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Esophageal squamous cell carcinoma (ESCC) remains a global health challenge,
with immune checkpoint inhibitors (ICls) reshaping therapeutic strategies.
However, heterogeneous responses underscore the urgent need for robust
predictive biomarkers. While PD-L1 expression remains the most widely used
marker, its limitations, including spatial heterogeneity and inducible expression,
have prompted exploration of alternative and composite indicators. Recent
advances highlight the predictive potential of tumor immune
microenvironment (TME) features such as tumor-infiltrating lymphocytes (TILs),
tertiary lymphoid structures (TLSs), stromal maturity, and T cell-inflamed gene
expression profiles. Concurrently, tumor-intrinsic biomarkers, including
microsatellite instability, tumor mutational burden, neoantigen load, and
chromosomal alterations—have shown promise in stratifying immunotherapy
responders. Multi-omics approaches, liquid biopsies, and integration of host
factors such as gut microbiota are emerging to refine patient selection. This
review comprehensively examines evolving biomarkers and therapeutic trials,
emphasizing the need for integrative precision strategies to optimize
immunotherapy efficacy in ESCC.
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1 Introduction

Esophageal squamous cell carcinoma (ESCC), ranking seventh in global incidence and
sixth in cancer-related mortality (1), is typically diagnosed at advanced stages with limited
treatment efficacy. Immune checkpoint inhibitors (ICIs) have shown promising efficacy
and manageable safety in advanced ESCC, as evidenced by trials such as KEYNOTE-181
(2), ESCORT (3), and KEYNOTE-590 (4), leading to their integration from later-line to
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first-line and neoadjuvant settings. However, the clinical benefit of
ICIs is heterogeneous and influenced by multiple factors, including
tumor immunogenicity, the tumor immune microenvironment
(TIME), and host-related characteristics. Not all patients derive
satisfied responses, underscoring the urgent need for robust
predictive biomarkers to identify likely responders (5).
Programmed death-ligand 1 (PD-L1) expression remains the
most widely recognized biomarker for predicting response to ICIs.
Nevertheless, its predictive accuracy is limited, and a substantial
proportion of patients with high PD-L1 expression still fail to
respond to treatment (5). Ongoing research efforts have identified
two broad categories of emerging biomarkers with potential
predictive value in immunotherapy. The first category
encompasses features of the TIME, such as tumor-infiltrating
lymphocytes (TILs), the presence of tertiary lymphoid structures
(TLS), and T cell-inflamed gene expression profiles. These factors
reflect the immune contexture within the tumor and its potential
responsiveness to immune modulation (6). The second category
involves molecular characteristics intrinsic to tumor cells, including
high microsatellite instability (MSI-H)/deficient mismatch repair
(dMMR), tumor mutational burden (TMB), and neoantigen load,
all of which are associated with enhanced immunogenicity and
increased likelihood of immune recognition (7). Additional
exploratory biomarkers include serum non-coding RNAs, DNA
methylation signatures, and components of the gut microbiome,
though their predictive relevance in ESCC remains to be validated
through larger, high-quality datasets (8, 9). This review aims to
provide a comprehensive synthesis of the current understanding of
immunotherapeutic biomarkers in ESCC, with particular emphasis
on PD-L1, the TIME, tumor cell-related molecular features, and
their clinical implications in guiding immunotherapy strategies.

2 Mechanistic and spatial
heterogeneity of PD-L1 expression in
ESCC

PD-L1, a pivotal immunoregulatory molecule, is broadly
expressed across solid tumors and infiltrating immune cells, and
remains the most extensively investigated biomarker for predicting
clinical responses to ICI therapy. In the KEYNOTE-181 trial,
pembrolizumab improved median overall survival (OS) to 12.5
months in ESCC patients with PD-L1 combined positive score
(CPS) =10, compared to 10.0 months in the overall cohort (2).
Consistent outcomes were observed in the KEYNOTE-590
subgroup with CPS 210 (4). Nevertheless, PD-L1 fails to serve as
a definitive predictor of therapeutic efficacy. In the ESCORT trial,
demonstrated no significant correlation between PD-L1 expression
levels and clinical response parameters (3), and responses have been
reported even in PD-LI negative patients (10). Despite its clinical
utility, PD-L1 as a predictive biomarker is limited by spatial
heterogeneity and TME complexity (11, 12). Expression may
differ across tumor regions and metastatic sites, leading to
sampling bias. Moreover, PD-L1 upregulation is not exclusively
IFN-y-driven; alternative pathways, such as PTEN loss or EGFR
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mutations, can induce expression independent of antitumor
immunity (13). Its inducible nature also results in dynamic
changes under therapeutic or immune pressure, undermining its
stability as a predictive marker. As immunotherapy shifts toward
combination regimens, reliance on PD-L1 alone has diminished.
These limitations underscore the need for integrative biomarker
strategies, incorporating tumor-infiltrating lymphocytes, T cell-
inflamed gene signatures, or composite immune scores, to
improve stratification and optimize treatment efficacy in ESCC
and beyond (14).

3 The tumor immune
microenvironment

3.1 Tertiary lymphoid structures

TILs, particularly CD8" cytotoxic T cells, are central mediators
of anti-tumor immunity and have emerged as prognostic and
predictive biomarkers across malignancies (15-17).
Immunophenotyping based on CD3" and CD8" T cell density
and localization delineates tumors into immune-desert, inflamed,
immune-excluded, and immunosuppressed categories, with ICIs
demonstrating greater efficacy in inflamed phenotypes (18).
Integrating PD-L1 expression with TIL density improves
predictive accuracy for PD-1/PD-L1 blockade, with PD-L17/TIL*
tumors showing superior responses (19). In ESCC, however, the
prognostic and predictive roles of TILs remain to be fully
elucidated, necessitating refined stratification strategies based on
TIL subtypes and additional immune markers. Eosinophils, beyond
their role in eosinophilic esophagitis, are found to inversely
correlate with lymph node metastasis in ESCC and may serve as
dynamic markers of immunotherapy response (20, 21). Tumor-
associated macrophages (TAMs), especially M2-like subsets, drive
immune evasion by secreting IL-10 and TGE-p, fostering Treg
recruitment and CTL inhibition (22), with high TAM density
correlating with poor prognosis in ESCCs (23). Functional
exhaustion of NK cells in ESCC is characterized by diminished
granzyme B and activating receptors (NKp30, NKG2D), driven by
IL-6/IL-8-mediated STAT3 activation, and correlates with disease
progression (24). Myeloid-derived suppressor cells (MDSCs)
further contribute to immunosuppression via ROS, arginase-1,
and nitric oxide production (23, 25, 26). Collectively, these
immune components establish a profoundly immunosuppressive
tumor microenvironment, attenuating cytotoxic responses and
limiting immunotherapeutic efficacy. TLSs are ectopic lymphoid
aggregates formed in non-lymphoid tissues, including tumor sites
and regions of chronic inflammation, and are composed of diverse
immune cell populations (27). While studies directly examining the
role of TLSs in ESCC remain limited, accumulating evidence
indicates that TLSs are robust predictors of ICI efficacy in several
tumor types, independent of PD-L1 expression status (28). Notably,
a recent study in melanoma demonstrated that patients exhibiting
high TLS-related gene signature scores (TLS-H) experienced
significantly improved survival following CTLA-4 blockade,
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highlighting the critical contribution of TLSs to the maintenance of
effective anti-tumor immune responses (29). The potential
predictive value of TLSs in ESCC immunotherapy warrants
further investigation.

3.2 Tumor stromal maturity

TSM is assessed based on the organization and morphology of
collagen fibers and the presence of myxoid changes within the
tumor stroma, and is generally categorized into mature,
intermediate, and immature subtypes. TSM has been strongly
associated with tumor metastasis and prognosis in malignancies
such as colorectal cancer (30) and gastric cancer (31). Immature
stromal subtype in ESCC is correlated with more aggressive
biological behavior and poorer clinical outcomes. Furthermore,
TSM was found to be associated with PD-L1 expression,
suggesting its potential utility as a predictive biomarker for
immunotherapeutic efficacy in ESCC (32). In head and neck
squamous cell carcinoma, specific subtypes of cancer-associated
fibroblasts (CAFs) have also been implicated in modulating
immunotherapy responses, further highlighting the role of
stromal components as determinants of treatment efficacy (33).
Importantly, recognizing TSM may help guide therapeutic
stratification, wherein patients with immature stroma—
characterized by a dense, disorganized matrix and
immunosuppressive fibroblast phenotypes—might benefit from
combined stromal-targeting and immunotherapeutic approaches
(32, 34). Thus, integrating TSM assessment into routine
pathological evaluation could enhance precision in tailoring
immunotherapy regimens.

3.3 T cell-inflamed gene expression profile

The T cell-inflamed gene expression profile (GEP) captures the
immunogenic characteristics of the TME (35). An RNA-based
transcriptomic analysis of baseline tumor samples from patients
treated with pembrolizumab revealed that the T cell-inflamed GEP
comprises interferon-y-responsive genes associated with antigen
presentation, chemokine expression, cytotoxic activity, and
adaptive immune resistance (36). Cristescu et al. performed
whole-genome and RNA expression profiling of patients with
advanced solid tumors and melanoma across four KEYNOTE
clinical trials. Based on combined stratification of tumor
mutational burden and GEP levels, they identified four distinct
clinical response groups, with the TMB"&"/GEP"®" cohort
exhibiting the strongest therapeutic responses, thus positioning T
cell-inflamed GEP as a potential predictive biomarker for
immunotherapy efficacy (37). Therefore, the integration of TMB
and GEP holds promise as a robust strategy to guide precision
immunotherapy, particularly in anti-PD-1 contexts.
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4 Molecular characteristics of tumor
cells as predictive biomarkers

4.1 Microsatellite instability and mismatch
repair deficiency

Microsatellite instability (MSI) refers to alterations in the length
of microsatellites—short tandem repeats scattered throughout the
genome—resulting in the appearance of novel alleles. The DNA
mismatch repair (MMR) system, composed of a set of highly
conserved genes and their encoded enzymes—including MLHI,
MSH2, MSH6, and PMS2—functions to correct base-pair
mismatches during DNA replication. Deficiency in MMR
(AIMMR) impairs this repair capacity, thereby promoting the
accumulation of replication errors and contributing to MSI
development (38). High-level microsatellite instability (MSI-H) is
associated with aberrations in cancer-related genes, facilitating
tumorigenesis. Moreover, MSI-H tumors often display increased
neoantigen expression and TIL density, both of which enhance
responsiveness to ICIs (39). Despite its immunologic relevance, the
prevalence of MSI-H in ESCC remains low, ranging from 0% to
27% across studies (40), with discrepancies likely stemming from
variations in MSI-H definitions, assay loci, and detection
thresholds. Based on findings from multiple clinical trials
involving various solid tumors (38, 41), pembrolizumab, a PD-1
inhibitor, was approved for the treatment of MSI-H/dMMR-
positive solid tumors irrespective of histology (42), encompassing
MSI-H/dMMR esophageal cancer. Although only a small subset of
ESCC patients may qualify under this indication, it offers a potential
immunotherapy avenue for PD-L1-negative patients.

4.2 Tumor mutational burden and
neoantigen burden

TMB quantifies the number of somatic nonsynonymous
mutations within a defined genomic region. A higher TMB
correlates with increased neoantigen load, enhancing
immunogenicity and the likelihood of ICI efficacy. In the
multicenter Phase II KEYNOTE-158 trial involving diverse
advanced solid tumors (43), a threshold of 10 mutations per
megabase (Mut/Mb) was established to define TMB-high (TMB-
H) status. Patients with TMB-H demonstrated superior clinical
responses to pembrolizumab monotherapy, achieving an objective
response rate (ORR) of 30.3%, compared to 6.7% in TMB-low
(TMB-L) counterparts. These findings made pembrolizumab
approved for TMB-H tumors patients with progressive,
unresectable, or metastatic disease regardless of tumor origin. A
pan-cancer analysis further confirmed that high TMB was
associated with improved response rates and prolonged survival
following ICI therapy (44). Nonetheless, TMB varies widely across
cancer types, and the top 20% threshold for defining TMB-H differs
significantly between malignancies (45), precluding the use of a
uniform cutoff. Notably, a consensus threshold for TMB-H specific
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Predictive biomarkers for esophageal cancer immunotherapy.

to esophageal cancer remains undefined. Somatic mutations may
give rise to tumor neoantigens, which represent biomarkers of
highly immunogenic tumors Neoantigen burden has been
correlated with patient survival and ICI responsiveness across
various cancer types (46, 47). In ESCC patients treated with the
anti-PD-1 antibody camrelizumab (SHR-1210), both TMB and
mutation-associated neoantigens (MANAs) were positively
associated with therapeutic response (48). A composite biomarker
approach combining PD-L1 expression, MANA load, and TMB
may offer a promising strategy for predicting immunotherapeutic
efficacy (Figure 1).

4.3 Chromosomal amplification and
specific gene mutations

Chromosomal amplification events have emerged as potential
predictive markers of ICI resistance. Notably, ESCC patients exhibit
amplification of chromosome 11q13, which is associated with
advanced tumor stage. Mechanistically, 11q13 amplification often
includes genes such as CCND1, FGF3/4/19, and ORAOV1I.
Overexpression of CCNDI1 can activate the CDK4/6-Rb axis,
leading to cell cycle progression and immune evasion through
decreased tumor immunogenicity. Additionally, CDK4/6
activation has been shown to downregulate MHC class I
expression, thereby impairing antigen presentation and cytotoxic
T cell recognition. These effects collectively blunt antitumor
immunity and may underlie the reduced responsiveness to ICIs
observed in 11q13-amplified ESCC. Evidence from a clinical trial of
toripalimab in esophageal cancer suggests that 11q13 amplification
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may serve as a negative predictor of response to PD-1 blockade in
metastatic ESCC (49). Mutations in TP53 are implicated in the
pathogenesis of numerous cancers, including esophageal
carcinoma. However, the predictive value of TP53 mutations for
immunotherapy response remains ambiguous and may be context-
dependent. While TP53 mutations have been associated with
positive ICI response in breast and lung adenocarcinomas, they
correlate with poor response in gastric, colorectal, and head and
neck squamous cell carcinomas (50). In addition, mutations in
genes such as KMT2 (51), POLE, and POLDI (52) have been
identified as independent predictors of ICI benefit across multiple
tumor types, yet their mutation frequency in ESCC is exceedingly
low. The relevance of other ESCC-associated gene alterations in
shaping immunotherapeutic outcomes remains to be elucidated.

4.4 Other biomarkers

Several noncoding RNA and serum-based biomarkers have
shown potential in predicting immunotherapy efficacy. For
example, patients with advanced ESCC who responded to second-
line nivolumab therapy exhibited reduced baseline levels of miR-
1233-5p, as well as decreased expression of miR-6885-5p, miR-
4698, and miR-128-2-5p during treatment, suggesting that specific
circulating microRNAs may serve as predictive indicators (53). In
other cancers, circulating long non-coding RNAs (54) and circular
RNAs (55) have also been linked to ICI responsiveness. Elevated
levels of peripheral biomarkers—such as serum albumin,
neutrophils, inflammatory cytokines, and C-reactive protein—
during nivolumab treatment have been associated with disease
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TABLE 1 Clinical trials of ICls in esophageal cancer.
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progression (56). Additionally, methylation profiling of CpG sites
has been used to develop risk-scoring models with prognostic and
predictive value for PD-1 inhibitor therapy (57). Emerging evidence
also implicates host microbiota and their metabolic products as key
modulators of ICI efficacy (58). Furthermore, host factors such as
age and obesity may also influence immunotherapeutic outcomes
(59). The identification and validation of novel predictive
biomarkers and composite models remain active areas
of investigation.
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5 Immunotherapy
5.1 Pembrolizumab

PD-1, expressed on T, B, and NK cells, maintains immune
tolerance by regulating T cell differentiation (60). Its ligand PD-L1
is overexpressed in various cancers and suppresses T cell activity via
PD-1 binding. PD-1/PD-L1 inhibitors are the main
immunotherapy in ESCC. The PALACE-1 trial evaluated
neoadjuvant chemoradiotherapy (nCRT) combined with
pembrolizumab in 20 patients with resectable ESCC, all of whom
experienced treatment-related adverse events (AEs) (61). Eighteen
underwent surgery, with a pathologic complete response (pCR)
achieved in 56%. While nCRT improves pCR rates, survival benefits
remain uncertain, prompting an ongoing phase II multicenter trial
(NCT04807673). For advanced esophageal cancer post-first-line
chemotherapy, the KEYNOTE-181 trial demonstrated that
pembrolizumab significantly prolonged median OS versus
chemotherapy in patients with PD-L1 CPS 210, with fewer AEs
(62), leading to its approval by the NMPA in June 2020.
Furthermore, the KEYNOTE-590 trial established the superiority
of first-line chemoimmunotherapy over chemotherapy alone.
Pembrolizumab plus chemotherapy was first-line treatment and
reduced mortality risk by 49% and improved ORR in ESCC (4,
63) (Table 1).

5.2 Nivolumab

nCRT followed by surgery has demonstrated the most substantial
survival benefit for resectable, locally advanced esophageal cancer (64,
65). However, recurrence remains problematic. The CheckMate-577
trial (66, 67) addressed this by evaluating adjuvant nivolumab in
patients with residual disease post-nCRT and RO resection, revealing
prolonged disease-free survival and metastasis-free survival,
independent of PD-L1 expression or histology. In advanced
settings, the ATTRACTION-03 trial (68, 69) established nivolumab
as a second-line standard for ESCC, extending median overall
survival versus taxane chemotherapy. Furthermore, the
CheckMate-648 study (70)showed that both nivolumab plus
chemotherapy and nivolumab plus ipilimumab significantly
improved overall survival compared to chemotherapy alone in
unresectable/metastatic ESCC, with consistent benefits regardless of
PD-L1 status. Collectively, these trials support nivolumab’s role
across multiple disease stages and treatment lines in ESCC.

5.3 Camrelizumab

Camrelizumab-based regimens have demonstrated promising
efficacy and safety in both neoadjuvant and palliative settings for
ESCC. The NICE study (71) enrolled 60 patients with resectable,
locally advanced thoracic ESCC and multi-station lymph node
metastases. Neoadjuvant camrelizumab combined with albumin-
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bound paclitaxel and carboplatin yielded a 98.0% RO resection rate
and a 39.2% pCR, with manageable toxicity. Similarly, the ESPRIT
study (72) reported an objective response rate of 38.1% and 57.14%
PCR in 7 surgical cases following camrelizumab plus paclitaxel and
nedaplatin, with no treatment-related mortality. In the palliative
setting, the ESCORT study (3) showed improved median OS with
second-line camrelizumab, particularly in PD-L1 >1% patients.
Furthermore, the ESCORT-1st trial (73) established
camrelizumab combined with chemotherapy as an effective first-
line treatment in unresectable or metastatic ESCC, prolonging OS
and progression-free survival (PFS) regardless of PD-L1 expression.
Notably, in patients with tumor proportion scores =10,
camrelizumab reduced death and progression risks, while even
PD-L1-negative patients derived clinical benefit.

5.4 Toripalimab and sintilimab

Perioperative toripalimab combined with neoadjuvant
chemoradiotherapy (nCRT) was evaluated in 20 patients with
locally advanced ESCC (74). Among them, 13 underwent surgery,
yielding a pathological complete response (pCR) rate of 54%.
Lymphopenia and leukopenia were the most common adverse
events (AEs), with no postoperative recurrences observed at a 6-
month median follow-up. These findings support the feasibility and
tolerability of toripalimab-nCRT regimens in resectable ESCC,
though long-term efficacy warrants further validation. In
metastatic ESCC, toripalimab monotherapy showed preliminary
activity, and the phase IIT JUPITER-06 trial (75) demonstrated that
toripalimab plus chemotherapy significantly improved median OS
and ORR by 17.2%, reducing the risk of progression or death by
42% versus chemotherapy alone. Similarly, the KEEP-GO03 study
(76) assessed neoadjuvant sintilimab with triplet chemotherapy
(liposomal paclitaxel, cisplatin, and S-1) in resectable ESCC.
Among 15 surgical patients, all achieved RO resection; pCR and
major pathological response (mPR) rates were 26.7% and 53.3%,
respectively. Grade 3-4 AEs included leukopenia, neutropenia, and
anemia, with no grade 5 events or surgery delays. In the ORIENT-
15 phase III trial (77), sintilimab plus chemotherapy significantly
prolonged median OS and PFS in advanced ESCC, reducing death
and progression risks by 37% and 44%, respectively, with a
manageable safety profile. Patient-reported quality-of-life
outcomes also favored the sintilimab combination arm,
underscoring its clinical benefit.

6 Conclusion

The integration of immune checkpoint inhibitors has
significantly expanded the therapeutic arsenal against esophageal
squamous cell carcinoma, yet substantial heterogeneity in response
underscores the limitations of current biomarkers—particularly
PD-L1—as standalone predictive tools. The immune landscape of
ESCC is shaped by dynamic and complex interactions among
tumor-intrinsic genetic alterations, immune-infiltrating cell
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populations, stromal architecture, and systemic host factors, all of
which modulate immunotherapeutic responsiveness. Accumulating
evidence supports the incorporation of tumor mutational burden,
microsatellite instability, neoantigen load, and gene expression
signatures as adjunctive or composite biomarkers that may refine
patient stratification beyond PD-LI status. Similarly, immune-rich
microenvironments defined by TILs, TLSs, and mature stroma
portend more favorable outcomes and offer additional layers of
predictive value.

Moving forward, precision immunotherapy in ESCC will require
the standardization and clinical validation of multi-parametric
biomarker platforms—spanning genomics, transcriptomics,
epigenetics, proteomics, and microbiome profiling. Therapeutically,
rational combinations involving ICIs and agents targeting the tumor
stroma, immunosuppressive myeloid cells, or oncogenic signaling
pathways hold promise for overcoming resistance. Finally, future
clinical trials must prioritize biomarker-driven design and
incorporate patient-reported outcomes to ensure personalized,
effective, and tolerable treatment strategies. By decoding the
complex interplay between tumor biology and immune contexture,
the field is poised to transform ESCC management through next-
generation immunotherapy.
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