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Jiangmen Central Hospital, Jiangmen, Guangdong, China, 3Department of Gastrointestinal and
Colorectal Surgery, ChinaJapan Union Hospital of Jilin University, Changchun, China
Colorectal cancer (CRC), particularly the immunologically “cold” microsatellite-

stable (MSS) subtype, remains profoundly resistant to immune checkpoint

inhibitors. Antibody-drug conjugates (ADCs) are rapidly emerging as a

transformative therapeutic modality poised to overcome this challenge. This

review reframes ADCs beyond their role as targeted cytotoxics, repositioning

them as sophisticated immuno-oncology agents. The central thesis is that by

strategically selecting payloads such as topoisomerase inhibitors or auristatins,

modern ADCs can induce immunogenic cell death (ICD) or pyroptosis. This

mechanism effectively functions as an in situ vaccine, transforming the tumor

microenvironment from “cold” to “hot” by promoting dendritic cell activation and

T-cell infiltration. We provide a comprehensive overview of the ADC landscape,

examining key targets on bulk tumor cells (CEACAM5, HER2), cancer stem cells

(LGR5, GPR56), and stromal components. We conclude that the future of ADCs in

CRC lies in their rational application as immune-priming agents, creating

powerful synergies in combination with checkpoint inhibitors to break

therapeutic resistance and durably improve patient outcomes.
KEYWORDS

colorectal cancer, microsatellite stable, antibody-drug conjugate, immunoconjugate,
immuno-oncology
1 Introduction

Colorectal cancer (CRC) remains a major global health burden, ranking as the third most

frequently diagnosed cancer and the second leading cause of cancer-related mortality

worldwide (1), with over 1.9 million new cases and approximately 935,000 deaths reported

in 2020 (2). While standard treatments, including chemotherapy and targeted agents, form

the backbone of systemic therapy, their efficacy is often curtailed by tumor heterogeneity and
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acquired resistance (3). More critically, the transformative success of

immune checkpoint inhibitors (ICIs) has not extended to the

majority of CRC patients, whose tumors are microsatellite-stable

(MSS). These immunologically “cold” tumors are characterized by a

non-inflamed tumor microenvironment (TME) that lacks T-cell

infiltration, rendering them profoundly resistant to current

immunotherapies (4–6). This reality underscores an urgent need

for novel therapeutic strategies capable of inducing a robust, de novo

anti-tumor immune response.

Antibody-drug conjugates (ADCs) have emerged as a powerful

therapeutic modality uniquely positioned to bridge the gap between

targeted chemotherapy and immunotherapy (7). An ADC consists of

a monoclonal antibody targeting a tumor-associated antigen, a highly

potent cytotoxic payload, and a chemical linker. However, beyond

their original design as “magic bullets,” modern ADCs are

increasingly engineered as sophisticated immuno-oncology agents.

This advanced function is achieved through the strategic selection of

payloads-such as topoisomerase inhibitors or microtubule inhibitors-

that are potent inducers of immunogenic cell death (ICD) or other

pro-inflammatory pathways like pyroptosis. By forcing cancer cells to

die in an immunologically active manner, these ADCs can effectively

transform the tumor into an in situ vaccine, triggering the release of

danger signals and tumor antigens that awaken the immune system

(8). The landmark approvals of agents like trastuzumab deruxtecan

and sacituzumab govitecan have validated this dual-action approach,

demonstrating that ADCs can produce durable responses even in

heavily pretreated patient populations (9–11).

In CRC, this dual mechanism holds immense promise for

overcoming the intrinsic resistance of MSS tumors. By delivering

an immunogenic payload directly to tumor cells, ADCs can initiate

an inflammatory cascade, remodel the immunosuppressive TME,

and prime a T-cell-mediated immune attack. This provides a

compelling rationale for combining ADCs with checkpoint

inhibitors to create potent synergistic effects. The expanding

landscape of ADC targets in CRC now includes not only antigens

on bulk tumor cells (CEACAM5, HER2), but also those on cancer

stem cells (LGR5) and critical stromal components (CEACAM6),

offering multiple avenues to dismantle the tumor ecosystem.

This review provides a comprehensive overview of the ADC

landscape in CRC, framed through an immuno-oncological

perspective. We will dissect their molecular architecture and

mechanisms of action, with a special focus on their ability to

modulate the immune system. We will then survey the key

therapeutic targets-from established to emerging-and discuss how

they can be leveraged as specific gateways for delivering

immunogenic payloads. Moreover, we will explore how ADCs are

poised to reshape CRC treatment paradigms, not as standalone

agents, but as cornerstone therapies in the next generation of

rational, immune-based combination strategies.
1.1 Literature search strategy

A systematic literature search was performed using PubMed/

MEDLINE, Embase, Web of Science, and ClinicalTrials.gov
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databases through September 2025. The search strategy combined

MeSH terms and keywords with Boolean operators, encompassing:

(1) disease terms (“colorectal cancer” OR “colorectal

neoplasms”[MeSH] OR “CRC” OR “microsatellite stable”); (2)

in t e rven t ion te rms ( “ant ibody-drug con juga te” OR

“immunoconjugate” OR “ADC”); and (3) mechanism terms

(“immuno-oncology” OR “immunogenic cell death” OR “ICD”

OR “pyroptosis” OR “tumor microenvironment” OR “TME” OR

“combination therapy”). Additional targeted searches were

conducted for specific ADC targets and agents (e.g., CEACAM5,

HER2, trastuzumab deruxtecan, LGR5). Besides, peer-reviewed

original research articles, clinical trials, authoritative reviews, and

relevant conference abstracts from major oncology meetings

(ASCO, ESMO) published in English were included. Studies were

selected based on their relevance to ADCs as immuno-oncology

agents in CRC. Case reports without mechanistic insights and

editorials were excluded. Reference lists of included articles were

manually screened to identify additional relevant publications.
2 Structure, mechanism of action and
immune regulation of ADC

2.1 Structure of ADC

ADCs comprise three core elements: a tumor-targeting

monoclonal antibody, a chemical linker, and a cytotoxic payload.

Therapeutic efficacy depends on optimal integration of target

antigen selection, antibody format, linker stability, payload

potency, and conjugation chemistry (Figure 1). Ideal target

antigens exhibit high tumor-specific expression (>105 copies/cell),

minimal normal tissue expression, efficient internalization, and

limited shedding (12, 13). In CRC, promising targets include

HER2, TROP2, CEACAM5, and mesothelin, each with distinct

expression patterns and internalization kinetics.

The antibody backbone, typically humanized IgG1, provides

targeting specificity and immune effector functions. IgG1

predominates (used in T-DXd, T-DM1, sacituzumab govitecan)

due to its long half-life (~21 days) and ability to mediate Antibody-

Dependent Cell-mediated Cytotoxicity (ADCC) and Complement-

Dependent Cytotoxicity (CDC) (14–16). IgG4 variants reduce

immune activation when inflammatory toxicity is a concern,

though this may compromise immune-mediated effects (17).

Antibody engineering, including Fc modifications, can optimize

pharmacokinetics and safety profiles (18).

Linker chemistry critically balances plasma stability with

intracellular payload release. Cleavable linkers (protease-sensitive

valine-citrulline, pH-sensitive hydrazones, glutathione-reducible

disulfides) enable controlled payload release and bystander effects

(19, 20). Non-cleavable linkers require complete antibody

degradation, offering superior stability but limited bystander

activity (21, 22). Modern site-specific conjugation using

engineered cysteines, enzymatic methods, or glycan remodeling

yields homogeneous products with optimized drug-to-antibody

ratios (DAR) (23–26). While traditional ADCs employed DAR 2-
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4, next-generation ADCs like T-DXd achieve DAR ~8 through

improved linker-payload design (27, 28).

Payload selection determines cytotoxicity, resistance profiles,

and immunogenic potential. Payloads with IC50 values in

picomolar to low nanomolar range are categorized by

mechanism: microtubule inhibitors, DNA-damaging agents (PBD

dimers), and topoisomerase I inhibitors (DXd) (29).Membrane-

permeable payloads like MMAE enable bystander killing of antigen-

negative cells, while charged molecules (MMAF) remain cell-

confined (30–33) DNA-damaging agents offer distinct advantages:

topoisomerase I inhibitors provide broader therapeutic windows

enabling higher DAR and reduced MDR1-mediated resistance (34,

35). PBD dimers show extreme potency but hepatotoxicity concerns

in CRC, DXd-based ADCs demonstrate particular promise given

their superior immunogenic cell death induction and favorable

safety profi les, making them ideal for immunotherapy

combinations (36). Payload hydrophobicity influences ADC

stability-hydrophilic modifications enable higher drug loading

without compromising pharmacokinetics.
2.2 Mechanisms of action

2.2.1 Targeted delivery and intracellular
processing

ADC action initiates through high-affinity antigen binding,

embodying the “magic bullet” concept (37). Beyond targeted

delivery, some ADCs exert direct antitumor effects through

receptor signaling interference without payload release (38).

Following receptor-mediated endocytosis primarily via clathrin-

dependent pathways (39), ADCs traffic through endolysosomal

systems where pH changes and proteolytic enzymes trigger linker

cleavage (40). The intracellular fate depends on linker design-acid-

labile bonds dissociate at lysosomal pH, protease-cleavable peptides

undergo enzymatic hydrolysis, while disulfide bonds reduce in

cytoplasmic environments. Once released, microtubule inhibitors

disrupt mitotic spindle formation (41), while DNA-damaging

agents induce strand breaks and apoptosis, with some payloads

additionally triggering immunogenic cell death pathways (34, 42).

2.2.2 Bystander effect as immune amplifier
The bystander effect represents a critical mechanism for

overcoming CRC heterogeneity (43). This phenomenon depends

on payload diffusion from targeted cells to eliminate adjacent

antigen-negative populations (32, 44). Novel strategies like

caspase-3-cleavable linkers create amplification loops where

apoptosis triggers extracellular ADC cleavage (45). Importantly,

bystander-mediated killing extends beyond cytotoxicity-dying cells

release DAMPs and tumor antigens, spatially amplifying signals

throughout the TME. This converts immunologically “cold” regions

into “hot” zones, enhancing dendritic cell recruitment and T-cell

priming across the entire tumor mass. The membrane permeability

of payloads determines the extent of this effect: hydrophobic

molecules like DXd and SN-38 freely traverse cell membranes to

eliminate neighboring cells, while charged payloads remain
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confined. This spatial extension of both cytotoxic and

immunogenic effects transforms heterogeneous tumors into more

uniformly targeted tissues, creating a foundation for the

comprehensive immune response.
2.3 Immunomodulatory mechanisms of
antibody-drug conjugates

Beyond direct cytotoxicity, ADCs demonstrate capacity to

modulate antitumor immune responses through multiple

mechanisms engaging various stages of the cancer-immunity

cycle (46).

2.3.1 Payload-induced immunogenic cell death
Colorectal cancer presents distinct immunological landscapes

across molecular subtypes that shape therapeutic opportunities for

ADC development. The predominant microsatellite stable (MSS)

phenotype, comprising 85% of cases, exhibits an immunologically

inert tumor microenvironment characterized by sparse lymphocyte

infiltration and minimal neoantigen presentation, rendering these

tumors refractory to checkpoint blockade. In contrast, the

microsatellite instability-high (MSI-H) subset demonstrates robust

immune infiltration yet develops alternative resistance mechanisms.

This dichotomy underscores the need for ADCs capable of

immunological reprogramming, particularly in converting

immunologically “cold” MSS tumors into inflamed, treatment-

responsive phenotypes.

Cytotoxic payloads transform tumor cell death into

immunological priming events through DNA damage or

microtubule disruption. This process generates three

immunogenic signals: damage-associated molecular patterns

(DAMPs) including ATP as chemotactic “find me” signals,

HMGB1-TLR4 interactions driving DC maturation, and surface

calreticulin serving as phagocytic “eat me” signals; enhanced tumor

antigen cross-presentation; and pro-inflammatory cytokine release

(IFN-g, IL-1b, IL-6) recruiting effector lymphocytes (36, 47–49).

Furthermore, cytokines and chemokines released by dying tumor

cells following ADC treatment can recruit and activate various

immune cells, including macrophages and natural killer (NK) cells,

thereby further promoting antitumor responses (50).

Different payload classes exhibit distinct ICD profiles. DNA-

damaging agents, particularly deruxtecan and camptothecin

derivatives, induce robust DAMP release and type I interferon

responses. In an in vivo study, T-DXd treatment resulted in

increased expression of PD-L1 and MHC class I molecules on

cancer cells (35).Pyrrolobenzodiazepine dimers generate more

limited ICD despite high potency. Among microtubule inhibitors,

maytansinoids (DM1/DM4) and auristatins (MMAE/MMAF)

trigger ICD through mitotic, with membrane-permeable MMAE

enabling bystander ICD amplification (39, 40). Interestingly,

microtubule-depolymerizing payloads (such as vinca alkaloids)

have been shown to induce dendritic cell maturation, while the

same property has not been observed with microtubule-stabilizing

agents (such as taxanes) (51). Alternative death modalities-
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pyroptosis through gasdermin pores, ferroptosis via lipid

peroxidation, and necroptosis through RIPK3/MLKL-provide

additional inflammatory signals that sustain immune activation.

2.3.2 Antibody-mediated immune effector
functions

The Fc domain mediates payload-independent immunity

through antibody-dependent cell-mediated cytotoxicity (ADCC),

antibody-dependent cellular phagocytosis (ADCP), and CDC

mechanisms. ADCC involves IgG1-based ADCs engaging

FcgRIIIA receptors on natural killer cells, triggering cytotoxic

granule release for target cell lysis. For instance, trastuzumab-

based ADCs demonstrate particularly robust NK cell-mediated

killing of HER2-positive tumor cells. ADCP occurs when the Fc

region binds FcgRI/II receptors on macrophages, promoting tumor

cell engulfment and destruction, with studies showing T-DM1

enhances macrophage phagocytic activity in preclinical models.

CDC is initiated when C1q binds to clustered Fc domains,

activating the complement cascade that both forms membrane

attack complexes for direct cell lysis and generates anaphylatoxins

(C3a/C5a) to recruit and activate myeloid cells. Beyond these

primary mechanisms, ADC-antigen immune complexes enhance

cross-presentation through FcgR-dependent uptake by antigen-

presenting cells (APCs), broadening the immune response. These

effector functions remain operational against cells with defective

endocytosis, ensuring therapeutic activity across heterogeneous

tumor populations. This antibody-driven inflammation synergizes

with payload-induced ICD, creating multiple complementary

immune activation pathways that maintain efficacy despite

variable antigen expression or payload resistance.

2.3.3 TME reprogramming and therapeutic
synergies

ADCs orchestrate comprehensive immune landscape

remodeling. Previous studies have demonstrated ADC-mediated

immune modulation across multiple cell populations: T-DM1

treatment polarizes tumor-associated macrophages from M2 to

M1 phenotypes through TLR4/SCARA5 modulation, while

sacituzumab govitecan enhances macrophage phagocytic activity

(52). NK cells undergo dual activation via Fc-dependent

mechanisms and stress ligand recognition, with trastuzumab-

based ADCs showing particularly robust NK cell engagement (53,

54). The lymphocyte compartment experiences selective

modulation-ADC treatment induces chemokine gradients

(CXCL9, CCL3/4) that recruit effector T cells while regulatory

populations undergo preferential depletion, as observed in T-

DXd-treated tumors where Treg/CD8+ ratios shift favorably

toward antitumor responses (55–57).

This comprehensive TME reprogramming creates strategic

therapeutic synergies, particularly with immune checkpoint

inhibitors. In colorectal cancer, the differential TME landscapes

between MSI-H (~15%, immune-infiltrated) and MSS (~85%,

immune-excluded) tumors dictate therapeutic responses (58).

ADC-mediated TME reprogramming is especially transformative

for “cold” MSS tumors: barrier disruption and immune cell
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recruitment, combined with checkpoint upregulation (PD-L1/

CTLA-4), convert these ICI-resistant tumors into responsive

phenotypes. This TME reprogramming immune activation has

shown clinical validation, with a HER2-positive/RAS-mutant/MSS

case achieving >10 months PFS using T-DXd plus serplulimab (58).

Novel combinations advancing through trials include disitamab

vedotin with tislelizumab (NCT05493683) and SBT6050-a HER2-

targeting ADC carrying TLR8 agonist payload that directly bridges

cytotoxic and immunostimulatory mechanisms (NCT04460456)

(59). These multi-faceted immunomodulatory effects position

ADCs as crucial enablers for converting ICI-resistant MSS tumors

into treatment-responsive phenotypes.
3 Major ADC targets and drugs

ADCs exert antitumor effects by targeting surface antigens and

delivering cytotoxic agents. In CRC, these targets can be categorized

into those expressed on tumor cell surfaces and those found on

cancer stem-like cells (CSCs). Tumor cell-associated targets allow

broad cytotoxic coverage, while stem cell-associated targets focus on

eliminating therapy-resistant populations. The following sections

summarize the major ADC targets in CRC and their corresponding

drug candidates under development or clinical evaluation (Table 1).

The distribution of targets and associated payloads across different

cell types is illustrated in Figure 2.
3.1 Targets on the surface of colorectal
cancer cells

3.1.1 HER2
HER2 amplification occurs in 3-5% of metastatic CRC, though

its expression is limited compared to breast and gastric cancers. T-

DXd (trastuzumab deruxtecan) has achieved clinical approval and

demonstrates significant efficacy in HER2-positive CRC patients,

representing a major therapeutic advance for this molecularly

defined subgroup. Disitamab vedotin (RC48) has shown

activation of the innate immune cGAS-STING pathway through

antibody-mediated relief of HER2’s inhibitory effect on STING,

producing type I interferons that enhance antigen presentation and

promote cytotoxic T-cell infiltration (60, 61). Beyond T-DXd and

RC48, key HER2-directed ADCs include A166 (trastuzumab-based;

Val-Cit cleavable linker; Duostatin-5/auristatin; DAR≈2) (62),

ZW49/zanidatamab zovodotin (biparatopic HER2; protease-

cleavable; auristatin ZD02044; DAR≈2), SHR-A1811/trastuzumab

rezetecan (camptothecin/Topoisomerase-I payload; DAR≈5.7), and

SBT6050 (HER2-targeted TLR8 agonist; discontinued). Together

they diversify payload class (microtubule vs Top1 vs immune-

stimulatory) and seek better efficacy/safety in HER2+ CRC.
3.1.2 CEACAM5
CEACAM5 is overexpressed in ~80-90% of CRC and associates

with poorer outcomes. Tusamitamab ravtansine (DM4, a

maytansinoid microtubule inhibitor) showed manageable safety in
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early studies but its global program was discontinued because an

interim analysis of the Phase III CARMEN-LC03 trial failed to meet

the primary endpoint (PFS). In contrast, Topoisomerase-I payloads

appear more promising: labetuzumab govitecan (IMMU-130; SN-

38, a topoisomerase I inhibitor) achieved a ~29% clinical benefit

rate in heavily pretreated, irinotecan-refractory mCRC (63), and

precemtabart tocentecan (M9140/Precem-TcT; exatecan; cleavable

linker; high DAR ~8) has reported early disease control in

refractory mCRC (64). Collectively, Top1-based CEACAM5

ADCs may offer stronger bystander effects than microtubule

payloads, pending confirmation in randomized CRC trials. Next-

generation concepts-bispecific CEACAM5/6 ADCs (e.g., CT109-

SN-38) and single-domain (VHH) ADCs to boost tumor

penetration-are advancing preclinically (65, 66).
Frontiers in Immunology 05
3.1.3 TROP2 (TACSTD2)
TROP2 is frequently expressed in CRC, with strong IHC

positivity in about 20% (67, 68). Sacituzumab govitecan (SG)

couples an anti-TROP2 antibody to SN-38 via the hydrolysable

CL2A linker with a high DAR ~7.6, enabling membrane-diffusible

bystander killing. In the IMMU-132–01 CRC cohort (n=31; heavily

pretreated, many post-irinotecan), SG monotherapy achieved ORR

3.2%, median PFS 3.9 mo, and median OS 14.2 mo, suggesting

cross-resistance. Still, TROP2 remains attractive: the TROPHIT-1

phase II/III trial is comparing SG vs SOC in refractory mCRC, and

datopotamab deruxtecan (Dato-DXd)-a TROP2-DXd ADC with

strong bystander effect-is being tested in CRC in TROPION-

PanTumor03. Optimal benefit may require patient selection and

rational combinations or earlier-line use.
TABLE 1 Ongoing and completed clinical trials of antibody-drug conjugates in colorectal cancer.

NCT Drug (ADC) Phase N Key results Target Status

NCT03384940
T-DXd (Trastuzumab

deruxtecan)
II 86

HER2+: ORR 45.3%, mPFS 6.9 mo, mOS 15.5 mo; HER2-:
ORR 0%

HER2 Completed

NCT04744831 T-DXd II 122
5.4 mg/kg: ORR 37.8%, mPFS 5.8 mo, mOS 13.4 mo; 6.4 mg/

kg: ORR 27.5%, mPFS 5.5 mo
HER2 Completed

NCT03602079 A166 I/II 49 Phase I/II completed; no efficacy data reported HER2 Completed

NCT03821233 ZW49 I 112 Phase I completed; awaiting efficacy data HER2 Completed

NCT04513223 SHR-A1811 I 101 Ongoing study in GC/GEJ and CRC HER2
Active, not
recruiting

NCT04479436
U3-1402 (Patritumab

deruxtecan)
I/II – – HER3 Terminated

NCT05029882
ABBV-400 (Telisotuzumab

adizutecan)
I 122

2.4 mg/kg: ORR 15%, mPFS 5.3 mo; 3.0 mg/kg: ORR 20%,
mPFS 4.5 mo

c-Met Active

NCT05464030 M9140 (Precem-TcT) I 40 ORR 7.5%, mPFS 5.9 mo; ≥2.4 mg/kg: mPFS 6.7 mo CEACAM5 Active

NCT02187848
SAR408701 (Tusamitamab

ravtansine)
I/II 43 ORR 45%, DCR 83% CEACAM5 Completed

NCT01605318
IMMU-130 (Labetuzumab

govitecan)
I/II – Safety, ORR pending CEACAM5 Active

NCT06265688 CX-2051 I 25
Expansion doses (n=18): ORR 28%, DCR 94%, mPFS 5.8 mo;

10 mg/kg: ORR 43%
EpCAM Active

NCT06243393
Sacituzumab Govitecan

(SG)
II/III – Tumor response rate, Safety, PFS pending Trop-2 Active

NCT05639156 T4H11-DM4 I – Safety, DLT, RP2D pending DDR1 Active

NCT04622774 IMGC936 I – Safety, Pharmacokinetics, MTD pending ADAM9 Active

NCT07106892 HLX43 (PD-L1 ADC) II
60

(planned)
Primary endpoint: ORR by IRRC; Secondary: PFS, OS PD-L1

Not yet
recruiting

NCT05493683
Disitamab vedotin +

Tislelizumab
II

29
(estimated)

Ongoing - Primary endpoint: ORR; Secondary: PFS, OS, DCR,
DOR

HER2 Active

NCT05489211
Datopotamab deruxtecan

(Dato-DXd)
II

582
(estimated)

Ongoing - TROPION-PanTumor03 (Substudy 5 for CRC) TROP2 Active

NCT04410224 ASN004 I 19 Dose escalation completed - MTD determined 5T4 Completed

NCT04460456 SBT6050 + PD-1 inhibitor I/Ib 58 FIH study - evaluating safety and efficacy HER2 Active
ORR, objective response rate; mPFS, median progression-free survival; mOS, median overall survival; DCR, disease control rate; MTD, maximum tolerated dose; Q2W/Q3W, every 2/3 weeks;
IHC, immunohistochemistry. Trastuzumab deruxtecan received FDA accelerated approval in 2024 for HER2-positive (IHC3+) solid tumors including colorectal cancer (tumor-agnostic
indication), requiring prior systemic treatment failure. Trial status: Active (currently recruiting/treating), Active not recruiting (follow-up only), Completed (all data collection finished, published
or not published), Terminated (prematurely discontinued). Data sourced from ClinicalTrials.gov and published literature as of Septembery 2025.
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3.1.4 c-Met (HGFR)
c-Met is overexpressed in ~50% of CRC and mediates resistance to

anti-EGFR/HER2 and KRAS G12C therapies. Telisotuzumab

adizutecan (ABBV-400) links telisotuzumab (ABT-700) to the

camptothecin-derived topoisomerase-I payload adizutecan via a

cleavable linker (average DAR ≈6). In a first-in-human study,

patients with high c-Met expression (IHC 3+ ≥10%) had an ORR of

37.5% at doses ≥2.4 mg/kg Q3W; lower-expressing tumors still showed

responses (ORR 14%), consistent with bystander killing. Safety has been

manageable so far, and randomized/combination cohorts (e.g., with 5-

FU/leucovorin/bevacizumab) are underway. Overall, c-Met remains a

compelling CRC target; Top1-payload ADCs may overcome

intratumoral heterogeneity, pending confirmation in controlled trials.
Frontiers in Immunology 06
3.1.5 EpCAM (CD326)
EpCAM is broadly present on CRC but normal epithelial

expression historically limited druggability. CX-2051 is a masked

EpCAM ADC carrying a next-generation camptothecin Topo-I

payload designed for tumor-local activation. Interim phase 1 data

in heavily pretreated mCRC showed 28%ORR and 94% DCR across

prioritized dose levels, 43% ORR at 10 mg/kg, and median PFS 5.8

months; most TRAEs were grade ≤2 and no DLTs were reported in

escalation. A subsequent update noted a single grade 5 acute kidney

injury in a patient with a solitary kidney; the safety committee

supported study continuation with monitoring. CX-2051 illustrates

a viable, tumor-selective way to “drug” EpCAM in CRC; expansion

cohorts will clarify durability, dose, and risk mitigation.
FIGURE 1

Schematic illustration of the seven-step mechanism of action of antibody-drug conjugates (ADCs): I. Antibody Binding to Antigen-The antibody
specifically binds to tumor-associated surface antigens; II. Internalization-The ADC-antigen complex is internalized via receptor-mediated
endocytosis; III. Enzymatic Cleavage-The linker is cleaved by intracellular enzymes within endosomes or lysosomes; IV. Payload Release-The
cytotoxic payload is released into the cytoplasm or nucleus; V. Direct Cytotoxic Effects-The payload disrupts essential cellular functions by targeting
DNA or microtubules; VI. Extracellular Release of Payload-A portion of the payload may exit the cell through lysis or active efflux; VII. Bystander
Effect-The released payload kills neighboring tumor cells lacking target antigen. This figure was created using BioRender.com.
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3.1.6 CEACAM6
CEACAM6 exhibits differential expression across CRC

molecular subtypes, with highest levels in CMS4 tumors

characterized by stromal infiltration and poor prognosis. The

preclinical ADC 84-EBET demonstrated complete tumor

regression in CRC PDX models. Notably, combination with PD-1

blockade enhanced CD8+ T cell infiltration, suggesting potential to

overcome immune resistance in stroma-rich tumors (69). While

preclinical results are encouraging for CMS4 subtype targeting,

clinical validation is needed to confirm therapeutic benefit.

3.1.7 HER3
HER3 (ERBB3) is often upregulated in CRC, though its

impaired kinase activity has made it challenging for direct

inhibition. U3-1402 (patritumab deruxtecan) combines anti-

HER3 antibody with topoisomerase I inhibitor DXd via a

cleavable linker (DAR≈8). Topoisomerase I inhibitors like DXd

are recognized as powerful ICD inducers through catastrophic

DNA damage (70). The membrane-permeable DXd payload

enables potent bystander effects, killing adjacent HER3-

negative tumor cells and potentially remodeling the local

tumor milieu. Preclinical studies demonstrated significant

tumor inhibition and complete responses in HER3-high CRC

xenografts irrespective of KRAS mutation status, transforming

an “undruggable” target into a conduit for delivering

immunomodulatory payload. This strategy offers a promising
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therapeutic avenue for CRC, including tumors resistant to

conventional EGFR-targeted therapies.

3.1.8 PDL1
Programmed death-ligand 1 (PD-L1) is an immune checkpoint

protein overexpressed on tumor cells, including CRC. Liu et al.

(2023) developed a modular platform using poly (glutamic acid)

scaffolds for noncovalent Fc-domain conjugation, generating anti-

PD-L1 conjugates (aPDL1-P-MMAE, DAR = 40.7) achieving 98.5%

tumor growth inhibition in MC38 CRC models without systemic

toxicity (71). Zhang et al. (2023) extended this to aPDL1-NPLG-

SN38 (DAR = 72) with 2.8-fold higher tumor accumulation versus

non-targeted IgG conjugates, demonstrating excellent therapeutic

properties in both medium-sized and large MC38 tumor models

(72). These studies offer a promising platform for designing

ultrahigh-DAR ADCs with preserved antigen-binding capacity,

integrating chemical innovation, immune modulation, and high-

precision drug delivery.

3.1.9 CD47
CD47 functions as a “don’t eat me” signal by binding SIRPa on

myeloid cells, enabling immune evasion. Chiang et al. (2024)

developed non-cleavable CD47-targeting ADCs (7DC2-DM1,

7DC4-DM1) showing near-complete tumor inhibition in CRC

and lung cancer models with improved safety versus cleavable

constructs (73). This strategy not only blocks the CD47-SIRPa
FIGURE 2

Surface targets on colorectal cancer cells and colorectal cancer stem cells and the associated ADC payloads. OXA, Oxaliplatin; MMAE, Monomethyl
Auristatin E; PNU159682, PNU-159682; Duocarmycin SA, Duocarmycin Se-A; Tubulysin, Tubulysin; DM4, Maytansinoid DM4; SN-38, 7-Ethyl-10-
hydroxycamptothecin; RNase A, Ribonuclease A; DM1, Maytansinoid DM1; DXd, Deruxtecan; DGN549, DGN549; DM21C, Maytansinoid DM21C;
PMMAE, Polymeric Monomethyl Auristatin E; IGN, Indolinobenzodiazepine DNA-alkylating agent. This figure was created using BioRender.com.
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axis to enhance macrophage phagocytosis, but also delivers DM1

for direct tumor killing that releases tumor antigens for immune

presentation. CD47-targeted ADCs represent an elegant dual-

mechanism approach to convert immunologically “cold” tumors

into “hot” ones.

3.1.10 GCC
Guanylyl Cyclase C (GCC) shows exceptional tumor specificity

in CRC, being almost exclusively restricted to intestinal cells, with

expression in 98% of primary CRC and in ≥95% of metastatic

lesions. TAK-164, carrying the DNA-alkylating payload DGN549,

demonstrated strong activity in PDX models (74). The Phase I trial

confirmed on-target DNA damage (elevated gH2AX) in patient

biopsies (75). However, dose-limiting hepatotoxicity (including

grade 5 hepatic failure) led to trial termination, with the tolerable

dose (0.064 mg/kg) deemed insufficient for clinical benefit while

higher doses (≥0.19 mg/kg) proved too toxic. This highlights the

critical challenge of achieving adequate therapeutic window.

3.1.11 DDR1
Discoidin domain receptor 1 (DDR1) is overexpressed in >80%

of CRC and linked to poor prognosis and chemoresistance. T4H11-

DM4 (maytansinoid microtubule inhibitor) achieved complete

tumor regression in oxaliplatin-resistant xenograft models (76).

The DM4 payload induces mitotic arrest and apoptosis. By

targeting a resistance-associated antigen, this strategy offers direct

killing of treatment-refractory cells. The ADC shows promise for

addressing chemoresistant CRC populations, though further studies

are needed to characterize its full therapeutic potential.

3.1.12 DR5
Death receptor 5 (DR5) is overexpressed in CRC. Oba01 links

anti-DR5 antibody zaptuzumab to MMAE (a microtubule

inhibitor), creating dual mechanisms: apoptosis via DR5 signaling

and cytotoxicity via MMAE (77) Preclinical studies in pancreatic

cancer models demonstrated anti-tumor activity. Further research

is needed to evaluate this approach specifically in CRC, particularly

in treatment-refractory populations.

3.1.13 ADAM9
ADAM9 is a transmembrane metalloproteinase overexpressed

in CRC with minimal normal tissue expression. IMGC936, site-

specifically conjugated to maytansinoid DM21C (a microtubule

inhibitor), achieved complete tumor regression in xenograft models

and entered Phase I trials (78). The ADC demonstrated potent

direct cytotoxicity and bystander killing effects in preclinical

studies. However, clinical development was discontinued after

failing to meet pre-established clinical safety and efficacy

benchmarks in Phase 1, highlighting the challenges of translating

preclinical efficacy to clinical benefit.

3.1.14 DOG1
DOG1 (Discovered on GIST1) exhibits tumor-restricted

expression in CRC with high mRNA positivity and high
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expression in liver metastases. An anti-DOG1-DM4 ADC showed

potent activity in CRC liver-metastasis model (79). The ADC shows

efficacy at metastatic sites while maintaining preserved liver

function. This approach is particularly relevant for addressing the

challenge of hepatic metastases in CRC, a common site of

disease progression.
3.1.15 CD228
CD228 (melanotransferrin) is a GPI-anchored membrane

protein with minimal expression in normal tissues and elevated

expression in multiple solid tumors, including CRC. SGN-CD228A

links humanized anti-CD228 antibody hL49 to MMAE via a

PEGylated glucuronide linker (80). The IgG1 backbone is capable

of mediating ADCC, while controlled intracellular MMAE release

triggers potent cytotoxicity and stimulates DAMP release. These

signals act as an endogenous vaccine, recruiting and activating

antigen-presenting cells to prime a T-cell-mediated anti-tumor

immune response.
3.1.16 EGFR
EGFR is frequently overexpressed in 60-80% of CRC, including

KRAS-mutant disease where conventional EGFR inhibitors fail.

Novel EGFR-targeted ADCs aim to overcome this resistance

through immunomodulatory mechanisms (81). Bisphosphonate-

conjugated ADC cetuximab-zoledronate (Cet-ZA) demonstrated

direct cytotoxicity plus activation of Vg9Vd2 T cells in CRC

organoid models, potentially bridging targeted therapy with

innate immunity (82). The IgG1 backbone inherently mediates

ADCC via NK cell recruitment. While these immunoconjugates

remain in preclinical development (83). they represent a rational

strategy to transform EGFR into an immune-activating platform for

KRAS-mutant and treatment-refractory CRC.
3.2 Targets on the surface of colorectal
cancer stem cells

3.2.1 LGR5
Leucine-rich repeat-containing G protein-coupled receptor 5

(LGR5) is a definitive marker for both normal intestinal stem cells

and colorectal CSCs, playing fundamental roles in tumor initiation

and progression via WNT signaling (84, 85). This shared expression

creates significant therapeutic window challenges-the primary

barrier to clinical translation. Early preclinical ADC studies

showed highly potent payloads could induce severe on-target, off-

tumor toxicity in normal LGR5-expressing tissues despite anti-

tumor efficacy, establishing that therapeutic index is critical. To

overcome this, petosemtamab (MCLA-158) was developed as a

bispecific antibody targeting both LGR5 and EGFR, leveraging

EGFR co-expression to selectively target tumors while sparing

healthy LGR5+ intestinal stem cells (86) Petosemtamab employs

EGFR degradation and enhanced immune-mediated destruction

through ADCC and ADCP (87). After demonstrating superior

efficacy over standard EGFR inhibitors in patient-derived
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organoids and xenografts, it is now in clinical trials for

metastatic CRC.

3.2.2 CD133
CD133 is a five-domain transmembrane glycoprotein and a

well-established surface marker of CSCs in CRC. Its expression is

closely associated with tumor initiation, metastasis, therapy

resistance, and recurrence. Given the central role of CD133+ cells

in treatment failure, targeting them represents a critical strategy for

preventing disease progression. Preclinical studies explored

nanocarrier systems delivering conventional chemotherapeutics

like oxaliplatin and 5-FU directly to CD133+ cells-both are

known ICD inducers. By forcing immunogenic cell death, these

agents trigger DAMP release, recruiting and activating antigen-

presenting cells (88, 89). While these systems remain in preclinical

development, they highlight a promising approach to overcome

chemoresistance and potentially reverse immune ignorance by

targeting the CSC.
3.2.3 GPR56
G protein-coupled receptor 56 (GPR56) (ADGRG1)

overexpression in CRC correlates with poor survival and

increased postoperative relapse, with particular enrichment in

microsatellite stable (MSS) disease-the predominant immune

checkpoint inhibitor (ICI)-refractory subtype (90, 91).

Mechanistically, GPR56 activates the RhoA-MDR1 signaling axis

to enhance efflux-mediated chemoresistance (92) and maintains

LGR5-negative stem-like cells in a treatment-refractory state. A

GPR56-targeted antibody-drug conjugate (ADC) in preclinical

study utilizing duocarmycin SA, a DNA minor-groove alkylating

agent, demonstrated target-dependent tumor growth inhibition in

CRC xenografts and patient-derived organoids with acceptable

tolerability (90, 93).
3.2.4 5T4
5T4 is an oncofetal glycoprotein (72kDa trophoblast cell surface

antigen) that is minimally expressed in adult normal tissues but is

overexpressed in a wide range of malignancies, including colorectal

cancer. In CRC, 5T4 is associated with tumor invasiveness and

stem-like features, making it an appealing target to eliminate

aggressive cancer cell subpopulations. ASN004 (scFv-Fc format)

uses Dolaflexin polymer to deliver auristatin F-HPA (microtubule

inhibitor) at very high DAR (~10-12), achieving deep regressions

preclinically; first-in-human studies report manageable safety, with

efficacy readouts pending.
3.2.5 Epiregulin
Epiregulin (EREG), a ligand of the EGFR family, is aberrantly

upregulated in a substantial subset of CRC, including both RAS

wild-type and mutant subtypes. Its expression in both differentiated

tumor cells and undifferentiated cancer stem-like populations

suggests a role in tumor plasticity and therapy resistance.Based

on Jacob et al.’s preclinical study, a humanized anti-EREG antibody

(H231) conjugated to duocarmycin DM via enzymatically cleavable
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tripeptide linkers was developed (94, 95). Their lead candidate,

H231 EGC-qDuoDM gluc, demonstrated subnanomolar potency in

EREG-expressing CRC cells irrespective of RAS status and achieved

significant tumor growth inhibition in both cell line xenografts

(70% TGI in LoVo, 68% in DLD-1) and patient-derived xenografts

(86-88% TGI in MSS models). Notably, the ADC outperformed

cetuximab and showed acceptable tolerability in immunocompetent

mice. Future development should prioritize comprehensive

pharmacokinetic/pharmacodynamic studies, formal assessment of

immunogenic cell death markers (HMGB1, calreticulin, ATP

release), and evaluation of combination strategies with immune

checkpoint inhibitors in syngeneic models to fully realize the

immunotherapeutic potential of this promising EREG-

targeted approach.
4 Clinical evidence and CRC-specific
challenges

4.1 Trials landscape & key signals in CRC

The clinical landscape of CRC treatment has evolved from

conventional chemotherapy and targeted antibodies to ADCs.

Traditional chemotherapy (5-FU, irinotecan, oxaliplatin) lacks

selectivity, causing systemic toxicity and immunosuppression

despite tumor-agnostic efficacy (96). Monoclonal antibodies

(cetuximab, bevacizumab) offer specificity but limited direct

cytotoxicity, relying on pathway inhibition vulnerable to

resistance mechanisms. ADCs uniquely combine chemotherapy’s

potency with antibody selectivity, delivering ultra-potent payloads

specifically to antigen-expressing cells while sparing normal tissues.

The bystander effect enables ADCs with membrane-permeable

payloads to kill neighboring antigen-negative populations through

local drug diffusion, partially compensating for tumor

heterogeneity. Additionally, select ADC payloads induce

immunogenic cell death, recruiting T-cells and converting “cold”

MSS tumors to “hot” phenotypes, creating immune engagement

absent in conventional therapies.

The clinical development of ADCs in colorectal cancer

demonstrates distinct patterns of success and failure,

fundamentally determined by payload selection. Table 1

summarizes ongoing and completed clinical trials. Among these,

trastuzumab deruxtecan (T-DXd), carrying a topoisomerase I

inhibitor payload, received FDA approval for unresectable or

metastatic HER2-positive (IHC3+) solid tumors. In the

DESTINY-CRC01 trial, T-DXd achieved an objective response

rate (ORR) of 45.3% in HER2-positive patients, reaching 57.5% in

the IHC3+ subgroup, validating the importance of appropriate

payload-tumor matching. This success contrasts sharply with the

consistent failure of microtubule inhibitor-based ADCs. TAK-264

(anti-GCC-MMAE), despite targeting an antigen expressed in >90%

of CRCs, demonstrated zero clinical responses, likely reflecting

intrinsic resistance of colorectal tumors to microtubule inhibitors.

The payload-specificity issue is further exemplified by T-DM1’s

differential efficacy across tumor types. While T-DM1 significantly
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improves progression-free and overall survival in HER2-positive

breast cancer, its efficacy in HER2-positive CRC remains minimal,

with only one responder among eight patients (97). These findings

underscore that successful ADC development requires payload

selection tailored to tumor-specific biological characteristics

rather than simply matching target expression profiles.

Clinical translation of ADCs in CRC remains nascent despite

platform maturation. With ~15 approved ADCs across solid

tumors, application in CRC lags behind breast and gastric

cancers, primarily due to limited validated targets and

desmoplastic barriers. Current clinical investigations focus on

CEACAM5, HER2, and Trop-2, yet antigen heterogeneity and

stromal density pose formidable obstacles.
4.2 CRC-specific obstacles

Despite successful ADC approvals in multiple malignancies,

including the recent tumor-agnostic approval of trastuzumab

deruxtecan for HER2-positive solid tumors, only T-DXd has

achieved regulatory approval specifically for colorectal cancer.

This limited success reflects CRC-specific biological barriers that

impede ADC efficacy.

First, target antigen heterogeneity presents a fundamental

challenge. HER2 amplification occurs in merely 2-5% of

metastatic CRCs (98), while even prevalent targets like

CEACAM5 display intratumoral heterogeneity, with antigen-

negative cells interspersed among positive populations (99, 100).

Second, inefficient internalization limits payload delivery. Certain

CRC-associated antigens, particularly CEACAM5, demonstrate

slow internalization kinetics upon antibody binding, reducing

intracellular drug accumulation (101). Third, the physical tumor

microenvironment creates formidable delivery barriers. Dense

desmoplastic stroma and elevated interstitial fluid pressure

impede antibody penetration, resulting in heterogeneous

intratumoral ADC distribution. Their 150-kDa size limits

penetration in desmoplastic CRC tumors, potentially creating

sanctuary sites.Fourth, immunological exclusion in MSS tumors

diminishes therapeutic response. Approximately 95% of CRCs are

microsatell ite stable, characterized by “cold” immune

microenvironments lacking cytotoxic T-cell infiltration. This

immune exclusion eliminates potential contributions from

antibody-dependent cellular cytotoxicity and immunogenic cell

death following ADC treatment.

Additionally, on-target/off-tumor gastrointestinal toxicity

remains problematic. Many candidate antigens, including Trop-2,

exhibit baseline expression in normal intestinal epithelium, causing

dose-limiting gastrointestinal adverse events that narrow

the therapeutic window. The therapeutic window narrows

further as systemic toxicities—neutropenia, ocular damage,

thrombocytopenia—constrain dosing (102). These CRC-specific

challenges collectively explain the limited clinical translation of

ADCs in this malignancy despite successes elsewhere. Future
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success hinges on identifying CRC-enriched antigens, particularly

on TME components (CAFs, CSCs) and leveraging payloads with

robust bystander effects to overcome spatial heterogeneity (103).

4.2.1 Antigen heterogeneity & expression
threshold

ADC efficacy critically depends on target antigen expression

levels and distribution uniformity. Quantitative studies suggest

approximately 10,000 receptors/cell as a functional threshold for

effective ADC activity (104). The DESTINY-CRC01 trial

exemplified this principle, achieving 45.3% objective response rate

in HER2 IHC3+/ISH+ patients while observing no responses in

HER2-low cohorts, highlighting the importance of stringent

expression criteria. Intratumoral heterogeneity poses additional

challenges, with antigen-negative clones interspersed among

positive populations. The bystander effect offers a potential

solution: hydrophobic payloads like DXd and SN-38 can diffuse

from antigen-positive cells to eliminate neighboring antigen-

negative cells. Emerging strategies include bispecific ADCs

targeting dual epitopes to enhance receptor clustering and

internalization. MEDI4276, binding two HER2 epitopes

simultaneously, demonstrated accelerated lysosomal trafficking

preclinically, though early-phase trials revealed narrow

therapeutic windows. Optimized patient selection through IHC

scoring, H-score thresholds, and RNA-based quantification may

help identify optimal candidates. These approaches collectively

suggest pathways to mitigate heterogeneity-related limitations in

CRC ADC development.

4.2.2 Internalization & intracellular trafficking
kinetics

Efficient ADC activity requires optimal antigen-antibody

complex internalization and lysosomal trafficking. In colorectal

cancer, internalization kinetics vary significantly among target

antigens. CEACAM5, despite widespread expression in CRC,

demonstrates notably slow internalization upon antibody binding,

limiting intracellular payload delivery. This contrasts with other

targets being evaluated in CRC clinical trials. Epitope selection

proves crucial-dual-epitope targeting can induce receptor clustering

and accelerate endocytosis, as demonstrated in preclinical HER2-

targeting studies. Linker design significantly impacts payload

release dynamics: cleavable linkers enable faster intracellular drug

liberation but risk premature systemic release, while non-cleavable

linkers require complete antibody degradation (105). Novel tumor-

microenvironment-activated linkers represent an emerging strategy

to maintain circulation stability while facilitating tumor-specific

activation, though CRC-specific applications await clinical

validation (105). Quantitative studies across multiple tumor types

suggest compensatory relationships between antigen density and

internalization rates. For CRC-relevant targets like CEACAM5,

HER2, and GCC, optimizing these parameters during ADC

design may help overcome the internalization barriers specific to

colorectal tumors.
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4.2.3 Tumor penetration limits & physical TME
barriers

Colorectal tumors present formidable physical barriers impeding

ADC distribution. The 150-kDa antibody size restricts diffusion

through dense extracellular matrix, while irregular vasculature and

elevated interstitial pressure further limit penetration (106). The

“binding-site barrier” phenomenon-whereby ADCs saturate

perivascular antigens before reaching deeper tumor regions-

compounds distribution challenges. ADC dosing constraints,

necessitated by payload toxicity, may result in subtherapeutic

concentrations in poorly perfused areas (107). Several strategies

show promise for enhancing penetration. Bystander-effect payloads

enable killing of antigen-negative or inaccessible cells through local

diffusion. Smaller antibody formats (scFv, Fab fragments,

nanobodies) demonstrate improved tissue penetration, albeit with

faster clearance (108). Co-administration of unlabeled carrier

antibodies may saturate peripheral binding sites, driving deeper

ADC penetration. The desmoplastic CRC microenvironment,

characterized by fibrotic stroma and hypoxic regions, creates

heterogeneous drug distribution patterns. These physical barriers

likely contribute to treatment resistance and warrant continued

investigation of penetration-enhancing strategies tailored to CRC-

specific microenvironmental features.

4.2.4 Immunological dichotomy between MSS
and MSI-H colorectal cancer

Microsatel l i te status substantial ly influences CRC

immunobiology and therapeutic responses. MSI-H tumors (15% of

cases) typically exhibit high mutational burden, abundant

neoantigens, and robust T-cell infiltration, contributing to their

responsiveness to checkpoint inhibitors (109, 110) In contrast, MSS

tumors (85% of cases) generally display low mutational burden,

minimal neoantigen presentation, and “cold” microenvironments

characterized by sparse T-cell infiltration and abundant

immunosuppressive cells (111–113). This dichotomy significantly

impacts treatment outcomes: while MSI-H patients often achieve

40-60% response rates with checkpoint inhibitors, MSS patients show

limited benefit (114, 115). ADCs may provide valuable opportunities

for MSS CRC treatment (116). Cytotoxic payloads could potentially

induce immunogenic cell death, possibly converting “cold” tumors to

“hot” phenotypes. Zhou et al. developed Oba01, a DR5-targeting

ADC conjugated with MMAE via cleavable linker (77), representing

efforts to address MSS CRC challenges. Strategic payload selection

favoring immunogenic mechanisms, combined with immune

checkpoint blockade, may help mitigate the immunosuppressive

MSS microenvironment, though clinical validation remains essential.
4.3 Resistance mechanisms (intrinsic &
acquired; payload-specific)

ADC resistance involves multifaceted mechanisms spanning

both intrinsic and acquired pathways. Intrinsic resistance often

stems from pre-existing cellular features. ABC transporter

overexpression, particularly P-glycoprotein, promotes drug efflux
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and reduces intracellular accumulation (117). MMAE-based ADCs

face notable challenges in gastrointestinal cancers, where P-gp

expression frequently increases following chemotherapy exposure

(118, 119). This may partially explain the failure of TAK-264 (anti-

GCC-MMAE) in colorectal cancer trials despite high GCC

expression (120, 121). Emerging strategies include selecting efflux-

insensitive payloads like topoisomerase I inhibitors, as

demonstrated by T-DXd’s success in DESTINY-CRC01,

contrasting with MMAE-based failures (122).

Acquired resistance develops dynamically under treatment

pressure through multiple mechanisms. Target antigen

modulation represents a primary escape route-downregulation,

mutation, or selection of antigen-negative clones can emerge

within months of treatment initiation. In tumors with

heterogeneous antigen expression like CEACAM5 in colorectal

cancer, pre-existing low-expressing populations may expand

under selection pressure. Payload-specific resistance patterns vary:

topoisomerase I inhib i tor res i s tance involves TOP1

downregulation, enhanced DNA repair pathway activation, and

apoptosis evasion through NF-kB activation. MMAE resistance

primarily involves efflux pump upregulation and tubulin

alterations. Compensatory signaling pathways provide additional

escape mechanisms-alternative receptor tyrosine kinases may

maintain downstream signaling despite target blockade. These

multilevel resistance mechanisms suggest combination approaches

may prove valuable for sustained efficacy.

ADCs also remain constrained by antigen dependency—tumors

lacking suitable targets escape treatment. Acquired resistance

through antigen loss or downregulation parallels targeted therapy

resistance patterns. Unlike chemotherapy’s antigen-independent

activity, ADCs require sustained target expression for efficacy.
4.4 Safety profile in CRC & mitigation
(GI/hematologic/ILD)

ADC-related toxicities in colorectal cancer trials encompass

both on-target and off-target effects, with gastrointestinal and

hematologic adverse events predominating. In DESTINY-CRC01,

trastuzumab deruxtecan demonstrated near-universal adverse event

occurrence, with grade ≥3 neutropenia (22.1%) and anemia (14.0%)

most frequently observed (123, 124). Gastrointestinal toxicities,

including nausea, diarrhea, and mucositis, likely result from

topoisomerase I inhibitor payloads (SN-38, DXd) directly

affecting intestinal epithelium and hepatobiliary excretion of free

toxins (125). IMMU-130 (labetuzumab govitecan) similarly showed

manageable toxicity profiles with grade ≥3 neutropenia (16%),

leukopenia (11%), and diarrhea (7%) as dose-limiting toxicities.

Interstitial lung disease represents a particularly concerning

ADC-specific toxicity. T-DXd trials reported ILD/pneumonitis in

9.3% of CRC patients, including fatal cases (3.5%), necessitating

careful patient selection and monitoring (126). Dose optimization

has proven effective-reducing T-DXd from 6.4 to 5.4 mg/kg in

DESTINY-CRC02 eliminated grade 5 toxicities while maintaining

efficacy (127).
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Mitigation strategies focus on multiple approaches. Linker

optimization enhances stability to minimize premature payload

release, as demonstrated by YL201’s hydrophilic linker achieving

only 1.3% severe ILD incidence. Dose fractionation reduces peak

concentration-related toxicities-IMMU-130’s weekly dosing showed

improved tolerability versus every-three-week schedules. Supportive

care measures include prophylactic G-CSF for anticipated

neutropenia, early antidiarrheal intervention for SN-38-based

ADCs, and antiemetic premedication. Careful monitoring protocols

enable timely dose modifications: most hematologic toxicities resolve

within 1–2 weeks of treatment interruption, allowing dose-reduced

continuation (128). Through these integrated management strategies,

approximately 85% of patients complete intended therapy despite

high adverse event rates, suggesting ADC toxicities remain

manageable within appropriate frameworks.
5 Discussion and conclusion

ADCs are rapidly transitioning from targeted chemotherapies

into a sophisticated class of immuno-oncology agents, representing

a new frontier for CRC treatment. While preclinical studies have

shown remarkable promise, the journey to clinical approval

remains challenging. The future success of ADCs in CRC hinges

on a paradigm shift: moving beyond direct cytotoxicity to

strategically harnessing their profound ability to modulate the

TME and synergize with the host immune system. The true

innovation in next-generation ADCs lies in the immunological

consequences of their payload selection.

This immunotherapeutic lens also redefines what constitutes an

optimal target. The focus is expanding from antigens on tumor cells

(CEACAM5, HER2) to include those on critical TME components,

such as cancer-associated fibroblasts (CEACAM6), or on immune

checkpoints themselves (PD-L1, CD47). Targeting CSCs with

markers like LGR5 or GPR56 using an ICD-inducing ADC is a

particularly powerful strategy, as it aims to eradicate the root of

relapse while simultaneously initiating an immune response from

the most resilient tumor population. This dual-pronged attack-

debulking the tumor while disabling its defenses-is central to the

modern ADC concept.

Immune priming mechanisms position ADCs as ideal immuno-

oncology partners. ADC-mediated ICD releases tumor antigens,

activates cGAS-STING signaling, and recruits cytotoxic T-cells,

converting immunologically “cold” MSS tumors to “hot”

phenotypes (102). Immunostimulatory payloads exemplify this

paradigm: photoimmunotherapy platforms induce dendritic cell

maturation and amplify CD8+ responses via localized ICD (103).

This immune activation creates synergy with checkpoint inhibitors,

as demonstrated in preclinical models where ADC pretreatment

enhances anti-PD-1 efficacy (129). The dual capacity for direct

cytotoxicity and immune engagement distinguishes ADCs from

conventional targeted therapies. The antibody component further

enables Fc-mediated ADCC and phagocytosis, creating synergistic

immune engagement that maintains efficacy despite variable

antigen expression.
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Biomarker-driven patient selection and rational combination

strategies remain critical. Current approaches relying on binary

antigen expression are insufficient; integration of antigen density,

spatial uniformity, and immune contexture (GSDME expression,

cGAS-STING activity) is essential for optimizing patient selection.

Payload selection must balance potency, membrane permeability

for bystander killing, and hydrophilicity to minimize off-target

toxicity while maintaining DAR and linker stability (103). Despite

third/fourth-generation engineering advances (102), translational

barriers persist, necessitating systematic evaluation of ADC-

immunotherapy combinations in biomarker-stratified clinical

trials to fully unlock their therapeutic potential in CRC.

To realize this vision, biomarker development must evolve beyond

simple antigen expression. The selection of patients for ADC therapy

should incorporate immuno-profiling to assess the TME, expression

of key cell death mediators like GSDME, or activation of pathways

such as cGAS-STING. In conclusion, ADCs offer a modular and

mechanistically versatile platform with the potential to reshape the

CRC treatment landscape. Their ultimate success will be driven by

continued innovation in molecular engineering and, most critically, by

their intelligent integration into biomarker-driven, immuno-oncology

combination strategies designed to kill tumor cells and awaken the

immune system in a single, coordinated assault.
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