealed significant
enrichment in immune-related pathways, including interferon and TNF-signaling, as
well as metabolic pathways linked to immune activation.

Conclusions: These results demonstrate that three protease inhibitors from
bacteria: Ecotin, APRin, and STA function as novel oral mucosal adjuvants capable
of modulating immune responses and enhancing antigen immunogenicity.
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Introduction

Vaccination against infectious diseases has significantly reduced
mortality and morbidity across the globe (1). Most human pathogens
initiate infection at mucosal surfaces; however, licensed vaccines are
mainly administered by injection, which preferentially induces
systemic immune responses and fails to elicit mucosal immunity (2, 3).

Mucosal immunization can induce both local and systemic
adaptive immune responses. Among mucosal routes, oral vaccines
are considered ideal because they are needle-free, noninvasive, easy to
administer, and associated with higher compliance than injected
vaccines. These attributes have the potential to reduce overall costs
and enable faster vaccine administration, which are particularly
important in resource-limited settings. Despite these benefits, only
a few oral vaccines have been licensed for use in humans (4, 5). This is
due in part to the restricted features of oral mucosal tissues that make
oral vaccine development challenging. Oral mucosal tissues maintain
a fine equilibrium and facilitate tolerance induction against
environmental and dietary antigens (Ags) while mediating effector
responses against pathogens (2, 6). Protection of these surfaces is
facilitated by a combination of mechanical, physicochemical, and
immunological barriers. Mechanical and physicochemical barriers
include the presence of mucus produced by goblet cells, as well as
antimicrobial peptides produced by Paneth cells, proteolytic enzymes,
and low gastric pH in the gastrointestinal tract (2, 7).

Currently, the eight oral vaccines licensed for human use are
either live attenuated (polio, OPV; typhoid, Vivotif® ; cholera,
Vaxchora®; rotavirus, Rotarix® and RotaTeq®) or whole-cell
inactivated formulations (cholera; Dukoral®, Shanch01®, and
Euvichol-Plus®) that are less susceptible to intestinal degradation
either by replicating in the gut or by virtue of having digestion-
resistant bacterial walls. Subunit vaccines are generally safer and less
reactogenic than killed or live attenuated vaccines; however, there
are no approved human mucosal protein-based vaccines (8, 9).
Several issues must be addressed when developing oral subunit
protein vaccines, as they generally suffer from high proteolytic
digestion and low stability, leading to suboptimal induction of
antibody and cellular immune responses (10).

In previous work, we demonstrated that the unlipidated outer
membrane protein of 19 kDa (U-Omp19) from Brucella abortus can
be used as an adjuvant in oral vaccine formulations. U-Omp19 acts
as an inhibitor of gastrointestinal proteases, protecting Ags from
degradation and increasing the half-life of co-delivered Ags at
mucosal inductive sites while recruiting dendritic cells (DCs) and
increasing the frequency of mucosal DCs bearing the co-delivered
Ag (11-13). Consequently, mucosal Ag-specific immune responses,
T helper (Th) 1, and T CD8" responses are enhanced when
U-Ompl9 is co-delivered orally with different Ags. Likewise,
U-Ompl9 improves protection against Toxoplasma gondii and
Salmonella Typhimurium challenge when it is co-administered
orally with subunit Ags (12, 14, 15). U-Ompl19 has also
demonstrated adjuvant activity for bacterial and viral Ags
delivered by subcutaneous or intramuscular routes (16-18).
The protease inhibitor activity of U-Ompl9 on lysosomal
proteases inside DCs has been linked to its adjuvanticity by the
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parenteral route (11). These reports demonstrated for the first time
the use of a protease inhibitor from bacteria as a vaccine adjuvant.
In contrast, viral and parasite-derived protease inhibitors were
found to downmodulate immune responses, inducing tolerogenic
responses (19). Serine protease inhibitors (serpins) have been
identified in parasitic helminths with anti-inflammatory activity
(20) and involvement in parasite survival through interference with
the host immune response (21).

Based on these previous results, in this work we investigated
whether other microbial protease inhibitors, especially bacterial
endopeptidase inhibitors, could have immune adjuvant activity. First,
in silico screening using databases led to the selection of putative
protease inhibitors present in human pathogenic bacteria representing
different families of protease inhibitors. The selected proteins were then
screened for their protease inhibitor activity and immunostimulatory
properties. Finally, selected protease inhibitors were studied as oral
adjuvants in vivo in mice using model and real Ags.

Results

In silico screening and selection of putative
protease inhibitors from bacteria

The strategy for screening and discovery of new compounds is
summarized in Figure 1A. It began with in silico screening to select
protein sequences of putative protease inhibitors (PIs) from bacteria.
Protease inhibitors can be classified into families based on similarities
detectable at the amino acid sequence level (MEROPS database). The in
silico screening was conducted using the MEROPS database (22) along
with literature reports on protease inhibitors. First, sequences were
grouped according to their presence in different organisms, and those
belonging to bacteria (35 families of PIs) were selected. Then, sequences
were grouped according to their presence in human pathogenic
bacteria (25 families of PIs). Finally, after removal of redundant
sequences, a total of 847 sequences belonging to 25 families were
manually curated. Putative protease inhibitors from different PI
families and from relevant bacterial pathogens that infect humans
were selected (Figure 1B). Preferentially, inhibitors from bacteria that
enter the body via mucosal surfaces, mainly the gastrointestinal tract,
were chosen. Ultimately, 11 sequences of putative protease inhibitors
representing different PI families were selected (Figure 1C).

Bioinformatic analysis of sequences was performed to evaluate
solubility, the presence of signal peptides, and the physicochemical
parameters of the recombinant proteins to be expressed in E. coli. Of
the 11 sequences, five proteins were successfully expressed. Expression
was not successful for three of them (alpha-2-macroglobulin,
bacteriophage lambda CIII protein, and Aspergillus inhibitor-like
protein), and the other three were expressed but were found in
inclusion bodies (subtilisin-like protein, chagasin-like protein, and
HfIC; Figure 1C). Screening continued with the five soluble,
expressed proteins that achieved good purification yields (Ecotin,
APRin, staphostatin A, staphostatin B, and serine carboxypeptidase
Y inhibitor [ScYi]). Proteins were expressed in E. coli and purified by
affinity chromatography. The recombinant proteins obtained were run
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FIGURE 1

Screening of putative protease inhibitors. (A) Schematic representation of the screening. (B) Results of the in silico screening using the MEROPS
database. Eleven sequences were selected to evaluate biological activity and immunostimulatory properties. (C) Characteristics of the 11 proteins

selected regarding inhibitor family, molecular weight, and expression status.

on SDS-PAGE under reducing and nonreducing conditions, showing
highly pure protein preparations in all cases (Supplementary Figure 1).
All recombinant protein preparations were depleted of LPS, and after
endotoxin determination, all PI preparations contained <0.1 endotoxin
units per mg of protein.

Selected candidates can inhibit the
protease activity of gastrointestinal
proteases

The protease inhibitor activity of the five putative PIs was
assessed in vitro. Activity was evaluated against the four main
proteases present in the gastrointestinal tract: trypsin, o-
chymotrypsin, elastase, and pepsin. All PIs inhibited at least one
of the proteases studied at one or more molar ratios assessed
(Figure 2A). Ecotin significantly inhibited the activity of trypsin,
o-chymotrypsin, and elastase at all molar ratios evaluated but did
not inhibit pepsin. APRin exhibited the broadest inhibitory
capacity, as all four gastrointestinal proteases tested showed
significantly reduced proteolytic activity in its presence, even at
low molar ratios. Staphostatin A significantly inhibited trypsin and
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elastase at all molar ratios assessed but did not inhibit o-
chymotrypsin or pepsin. Staphostatin B induced a significant
reduction in the proteolytic activity of elastase but could not
inhibit trypsin, o--chymotrypsin, or pepsin. ScYi inhibited trypsin
and elastase at all molar ratios evaluated but only inhibited o-
chymotrypsin and pepsin at higher molar ratios (Figure 2A).

We also evaluated whether the protease inhibitors could
inhibit a commercial pancreatic extract from pigs (pancreatin).
All protease inhibitors were able to reduce the protease activity of
pancreatin but with different potencies. Ecotin showed the best
performance in inhibiting pancreatin (Figure 2B). These results
indicate that the five PIs have protease inhibitor activity against
gastrointestinal proteases but with different specificities and
degrees of inhibition.

Immunostimulatory capacity of protease
inhibitors on dendritic cells in vitro

Next, the immunostimulatory activity of PIs on bone marrow-

derived dendritic cells (BMDCs) from two mouse strains (C57BL/6
and C3H/He]J) was evaluated. The C3H/He] mice have a mutation
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Protease inhibitor activity of proteins. Protease inhibitor activity was determined using the casein—BODIPY-FL assay kit, in which the increase in
fluorescence is proportional to proteolytic activity. (A) Trypsin, a-chymotrypsin, elastase, and pepsin were preincubated in the optimal buffer for
each enzyme for 1 h at different molar ratios of enzyme:inhibitor (1:1, 1:5, 1:10, and 1:20) or without protease inhibitors (1:0). A mammalian protease
inhibitor cocktail was used as a positive control and BSA as a negative control at a 1:20 M ratio. (B) Pancreatin was incubated for 1h with different
amounts of protease inhibitors (0, 5, 10, 20 and 40 ug). A mammalian protease inhibitor cocktail was used as a positive control and BSA (40 pg) as a
negative control. The samples were then incubated with 1 pyg/mL casein-BODIPY-FL for 1 h. Inhibitor activity is expressed as the percentage of
protease activity remaining compared with the 1:0 or O pg condition. Bars show mean + SD of experimental replicates. Lines above the bars include
all conditions with equal p values. *p < 0.05; **p < 0.01; ***p < 0.001 vs. 1:0 condition (Kruskal-Wallis test).

in the TLR4 gene, which makes them resistant to lipopolysaccharide
(LPS) eftects. BMDCs were stimulated with different amounts of
PIs, and their activation was assessed by measuring IL-6 levels in the
culture supernatant using ELISA. All PIs tested were able to activate
BMDCs from C57BL/6 mice, but only Ecotin, APRin, and STA were
able to activate DCs derived from C3H/He] mice (Figure 3A). As
Ecotin, APRin, and STA were the ones capable of inhibiting
gastrointestinal proteases and had immunostimulatory activity
independent of TLR4 on DCs, we continued testing them in vivo.
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Ecotin, APRin and STA as oral adjuvants
increase the immunogenicity of a model
Ag in vivo

The final step of the screening involved evaluating the adjuvant
properties of the selected candidates in vivo by incorporating them
into oral vaccine formulations. First, we studied the ability of the lead
candidates to stimulate antigen (Ag)-specific T-cell proliferation
in vivo when oral co-delivered with chicken ovalbumin (OVA) as a
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FIGURE 3

Immunostimulatory properties of protease inhibitors over BMDCs. BMDCs were incubated in vitro with different amounts of the selected inhibitors
(10-100 pg/mL) for 18 h. IL-6 production was evaluated in the supernatant by ELISA. Stimulation with RPMI was used as a negative control, and
stimulation with LPS or Pam3Cys was used as a positive control. Bars show mean + SEM of experimental replicates. *p < 0.05; ***p < 0.001 vs. 1:0

condition (Kruskal—Wallis test).

model Ag. Adoptive transfer assays using TCR transgenic OT-I mice
were performed to determine in vivo the primary clonal expansion of
transgenic CFSE"-labeled CD8" T cells following oral immunization
with OVA alone or with each PI. The experimental double-mutant
heat-labile toxin (dmLT) from enterotoxigenic E. coli was used as a
comparator. After 3 days, mice orally immunized with OVA plus
Ecotin or APRin showed greater CD8" T-cell proliferation in the
spleen than mice immunized with OVA alone (Figure 4A).
Interestingly, proliferation in the mesenteric lymph nodes (MLNs)
was also higher in groups receiving Ecotin and APRin as adjuvants
compared with Ag alone. STA and dmLT did not increase the
proliferation of Ag-specific transgenic CD8" T cells compared with
OVA delivered alone.

Next, we performed similar experiments using DO11.10 transgenic
mice, in which CFSE"-labeled CD4" T cells were adoptively transferred
to BALB/c mice. The recipient mice were then orally immunized with
OV A alone or with PIs. In this case, dmLT and U-Omp19 were used as
comparators. Increased CD4" T-cell proliferation was observed in the
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spleens of mice immunized orally with OVA plus Ecotin, APRin, or
U-Ompl9 as adjuvants compared with the OVA-alone group
(Figure 4B). STA and dmLT did not increase the proliferation of
Ag-specific transgenic CD4" T cells compared with OVA alone.

In addition, BALB/c mice were immunized orally with OVA
plus PIs or cholera toxin subunit B (CTB) as adjuvant on days 0, 14,
and 28. OV A-specific antibodies were evaluated in serum two weeks
after the last immunization. Mice immunized with OVA + Ecotin
showed higher levels of anti-OVA IgG and IgA than the OVA-alone
group. Likewise, APRin co-delivered with OVA induced significant
levels of anti-OVA IgA in serum. STA and CTB did not increase
anti-OVA IgG or IgA in serum (Figure 4C).

One month after the last immunization, OVA-specific
cellular immune responses were evaluated in the spleen and
MLNSs after stimulation with the Ag. Mice orally immunized with
OVA + Ecotin produced significant levels of IFN-y in culture
supernatants from spleen cells compared with the OVA-alone
group. In contrast, in MLN cells, higher production of IFN-y was
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observed in groups immunized with OVA plus APRin or STA
(Figure 4D). These data confirm the potential use of these protease
inhibitors as adjuvants to enhance the adaptive immune responses
of vaccine formulations delivered orally.

Ecotin and STA as adjuvants in vaccine
formulations containing bacterial Ags
increase specific antibody and cellular
immune responses in vivo

We next evaluated the capacity of the selected PIs to act as
adjuvants for real Ags present in licensed human vaccines. The
immunogenicity of vaccine formulations containing bacterial Ags—
cholera toxin subunit B (CTB) or tetanus toxoid (T'T)—and PIs as
adjuvants was studied in vivo in mice. CTB was used to evaluate
antibody (Ab) responses, while TT was used to evaluate cellular
immune responses in vivo.

BALB/c mice were immunized orally on days 0, 7, and 14 with
CTB alone or in the presence of protease inhibitors, and CT-specific
antibodies were evaluated in feces and serum. Mice vaccinated with
CTB plus Ecotin or STA showed increased levels of serum IgA and
IgG anti-CT antibodies. APRin did not significantly increase serum
IgG against CT (Figure 5A). Although Ecotin, APRin, and STA
increased anti-CT IgA in feces compared with CTB delivered alone,
only STA induced a statistically significant increase.

Animals immunized with TT as Ag and co-delivered with Ecotin
or STA exhibited an Ag-specific delayed-type hypersensitivity (DTH)
response 1 month after the last immunization, while APRin-co-
delivered mice did not (Figure 5B). DTH is characterized by the
recruitment of Ag-specific T cells into tissues, where they are
activated by Ag-presenting cells to produce cytokines that mediate
local inflammation. These results demonstrate the ability of Ecotin and
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STA to mediate in vivo Ag-specific cellular immune responses
following oral co-administration with TT as Ag.

Ecotin induces the recruitment of different
populations of dendritic cells when it is
orally co-administered with a model Ag

Since Ecotin, APRin, and STA could induce Ag-specific
immune responses in oral vaccine formulations, we next studied
the impact of these PIs/adjuvants at mucosal inductive sites at an
earlier time point. BALB/c mice were orally immunized with OVA
alone or together with Ecotin, APRin, or STA, and 6 h later the
Peyer’s patches were collected to evaluate the frequency of different
dendritic cell (DC) populations. An increase in the percentage of
CD11b*CD103" and CD11b"CD103" DCs in Peyer’s patches was
observed in mice immunized with OVA plus Ecotin (Figure 6). This
finding demonstrates the capacity of Ecotin to induce the
recruitment of DCs to intestinal inductive sites in vivo.

Ecotin, APRin and STA induce changes in
the proteomic profile of BMDCs

Most adjuvants act directly or indirectly on DCs; hence, we
analyzed how PIs alter DC protein expression profiles. BMDCs
were incubated for 18 h with Ecotin, APRin, STA, or U-Ompl9,
followed by quantitative LC-MS analysis to identify differentially
expressed proteins (DEPs) and affected pathways. A total of 4,461
proteins were identified across all samples. Based on a false
discovery rate (FDR) < 0.1, 124 DEPs were found in Ecotin-
treated BMDCs, 94 with APRin, 229 with STA, and 119 with
U-Ompl19 (Figures 7A, B).
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FIGURE 5

Antibody and cellular responses induced by protease inhibitors after its oral co-administration with vaccine Ags. BALB/c mice (n = 5/group) were orally
(intragastrically) immunized with (i) saline, (ii) CT (5 pug) or TT (100 ug) as Ags, or (iii) Ag plus protease inhibitors (150 pg). (A) Ag-specific IgG and/or IgA
were determined in sera and feces 1 week after the last immunization by indirect ELISA. Results are expressed as Vmax (mU/min) + SEM for each group
(n = 5-6/group) (Kruskal—-Wallis test). *o < 0.05; **p < 0.01 vs. Ag alone group. (B) In mice immunized with TT as Ag, 3 weeks after the last boost, the
delayed-type hypersensitivity (DTH) response was measured by determining footpad swelling 48 h after TT injection into the hind footpad. Data are
shown as ATT — saline + SEM for each group. *p < 0.05; **p < 0.01 vs. Ag alone group (one-way ANOVA with Bonferroni post test).
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FIGURE 6

Ecotin promotes dendritic cell recruitment to intestinal inductive sites. BALB/c mice (n = 3/group) were orally (intragastrically) immunized once with
(i) saline, (i) OVA (200 pg), or (i) Ag plus protease inhibitor (300 pg). Peyer's patches (PPs) were obtained 6 h later and single-cell suspensions were
prepared and stained with fluorochrome-conjugated Abs, including anti-CD11c, anti-MHC-II, anti-CD11b, and anti-CD103, and analyzed by flow

cytometry. (A) Gating strategy used to analyze data. (B) Results are presented as frequency of CD11b* CD103" cells (of total cells) + SEM. *p < 0.05

vs. OVA alone group (one-way ANOVA with Bonferroni post test)

Gene set enrichment analysis revealed that STA-treated
BMDCs showed the strongest enrichment in immune-related

» o«

pathways, including “Interferon signaling,” “Signaling by
interleukins,” and “TNF signaling” (Figure 7C). In particular, the
“ROS and RNS production in phagocytes” pathway was enriched in
BMDCs treated with Ecotin, APRin, and STA, highlighted by the
upregulation of inducible nitric oxide synthase (Nos2), a key
mediator of antimicrobial responses and DC activation.
Additionally, all treatments triggered enrichment of lipid-

metabolism pathways—such as “Phospholipid metabolism” and
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“Fatty acyl-CoA biosynthesis”—reflecting metabolic
reprogramming associated with DC maturation (Figure 7C).
Several solute carrier proteins and ion transport-related
proteins, including SLC2A6, CALMI1, and SLC7A1l, were
differentially expressed across all conditions. The mitochondrial
tricarboxylate transport protein (SLC25A1), responsible for
exporting citrate from mitochondria to the cytosol and serving as
a key regulator of lipid biosynthesis and histone acetylation during
DC activation, was differentially expressed in BMDCs treated with
Ecotin, APRin, and STA (FDR < 0.1) but not with U-Omp19
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FIGURE 7

Proteomic profiling of BMDCs stimulated with bacterial protease inhibitors. Bone marrow-derived dendritic cells (BMDCs) were stimulated for 18 h
with Ecotin, APRin, STA, or U-Omp19. Proteomic changes were assessed by quantitative LC-MS/MS. (A) Number of differentially expressed proteins
(DEPs; FDR < 0.1) in each condition, separated into upregulated (orange) and downregulated (blue) proteins. (B) Volcano plots showing the
distribution of DEPs for each treatment. Significantly upregulated proteins are shown in red, downregulated in blue. Selected immune- and
metabolism-related proteins are labeled, including Slc25al, which was a DEP in all conditions except U-Omp19. (C) Gene set enrichment analysis
(GSEA) using Reactome pathways, grouped by functional category: Immune System, Lipid Metabolism, Metal lon Homeostasis, and Transport. Dot
size represents the —log10(p-value), and color indicates normalized enrichment score (NES).

(Figures 7B, C). Although it was not classified as a hit because it did
not meet the fold-change criterion established, this consistent trend
toward upregulation may indicate potential metabolic
reprogramming linked to immunostimulatory responses.

Validation of proteins identified as hits and involved in the
main affected metabolic pathways was performed by RT-qPCR
(SLC2A6, HACD2, LPIN1, MT2, NOS2, and OASLI;
Supplementary Figure 2, Supplementary Table 1). Ecotin, APRin,
and STA induced both common and distinct proteomic profiles and
pathway alterations in DCs, influencing pathways related to
maturation and activation under each condition. These findings
may explain why all three are able to enhance immune responses,
although the nature of these responses is not identical among
the inhibitors.

Discussion

Adjuvants, as critical components of subunit vaccine
formulations, are essential to induce immunity and immune
memory. There are no approved adjuvants for oral vaccines.

Frontiers in Immunology

Currently, the only subunit Ag incorporated in a licensed
mucosal vaccine is cholera toxin subunit B (CTB), included as an
additional component of the oral killed whole-cell Vibrio cholerae
vaccine Dukoral. Although CTB has in the past been classified as an
adjuvant, this definition was complicated by the presence of residual
cholera toxin or lipopolysaccharide (LPS) in CTB preparations.
Indeed, CTB can mediate immune tolerance to attached or mixed
Ags by oral and intranasal routes (8). dmLT is a genetically
modified version of the heat-labile enterotoxin (LT) from
Escherichia coli, designed to retain adjuvant properties while
reducing toxicity (23). dmLT has been studied as an adjuvant for
oral and intranasal vaccines, particularly against diarrheal diseases
like enterotoxigenic E. coli (ETEC) and Shigella (24, 25). dmLT has
shown promising safety and immunogenicity profiles in early-stage
clinical trials, particularly for enteric vaccines (26).

Previous work from our group and from others (27, 28) has
demonstrated that U-Omp19, a protease inhibitor from Brucella
spp. with immunostimulatory properties, can function as an
oral adjuvant in vaccine formulations (11-13, 16). However,
immunostimulatory properties are not a general feature of most
studied protease inhibitors. Several protease inhibitors have been
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introduced for drug delivery to interfere with the degradation of
therapeutic peptides and proteins in physiological fluids, as well as
their transport across biological barriers (29). Used as drug delivery
components, protease inhibitors should not increase the
immunogenicity of the co-delivered protein. By contrast,
increased immunogenicity, while undesirable in drug delivery,
would be advantageous in the context of vaccine development.

Protease inhibitors are grouped according to the catalytic class
of protease they inhibit, and following the MEROPS inhibitor
classification (22), which classifies them into families based on
sequence homology and into clans based on protein tertiary
structure. At the time of the screening, there were in MEROPS a
total of 180,905 sequences that belonged to 81 families and 40 clans.
In our screening, a final step involving manual curation of data was
used to select representative sequences for the subsequent
experimental screening. In silico screening of protease inhibitors
from human pathogenic bacteria allowed us to select 11 sequences
of putative protease inhibitors from different families belonging to
relevant bacteria that enter the body via the mucosa and cause
significant diseases in humans.

The most abundant peptidase inhibitors in prokaryotic cells are
homologous to alpha-2-macroglobulin (family 139), serine
carboxypeptidase inhibitor (family I51), and Ecotin (family I11)
(30). Candidates from these three families, among others, were
selected in our screening. Most of the protease inhibitors produced
by bacteria are either intracellular or periplasmic, but there are
some PlIs secreted into the medium by certain bacteria. Secreted
protease inhibitors are produced either to regulate their own
proteases or the proteases of other organisms (31, 32).

Selection criteria based on protein expression and
purification yield narrowed the final candidates for functional
screening. Five proteins were efficiently expressed with high yield
and purity—key factors for incorporating adjuvants into vaccine
formulations and enabling large-scale production at low cost.
Functional assays confirmed their role as eukaryotic protease
inhibitors. Further screening identified three lead candidates with
immunostimulatory properties—Ecotin, APRin, and STA—capable
of activating dendritic cells independently of TLR4 signaling.

Ecotin from Salmonella spp., as a purified recombinant protein,
was able to inhibit trypsin, o-chymotrypsin, and elastase. This agrees
with protease inhibitors of the Ecotin family that have been described
to have wide specificity, being able to inhibit a range of serine
proteases with high affinity (33-35). This characteristic may be
attributable to the presence of two binding sites in the molecule
and structural dimerization of Ecotin (33, 36). Ecotin from
enterobacteria and parasites performs a protective role against host
digestive proteases and targets host proteases to facilitate infection
(31, 37). In this work, we demonstrated that Ecotin was able to recruit
CD11b*CD103"” and CD11b"CD103" dendritic cells at Peyer’s
patches. It has been reported that both CD11b"CD103" and
CD11b*CD103" contribute to Thl polarization; in particular,
CD11b"CD103" DCs have been linked to the induction of
intestinal Th17 homeostasis (38). Further studies with larger
cohorts will be important to expand these findings.
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The alkaline proteinase inhibitor (APRin) from Pseudomonas
aeruginosa is an inhibitor of the serralysin class of zinc-dependent
proteinases secreted by several Gram-negative bacteria (39). This
enzyme is capable of degrading a variety of host proteins to enhance
the pathogenicity of these organisms (40). We demonstrated that
recombinant APRin can inhibit serine proteases from the gut
(trypsin, o-chymotrypsin) and pepsin from the stomach. Of note,
APRin belongs to the 138 family, which is structurally related to the
outer membrane protein of 19 kDa from Brucella (Omp19), a broad-
spectrum protease inhibitor (41). Staphostatins constitute a family of
protease inhibitors reported as highly specific inhibitors of cysteine
proteases of S. aureus named staphopains (42). This study is the first
to describe inhibition of mammalian proteases such as bovine trypsin
and elastase by staphostatins A and B. Of all inhibitors tested, the
staphostatins showed the lowest inhibitory capacity. Their B-barrel
fold may contribute to regulating various proteases, including
cysteine, serine, and even metalloproteases (43).

Despite structural and functional differences, Ecotin, APRin,
and STA activated dendritic cells and induced Ag-specific immune
responses when orally co-administered with model or bacterial Ags.
However, each adjuvant elicited distinct immune profiles. Ecotin
induced strong CD8" and CD4" T-cell proliferation, systemic and
mucosal Thl responses, and robust IgA and IgG antibody
production. APRin shared some CD8" and CD4" T-cell activation
properties with Ecotin but mainly stimulated mucosal IgA
responses and IFN-y production in MLNs. STA promoted IFN-y
secretion and both systemic and mucosal IgG and IgA responses,
including CTB-specific IgA in feces. Like Ecotin, STA also triggered
DTH responses, indicating systemic CD4" T-cell activation. These
findings highlight their potential for tailoring immune responses
based on specific vaccination needs.

Of note, these protease inhibitors induced distinct proteomic
profiles and pathway alterations in DCs that may explain the
different immune responses elicited. Proteomic changes observed
in DCs following incubation with the inhibitors are closely
associated with their functional roles, particularly those observed
in metabolic pathways such as glycolysis and lipid metabolism,
which are critical for effective immune responses. A key player in
this metabolic shift is the glucose transporter GLUT6, encoded by
the gene Slc2a6. Upregulation of GLUT6 enhances glucose uptake,
promoting glycolysis and subsequent fatty acid biosynthesis, which
are critical during inflammatory responses (44). Another significant
component is the mitochondrial citrate transporter Slc25al, which
exports citrate to the cytosol in exchange for malate. In the cytosol,
citrate is converted into acetyl-CoA, a precursor for fatty acid
synthesis, and oxaloacetate, which can contribute to nitric oxide
(NO) production via inducible nitric oxide synthase (iNOS) (45).
These metabolic pathways are key to DC functions, including lipid
biosynthesis for membrane expansion and NO production for
antimicrobial activity. Upregulation of GLUT6 and Slc25al
indicates activation of DCs by the protease inhibitors. These
findings underscore the importance of metabolic reprogramming
in DC activation and function. Targeting metabolic pathways and
associated proteins could offer novel strategies for modulating
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immune responses, with implications for vaccine development
and immunotherapy.

In this work, 11 different putative protease inhibitors from bacteria
were selected to be evaluated according to three selection criteria:
expression, inhibition, and immunostimulatory properties. Among
them, the most promising adjuvant immune responses were elicited
by three: (i) Ecotin from Salmonella, (ii) APRin from Pseudomonas
aeruginosa, and (iii) staphostatin A from Staphylococcus aureus.
Altogether, the findings of this work provide proof of concept that
molecules exhibiting both key properties— inhibition of
gastrointestinal proteases and immunostimulatory effects on DCs—
possess oral immune adjuvant properties and can be selected to induce
tailored immune responses.

Although proteases have been proposed as therapeutic targets
and studies have postulated the usefulness of mammalian protease
inhibitors such as aprotinin for co-administration of oral drugs and
prior to oral immunization (46, 47), to our knowledge, except for U-
Ompl19, there are no other studies of protease inhibitors used as
adjuvants in oral vaccine formulations to increase immune
responses. Therefore, the results derived from this work, in which
three new protease inhibitors from bacteria were found to have oral
immune adjuvant properties, add an innovative and original
concept to the rational design of oral or mucosal vaccine
formulations, opening new possibilities for the use of bacterial
protease inhibitors as mucosal adjuvants for vaccines.

Material and methods
Ethics statement

All experimental protocols were conducted in agreement with
international ethical standards for animal experimentation
(Helsinki Declaration and its amendments, Amsterdam Protocol
of Welfare and Animal Protection, and the National Institutes of
Health [NIH], USA, Guide for the Care and Use of Laboratory
Animals). The protocols used were approved by the Institutional
Committee for the Care and Use of Experimentation Animals
(CICUAE) of the University of San Martin (UNSAM) (Permit
Number: 04-2016), Buenos Aires, Argentina.

Animals

Eight- to twelve-week-old female BALB/c, C57BL/6, or C3H/
HeJ mice were obtained from the Animal Facility of the Instituto de
Investigaciones Biotecnologicas (IIBio-UNSAM). Mice were housed
in appropriate conventional animal care facilities and handled
according to the international guidelines required for animal
experiments at IIBio-UNSAM. Before and after each intragastric
administration or immunization, groups of mice were fasted for 2 h,
while water was provided ad libitum and removed only for 2 h
following immunization. Oral (intragastric) administrations,
intravenous and intradermal injections, and blood collection via
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the submandibular route were performed by trained personnel
using precise and rapid techniques without anesthesia. Animals
were euthanized following anesthesia with ketamine (80 mg/kg)
and xylazine (16 mg/kg) administered intraperitoneally, followed
by cervical dislocation to ensure humane treatment and
minimize suffering.

Antigens and adjuvants

Chicken egg ovalbumin grade V (OVA; Sigma-Aldrich) was
used as the model Ag. Recombinant unlipidated (U)-Ompl9 was
obtained as previously described (48). Lipopolysaccharide (LPS)
contamination from U-Ompl9 was adsorbed with Sepharose-
polymyxin B (Sigma). Endotoxin determination was performed
with the Limulus amoebocyte chromogenic assay (Lonza). All U-
Omp19 preparations used contained <0.1 endotoxin units per mg of
protein. Heat-labile enterotoxin (LT) was provided by John
Clements (Tulane University, New Orleans, US). Cholera toxin
from Vibrio cholerae (CT; Sigma) was reconstituted in water and
used as Ag for immunizations. Attenuated double-mutant heat-
labile toxin LTR192G/L211A (dmLT) was provided by PATH
(Seattle, US) and used as an adjuvant.

In silico screening for protease inhibitors

Protease inhibitors are classified into families based on their
evolutionary and structural relationships, incorporated in the
MEROPS database (http://merops.sanger.ac.uk/inhibitors/). Using
this database and relevant literature, we selected different families of
human protease inhibitors present in pathogenic microorganisms
representing the various families of protease inhibitors. For families
of inhibitors expressed by more than one microorganism, we
conducted BLAST analyses to assess homology and selected, for
this project, microorganisms whose route of entry is through
mucous membranes, mainly the oral route.

The MEROPS database initially contained 180,905 protease
sequences from 81 families across various organisms. After
selecting bacterial sequences and filtering for redundancy (<80%)
and human pathogenicity, a final list of 847 sequences from 25
families of putative protease inhibitors was obtained. From this list,
we selected 11 putative protease inhibitors from bacteria: (i) Ecotin
from Salmonella enterica, (ii) subtilisin-like family 116 unassigned
peptidase inhibitors from Nocardia brasiliensis, (iii) Aspergillus
inhibitor-like family 178 unassigned peptidases from Bordetella
pertussis, (iv) APRin from Pseudomonas aeruginosa, (v) chagasin-
like family 142 non-peptidase homologs from Bacillus cereus, (vi)
bacteriophage lambda CIII protein from Salmonella enterica, (vii)
HfIC from Escherichia coli, (viii) serine carboxypeptidase Y
inhibitor homolog from Helicobacter pylori, (ix) staphostatin A
from Staphylococcus aureus, (x) staphostatin B from Staphylococcus
aureus, and (xi) alpha-2-macroglobulin homolog from
Salmonella enterica.
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Expression and purification of the protease
inhibitors/adjuvants

Using the nucleotide sequences of the selected putative protease
inhibitors, we obtained plasmids encoding the proteins with an N-
terminal histidine tag in the pET22+ vector (Novagen, Madison,
WI, USA), synthesized by GenScript. These plasmids were
transformed into competent BL21 (DE3) cells using the CaCl,
method, and transformants were selected on ampicillin-
containing media. After induction with IPTG, 9 of the 11
proteins were expressed. In this project, we evaluated only the 5
inhibitors that could be efficiently expressed in soluble form with a
high yield and subsequently purified: (i) Ecotin from Salmonella
enterica, (ii) APRin from Pseudomonas aeruginosa, (iii) serine
carboxypeptidase Y inhibitor homolog from Helicobacter pylori,
(iv) staphostatin A from Staphylococcus aureus, and (v) staphostatin
B from Staphylococcus aureus.

LPS contamination from the protease inhibitors was adsorbed
with Sepharose-polymyxin B (Sigma). Endotoxin determination
was performed with the Limulus amoebocyte chromogenic assay
(Lonza). All protease inhibitor preparations used contained <0.1
endotoxin units per mg of protein.

Determination of protease inhibitor activity
in vitro

Protease activity was determined using a casein fluorometric kit
(EnzChek, Invitrogen). Trypsin (0.965 uM; Sigma), o-
chymotrypsin (0.965 uM; Sigma), pancreatic elastase (0.965 UM;
Sigma), and pepsin (0.483 puM; Sigma) were incubated with each
protease inhibitor at different molar ratios of protease:inhibitor (1:0,
1:1, 1:5, 1:10, and/or 1:20). As a positive control, a mammalian
protease inhibitor cocktail (Sigma-Aldrich) was used. Bovine serum
albumin (BSA) at a molar ratio of protease:BSA 1:20 was used as a
negative control. Each reaction mixture was incubated at room
temperature (RT) for 1 h, after which the casein substrate (casein-
BODIPY-FL, 1 ug/mL) was added. Fluorescence was measured with
a fluorescence plate reader (FilterMax F5, Molecular Devices).

To evaluate whether the protease inhibitors inhibited the
proteolytic activity of pancreatic extracts, pancreatin was
preincubated with buffer, different amounts of the protease
inhibitors, inhibitor cocktail, or BSA as a negative control. The
mixtures were then incubated with casein-BODIPY-FL for 1 h or
with OVA-DQ (a quenched protein that releases fluorescence upon
digestion) for 4 h, and the fluorescence increase was determined.

Bone marrow-derived DCs stimulation

Dendritic cells were generated from bone marrow (BM)
mononuclear cells from wild-type C57BL/6 or C3H/HeJ mice as
described (49). To study whether DCs were activated by the protease
inhibitors, BMDCs were incubated in vitro with different amounts of
the selected inhibitors (10-100 pg/mL) for 18 h. IL-6 production was
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evaluated in the supernatant by ELISA. Stimulation with culture
medium (RPMI 1640) was used as a negative control, and stimulation
with LPS or Pam3Cys was used as a positive control.

Adoptive transfer of OT-l or D011.10 cells
and in vivo CD8" or CD4™ T-cell
proliferation

Splenocytes from OT-I or DO11.10 mice were labeled with
5 uM CFSE (Molecular Probes) prior to intravenous (i.v.) injection.
One day before immunization, 10 x 10° OT-I or DO11.10 cells were
injected iv. into C57BL/6 or BALB/c sex-matched recipients.
Transferred mice received a single oral dose of saline, OVA alone
(500 pg for BALB/c mice and 1000 g for C57BL/6 mice), OVA plus
plus protease inhibitors Ecotin, APRin, or STA (250 ug), OVA plus
dmLT (1 ug); or OVA plus U-Ompl19 (150 pg). Five days after
immunization, mice were sacrificed, and spleen and mesenteric
lymph node cell suspensions were obtained to study proliferation of
CD8" or CD4" CFSE" T cells by flow cytometry.

OVA, CT, and TT immunizations

OVA, CT and tetanus toxoid (TT) immunizations: BALB/c mice
(n = 5 per group) were intragastrically (i.g.) immunized with (i)
saline, (ii) Ag, or (iii) Ag plus protease inhibitor (150 pg). The Ags
used were OVA (100 ug/dose), CT (5 pg/dose), or TT (100 pig/dose).
OVA immunizations were on days 0 and 14, and CT immunizations
were on days 0 and 28. Prior to i.g. immunization, 200 uL of 10%
NaHCO; in water was administered to neutralize stomach pH.

Determination of antibody levels in serum

Sera were obtained weekly to study CT-specific or OV A-specific
antibody responses (IgG and IgA) by indirect ELISA. Ninety-six—
well plates were coated with 0.1 pg/well of CT or 1 pg/well of OVA
overnight at 4°C. Plates were washed with PBS-Tween 0.05% and
blocked with 3% skim milk in PBS for 1 h at 37°C. Plates were then
incubated with sera for 1 h (diluted in PBS containing 1% skim
milk). Plates were washed and incubated with HRP-conjugated
anti-mouse IgA or IgG (Sigma, St. Louis, MO, USA) for 1 h at 37°C.
Then, TMB (3,3',5,5'-tetramethylbenzidine) was added, and
absorbance was measured at 450 nm.

Determination of antibody levels in feces

Feces were obtained weekly to study CT-specific IgA by indirect
ELISA. Fecal samples were collected from individual mice using a
noninvasive procedure designed to minimize stress. Each mouse was
gently handled and placed in a clean, sterile plastic container without
bedding or food for a short period (5-15 min). Spontaneous defecation
was awaited without applying any physical stimulation or restraint.
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Fecal extracts were prepared by suspending eight fecal pellets in 1
mL PBS with 50 pg soybean trypsin inhibitor (Sigma). After
homogenization and centrifugation at 4°C, the supernatants of the
fecal extracts were supplemented with 1.75 mg BSA, 5 uL PMSF 0.2 M,
and 1.5 uL sodium azide 1 M. Samples were stored at —70°C and used
for IgA determination by indirect ELISA. Ninety-six-well plates were
coated with 0.1 pg/well CT overnight at 4°C. Plates were washed with
PBS-Tween 0.05% and blocked with 3% skim milk in PBS for 1 h at
37°C. Plates were then incubated with fecal extracts for 1 h (diluted in
PBS containing 1% skim milk). Plates were washed and incubated with
HRP-conjugated anti-mouse IgA (Sigma, St. Louis, MO, USA) for 1 h
at 37°C. Then, TMB (3,3',5,5'-tetramethylbenzidine) was added, and
absorbance was measured at 450 nm.

Cytokine production

Spleen and mesenteric lymph node cells from immunized mice
(obtained 1 month after the last immunization) were cultured in
duplicate in RPMI 1640 (Gibco BRL, Life Technologies, Grand Island,
NY) supplemented with 10% fetal calf serum (Invitrogen Life
Technologies), 1 mM sodium pyruvate, 2 mM L-glutamine, 100 U/
mL penicillin, and 100 pg/mL streptomycin (complete medium), in
the presence or absence of stimuli (OVA 20 ug/mL) or complete
medium alone. After 72 h of incubation at 37°C in a humidified
atmosphere (5% CO,, and 95% air), cell-culture supernatants were
collected and immediately stored at —80°C until analysis. IFN-y
production was analyzed using mouse ELISA kits according to the
manufacturer’s instructions (Pharmingen, San Diego, CA, USA).

Delayed-type hypersensitivity responses

DTH tests were performed as an in vivo index of the elicited
cell-mediated immunity. Three weeks after the last i.g.
immunization, mice received 30 ug TT intradermally into the left
footpad, while an equal volume of vehicle (saline) was injected into
the right footpad. After 48 h, the DTH reaction was quantified by
measuring the difference between footpad thicknesses using a digital
caliper with a precision of 0.01 mm. Animals were handled carefully
to minimize stress, and measurements were performed by trained
personnel without the use of restraint or causing discomfort. The
mean increase in footpad thickness (mm) was calculated as:

left footpad thickness (TT) — right footpad thickness (saline).

In vivo recruitment
BALB/c mice (n = 3/group) were orally (intragastrically)
immunized once with (i) saline, (i) OVA (200 pg), or (iii) Ag plus
protease inhibitor (300 pig). Prior to intragastric immunization, 200 uL

of 10% NaHCOj; in water was administered to neutralize stomach pH.
Peyer’s patches (PPs) were obtained 6 h later and single-cell
suspensions were prepared. Total viable cells were counted. Cells
were stained with a viability dye (Zombie Aqua, BioLegend) and
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later with fluorochrome-conjugated Abs, including anti-CD11¢, anti-
MHC-II, anti-CD11b, anti-CD103, or isotype-matched controls, for
30 min at 4°C. Afterward, cells were washed and analyzed by flow
cytometry. mAbs were purchased from eBioscience (San Diego, CA),
BioLegend (San Diego, CA), and BD Biosciences (Franklin Lakes, NJ).

Proteomics sample preparation and
analysis

BMDCs were generated and used in proteomic experiments
only when >90% of the population was MHC-II" CD11c¢" and
showed no significant expression of co-stimulatory markers (CD80,
CD86). Cells were incubated in vitro with 100 pg/mL of the different
protease inhibitors for 18 h, while RPMI medium alone served as a
negative control. Each condition was performed in independent
biological replicates.

Proteins were extracted from the samples, digested with trypsin,
and labeled with isobaric stable xisotopes (TMT) to enable
multiplexed peptide quantification. The proteomic workflow,
including LC-MS/MS acquisition, was carried out at the EMBL
Proteomics Core Facility (Heidelberg, Germany). Peptide
separation and analysis were performed on a Q Exactive Hybrid
Quadrupole-Orbitrap mass spectrometer. Protein quantification
was achieved using the IsobarQuant software. Raw data were then
analyzed to identify differential expression in each condition.

Bioinformatics analysis

All bioinformatic analyses were carried out with R (RStudio v.
2024.09.1 + 394). Raw mass spectrometry data were searched against the
mouse UniProt protein database to identify each peptide. Raw protein
intensity values were filtered and processed, followed by batch effect
correction (limma v. 3.54.2) and variance-stabilizing normalization (vsn
v. 3.66.0). Differential abundance analysis was performed for each
experimental condition relative to the negative control using the
empirical Bayes method implemented in limma (v. 3.54.2). Proteins
with a false discovery rate (FDR) < 0.1 were considered significant and
further analyzed through Reactome pathway enrichment (50)
(ReactomePA v. 1.42.0). Data visualization, including volcano plots
and pathway representations, was performed with ggplot2 (v. 3.5.1).

RT-qPCR

RNA was purified from cells using TRIzol (Life Technologies),
and cDNA was synthesized to perform quantitative PCR for SLC2A6,
HACD2, LPINI, MT2, NOS2, and OASLI genes. Briefly, RNA was
treated with RQl RNase-Free DNase (Promega), and reverse
transcription was performed with M-MLV Reverse Transcriptase
(Invitrogen). Then, SYBR-based real-time PCR (Applied Biosystems)
was performed with forward and reverse primers (Genbiotech). Data
were generated using the AACt method. Relative expression was
normalized to that of Actb (B-actin).
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Statistical analysis

Statistical analysis and plotting were performed using
GraphPad Prism 9 software (GraphPad Software, San Diego, CA).
In experiments with more than two groups, data were analyzed
using one-way ANOVA with a Kruskal-Wallis test. A p-value <
0.05 was considered significant. When bars were plotted, results
were expressed as means + SEM for each group.
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