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Immunogenicity poses a significant challenge in biotherapeutics development

due to the formation of anti-drug antibodies (ADA), which can alter drug

pharmacokinetics (PK) and reduce efficacy. However, ADA presence does not

always correlate with a clinically relevant reduction in efficacy, or in some cases

can be managed by adjusting dosing regimens. Current preclinical strategies

focus on predicting the propensity for ADA development, but do not assess the

liability for ADA to impact PK. Quantitative systems pharmacology (QSP) models

integrate knowledge of biological mechanisms with physiological and drug-

specific parameters to predict ADA dynamics and their effect on PK. This study

describes recent progress in using QSP models to predict the incidence of

immunogenicity and the impact of ADA on PK. We report continued challenges

in accurately predicting ADA incidence from available data from experimental

and computational methods used in immunogenicity risk assessment. However,

across 13 monoclonal antibodies and fusion proteins, the model accurately

predicted ADA impact on drug concentration in ten cases, Furthermore, the

ADA to drug concentration ratio was identified as a strong predictor of clinically

relevant immunogenicity and drug exposure impact.
KEYWORDS

immunogenicity, anti-drug antibody, biotherapeutic, quantitative systems
pharmacology, pharmacokinetics, model-informed drug development
1 Introduction

The number of biotherapeutics in development and approved by regulators has sharply

increased over the last three decades, with biologics license applications making up almost

30% of FDA approved drugs over the last 10 years (1). While these therapies have provided

significant benefits to patients, challenges remain in understanding and mitigating the
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development of unwanted immunogenicity to protein

biotherapeutics. Immunogenicity occurs when there is activation

of a humoral immune response that results in development of anti-

drug antibodies (ADAs) that can enhance clearance of the

biotherapeutic, reduce efficacy or evoke safety issues that may

limit the population that benefits from treatment or result in

clinical stage failure of a development program. However, ADA

positivity is not always associated with loss of drug exposure,

efficacy or adverse safety outcomes, suggesting a lack of clinical

relevance for some drugs. Thus, in pre-clinical and early clinical

immunogenicity assessment, it is desirable to predict and measure

not just the incidence of immunogenicity, but whether ADA will be

clinically relevant. The US Food and Drug Administration (FDA)

recently announced plans to take steps towards phasing out

requirements for animal testing for antibodies and other drugs in

favour of more predictive in silico and in vitro human-relevant

methods (2). While this announcement was driven by multiple

important scientific, ethical and cost considerations, the poor

predictivity of animal models for multiple applications including

immunogenicity was cited as driving the need for alternative,

innovative new approach methodologies.

Multiple factors have been implicated in the development of

immunogenicity to biotherapeutic, including product-related factors

(e.g. protein sequence, host cell impurities, excipients, aggregation),

patient-related factors (e.g. genetics, disease status, age) and trial

design factors such as dose amount and frequency, route of

administration or co-medication (3, 4). Current pre-clinical

immunogenicity risk assessment approaches for therapeutic

proteins frequently include in silico and in vitro methods that

evaluate risk factors at different stages of the immune response to

characterise some of these factors. In silico approaches are well

established in the assessment of protein sequence similarity to the

germline and Major Histocompatibility Complex class II (MHCII)

binding and antigen presentation (5, 6). In vitro approaches include

dendritic cell uptake and activation assays, MHC associated peptide

proteomics to measure presented antigens and T cell activation and

proliferation assays. Prediction of B cell epitopes and B cell activation

remainmore challenging and less well established [reviewed in (5, 7)].

However, integrating these multiple outcomes to assess the risk and

clinical relevance of immunogenicity remains a challenge.

Quantitative systems pharmacology (QSP) and physiologically-

based pharmacokinetic (PBPK) models are widely used in drug

development and regulatory approval to inform decision making,

contributing to reduced development timelines and costs (8–10).

These mechanistic computational models integrate drug-specific data

from multiple sources including in silico predictions, in vitro

and in vivo experiments with knowledge of physiological and

pathophysiological processes to understand how drugs and biological

systems interact to determine concentrations, pharmacological activity

and toxicity.

The Immunogenicity Simulator (IG Simulator), a QSP platform

model, has been developed with the goal of predicting and managing

clinical immunogenicity to non-self therapeutic proteins (11). The IG

Simulator integrates mathematical models of immunology with a
Frontiers in Immunology 02
PBPK model and physiological parameters and drug-specific

parameters derived from experimental and computational

approaches. The approach builds on efforts in the mechanistic

modelling of immunogenicity, most notably by Chen et al. (12, 13),

and PBPKmodelling of therapeutic proteins (14). Previously we have

presented an evaluation of the application of the IG Simulator to

predict immunogenicity of 10 monoclonal antibodies as part of the

learn and confirm approach to model development (15). One of the

challenges identified in this work was the non-trivial nature of

comparing predicted and observed exposure loss in ADA positive

subjects. In the current analysis we evaluate the performance of the

IG Simulator in predicting whether there is a significant impact of

ADA positivity on PK versus reported outcomes in clinical studies.

Furthermore, we describe a novel interpretation of model outcomes

using the model derived metric of ADA:drug concentration ratio,

which is shown to be highly predictive of the likelihood of clinically

relevant immunogenicity with an impact on drug exposure.
2 Materials and methods

2.1 Model description

The IG Simulator V7 (Certara Predictive Technologies,

Sheffield, UK) is a QSP model which integrates mechanistic,

ordinary differential equation models of the immune response

and drug PK, connected via the concentrations of drug in model

compartments (11, 15). The starting point for the IG Simulator was

the work of Chen, Hickling, and Vicini (CHV) (12, 13), who

developed a multiscale model of biological processes involved in

the humoral immune response to an antigen. The CHV model

mechanistically represents the subcellular level processes of antigen

presentation by dendritic cells, a cellular level model of the kinetics

of immune cells including the activation, differentiation and

proliferation of drug-specific CD4+ T cells and B cells and

binding ADA production by plasma cells and a PK model of the

protein antigen. Several modifications were made to the CHV

model. First the compartmental PK model for the drug was

replaced with a minimal PBPK module comprised of plasma,

lymph node, and a lumped tissue compartment that was further

divided into vascular, endosomal, and interstitial compartments

(14). The immune response model was compartmentalised to the

lymph node, blood, and vascular compartment and the immune

response driven by interaction with antigenic protein concentration

with the biologically relevant compartment, as described previously

(16). Antigen presentation prediction methods trained on mass

spectrometry eluted ligand data in addition to binding affinity data

have superior performance in the prediction of antigen presentation

versus methods trained on binding affinity alone (17, 18). While

binding affinity data specifically characterises the process of peptide

binding to human leukocyte antigens (HLAs), eluted ligand data

measures the processed and presented peptides bound to HLAs on

antigen presenting cells, thus includes the contribution of multiple

steps in the antigen presentation pathway. Elution rank is a relative
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score that allows cross-allele comparisons and evaluation of

peptides across different class II HLAs (17). To enable input of

predicted elution rank from NetMHCIIpan 4.0 (17), the subcellular

model of antigen presentation from Chen et al. (13), was removed,

and the T cell activation function (D_N_Epitope) modified to use

elution rank (EL_rank) specific to a peptide and HLA allele

combination expressed in an individual. Experimental

measurements of the dendrit ic cel l uptake of intact

biotherapeutics were directly input as a scaling factor multiplying

antigen concentration (DC_Uptake) to account for drug-specific

uptake rates.

D _N _ Epitope =
ID _m

(ID _m + Ttot)

� DC _Uptake� AgVS�oAllele
(100=EL _ rank _ Epitope _Allele − 1)2

DC _Uptake� AgVS�oAllele
(100=EL _ rank _ Epitope _Allele − 1)2 + K _Ag _N

Where ID_m is the number of mature dendritic cells; Ttot is the

total number of drug-specific T cells, summed for naïve, activated

and memory T cells; AgVS is the drug concentration in vascular

space (AgVS); and elution rank (EL_rank) for the specific peptide

and allele and the experimentally derived antigen uptake rate by

dendritic cells (DC_Uptake), and K_Ag_N is a constant defining

half-maximal activation of T cells by presented antigen, calibrated

to minimise the root mean square error between predicted and

observed immunogenicity incidence for the 13 drugs in this study.

Methotrexate co-medication has been associated with a decrease in

ADA concentrations and incidence in clinical trials (19–21), and for

several of the drugs under investigation methotrexate was co-

administered in clinical studies reporting immunogenicity

(Supplementary Table 3). The PK of oral methotrexate was

captured by a two compartment PK model with first order

absorption (22). The pharmacodynamics was modelled using an

inhibitory Emax model to describe the inhibition of the T cell

proliferation rate (rAT). An estimated IC50 of 283 nM captured

the reduction in ADA incidence at high, medium and low

methotrexate doses (20) (Supplementary Figure 1).
2.2 Compound-specific input parameters

Compound specific parameters for the PBPK model are

summarised in Supplementary Table 1. Plasma clearance and

bioavailability and absorption rate for subcutaneously

administered drugs, were optimised to capture clinical data

(Supplementary Figure 2) using the Nelder Mead method

implemented in the parameter estimation toolbox in QSP

Designer V2 (23).

Where available, T cell epitope selection was informed by eluted

peptides from MHC-associated peptide proteomics (MAPPs) data

(Supplementary Table 2). When MAPPs data was not available, the

full primary protein sequence was analysed for risk of T cell

epitopes. A list of all possible 15-mers derived from the eluted

peptides or primary protein sequence were screened using BLAST

(blast-2.14.0+) against the UniProt Knowledgebase human
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reference proteome (24) to identify and remove all sequences that

align with an endogenous human protein assuming immune

tolerance to peptides from self-proteins. Elution rank for alleles

and haplotypes of the three classical class II HLAs, DR, DQ and DP

from the Immune Epitope Database (IEDB) HLA reference set (25,

26) was predicted using elution rank reported by NetMHCIIpan

(17). Up to five non-overlapping peptides with the strongest

binding (lowest elution rank) across the HLA reference set were

selected as the highest risk potential T cell epitopes in simulations.

Including more than five potential T cell epitopes did not increase

predicted ADA incidence for the test set (data not shown). Allele

and haplotype frequencies were extracted from the allele

frequencies net database (27). Where available, published

experimental data for the initial fraction of drug-specific naïve T

cells and the dendritic cell uptake rate were also integrated in the

model (Supplementary Table 2).
2.3 Virtual clinical trial simulation

250 virtual subjects were generated to include physiological

variability in compartment volumes and fluid flow rates, drug

clearance and HLA genetics. Physiological parameter sets for the

PBPK model, including volumes of plasma, lymph nodes and tissue

compartments, blood and lymph flows, endogenous IgG

concentration and FcRn concentrations were generated using the

Simcyp Simulator V19 (Certara Predictive Technologies, Sheffield,

UK) minimal PBPK model for monoclonal antibodies. Variability

in drug clearance was generated by Monte Carlo sampling of the

lognormal parameter distribution defined by the mean and

coefficient of variation.

Variability in HLA genetics was considered for the three classic

class II HLAs, DRB1, DP, and DQ. DRB1 allele and DP and DQ

haplotype distributions for the North American and European

populations were calculated using data available at the Allele

Frequency Net Database (27). For all publications from studies

performed in the population, allele or haplotype frequencies were

averaged, weighting by study size. The analysis included all 11

DRB1 alleles, 6 DQ and 6 DP haplotypes included in the IEDB HLA

Reference Set, representing the most common specificities in the

general population (26). For each virtual subject, two alleles or

haplotypes at each locus were randomly selected according to

their frequencies.

Comparator clinical studies were selected as studies that report

sufficient information to enable the study design to be reproduced,

including sufficient information on the drug dosing regimen,

sampling times for analysis of ADA and drug concentrations and

assessment of the ADA incidence and the impact of ADA on PK.

For simulations, drug dosing regimen, study duration, and

sampling times for plasma drug and ADA concentration

measurements were matched to the reported trial design for a

comparator study (Supplementary Table 3). The QSP model

predicts the temporal profiles of drug, ADA and immune

complex concentrations for each virtual individual, which vary

depending on the individual physiological, genetic, compound-
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specific and trial-specific parameters. A virtual subject was

identified as ADA positive if their total ADA concentration

exceeds the concentration threshold for ADA positivity at one or

more sampling time for ADA assessment. The threshold for ADA

positivity either used the value reported in the comparator clinical

study, or was assumed to take the FDA minimum recommended

sensitivity of 100 ng/mL if ADA threshold concentration was not

reported (28) (Supplementary Table 2).

To assess the impact of ADA on drug PK, clinical studies

compared drug concentrations for individuals classified as ADA

positive and ADA negative at one or more sampling times at which

both ADA and drug concentrations were measured. For most

studies sampling times were pre-dose and correspond to drug

trough concentrations. Exceptions are rituximab, for which only

two doses were administered and frequent sampling of PK and

ADA was used, and ustekinumab, for which sampling was both at

the trough concentration and halfway through the dosing interval.

Different studies used different statistical methods for evaluating the

impact of ADA on PK, and the study authors’ conclusions are taken

directly for comparison to simulation outcomes. For simulations, a

consistent statistical approach was used. The impact of ADA on PK

was assessed by comparing free drug concentration for subjects

assigned as ADA positive and negative at the final concentration

sampling time reported in the clinical study using a Wilcoxon rank

sum test (p < 0.05).

To assess relationship between drug concentration, ADA

concentration and the impact of ADA on PK, PK only

simulations were run for the same virtual subjects (i.e. the same

parameter set) by deactivating the immune system model, leaving

only the PBPK model active. This PK only simulation assessed drug

concentration for all virtual subjects in the absence of ADA. The

molar concentration ratio of ADA to drug in the absence of ADA

([ADA]:[Drug]) was calculated for each virtual subject for the

maximum total ADA concentrat ion versus the drug

concentration at the final ADA sampling time in the clinical study.

All simulations were performed using QSP Designer V2 and

post hoc analysis and plotting were performed in MATLAB R2024b.
3 Results

The developed PBPK models for each drug in the absence of

ADA adequately captured single dose and multiple dose plasma

concentration profiles for the 13 drugs (Figure 1, Supplementary

Figure 2).

Predicted immunogenicity incidence was compared to the

reported ADA incidence for the benchmark study for which the

virtual study design was matched, as well as the range of ADA

incidence reported for the monoclonal antibodies across multiple

studies. When comparing to the outcome reported for the

benchmark study, a trend was observed toward overprediction of

the incidence of immunogenicity reported in the comparator study

to which the virtual clinical trial design was matched. While 4/6

drugs with moderate to high immunogenicity (defined as >10%

ADA incidence (29)) were correctly predicted having a moderate to
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high incidence of ADA positivity, only 2/7 drugs with low

immunogenicity (defined as ≤10% ADA incidence) were correctly

predicted as having low immunogenicity while for 5/7 drugs

immunogenicity was overpredicted (Table 1). We note that

considerable variability in ADA incidence was reported across

different clinical trials for the same drug (Table 1).

Despite the discrepancy in predicted versus observed ADA

incidence, there were only two drugs, secukinumab and trastuzumab,

for which the model predicted a significant reduction in plasma

concentration in ADA positive subjects that was not seen in the

clinical studies and in both cases the number of ADA positive

subjects in the clinical study was very small (<1%) (Table 1,

Figure 1). For 10/13 drugs the model correctly predicted whether

ADA would be associated with a significant reduction in plasma

concentration as observed in the clinical study. It was notable that

for three drugs, bevacizumab, ixekizumab, and tocilizumab, despite

overprediction of ADA incidence, ADA positivity was not associated

with a reduction in plasma concentration, in agreement with clinical

observations (Table 1). For etanercept, the model predicted no ADA

positive subjects, so the impact of ADA on the drug concentration

could not be assessed. For drugs in which ADA was associated with a

reduction in drug concentration, considerable variability in the drug

concentration in ADA positive individuals was predicted, with drug

concentration remaining within the range of those for ADA negative

concentrations in some cases (Figure 1).

To inform understanding of why ADA positivity was associated

with a significant reduction in plasma concentration for some drugs

but not others, the relationship between the predicted drug

concentration and molar ratio of the ADA concentration versus

drug concentration in the absence of ADA was assessed (Figure 2).

Two fingerprint profiles were identified. For drugs where ADA does

not significantly affect PK, the free drug concentration remains

independent of the [ADA]:[Drug] ratio (Figures 2A–E).

Furthermore, the [ADA]:[Drug] ratio is less than 1 for most

virtual subjects and never exceeds 3. For drugs where ADA

significantly impacts PK, free drug concentration is independent

of [ADA]:[Drug] for a threshold of less than approximately 1, and

drug concentrations are reduced when [ADA]:[Drug] exceeds this

threshold (Figure 2F–O). The impact of [ADA]:[Drug] between 0.3

and 3 on PK is variable depending on both the compound and the

individual, suggesting that variability in multiple PK and immune

response parameters likely determine the exact impact of ADA on

drug concentration. When the [ADA]:[Drug] is less than 0.3,

minimal impact of ADA on drug concentration (<50% reduction)

is consistently observed. However, when [ADA]:[Drug] exceeds 3,

there is a pronounced reduction in free drug concentration to less

than 90% of the predicted concentration in the absence of ADA.

For most of the drugs simulated, all virtual subjects for whom

[ADA]:[Drug] exceeds 1 were classified as ADA positive, but not all

individuals classified as ADA positive exceed this threshold.

Rituximab is an exception (Figure 2I), with results suggesting

there is an ADA dependent reduction in free drug concentration

for some ADA negative individuals, likely due to the long time

between last dose and the final plasma concentration measurement

(22 weeks).
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Since the impact of ADA on PK is dependent on drug

concentration as well as ADA concentration, either increasing the

dose amount or reducing the dosing interval may be viable approaches

to manage the impact of ADA and maintain efficacious drug

concentrations. We explored the impact of doubling the dose
Frontiers in Immunology 05
amount or halving the dosing interval on the number of individuals

for which [ADA]:[Drug] exceeded 1 (Figure 3). For all drugs, both

approaches resulted in a decrease in fraction of individuals for which

[ADA]:[Drug] exceeds 1, suggesting the potential for ADA to be

managed via dose adjustment in some individuals.
FIGURE 1

Predicted versus observed plasma concentrations at reported PK sampling times for ADA positive (red), low titer ADA positive (green, adalimumab
only) and ADA negative (blue) subjects. Solid lines are the median of the simulated virtual populations are dashed lines are the 5th and 95th percentile,
open circles are the reported clinical data. (A) 40 mg SC adalimumab Q2W (B) 15 mg/kg bevacizumab Q3W for 6 doses (C) 150 mg SC bococizumab
Q2W (D) 400 mg SC certolizumab pegol Q2W for three doses followed by 200 mg SC certolizumab pegol Q2W (45), (E) 50 mg SC etanercept Q1W
(F) 3 mg/kg IV infliximab on weeks 0,2 and 6 then Q8W (G) initial dose 160 mg SC ixekizumab, followed by 80 mg Q2W to week 12 then 80 mg
Q4W to week 60, (H) 300 mg IV natalizumab Q4W for 120 weeks (I)1000 mg IV rituximab on weeks 0 and 2, (J) 300 mg SC secukinumab Q1W for
5 weeks, then Q4W (K) 162 mg SC tocilizumab Q1W for 24 weeks (65) (L) Initially 4 mg/kg IV trastuzumab, followed by 2 mg/kg Q1W (M) Initially
130 mg IV ustekinumab, then 90 mg Q8W. Source of observed data is defined in Table 1.
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4 Discussion

Preclinical immunogenicity assessment typically relies on in

silico and in vitro assessment methods that focus on single

mechanisms and pathways associated with sequence-based

immunogenicity risk. QSP modelling is a novel, evolving

approach to immunogenicity assessment that integrates

mathematical models capable of capturing the inherent

complexity of the immune cell interactions with predictions from

multiple immunogenicity risk assessment methods to predict risk of

ADA development and the clinical relevance of ADA.

This manuscript evaluates results from application of a QSP model

to predict both the incidence and clinical relevance of ADA

development with respect to impact on drug PK for 13 monoclonal

antibodies or Fc fusion proteins. The model accurately predicted

whether there was a significant impact of ADA on PK for 10 out of

13 evaluated biotherapeutics. It successfully identified three cases where

ADA positivity was not associated with a reduction in drug

concentration for the reported clinical study design. In all seven

instances where ADA positivity was reported to reduce plasma drug

concentration, this outcome was predicted correctly. For two cases,

ADA was incorrectly predicted to have an impact on PK. For the final

case, etanercept, no subjects were predicted to be ADA positive so the

predicted impact of ADA on PK could not be assessed. However, the

conclusion from the model is that there is no formation of ADA or

impact of immunogenicity on drug PK, in agreement with the low

incidence of transient ADA that was not associated with any impact on

drug PK reported in the clinical study.

Further analysis of the relationship between predicted drug and

ADA concentrations revealed that both the drug and ADA
Frontiers in Immunology 06
concentrations determine whether there is an impact of ADA on

PK. A reduction in drug concentration, measured at Ctrough for

most biotherapeutics evaluated, was typically only observed when

molar ADA concentration exceeded the molar drug concentration.

This is consistent both with observations from multiple clinical

trials for example (30, 31), that higher ADA concentrations were

associated with greater reduction in drug concentration, and clinical

experience that increased dose amount or frequency can overcome

loss of efficacy resulting from ADA for some drugs and patients.

However, the impact of drug dose and frequency on [ADA]:[Drug]

can be complex, as both parameters can influence ADA formation

itself, which complicates interpretation.

We propose the [ADA]:[Drug] as a novel model-informed

metric to quantify the risk of ADA impacting PK. This metric

may be used to assess the potential to successfully manage clinical

ADA by modifying the dosing during preclinical and early clinical

development when understanding of the clinical concentration-

response relationship is limited. Limits on feasible dose amount or

frequency can be selected by considering drug solubility, toxicity

and other available evidence, and used to explore the impact of dose

on the proportion of virtual subjects for which [ADA]:[Drug]

exceeds 1. In later phase clinical development, the QSP model can

be calibrated to clinical ADA and PK data (32) extended with a

pharmacodynamic model relating drug concentration to efficacy for

a more thorough evaluation of the impact of ADA on efficacy.

Furthermore, the importance of [ADA]:[Drug] suggests that for

when a higher drug concentration is maintained throughout the

dosing interval, the threshold ADA concentration that results in a

reduction in drug concentration is also higher. This understanding

also helps to inform understanding of the minimum ADA
TABLE 1 Summary of predicted versus observed ADA incidence and impact of ADA on PK.

Drug ADA+ incidence (%) Impact of ADA positivity on plasma
concentration

Reference

Observed (comparator study [range]) Predicted Observed Predicted

Adalimumab 50 [0-95.9] 3.2 ↓ ↓ (20, 30, 38, 39)

Bevacizumab 2.5 [0-16.1] 37.2 → → (40–42)

Bococizumab 48 [7-50.3] 40.4 ↓ ↓ (31, 43, 44)

Certolizumab pegol 25.3 [3.1-37] 73.2 ↓ ↓ (45–47)

Etanercept 6.9 [0-14.1] 0 → NA (48–50)

Infliximab 35 [5.1-61] 14.8 ↓ ↓ (51–53)

Ixekizumab 17.4 [5-17.4] 4.4 → → (54, 55)

Natalizumab 9.1 [3-92] 43.2 ↓ ↓ (56–58)

Rituximab 23 [5.5-37] 18 ↓ ↓ (59–62)

Secukinumab 0–1 [0-2.3] 4.8 → ↓ (63, 64)

Tocilizumab 0.8 [0-91.9] 12.4 → → (65–67)

Trastuzumab 0.3 [0-10] 44.8 → ↓ (68–70)

Ustekinumab 2.3 [2.3-48.2] 30 ↓ ↓ (71, 72)
NA, not applicable, no ADA positive individuals predicted. Down arrows represent a decrease in drug concentration or increase in clearance for ADA positive versus ADA negative individuals,
horizonal arrows represent no significant impact on drug concentration reported/predicted.
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concentration sensitivity to detect ADA that have the potential to

impact PK.

A limitation of the current work is that it has focused on a small

test set of monoclonal antibodies and Fc fusion proteins with half-
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lives in the range of 4–28 days. Future work will analyse the

applicability [ADA]:[Drug] and the prediction of clinical

immunogenicity for a larger validation set of drugs. Validation

with more diverse modalities such as bispecific antibodies, peptides,
FIGURE 2

Relationship between the molar ratio of the ADA concentration to drug concentration ([ADA]:[Drug]) and the free drug concentration in plasma.
Each point represents the free drug concentration and [ADA]:[Drug] at the final measurement time used in the matched clinical study design for
virtual subjects classified as ADA positive (red) or ADA negative (blue). Grey points plot the free drug concentration in plasma for the same virtual
subjects in the absence of ADA, simulated with the immune response model switched off. The grey dashed line indicates [ADA]:[Drug] equal to 1.
(A) Fingerprint profile for drugs in which ADA have not impact on PK as observed for (B) bevacizumab (C) etanercept (D) ixekizumab and
(E) tocilizumab. (F) Fingerprint profile for drugs in which ADA have a significant impact on PK, as observed for (G) adalimumab (H) bococizumab
(I) certolizumab pegol (J) infliximab (K) natalizumab (L) rituximab (M) secukinumab (N) trastuzumab (O) ustekinumab. For visualization, all virtual
subjects with [ADA]:[Drug] < 1E-3 are plotted as a single group.
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and endogenous proteins with a broader range of half-lives and

therapeutic concentrations will enable better assessment of the

generalisability of this metric to inform understanding of the risk

of ADA impacting PK.

We were less successful in predicting the incidence of clinical

immunogenicity, suggesting that challenges remain in the accurate

prediction of the multiple biological mechanisms leading to

immunogenicity. For this work, we integrated the results from

experimental immunogenicity assessment commonly performed in

industry, including dendritic cell uptake, the initial fraction of drug-

specific naïve T cells, and MAPPs assays, with in silico prediction of

HLA binding and clinical PK and study design data. However, there

were gaps in the available data for our test set of drugs, and a lack of

harmonisation assay protocols (33) may impact interpretation and

translation of outcomes. While the small size of our test set

precludes making definitive conclusions, we note a trend of

reduced overprediction of immunogenicity for compounds in

which more experimental data were available.

The current experimental and in silico approaches used to inform

immunogenicity prediction focus on the role of dendritic cell and

CD4+ T cell pathways, which do not fully capture the multifactorial

nature of immune activation and regulation. To improve predictive

accuracy, we suggest the continued development of experimental and

in silico approaches to characterise additional mechanisms. Not all

presented peptides activate CD4+ T cells, and improvements to in

silico approaches for T cell receptor–peptide–MHCII interaction

prediction will improve overprediction of potential T cell epitopes.

Improved approaches to predict B cell activation may help to better
Frontiers in Immunology 08
characterise the contribution of B cells to immunogenicity (35).

Understanding the immunogenic risk associated with drug-target

interactions and drug mechanism of action may better inform

predictions for individual drugs. For instance, the formation of

immune complexes between adalimumab and its target, tumour

necrosis factor alpha (TNFa), has been proposed to enhance the

immunogenicity of adalimumab by promoting increased uptake by

dendritic cells and subsequent antigen presentation (36).

Furthermore, clinical observation of immunogenicity of nivolumab

when co-administered with ipilimumab, suggest a role for T

regulatory cells in modulating immune responses. Thus,

developing predictive tools to assess drug-specific T regulatory

interactions represents a promising avenue for enhancing

immunogenicity risk assessment (32, 34).A further challenge is the

high variability in the incidence of immunogenicity for the same drug

across multiple clinical studies reported by this study and others (37).

This makes it difficult to develop the QSP model since there is no

single, fully quantitative and reproducible clinical data set for

calibrating and validating model predictions. While the

inconsistencies in the data likely in part reflects differences in study

design (e.g. dosing regimen, co-medication) and study population

(e.g. disease, ethnicity), the lack of standardisation of ADA assays has

been identified as a major barrier to comparing results across clinical

studies (37). Improved standardisation of ADA assays, development

of bioanalysis methods to enable quantification of ADA

concentrations and increased publication of ADA concentration

data would better inform calibration and validation of QSP models

for immunogenicity.
FIGURE 3

Box plots comparing the model predicted distribution of the [ADA]:[Drug] at Ctrough for the clinical dosing regimen (Study Dose), twice the clinical dose
amount (2xDose) or half the dosing interval (2xFreq). Percentages at the top of each plot display the percentage of virtual subjects with [ADA]:[Drug] >1.
(A) Adalimumab, (B) bococizumab, (C) certolizumab pegol, (D) infliximab, (E) natalizumab, (F) secukinumab (G) trastuzumab, (H) ustekinumab. Points
represent outliers that fall >1.5 times the interquartile range outside the 25th and 75th percentile and whiskers extend to the final non-outlier datapoint.
Black dashed line corresponds to [ADA]:[Drug] equal to 1.
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5 Conclusion

In conclusion, our findings highlight the potential of the QSP

modelling approach to assess the risk of clinically relevant

immunogenicity, particularly regarding the impact of ADA on

drug PK. We introduce the [ADA]:[Drug] ratio as a model-

informed metric to evaluate ADA effects on PK and to guide

mitigation strategies, such as adjusting dose or frequency to

sustain therapeutic drug levels. QSP models can integrate diverse

non-clinical data across immunogenicity pathways. Developing

these models alongside non-clinical assessment methods will

improve immunogenicity prediction.
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