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Transgenic animal bioreactors provide a complementary strategy to traditional
mammalian cell culture systems for the production of therapeutic human
monoclonal antibodies (mAbs). Here we present a CRISPR/Cas9-mediated
breakthrough in creating two novel genetically engineered (GE) mouse models
with species-specific chromosomal integration of human anti-staphylococcal
enterotoxin B (SEB) mAb genes at either the ROSA26 or Hippll (H11) safe-harbor
loci - evolutionarily conserved genomic safe harbors (GSH). These genetically
optimized animals demonstrated broad tissue capability for glycosylation-
competent human antibodies, achieving exceptional secretion levels reaching
208 mg/L in serum, 43 mg/L in mammary secretions, 24 mg/L in saliva on
average. The transgenic lines maintained this antibody production stability for
>140 weeks without compromising animal viability, while preserving germline
transmission fidelity through six successive generations. Furthermore, the highly
glycosylated human antibodies derived from these genetic engineered mice
exhibited high binding affinity to SEB (Kp=0.108 nM for ROSA26; 0.154 nM for
H11), providing comprehensive protection against SEB intoxication in vivo. This
study opens avenues for utilizing transgenic animal bioreactors for large-scale
production of fully human antibodies or disease-resistant livestock in the
foreseeable future.
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1 Introduction

Recombinant monoclonal antibodies (mAbs) have
demonstrated remarkable success in treating cancers,
inflammatory disorders, and infectious diseases (1-3). The
growing clinical demand for antibody-based drugs has driven the
development of large-scale production systems. Currently,
mammalian cell culture—especially Chinese hamster ovary
(CHO) cells—remains the industry standard for commercial
antibody manufacturing (4). However, CHO-based production is
associated with high cost, labor-intensive procedures, and
scalability limitations (5-9), creating an urgent need for more
efficient and economical alternatives.

Transgenic animals have emerged as promising “bioreactors”
for pharmaceutical protein production, offering both high yield and
physiologically relevant post-translational modifications (8-10).
Several transgenic animal-derived biopharmaceuticals have
already been approved, including Atryn® (recombinant
antithrombin from goat milk) and Ruconest® (C1-esterase
inhibitor from rabbit milk) (5, 11-13). More recently, the
expression of monoclonal antibodies has been reported in diverse
transgenic species, such as anti-PD-1 mAbs in mouse mammary
glands (14-20), such as such as anti-PD-1 mAbs in mouse
mammary glands (14), anti-CD20 mAbs in cow milk (21),
humanized anti-HER2 mAbs in chicken eggs (16). Despite these
advances, current strategies predominantly rely on tissue-specific
expression (e.g., mammary gland or egg white) (14, 18, 21). Such
approaches suffer from limitations including intermittent secretion,
gender dependency, and inefficient use of male animals.
Furthermore, random genomic integration often results in
unpredictable regulation, genetic instability, and variable
expression levels (14, 18, 21, 22). Thus, developing site-specific
integration strategies that enable systemic and stable antibody
expression remains a critical challenge.

Staphylococcus aureus is an important zoonotic pathogen
widely transmitted among humans, livestock, and poultry, posing
major public health threats (23). Its staphylococcal enterotoxin B
(SEB) is a heat-stable superantigen that persists in animal
populations (e.g., associated with mastitis) and can enter the
human food chain, leading to severe food poisoning outbreaks
(24). In our previous work, we identified a potent human antibody,
LXY (LXY-Ab), from a phage display library, which effectively
neutralized SEB toxicity in vivo (25).

In this study, we established a CRISPR/Cas9-mediated site-
specific integration strategy to generate genetically engineered (GE)
mice with the LXY-Ab heavy and light chain genes inserted into
well-characterized genomic safe harbor loci, ROSA26 and Hipp11
(H11). CRISPR/Cas9 was selected over traditional random
transgenesis and emerging tools such as prime editing due to its
unique suitability for large-fragment knock-in in zygotes. While
conventional transgenic methods often suffer from unpredictable
integration sites and variable expression, CRISPR/Cas9 combined
with homology-directed repair enables efficient and precise
insertion of multi-kilobase antibody cassettes with stable germline
transmission. The resulting GE mice exhibited systemic expression
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of glycosylation-competent human antibodies across multiple
biofluids, including serum, milk, and saliva (Figure 1). Notably,
the antibodies displayed enhanced binding affinity compared with
their CHO-expressed counterparts and provided robust in vivo
protection against SEB intoxication. These findings not only
demonstrate the feasibility of systemic antibody production in
transgenic animals, but also underscore the potential of CRISPR-
guided genomic engineering as a scalable platform for next-
generation biopharmaceutical manufacturing.

2 Materials and methods

2.1 Animals

Specific pathogen-free (SPF) female C57BL/6 mice (6-8 weeks
old) were obtained from Cyagen Biosciences Inc (Suzhou, China)
and age-matched BALB/c mice from Vital River Laboratories
(Beijing, China). Mice were housed under SPF environmental
condition and fed a normal chow diet and water. The animal
experiments were conducted in accordance with national
guidelines and were approved by the Institutional Animal Care
and Use Committee of Academy of Military Medical Sciences
(TACUC-DWZX-2021-621).

2.2 Targeted integration of SEB antibody
expression cassettes into ROSA26 and H11
loci

For targeted integration of SEB monoclonal antibody
expression cassettes, two sgRNAs were designed to target the first
intron of ROSA26 (sgRNA sequence: 5'-
ACTCCAGTCTTTCTAGAAGA-TGG-3") and HII (sgRNA
sequence: 5'-GAACACTAGTGCACTTATCC-TGG-3"). The
chemically synthesized sgRNAs were cloned into pX330-Cas9
vector via BbsI sites and validated by T7E1 mismatch cleavage
assays (26, 27). We constructed two homology-directed repair
(HDR) donor plasmids (pCAG-mAb-ROSA26 with 2.7/2.6 kb
homology arms; pCAG-mAb-HI11 with 3.0/2.4 kb arms)
containing a CAG promoter-driven expression cassette with
IRES-linked heavy and light chains. Targeted integration was
achieved through DNA homology-directed repair. After
linearizing the vectors, we co-microinjected donor plasmids with
Cas9 protein and sgRNAs into C57BL/6 zygotes using an
Eppendorf microinjection system (FemtoJet 4i, Hamburg,
Germany), enabling targeted integration via homology-
directed repair.

2.3 Generation and genomic validation of
GE mice

C57BL/6 zygotes were co-microinjected with CRISPR/Cas9
vectors (pX330 system) and donor vector fragments linearized by
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restriction endonuclease W using an Eppendorf FemtoJet® 4i
micromanipulator (Hamburg, Germany). Following pronuclear
microinjection, embryos were transferred into pseudopregnant
females using standardized surgical protocols. Founder animals
were genotyped via multiplex PCR with primers spanning
integration junctions (Supplementary Table S1), followed by RT-
qPCR quantification of LXY-Ab transcript levels across tissues. For
Southern blot validation, genomic DNA from tail biopsies was
digested with SspI (ROSA26 locus) or Mfel/Sacl/BstEII (H11 locus)
at 37°C for 16 hr. And then hybridized with a probe to the 5HR and
3’HR. The expected band size for the targeted ROSA26 allele was 9.1
kb and 9.8 kb, while for the H11 allele was11.5 kb and 8.9kb.

2.4 Biofluid collection and processing

Serum was collected via retro-orbital venous puncture using
heparinized capillary tubes, clotted at room temperature for 30 min,
and centrifuged at 6,000 x g for 10 min. Milk was obtained from
lactating mice (4-6-month-old) diluted 1:10 in Tris-buffered saline
(25 mM Tris-HCI, 100 mM NaCl, pH 7.4), and clarified by
centrifugation at 14,000 x g for 10 min (4°C) to isolate whey
fractions. Saliva was induced via intraperitoneal injection of
pilocarpine-HCI (0.5 mg/kg; Sigma-Aldrich, P6503), accumulated
during 5-10 min of supine positioning, and collected with
calibrated glass micropipettes. All biofluids were aliquoted and
stored at —80°C within 2 h of collection.

2.5 Histological analysis of engineered
mice expressing human antibody

Genetically engineered mice were euthanized, and tissues from
nine major organs (myocardium, liver, spleen, lung, kidney, brain,
thymus, small intestine, and large intestine) were dissected. Tissue
samples were trimmed into 1 x 0.5 cm blocks, fixed in 4%
paraformaldehyde solution for 24 h at 4°C, and subsequently
dehydrated in 75% ethanol for histological processing and
archival storage. Fixed tissues were embedded in paraffin,
sectioned into 5-pum-thick slices using a Leica RM2235 rotary
microtome (Leica Biosystems, Germany), and stained with
hematoxylin and eosin (H&E). Histological slides were imaged
using an Olympus VS200 slide scanner and analyzed with
OlyVIA 3.1 software (Olympus Corporation, Tokyo, Japan).

2.6 Western blot analysis

Serum samples from GE mice were mixed with 5x Laemmli buffer
under reducing or non-reducing conditions and denatured at 95°C for
5 minutes. Proteins were separated on 12% SDS-PAGE gels (Bio-Rad
Mini-PROTEAN system) and transferred to PVDF membranes using
an eBlot L1 transfer system (GenScript, Nanjing, China). Membranes
were blocked with 5% non-fat dry milk in Tris-buffered saline
containing 0.1% Tween-20 (TBST) for 1 hour at room temperature.
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Immunoblotting was performed with horseradish peroxidase (HRP)
-conjugated goat anti-human IgG (1:1,000; Thermo Fisher Scientific,
Cat# A18811) or goat anti-mouse IgG (1:1,000; Thermo Fisher
Scientific, Cat# A16072) for 1 h at 4°C overnight.
Chemiluminescent signals were detected using a ChemiScope 6100
imaging system (Clinx Science Instruments, Shanghai, China).

2.7 Expression and purification of
recombinant SEB antigen

The SEB antigen was expressed and purified as previously
described with modifications (25). Briefly, a C-terminal
hexahistidine (6xHis)-tagged SEB gene was cloned into the
pET28a prokaryotic expression vector and transformed into
Escherichia coli BL21(DE3) cells. Recombinant SEB expression
was induced under standard conditions, followed by bacterial
lysis and clarification via centrifugation. The soluble fraction was
subjected to immobilized metal affinity chromatography using Ni-
NTA resin (Cytiva, Cat# 11003399) under native conditions.
Purified SEB was dialyzed into PBS (pH 7.4) and quantified by
UV absorbance. Final purity (>95%) was verified by Coomassie
Brilliant Blue-stained SDS-PAGE (Supplementary Figure S3).

2.8 Binding kinetics analysis of SEB-specific
lgGs via surface plasmon resonance
spectroscopy

Binding kinetics of serum-derived SEB-specific IgGs were
analyzed using a Biacore T200 SPR system (Cytiva, Uppsala,
Sweden) equipped with CM5 sensor chips (Cytiva, Cat#
BR100530). Anti-human Fc antibody (10 pg/mL in 10 mM
sodium acetate, pH 5.0; Cytiva, Cat# BR100839) was immobilized
via amine coupling chemistry using 0.4 M 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) and 0.1 M N-
hydroxysuccinimide (NHS) for 7 min activation. Serum samples
or LXY-CHO antibody were diluted 1:100 in HBS-EP+ buffer (10
mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% surfactant P20,
pH 7.4) and injected at 10 pL/min for 60 s to capture IgGs. SEB
analyte (0.76-50 nM in HBS-EP+) was flowed at 30 uL/min with
120 s association and 300 s dissociation phases. Sensor surfaces were
regenerated with 10 mM glycine-HCI (pH 1.5) for 30 s. Binding
data were globally fitted to a 1:1 Langmuir interaction model using
Biacore T200 Evaluation Software 3.1 (Cytiva), yielding association
(Kon), dissociation (K.g) rate constants, and equilibrium
dissociation constant (Kp= K,¢/K,,).

2.9 Quantification of human antibody in
GE mouse biofluids via sandwich enzyme-
linked immunosorbent assay (ELISA)

96-well plates were coated with goat anti-human IgG (1:500 in 0.1
M carbonate-bicarbonate buffer, pH 9.6; KPL, a SeraCare company,
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#01-10-06) overnight at 4°C. After blocking with 5% non-fat milk in
PBS (1 h, 37°C), serially diluted human IgG1 standard (Cetuximab,
Bristol-Myers Squibb) and pre-diluted biofluid samples (1:5 in PBS, 5-
fold serial dilutions) were incubated for 1 h at 37°C. Plates were
washed with PBST (PBS + 0.05% Tween-20), incubated with HRP-
conjugated goat anti-human IgG (1:6,000; Thermo Fisher Scientific,
#A18811; 30 min, 37°C), washed again, and developed with 3,3’,5,5"-
tetramethylbenzidine (TMB) substrate (Thermo Fisher, Scientific,
#34028; 15 min, dark). Reactions were stopped with 0.5 M H,SO,,
and absorbance (450 nm) was measured using a SpectraMax M5 plate
reader (Molecular Devices, San Jose, USA). Antibody concentrations
were calculated from a 4-parameter logistic standard curve (R* > 0.99)
using SoftMax Pro 7.0 software (Molecular Devices).

2.10 Detection of total mouse IgG in serum
by sandwich ELISA

Total IgG levels in mouse serum were measured using an
analogous sandwich ELISA. Briefly, 96-well plates were coated
with goat anti-mouse IgG (Thermo Fisher Scientific, #A28174).
After blocking, serial dilutions of a mouse IgG ELISA Standard
(Thermo Fisher Scientific, # 39-50400-65) and diluted serum
samples were applied. Bound IgG was detected using HRP-
conjugated goat anti-mouse IgG (1:3,000; Thermo Fisher
Scientific, #A16078), followed by TMB development and acid stop
as above. Total IgG concentrations were determined against the
mouse IgG standard curve.

2.11 Determination of antibody-SEB
binding ECs by ELISA

96-Microplates were coated with 2 pg/mL SEB in carbonate-
bicarbonate buffer (pH 9.6) overnight at 4°C. After three washes with
PBST, nonspecific binding was blocked with 5% skim milk in PBST
for 1 h at 37°C. Two-fold serially diluted antibodies (starting at 1 pg/
mL in PBST) were added in triplicate and incubated overnight at 4°C.
Following washes, HRP-conjugated goat anti-human IgG (1:6,000 in
PBST; Thermo Fisher Scientific, Cat# A18811) was added for 30 min
at 37°C. TMB substrate was incubated for 15 min in the dark,
reactions terminated with 0.5 M H,SO,, and absorbance measured
at 450 nm. ECs, values were calculated using a four-parameter
logistic model (GraphPad Prism v9.0).

2.12 Competitive ELISA for epitope analysis

SEB-coated plates (prepared as above described) were blocked
with 5% skim milk in PBST. Serially diluted serum samples
containing LXY-R26 or LXY-HI11 (1:2 dilutions) were pre-
incubated with biotinylated LXY-CHO (prepared using EZ-Link
NHS-PEG4-Biotin, Thermo Fisher Scientific, Cat# A39259) for 30
min at 37°C. The pre-incubated mixtures were added to the SEB-
coated plates in triplicate and incubated for 30 min at 37°C. After
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washing with PBST, streptavidin-HRP (1:3,000 dilution in PBST;
Thermo Fisher Scientific, Cat# 21134) was added for 30 min at
37°C. TMB substrate was used for color development, and reactions
were terminated with 0.5 M H,SO, as described. Absorbance was
measured at 450 nm. Competition binding curves were generated
using GraphPad Prism v9.0.

2.13 Protective efficacy of recombinant
LXY-Ab-containing serum in SEB-induced
toxic shock

Female BALB/c mice (6-8 weeks old) were sensitized via
intraperitoneal (i.p.) injection of D-galactosamine hydrochloride
(D-GalN; 1 g/kg; Sigma-Aldrich, Cat# G0500). Thirty minutes post-
sensitization, mice received i.p. injections of either SEB (0.25 mg/kg
in PBS) or PBS (control). For therapeutic evaluation, a separate
cohort was administered D-GalN (1 g/kg, i.p.) followed 30 min later
by premixed solutions of SEB (0.25 mg/kg) with either LXY-Ab-
containing transgenic serum (25 or 100 mg/kg LXY-Ab) or purified
LXY-CHO antibody (100 mg/kg). Survival was monitored for 120 h
post-injection, with mortality rates calculated at the study endpoint.
Statistical significance was assessed using Kaplan-Meier survival
analysis and log-rank test (GraphPad Prism v9.0).

2.14 N-glycan analysis of LXY10 mAbs from
genetically engineered mice serum

Serum samples (GE mouse-derived or purified LXY-CHO) were
thawed on ice, clarified by centrifugation (12,000 x g 10 min, 4°C),
and quantified via BCA assay (PierceTM, Cat# 23225). Proteins
(50 pg/sample) underwent sequential reduction (5 mM DTT, 56°C,
30 min), alkylation (11 mM iodoacetamide, dark, 15 min), and tryptic
digestion (1:50 w/w, 16 h, 37°C). Peptides were acetone-precipitated,
reconstituted in 200 mM triethylammonium bicarbonate (TEAB) via
ultrasonication, and enriched for glycopeptides using hydrophilic
interaction liquid chromatography (HILIC) microcolumns with
stepwise elution (0.1% TFA, 50 mM NH,HCO;, 50% acetonitrile).
Enriched glycopeptides were separated on a C18 column (75 um x 25
cm, 1.7 um) via a Vanquish Neo UHPLC system with a 34-min
gradient (4-99% acetonitrile/0.1% formic acid, 400 nL/min) and
analyzed on an Orbitrap Astral mass spectrometer in data-
dependent acquisition mode (full scan: 240,000 resolution at 700-
2,000 m/z; MS/MS: 80,000 resolution; 0.6 s cycle time; 1,900 V nano-
electrospray ionization).

Raw data were processed using Proteome Discoverer v3.0 and
Byonic v4.0, searching human IgGl Fc glycopeptides (UniProt:
P01857) against the GlyGen database (https://www.glygen.org/).
Glycans were classified into five subtypes (paucimannose, high
mannose, complex/hybrid, fucosylated, sialylated) based on
structural features (28), filtered by mass accuracy (<5 ppm),
Byonic score (2300), and retention time (+ 0.5 min). Site-specific
co-glycosylation heterogeneity was quantified using Skyline v22.2
(MacCoss Lab, USA).
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Locus-specific CRISPR/Cas9 integration enables stable and heritable production of human anti-SEB antibodies with preserved functionality in GE
mice. This schematic depicts a genome-editing platform enabling independent integration of the human anti-staphylococcal enterotoxin B (SEB)
monoclonal antibody LXY-Ab into two distinct genomic safe harbor loci: ROSA26 (Chr6) or H11 (Chrll). The strategy achieves site-specific, heritable
insertion at either locus, ensuring robust and stable expression of fully glycosylated LXY-Ab across serum, milk and saliva. It maintains specific
N-glycosylation patterns that preserve high SEB-binding affinity and in vivo neutralization efficacy. By facilitating comparative evaluation of ROSA26-
and H11-targeted models, this platform combines locus-dependent expression stability with glycoform precision, advancing scalable in vivo
production of therapeutic antibodies and serving as a robust tool for antitoxin development and functional validation.

2.15 Data analysis

Data analyses employed parametric (Student’s t-test, two-way
ANOVA with Tukey’s post hoc test) or non-parametric tests based
on normality assessment (Shapiro-Wilk test, 0=0.05). Categorical
variables (e.g., phenotype frequencies) were analyzed using Chi-
square/Fisher’s exact tests, while survival data utilized log-rank
Mantel-Cox testing. Significance thresholds (*P<0.05, **P<0.01,
¥P<0.001, *¥*P< 0.0001) incorporated Bonferroni correction
for multi-group comparisons. All analyses were conducted in
GraphPad Prism 9.0 and R v4.2.1, with exact P-values and effect
sizes reported where applicable.

3 Results

3.1 Generation and identification of GE
mice targeting the ROSA26 and H11 loci

To enable site-specific expression of human anti-SEB antibody
(LXY-Ab) in mouse, we engineered CRISPR/Cas9 knock-in systems
targeting the ROSA26 and HII genomic safe harbor loci. Donor
plasmids pPCAG-mAb-ROSA26 and pCAG-mAb-H11 incorporated
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locus-specific homology arms (5HR/3’HR) to ensure targeted
integration, a constitutive CAG promoter to drive antibody
expression, bicistronic organization of light/heavy chain
sequences via IRES-mediated co-expression, and transcriptional
termination through a polyadenylation signal (Figures 2a, 3a).
Complementary CRISPR vectors (pX330-ROSA26Tgl and
pX330-H11Tgl) delivered locus-specific sgRNAs (26, 27) were
engineered for precise double-strand break generation, Cas9
nuclease for homology-directed repair. Primers P1-P8 was
designed to detect GE mice (Supplementary Table SI).

Pronuclear microinjection of paired donor/CRISPR systems into
C57BL/6 mice zygotes yielded germline-transmissible integration
efficiencies of 0.95% (ROSA26) and 1.30% (HII) (Supplementary
Table S2), respectively. For ROSA26 targeting, microinjection of 210
fertilized eggs into 8 pseudopregnant females produced 46 pups, with
2 transgenic founders confirmed by multiplex PCR (Supplementary
Table S2). Similarly, H1I-targeted microinjection of 230 eggs into 9
females generated 65 pups, identifying 3 transgenic founders.
Founder (F0) mice were outcrossed with wild-type counterparts to
eliminate mosaicism, followed by heterozygote intercrossing to
establish homozygous F1 lines.

All F1 homozygotes underwent molecular validation: ROSA26-
targeted lines exhibited 5 (2.7 kb) and 3’ (2.6 kb) junctional PCR
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CRISPR/Cas9-mediated integration of human LXY-Ab at the ROSA26 locus. (a) Schematic of the knock-in strategy targeting the first intron of the
ROSAZ26 locus (Chr6: 113,043,498-113,054,144). The donor vector contains 5" and 3’ homology arms (5'HR: 2,115 bp; 3'HR: 2,153 bp), a CAG
promoter-driven bicistronic cassette (light chain [LC] + IRES + heavy chain [HC]), a polyadenylation signal (PA), and restriction sites (Ssp/, Mfel) for
Southern blot validation. (b, c¢) PCR genotyping of F1 GE mice using primers flanking the integration junctions, yielding 2.7 kb (5) and 2.6 kb (3")

amplicons. Wild-type (WT) and no-template controls

(NC) confirm specificity, with DNA ladder (15 kb marker, M) as reference. (d, e) Southern blot

analysis of genomic DNA digested with restriction enzymes, hybridized with locus-specific probes. WT alleles display bands at 9.1 kb (Ssp/) and 12.6
kb (Mfel), while knock-in (KI) alleles yield 4.09 kb (Ssp/) and 9.8 kb (Mfel), confirming precise integration. Primer and probe sequences are detailed in

Supplementary Table S1.

products (Figures 2b, ¢) and Southern blot fragments at 9.1 kb
(SspI) and 9.8 kb (Mfel) (Figures 2d, e). HI1-targeted lines showed
3.1 kb (5°) and 2.4 kb (3’) PCR amplicons (Figures 3b, c) with
Southern blot bands at 11.5 kb (Mfel/Sacl) and 8.9 kb (BstEII)
(Figures 3d,
(Supplementary Figure S1) confirmed precise recombination. This

e). Sanger sequencing of integration sites
tiered validation strategy—integrating fragment sizing, restriction

mapping, and sequencing—definitively demonstrated locus-specific
integration without detectable random events.

3.2 Characterization of GE mice expressing
human antibody

Histopathological evaluation of hematoxylin and eosin (H&E)-
stained tissues from ROSA26[KI/KI] and HI1I[KI/KI] antibody GE
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mice demonstrated preserved cytoarchitecture across major organs
compared to wild-type (WT) controls (Figure 4a). Cardiomyocytes
exhibited uniform alignment without hypertrophy or fibrosis, hepatic
plates maintained normal lobular architecture without steatosis or
inflammatory infiltrates, splenic follicles showed distinct red and white
pulp demarcation, pulmonary alveoli had intact septal structures,
renal glomeruli retained typical capillary tuft morphology, and
cerebral cortical layers displayed orderly neuronal stratification.
Supplementary tissues (Supplementary Figure S2), including the
thymus and intestines, also revealed preserved corticomedullary
organization and mucosal architecture, respectively. No genotype-
specific pathologies—such as hyperplasia, metaplasia, or cellular
degeneration—were observed, consistent with the established safety
profiles of ROSA26 and H11I as genomic safe harbor loci (29).
Comparative phenotypic profiling of human antibody gene-
targeted mouse models revealed locus- and genotype-dependent
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are provided in Supplementary Table S1.

developmental variations across four transgenic lines (Figure 4b).
While ocular anomalies in transgenic cohorts (2.7-8.9%) remained
below the 12% spontaneous ocular defect rate in age-matched
C57BL/6] WT mice (30). Notably, strain-specific anomalies such
as hereditary hydrocephalus (1-4% in WT) and microphthalmia
[Mouse Phenome Database (31)]—were absent across all transgenic
lines. ROSA26-KI/KI mice exhibited dose-dependent increases in
cataracts (6.67% vs. 0.67% in heterozygotes, P = 0.013) and growth
retardation (15.56% vs. 5.37%, P = 0.028). Inter-locus comparisons
demonstrated mutually exclusive phenotype clustering, with
cataracts restricted to ROSA26-KI/KI and alopecia exclusive to
HI11-KI/KI, both lines maintaining stable germline transmission
through six generations without phenotypic attenuation (data not
shown). Collectively, these findings indicate that targeted human
antibody LXY-Ab gene integration at ROSA26 and HI11 loci does
not globally compromise murine health beyond natural
developmental variability.
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3.3 Tissue-specific expression and
structural integrity of full-human LXY-Ab
antibody in GE mice

RT-PCR and Western blot (WB) analyses were performed to
evaluate the transcriptional and translational expression of the full-
human LXY-Ab antibody in ROSA26 and HII GE mice. Results
(Figure 5a) show LXY-Ab transcription in multiple organs (heart,
liver, spleen, lung, kidney, intestine, uterus, thymus, brain) in both
loci, with no signal in wild-type controls, confirming ROSA26 and
HI1I as genomic safe harbors. Next, WB analysis (Figure 5b) shows
revealed zygosity-dependent expression of LXY-Ab under reducing
conditions, with distinct bands corresponding to the heavy chain
(~55 kDa) and light chain (~26 kDa) showing significantly stronger
intensities in homozygous ([KI/KI]) mice compared to
heterozygotes ([KI/+]). Non-reducing conditions further
confirmed the structural integrity of LXY-Ab, as evidenced by a
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FIGURE 4
Histopathological and phenotypic assessment of ROSA26 and H11 knock-in mice. (a) Representative hematoxylin and eosin (H&E)-stained sections
of myocardium, liver, spleen, lung, kidney, and cerebrum from wild-type (WT), ROSA26 [KI/KI], and H11 [KI/KI] mice. Tissues are displayed at two
magnifications: spleen and lung (20X, scale bar: 20 um; 40X, scale bar: 50 pm); myocardium, liver, kidney, and cerebrum (40X, scale bar: 20 um;
100x, scale bar: 50 um). Data represent three independent biological replicates. (b) Comprehensive phenotypic analysis comparing incidence rates
(%) of developmental and behavioral phenotypes between heterozygous and homozygous mice: Microphthalmia (Mic), Anophthalmia (Ano), Corneal
opacity (CorO), Cataract (Cat), Runting (Rtn), Dystocia-related death (DysD), Unexplained death (UnkD), Alopecia (Alop), Cannibalism (Cann), and
Total defects (TotDef). Statistical significance (*P < 0.05, ** P < 0.01) was determined by x? or Fisher's exact test (applied when expected cell counts
<5). Sample sizes: ROSA26 [KI/+] (n=149), ROSA26 [KI/KI] (n=90), H11 [KI/+] (n=138), H11 [KI/KI] (n=147).

single band at ~150 kDa corresponding to the fully assembled
antibody (Figure 5c¢), probed with anti-mouse IgG, verifies
endogenous murine IgG in all samples, excluding cross-reactivity.
Collectively, these results confirm ROSA26 and HI1 as robust loci
for systemic, zygosity-dependent expression of full-human LXY-Ab
in mice.

3.4 Expression of anti-SEB recombinant
human antibodies in multiple biofluids of
GE mice

Longitudinal analysis of human antibody LXY-Ab expression
revealed stable, tissue-specific production profiles across multiple

Frontiers in Immunology

biofluids in GE mice (Figure 6). The CAG promoter drove systemic
antibody secretion in serum (Figures 6a, b), milk (Figure 6¢), saliva
(Figure 6d) with homozygous genotypes (KI/KI) universally
outperforming heterozygotes (KI/+). In serum, HII[KI/KI]
achieved peak concentrations (207.9 + 33.5 mg/L, +31% vs HII
[KI/+], P = 0.002; Figure 6a) and maintained stability over 140 weeks
(<5% decline, Figure 6b). Tissue-specific dominance emerged: H11
[KI/KI] dominated saliva (25.8 + 3.6 mg/L, 2.3-fold over HI11[KI/+],
P = 0.002; Figure 6d), while ROSA26[KI/KI] excelled in milk (43.0 +
2.3 mg/L, +94% vs ROSA26[KI/+], P < 0.0001; Figure 6¢).

To assess the contribution of the transgenic antibody to the
overall antibody pool, we calculated the proportion of LXY-Ab
relative to the total serum IgG. The total mouse IgG concentration
was found to be within the normal range of 3-5 g/L (32, 33),
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Tissue-specific expression and structural validation of full-human LXY-Ab in ROSA26 and H11 GE mice. (a) RT-PCR analysis of LXY-Ab mRNA
expression across multiple tissues (heart, liver, spleen, lung, kidney, L intestine, S intestine, uterus, thymus, and brain) from ROSA26 and H11
homozygous knock-in mice. Amplification of the expected 180 bp product (LXY-Ab) and 150 bp GAPDH control confirmed tissue-wide transcription,
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detected LXY-Ab heavy chain (~55 kDa) and light chain (~25 kDa), with expression intensity correlating with zygosity (KI/KI > KI/+). Non-reducing
conditions revealed intact IgG (~150 kDa). (c) Parallel blots probed with goat anti-mouse IgG verified endogenous murine IgG in all samples, excluding
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ROSA26 [KI/+11, H11 [KI/KI] and H11 [KI/+]).

indicating no major perturbation of the endogenous immune
system. Based on our measurements, LXY-Ab constituted
approximately 2.9% to 4.4% of the total serum IgG across the
different transgenic lines (Supplementary Table S3), confirming its
robust and specific expression.
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These results demonstrate that CAG promoter-driven targeted
integration at ROSA26 and HII loci supports robust,
compartmentalized expression: HI11 favors systemic persistence
(serum/saliva), whereas ROSA26 enhances mucosal durability
(milk). The sustained secretion over 140 weeks underscores these
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Systemic and sustained expression of SEB-specific monoclonal antibody LXY-Ab in GE mice. (a) Serum LXY-Ab concentrations in heterozygous
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saliva antibody concentrations across genotypes (n = 7-14). Data represent mean + SEM. Statistical significance was determined by two-way ANOVA
with Tukey's post hoc test (*P<0.05, **P<0.01, ****P< 0.0001; ns = not significant)

loci as genomic safe harbor loci for long-term human antibody

production in mice.

3.5 Enhanced affinity and epitope
conservation of recombinant anti-SEB
antibodies from GE mice

Recombinant anti-SEB antibodies from ROSA26 (LXY-R26,
Kp=0.108 nM) and HII (LXY-H11, Kp=0.154 nM) GE mice
exhibited 1.7- and 1.2-fold higher affinity, respectively, compared
to CHO-expressed LXY-CHO (KD = 0.18 nM), as shown by surface
plasmon resonance (SPR) (Figures 7a-c, f). The increased affinity
was driven by accelerated association kinetics (LXY-R26:
K,n=1.01x10° M's!; LXY-H11: K,,=6.93x10° M's! vs LXY-
CHO: K,,=6.14x10° M™'s™"). ELISA binding curves (Figure 7d)
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confirmed enhanced functional potency, with ECs, values for
transgenic antibodies (3.65 and 3.55 ng/mL) 9.3-fold lower than
LXY-CHO (34.14 ng/mL). Competition assays (Figure 7¢) revealed
complete (>99%) inhibition of LXY-CHO binding by both
transgenic antibodies, confirming identical epitope specificity.
These results demonstrate that the ROSA26 and H11 loci in mice
enable production of fully human antibodies with superior affinity,
accelerated antigen engagement, and unaltered epitope fidelity.

3.6 Glycosylation differences in GE
mouse-derived LXY-Ab may contribute to
enhanced SEB neutralization activity

A comparative analysis of post-translational modifications
(PTMs) in N-glycosylation patterns revealed expression system-
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Functional characterization of LXY-Ab affinity and specificity across transgenic and CHO-derived sources. (a—c) Surface plasmon resonance (SPR)
sensorgrams of SEB-binding kinetics for LXY-Ab derived from homozygous ROSA26 [KI/KI] serum (LXY-R26, (a), H11 [KI/KI] serum (LXY-H11,

(b), and CHO-purified antibody (LXY-CHO, (c). Anti-human Fc antibody was immobilized on a CM5 chip to capture LXY-R26, LXY-H11, or LXY-CHO,
followed by SEB analyte injection (120 s association, 300 s dissociation). (d) ELISA dose-response curves binding to SEB comparing SEB-binding
efficacy, with half-maximal effective concentrations (ECsg) indicated (mean + SEM, n = 3 independent replicates). (€) Competitive ELISA using
biotinylated LXY-CHO, showing concentration-dependent inhibition by serum antibodies from both transgenic lines, confirming conserved epitope
targeting. (f) Summary of kinetic parameters (Kon, Kogr, Kp) for all groups. ****P < 0.001 vs. LXY-CHO group.

dependent differences between CHO-derived LXY-CHO and GE
mouse serum-expressed LXY-Ab (Figure 8a, Supplementary Figure
S4). Liquid chromatography-mass spectrometry (LC-MS) profiling
identified distinct glycoform distributions. LXY-CHO
predominantly contained complex/hybrid glycans (25.8%) with
moderate fucosylation (45.3%) and low sialylation (10.3%), while
LXY-Ab exhibited enriched fucosylation (70%) and high-mannose
glycans (20%), with undetectable sialylation. Co-occurrence
network analysis further demonstrated greater glycan
microheterogeneity in LXY-Ab compared to LXY-CHO
(Supplementary Figure S4), likely attributable to species-specific
glycosylation machinery in the GE mouse expression system. These
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differences in glycosylation profiles may impact the functional
properties of the antibodies. Functional evaluation in a lethal SEB
challenge model demonstrated dose-dependent protection
(Figure 8b). Administration of 100 mg/kg LXY-Ab achieved
complete survival (8/8, P<0.0001 vs. untreated controls), whereas
the 25 mg/kg dose showed no significant benefit. Notably, the high-
dose LXY-Ab exhibited a numerically superior survival rate
compared to the CHO-expressed positive control LXY-CHO
(100% vs. 87.5%, p=0.32), although statistical significance was not
achieved. This trend may reflect enhanced affinity of the transgenic
animal-derived antibody or differences in post-translational
modifications between murine and CHO expression systems.
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Glycan profiling and protective efficacy of GE mouse serum in SEB-induced toxic shock. (a) Comparative N-glycan profiling of LXY-Ab purified from
GE mouse serum versus CHO cell-derived antibody. Percentages indicate the relative abundance of distinct glycoforms. (b) Schematic of the LDsq
toxic shock model: BALB/c mice were sensitized with (D-GalN, 1 g/kg) followed by SEB (0.25 mg/kg). Survival kinetics of mice therapeutically treated
(0 h) with transgenic serum [KI/KI] containing LXY-Ab (25 mg/kg, 100 mg/kg) or CHO-purified LXY-Ab (100 mg/kg). Untreated controls (D-GalN + SEB)
and PBS-treated mice were included (n=8/group). Survival was monitored for 120 h post-SEB challenge. Data represent mean + SEM from three
independent experiments. Statistical significance was determined by log-rank test (**P<0.01, ns = not significant).

4 Discussion

The transgenic animal bioreactor system has emerged as a
potential complementary platform for biopharmaceutical
production, offering advantages over traditional Chinese hamster
ovary (CHO) systems in cost-effectiveness, scalability, and
eukaryotic post-translational modifications (PTMs) essential for
therapeutic protein functionality (9, 34, 35). However,
conventional approaches relying on tissue-specific promoters
(e.g, mammary glands) limits scalability to female animals or
random transgene integration face inherent limitations, including
gender-restricted utility, regulatory instability, and low expression
efficiency (9, 11, 36). Our study addresses these challenges through
CRISPR/Cas9-mediated site-specific integration of anti-SEB
antibody genes into ROSA26 and HII genomic safe harbors
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(GSHs), achieving systemic and stable antibody expression in
GE mice.

The selection of ROSA26 and HI1I loci as integration sites was
strategically motivated by their distinct advantages as GSHs. Both
loci exhibit open chromatin structures conducive to stable
transgene expression, with ROSA26 demonstrating superior
promoter accessibility across mammalian species and HII
showing enhanced compatibility for large DNA fragment
integration (37, 38). While our study achieved comparable
integration efficiencies (0.95% vs 1.30%) and expression levels
between these loci (Figures 2, 3; Supplementary Table S2), HI1I-
targeted constructs displayed marginally better expression
consistency over successive generations (Figure 6), potentially
attributable to its evolutionary conservation in transcriptional
regulation. This systemic expression strategy circumvented the
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physiological interference concerns associated with ubiquitous
transgene expression, as evidenced by normal murine
development and histoarchitecture (Figure 4).

The bimodal distribution of LXY-Ab concentrations observed
in ROSA26[KI/KI] mice (Figure 6a) suggests considerable
individual variability in transgene expression. This heterogeneity
may arise from post-transcriptional, post-translational, or
epigenetic mechanisms. In particular, subtle epigenetic
modifications—such as DNA methylation or histone acetylation
at the ROSA26 locus—could contribute to expression inconsistency,
as previously reported for genomic safe harbor sites (39, 40). These
results underscore the importance of accounting for individual
variation in the breeding and evaluation of transgenic animal
models. Future studies incorporating systematic epigenetic
profiling will help clarify the regulatory mechanisms involved and
improve the consistency of recombinant antibody production in
transgenic bioreactor systems.

Notably, transgenic-derived LXY-Ab exhibited superior SEB-
neutralizing efficacy compared to CHO-produced counterparts
(100% vs 87.5% survival; P = 0.32; Figure 8b), potentially
correlating with enhanced affinity (Kp = 1.08-1.54 nM vs. 1.8
nM; Figure 6) and unique N-glycosylation profiles (Figure 8a).
Murine-derived antibodies displayed distinct PTM profiles
characterized by enriched high-mannose glycans (20% vs CHO’s
9.3%) and elevated fucosylation (70% vs 45.3%) at Asn297
(Figure 8a). In comparison to human serum IgG, which typically
exhibits core fucosylation at 90-96%, sialylation at 4-20%, high-
mannose glycans at 1-2.5%, and dominant complex/hybrid glycans
at 97.5-99% (41-43), the mouse-derived LXY-Ab shows
fucosylation levels more aligned with human patterns than CHO-
derived versions, though the elevated high-mannose content is
atypical for circulating human IgG and may reflect species-
specific cellular processing or purification challenges from mouse
serum. Such species-specific PTM divergence may influence
antibody affinity and effector functions (14, 43, 44), suggesting
that transgenic systems could provide valuable platforms for
generating “biobetters”.

Our platform advances transgenic bioreactor technology
through three critical innovations: First, constitutive systemic
expression via GSH integration resolves historical concerns
about ectopic transgene toxicity while maintaining 140-week
expression stability (Figure 6). Second, the multi-biofluid
harvesting capability (serum: 82-208 mg/L; milk: 34-43 mg/L;
saliva: 11-24 mg/L; Figure 6) overcomes the 50% biomass waste
inherent in gender-restricted systems. Third, the CAG promoter-
driven design ensures cross-tissue expression without mammary-
specific purification challenges posed by casein interference.
Although current titers (mg/L scale) trail mammary-specific
systems achieving g/L outputs (21, 22). Thus, GE mice should
be viewed primarily as a proof-of-concept research platform for
rapid antibody prototyping and mechanistic studies. Future
translation toward industrial application will likely require
adaptation of this framework to larger livestock species, where
volumetric yield and species-specific PTMs could be harnessed for
scalable antibody production.
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In summary, the human antibody target knock-in mouse
bioreactors, characterized by robust human mAb expression, long -
term, sustained systemic production, and stable heritable
transmission, can be rapidly propagated. Our results also show that
GE mice serum have better protective effect in a toxic shock syndrome
model compared to mAbs derived from the traditional CHO cell
culture systems. GE mice with systemic antibody expression represent
a complementary strategy for producing recombinant mAbs. In
principle, this strategy could be extended to antibodies targeting
other bacterial toxins (e.g., anthrax toxin) or viral antigens (e.g.,
influenza hemagglutinin), which we plan to explore in future
studies. The simple and feasible method provided in this study lays
the foundation for the future large-scale production of fully human
antibodies using transgenic animal bioreactors and offers new ideas for
the preparation of disease-resistant livestock in the foreseeable future.

5 Conclusion

This proof-of-concept study establishes the biosafety of systemic
expression of exogenous pathogen-targeting antibodies in GE mice,
yet highlights key challenges for therapeutic translation. Current
limitations in serum antibody purification (constrained by murine
blood volume) and expression titers warrant technical innovations,
including micro-scale analytical platforms and expression cassette
optimization via dual-GSH targeting or copy number amplification.
Although GE mice provide a valuable in vivo platform for the
expression of fully human antibodies, their translational application
remains limited by species-specific differences in immune context and
by lower production yields compared to CHO systems. Future work
will require rigorous safety evaluation and potential adaptation to
larger livestock species to overcome these limitations and enable
therapeutic scalability. These advances will catalyze therapeutic
translation, positioning transgenic bioreactors as pillars of next-
gen biomanufacturing.
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