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Immunogenicity poses a significant challenge in biotherapeutics development
due to the formation of anti-drug antibodies (ADA), which can alter drug
pharmacokinetics (PK) and reduce efficacy. However, ADA presence does not
always correlate with a clinically relevant reduction in efficacy, or in some cases
can be managed by adjusting dosing regimens. Current preclinical strategies
focus on predicting the propensity for ADA development, but do not assess the
liability for ADA to impact PK. Quantitative systems pharmacology (QSP) models
integrate knowledge of biological mechanisms with physiological and drug-
specific parameters to predict ADA dynamics and their effect on PK. This study
describes recent progress in using QSP models to predict the incidence of
immunogenicity and the impact of ADA on PK. We report continued challenges
in accurately predicting ADA incidence from available data from experimental
and computational methods used in immunogenicity risk assessment. However,
across 13 monoclonal antibodies and fusion proteins, the model accurately
predicted ADA impact on drug concentration in ten cases, Furthermore, the
ADA to drug concentration ratio was identified as a strong predictor of clinically
relevant immunogenicity and drug exposure impact.

KEYWORDS

immunogenicity, anti-drug antibody, biotherapeutic, quantitative systems
pharmacology, pharmacokinetics, model-informed drug development

1 Introduction

The number of biotherapeutics in development and approved by regulators has sharply
increased over the last three decades, with biologics license applications making up almost
30% of FDA approved drugs over the last 10 years (1). While these therapies have provided
significant benefits to patients, challenges remain in understanding and mitigating the
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development of unwanted immunogenicity to protein
biotherapeutics. Immunogenicity occurs when there is activation
of a humoral immune response that results in development of anti-
drug antibodies (ADAs) that can enhance clearance of the
biotherapeutic, reduce efficacy or evoke safety issues that may
limit the population that benefits from treatment or result in
clinical stage failure of a development program. However, ADA
positivity is not always associated with loss of drug exposure,
efficacy or adverse safety outcomes, suggesting a lack of clinical
relevance for some drugs. Thus, in pre-clinical and early clinical
immunogenicity assessment, it is desirable to predict and measure
not just the incidence of immunogenicity, but whether ADA will be
clinically relevant. The US Food and Drug Administration (FDA)
recently announced plans to take steps towards phasing out
requirements for animal testing for antibodies and other drugs in
favour of more predictive in silico and in vitro human-relevant
methods (2). While this announcement was driven by multiple
important scientific, ethical and cost considerations, the poor
predictivity of animal models for multiple applications including
immunogenicity was cited as driving the need for alternative,
innovative new approach methodologies.

Multiple factors have been implicated in the development of
immunogenicity to biotherapeutic, including product-related factors
(e.g. protein sequence, host cell impurities, excipients, aggregation),
patient-related factors (e.g. genetics, disease status, age) and trial
design factors such as dose amount and frequency, route of
administration or co-medication (3, 4). Current pre-clinical
immunogenicity risk assessment approaches for therapeutic
proteins frequently include in silico and in vitro methods that
evaluate risk factors at different stages of the immune response to
characterise some of these factors. In silico approaches are well
established in the assessment of protein sequence similarity to the
germline and Major Histocompatibility Complex class IT (MHCII)
binding and antigen presentation (5, 6). In vitro approaches include
dendritic cell uptake and activation assays, MHC associated peptide
proteomics to measure presented antigens and T cell activation and
proliferation assays. Prediction of B cell epitopes and B cell activation
remain more challenging and less well established [reviewed in (5, 7)].
However, integrating these multiple outcomes to assess the risk and
clinical relevance of immunogenicity remains a challenge.

Quantitative systems pharmacology (QSP) and physiologically-
based pharmacokinetic (PBPK) models are widely used in drug
development and regulatory approval to inform decision making,
contributing to reduced development timelines and costs (8-10).
These mechanistic computational models integrate drug-specific data
from multiple sources including in silico predictions, in vitro
and in vivo experiments with knowledge of physiological and
pathophysiological processes to understand how drugs and biological
systems interact to determine concentrations, pharmacological activity
and toxicity.

The Immunogenicity Simulator (IG Simulator), a QSP platform
model, has been developed with the goal of predicting and managing
clinical immunogenicity to non-self therapeutic proteins (11). The IG
Simulator integrates mathematical models of immunology with a
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PBPK model and physiological parameters and drug-specific
parameters derived from experimental and computational
approaches. The approach builds on efforts in the mechanistic
modelling of immunogenicity, most notably by Chen et al. (12, 13),
and PBPK modelling of therapeutic proteins (14). Previously we have
presented an evaluation of the application of the IG Simulator to
predict immunogenicity of 10 monoclonal antibodies as part of the
learn and confirm approach to model development (15). One of the
challenges identified in this work was the non-trivial nature of
comparing predicted and observed exposure loss in ADA positive
subjects. In the current analysis we evaluate the performance of the
IG Simulator in predicting whether there is a significant impact of
ADA positivity on PK versus reported outcomes in clinical studies.
Furthermore, we describe a novel interpretation of model outcomes
using the model derived metric of ADA:drug concentration ratio,
which is shown to be highly predictive of the likelihood of clinically
relevant immunogenicity with an impact on drug exposure.

2 Materials and methods
2.1 Model description

The IG Simulator V7 (Certara Predictive Technologies,
Sheffield, UK) is a QSP model which integrates mechanistic,
ordinary differential equation models of the immune response
and drug PK, connected via the concentrations of drug in model
compartments (11, 15). The starting point for the IG Simulator was
the work of Chen, Hickling, and Vicini (CHV) (12, 13), who
developed a multiscale model of biological processes involved in
the humoral immune response to an antigen. The CHV model
mechanistically represents the subcellular level processes of antigen
presentation by dendritic cells, a cellular level model of the kinetics
of immune cells including the activation, differentiation and
proliferation of drug-specific CD4+ T cells and B cells and
binding ADA production by plasma cells and a PK model of the
protein antigen. Several modifications were made to the CHV
model. First the compartmental PK model for the drug was
replaced with a minimal PBPK module comprised of plasma,
lymph node, and a lumped tissue compartment that was further
divided into vascular, endosomal, and interstitial compartments
(14). The immune response model was compartmentalised to the
lymph node, blood, and vascular compartment and the immune
response driven by interaction with antigenic protein concentration
with the biologically relevant compartment, as described previously
(16). Antigen presentation prediction methods trained on mass
spectrometry eluted ligand data in addition to binding affinity data
have superior performance in the prediction of antigen presentation
versus methods trained on binding affinity alone (17, 18). While
binding affinity data specifically characterises the process of peptide
binding to human leukocyte antigens (HLAs), eluted ligand data
measures the processed and presented peptides bound to HLAs on
antigen presenting cells, thus includes the contribution of multiple
steps in the antigen presentation pathway. Elution rank is a relative

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1677925
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Rose et al.

score that allows cross-allele comparisons and evaluation of
peptides across different class II HLAs (17). To enable input of
predicted elution rank from NetMHCIIpan 4.0 (17), the subcellular
model of antigen presentation from Chen et al. (13), was removed,
and the T cell activation function (D_N_Epitope) modified to use
elution rank (EL_rank) specific to a peptide and HLA allele
combination expressed in an individual. Experimental
measurements of the dendritic cell uptake of intact
biotherapeutics were directly input as a scaling factor multiplying
antigen concentration (DC_Uptake) to account for drug-specific
uptake rates.

ID_m

D_N_ Epitope = ——="___
=N Epope = e o)

DC_ Uptake x AgVS x >
DC_ Uptake x AgVS x >

A11€18(100/EL7 rank _ Epitope _ Allele — 1)?
(100/EL _ rank _Epitope _ Allele —1)* + K _Ag_N

Allele

Where ID_m is the number of mature dendritic cells; Ttot is the
total number of drug-specific T cells, summed for naive, activated
and memory T cells; AgVS is the drug concentration in vascular
space (AgVS); and elution rank (EL_rank) for the specific peptide
and allele and the experimentally derived antigen uptake rate by
dendritic cells (DC_Uptake), and K_Ag N is a constant defining
half-maximal activation of T cells by presented antigen, calibrated
to minimise the root mean square error between predicted and
observed immunogenicity incidence for the 13 drugs in this study.
Methotrexate co-medication has been associated with a decrease in
ADA concentrations and incidence in clinical trials (19-21), and for
several of the drugs under investigation methotrexate was co-
administered in clinical studies reporting immunogenicity
(Supplementary Table 3). The PK of oral methotrexate was
captured by a two compartment PK model with first order
absorption (22). The pharmacodynamics was modelled using an
inhibitory E,.x model to describe the inhibition of the T cell
proliferation rate (par). An estimated ICs, of 283 nM captured
the reduction in ADA incidence at high, medium and low
methotrexate doses (20) (Supplementary Figure 1).

2.2 Compound-specific input parameters

Compound specific parameters for the PBPK model are
summarised in Supplementary Table 1. Plasma clearance and
bioavailability and absorption rate for subcutaneously
administered drugs, were optimised to capture clinical data
(Supplementary Figure 2) using the Nelder Mead method
implemented in the parameter estimation toolbox in QSP
Designer V2 (23).

Where available, T cell epitope selection was informed by eluted
peptides from MHC-associated peptide proteomics (MAPPs) data
(Supplementary Table 2). When MAPPs data was not available, the
full primary protein sequence was analysed for risk of T cell
epitopes. A list of all possible 15-mers derived from the eluted
peptides or primary protein sequence were screened using BLAST
(blast-2.14.0+) against the UniProt Knowledgebase human
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reference proteome (24) to identify and remove all sequences that
align with an endogenous human protein assuming immune
tolerance to peptides from self-proteins. Elution rank for alleles
and haplotypes of the three classical class Il HLAs, DR, DQ and DP
from the Immune Epitope Database (IEDB) HLA reference set (25,
26) was predicted using elution rank reported by NetMHCIIpan
(17). Up to five non-overlapping peptides with the strongest
binding (lowest elution rank) across the HLA reference set were
selected as the highest risk potential T cell epitopes in simulations.
Including more than five potential T cell epitopes did not increase
predicted ADA incidence for the test set (data not shown). Allele
and haplotype frequencies were extracted from the allele
frequencies net database (27). Where available, published
experimental data for the initial fraction of drug-specific naive T
cells and the dendritic cell uptake rate were also integrated in the
model (Supplementary Table 2).

2.3 Virtual clinical trial simulation

250 virtual subjects were generated to include physiological
variability in compartment volumes and fluid flow rates, drug
clearance and HLA genetics. Physiological parameter sets for the
PBPK model, including volumes of plasma, lymph nodes and tissue
compartments, blood and lymph flows, endogenous IgG
concentration and FcRn concentrations were generated using the
Simcyp Simulator V19 (Certara Predictive Technologies, Shefield,
UK) minimal PBPK model for monoclonal antibodies. Variability
in drug clearance was generated by Monte Carlo sampling of the
lognormal parameter distribution defined by the mean and
coefficient of variation.

Variability in HLA genetics was considered for the three classic
class IT HLAs, DRBI1, DP, and DQ. DRBI allele and DP and DQ
haplotype distributions for the North American and European
populations were calculated using data available at the Allele
Frequency Net Database (27). For all publications from studies
performed in the population, allele or haplotype frequencies were
averaged, weighting by study size. The analysis included all 11
DRBI alleles, 6 DQ and 6 DP haplotypes included in the IEDB HLA
Reference Set, representing the most common specificities in the
general population (26). For each virtual subject, two alleles or
haplotypes at each locus were randomly selected according to
their frequencies.

Comparator clinical studies were selected as studies that report
sufficient information to enable the study design to be reproduced,
including sufficient information on the drug dosing regimen,
sampling times for analysis of ADA and drug concentrations and
assessment of the ADA incidence and the impact of ADA on PK.
For simulations, drug dosing regimen, study duration, and
sampling times for plasma drug and ADA concentration
measurements were matched to the reported trial design for a
comparator study (Supplementary Table 3). The QSP model
predicts the temporal profiles of drug, ADA and immune
complex concentrations for each virtual individual, which vary
depending on the individual physiological, genetic, compound-
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specific and trial-specific parameters. A virtual subject was
identified as ADA positive if their total ADA concentration
exceeds the concentration threshold for ADA positivity at one or
more sampling time for ADA assessment. The threshold for ADA
positivity either used the value reported in the comparator clinical
study, or was assumed to take the FDA minimum recommended
sensitivity of 100 ng/mL if ADA threshold concentration was not
reported (28) (Supplementary Table 2).

To assess the impact of ADA on drug PK, clinical studies
compared drug concentrations for individuals classified as ADA
positive and ADA negative at one or more sampling times at which
both ADA and drug concentrations were measured. For most
studies sampling times were pre-dose and correspond to drug
trough concentrations. Exceptions are rituximab, for which only
two doses were administered and frequent sampling of PK and
ADA was used, and ustekinumab, for which sampling was both at
the trough concentration and halfway through the dosing interval.
Different studies used different statistical methods for evaluating the
impact of ADA on PK, and the study authors’ conclusions are taken
directly for comparison to simulation outcomes. For simulations, a
consistent statistical approach was used. The impact of ADA on PK
was assessed by comparing free drug concentration for subjects
assigned as ADA positive and negative at the final concentration
sampling time reported in the clinical study using a Wilcoxon rank
sum test (p < 0.05).

To assess relationship between drug concentration, ADA
concentration and the impact of ADA on PK, PK only
simulations were run for the same virtual subjects (i.e. the same
parameter set) by deactivating the immune system model, leaving
only the PBPK model active. This PK only simulation assessed drug
concentration for all virtual subjects in the absence of ADA. The
molar concentration ratio of ADA to drug in the absence of ADA
([ADA]:[Drug]) was calculated for each virtual subject for the
maximum total ADA concentration versus the drug
concentration at the final ADA sampling time in the clinical study.

All simulations were performed using QSP Designer V2 and
post hoc analysis and plotting were performed in MATLAB R2024b.

3 Results

The developed PBPK models for each drug in the absence of
ADA adequately captured single dose and multiple dose plasma
concentration profiles for the 13 drugs (Figure 1, Supplementary
Figure 2).

Predicted immunogenicity incidence was compared to the
reported ADA incidence for the benchmark study for which the
virtual study design was matched, as well as the range of ADA
incidence reported for the monoclonal antibodies across multiple
studies. When comparing to the outcome reported for the
benchmark study, a trend was observed toward overprediction of
the incidence of immunogenicity reported in the comparator study
to which the virtual clinical trial design was matched. While 4/6
drugs with moderate to high immunogenicity (defined as >10%
ADA incidence (29)) were correctly predicted having a moderate to
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high incidence of ADA positivity, only 2/7 drugs with low
immunogenicity (defined as <10% ADA incidence) were correctly
predicted as having low immunogenicity while for 5/7 drugs
immunogenicity was overpredicted (Table 1). We note that
considerable variability in ADA incidence was reported across
different clinical trials for the same drug (Table 1).

Despite the discrepancy in predicted versus observed ADA
incidence, there were only two drugs, secukinumab and trastuzumab,
for which the model predicted a significant reduction in plasma
concentration in ADA positive subjects that was not seen in the
clinical studies and in both cases the number of ADA positive
subjects in the clinical study was very small (<1%) (Table 1,
Figure 1). For 10/13 drugs the model correctly predicted whether
ADA would be associated with a significant reduction in plasma
concentration as observed in the clinical study. It was notable that
for three drugs, bevacizumab, ixekizumab, and tocilizumab, despite
overprediction of ADA incidence, ADA positivity was not associated
with a reduction in plasma concentration, in agreement with clinical
observations (Table 1). For etanercept, the model predicted no ADA
positive subjects, so the impact of ADA on the drug concentration
could not be assessed. For drugs in which ADA was associated with a
reduction in drug concentration, considerable variability in the drug
concentration in ADA positive individuals was predicted, with drug
concentration remaining within the range of those for ADA negative
concentrations in some cases (Figure 1).

To inform understanding of why ADA positivity was associated
with a significant reduction in plasma concentration for some drugs
but not others, the relationship between the predicted drug
concentration and molar ratio of the ADA concentration versus
drug concentration in the absence of ADA was assessed (Figure 2).
Two fingerprint profiles were identified. For drugs where ADA does
not significantly affect PK, the free drug concentration remains
independent of the [ADA]:[Drug] ratio (Figures 2A-E).
Furthermore, the [ADA]:[Drug] ratio is less than 1 for most
virtual subjects and never exceeds 3. For drugs where ADA
significantly impacts PK, free drug concentration is independent
of [ADA]:[Drug] for a threshold of less than approximately 1, and
drug concentrations are reduced when [ADA]:[Drug] exceeds this
threshold (Figure 2F-0). The impact of [ADA]:[Drug] between 0.3
and 3 on PK is variable depending on both the compound and the
individual, suggesting that variability in multiple PK and immune
response parameters likely determine the exact impact of ADA on
drug concentration. When the [ADA]:[Drug] is less than 0.3,
minimal impact of ADA on drug concentration (<50% reduction)
is consistently observed. However, when [ADA]:[Drug] exceeds 3,
there is a pronounced reduction in free drug concentration to less
than 90% of the predicted concentration in the absence of ADA.

For most of the drugs simulated, all virtual subjects for whom
[ADA]:[Drug] exceeds 1 were classified as ADA positive, but not all
individuals classified as ADA positive exceed this threshold.
Rituximab is an exception (Figure 2I), with results suggesting
there is an ADA dependent reduction in free drug concentration
for some ADA negative individuals, likely due to the long time
between last dose and the final plasma concentration measurement
(22 weeks).
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FIGURE 1

Predicted versus observed plasma concentrations at reported PK sampling times for ADA positive (red), low titer ADA positive (green, adalimumab
only) and ADA negative (blue) subjects. Solid lines are the median of the simulated virtual populations are dashed lines are the 5% and 95" percentile,
open circles are the reported clinical data. (A) 40 mg SC adalimumab Q2W (B) 15 mg/kg bevacizumab Q3W for 6 doses (C) 150 mg SC bococizumab
Q2W (D) 400 mg SC certolizumab pegol Q2W for three doses followed by 200 mg SC certolizumab pegol Q2W (45), (E) 50 mg SC etanercept Q1W
(F) 3 mg/kg IV infliximab on weeks 0,2 and 6 then Q8W (G) initial dose 160 mg SC ixekizumab, followed by 80 mg Q2W to week 12 then 80 mg
Q4W to week 60, (H) 300 mg IV natalizumab Q4W for 120 weeks (1)1000 mg IV rituximab on weeks 0 and 2, (J) 300 mg SC secukinumab Q1IW for

5 weeks, then Q4W (K) 162 mg SC tocilizumab Q1W for 24 weeks (65) (L) Initially 4 mg/kg IV trastuzumab, followed by 2 mg/kg Q1W (M) Initially

130 mg IV ustekinumab, then 90 mg Q8W. Source of observed data is defined in Table 1.

Since the impact of ADA on PK is dependent on drug  amount or halving the dosing interval on the number of individuals
concentration as well as ADA concentration, either increasing the  for which [ADA]:[Drug] exceeded 1 (Figure 3). For all drugs, both
dose amount or reducing the dosing interval may be viable approaches  approaches resulted in a decrease in fraction of individuals for which
to manage the impact of ADA and maintain efficacious drug  [ADA]:[Drug] exceeds 1, suggesting the potential for ADA to be
concentrations. We explored the impact of doubling the dose  managed via dose adjustment in some individuals.
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TABLE 1 Summary of predicted versus observed ADA incidence and impact of ADA on PK.

ADA+ incidence (%) Impact of ADA positivity on plasma Reference

concentration
Predicted

Observed Predicted

Observed (comparator study [rangel])

Adalimumab 50 [0-95.9] 32 ! ! (20, 30, 38, 39)
Bevacizumab 2.5 [0-16.1] 37.2 — — (40-42)
Bococizumab 48 [7-50.3] 40.4 | | (31, 43, 44)
Certolizumab pegol | 25.3 [3.1-37] 73.2 15 15 (45-47)
Etanercept 6.9 [0-14.1] 0 — NA (48-50)
Infliximab 35 [5.1-61] 14.8 ! ! (51-53)
Ixekizumab 17.4 [5-17.4] 44 — — (54, 55)
Natalizumab 9.1 [3-92] 43.2 | | (56-58)
Rituximab 23 [5.5-37] 18 ! 1 (59-62)
Secukinumab 0-1 [0-2.3] 4.8 — 1 (63, 64)
Tocilizumab 0.8 [0-91.9] 12.4 — — (65-67)
Trastuzumab 0.3 [0-10] 44.8 — | (68-70)
Ustekinumab 2.3 [2.3-48.2] 30 | | (71, 72)

NA, not applicable, no ADA positive individuals predicted. Down arrows represent a decrease in drug concentration or increase in clearance for ADA positive versus ADA negative individuals,

horizonal arrows represent no significant impact on drug concentration reported/predicted.

4 Discussion

Preclinical immunogenicity assessment typically relies on in
silico and in vitro assessment methods that focus on single
mechanisms and pathways associated with sequence-based
immunogenicity risk. QSP modelling is a novel, evolving
approach to immunogenicity assessment that integrates
mathematical models capable of capturing the inherent
complexity of the immune cell interactions with predictions from
multiple immunogenicity risk assessment methods to predict risk of
ADA development and the clinical relevance of ADA.

This manuscript evaluates results from application of a QSP model
to predict both the incidence and clinical relevance of ADA
development with respect to impact on drug PK for 13 monoclonal
antibodies or Fc fusion proteins. The model accurately predicted
whether there was a significant impact of ADA on PK for 10 out of
13 evaluated biotherapeutics. It successfully identified three cases where
ADA positivity was not associated with a reduction in drug
concentration for the reported clinical study design. In all seven
instances where ADA positivity was reported to reduce plasma drug
concentration, this outcome was predicted correctly. For two cases,
ADA was incorrectly predicted to have an impact on PK. For the final
case, etanercept, no subjects were predicted to be ADA positive so the
predicted impact of ADA on PK could not be assessed. However, the
conclusion from the model is that there is no formation of ADA or
impact of immunogenicity on drug PK, in agreement with the low
incidence of transient ADA that was not associated with any impact on
drug PK reported in the clinical study.

Further analysis of the relationship between predicted drug and
ADA concentrations revealed that both the drug and ADA
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concentrations determine whether there is an impact of ADA on
PK. A reduction in drug concentration, measured at Cyougn for
most biotherapeutics evaluated, was typically only observed when
molar ADA concentration exceeded the molar drug concentration.
This is consistent both with observations from multiple clinical
trials for example (30, 31), that higher ADA concentrations were
associated with greater reduction in drug concentration, and clinical
experience that increased dose amount or frequency can overcome
loss of efficacy resulting from ADA for some drugs and patients.
However, the impact of drug dose and frequency on [ADA]:[Drug]
can be complex, as both parameters can influence ADA formation
itself, which complicates interpretation.

We propose the [ADA]:[Drug] as a novel model-informed
metric to quantify the risk of ADA impacting PK. This metric
may be used to assess the potential to successfully manage clinical
ADA by modifying the dosing during preclinical and early clinical
development when understanding of the clinical concentration-
response relationship is limited. Limits on feasible dose amount or
frequency can be selected by considering drug solubility, toxicity
and other available evidence, and used to explore the impact of dose
on the proportion of virtual subjects for which [ADA]:[Drug]
exceeds 1. In later phase clinical development, the QSP model can
be calibrated to clinical ADA and PK data (32) extended with a
pharmacodynamic model relating drug concentration to efficacy for
a more thorough evaluation of the impact of ADA on efficacy.
Furthermore, the importance of [ADA]:[Drug] suggests that for
when a higher drug concentration is maintained throughout the
dosing interval, the threshold ADA concentration that results in a
reduction in drug concentration is also higher. This understanding
also helps to inform understanding of the minimum ADA
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FIGURE 2

Relationship between the molar ratio of the ADA concentration to drug concentration ([ADA]:[Drug]) and the free drug concentration in plasma.

Each point represents the free drug concentration and [ADA]:[Drug] at the final measurement time used in the matched clinical study design for

virtual subjects classified as ADA positive (red) or ADA negative (blue). Grey points plot the free drug concentration in plasma for the same virtual
subjects in the absence of ADA, simulated with the immune response model switched off. The grey dashed line indicates [ADA]:[Drug] equal to 1.
(A) Fingerprint profile for drugs in which ADA have not impact on PK as observed for (B) bevacizumab (C) etanercept (D) ixekizumab and

(E) tocilizumab. (F) Fingerprint profile for drugs in which ADA have a significant impact on PK, as observed for (G) adalimumab (H) bococizumab

(1) certolizumab pegol (3) infliximab (K) natalizumab (L) rituximab (M) secukinumab (N) trastuzumab (O) ustekinumab. For visualization, all virtual

subjects with [ADA]:[Drug] < 1E-3 are plotted as a single group.

concentration sensitivity to detect ADA that have the potential to  lives in the range of 4-28 days. Future work will analyse the
impact PK. applicability [ADA]:[Drug] and the prediction of clinical

A limitation of the current work is that it has focused on a small ~ immunogenicity for a larger validation set of drugs. Validation
test set of monoclonal antibodies and Fc fusion proteins with half-  with more diverse modalities such as bispecific antibodies, peptides,
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FIGURE 3

Box plots comparing the model predicted distribution of the [ADA]:[Drugl at Cyougn for the clinical dosing regimen (Study Dose), twice the clinical dose
amount (2xDose) or half the dosing interval (2xFreq). Percentages at the top of each plot display the percentage of virtual subjects with [ADA]:[Drug] >1.
(A) Adalimumab, (B) bococizumab, (C) certolizumab pegol, (D) infliximab, (E) natalizumab, (F) secukinumab (G) trastuzumab, (H) ustekinumab. Points
represent outliers that fall >1.5 times the interquartile range outside the 25" and 75" percentile and whiskers extend to the final non-outlier datapoint.

Black dashed line corresponds to [ADA]:[Drug] equal to 1.

and endogenous proteins with a broader range of half-lives and
therapeutic concentrations will enable better assessment of the
generalisability of this metric to inform understanding of the risk
of ADA impacting PK.

We were less successful in predicting the incidence of clinical
immunogenicity, suggesting that challenges remain in the accurate
prediction of the multiple biological mechanisms leading to
immunogenicity. For this work, we integrated the results from
experimental immunogenicity assessment commonly performed in
industry, including dendritic cell uptake, the initial fraction of drug-
specific naive T cells, and MAPPs assays, with in silico prediction of
HLA binding and clinical PK and study design data. However, there
were gaps in the available data for our test set of drugs, and a lack of
harmonisation assay protocols (33) may impact interpretation and
translation of outcomes. While the small size of our test set
precludes making definitive conclusions, we note a trend of
reduced overprediction of immunogenicity for compounds in
which more experimental data were available.

The current experimental and i silico approaches used to inform
immunogenicity prediction focus on the role of dendritic cell and
CD4" T cell pathways, which do not fully capture the multifactorial
nature of immune activation and regulation. To improve predictive
accuracy, we suggest the continued development of experimental and
in silico approaches to characterise additional mechanisms. Not all
presented peptides activate CD4+ T cells, and improvements to in
silico approaches for T cell receptor-peptide-MHCII interaction
prediction will improve overprediction of potential T cell epitopes.
Improved approaches to predict B cell activation may help to better

Frontiers in Immunology

characterise the contribution of B cells to immunogenicity (35).
Understanding the immunogenic risk associated with drug-target
interactions and drug mechanism of action may better inform
predictions for individual drugs. For instance, the formation of
immune complexes between adalimumab and its target, tumour
necrosis factor alpha (TNFa), has been proposed to enhance the
immunogenicity of adalimumab by promoting increased uptake by
dendritic cells and subsequent antigen presentation (36).
Furthermore, clinical observation of immunogenicity of nivolumab
when co-administered with ipilimumab, suggest a role for T
regulatory cells in modulating immune responses. Thus,
developing predictive tools to assess drug-specific T regulatory
interactions represents a promising avenue for enhancing
immunogenicity risk assessment (32, 34).A further challenge is the
high variability in the incidence of immunogenicity for the same drug
across multiple clinical studies reported by this study and others (37).
This makes it difficult to develop the QSP model since there is no
single, fully quantitative and reproducible clinical data set for
calibrating and validating model predictions. While the
inconsistencies in the data likely in part reflects differences in study
design (e.g. dosing regimen, co-medication) and study population
(e.g. disease, ethnicity), the lack of standardisation of ADA assays has
been identified as a major barrier to comparing results across clinical
studies (37). Improved standardisation of ADA assays, development
of bioanalysis methods to enable quantification of ADA
concentrations and increased publication of ADA concentration
data would better inform calibration and validation of QSP models
for immunogenicity.
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5 Conclusion

In conclusion, our findings highlight the potential of the QSP
modelling approach to assess the risk of clinically relevant
immunogenicity, particularly regarding the impact of ADA on
drug PK. We introduce the [ADA]:[Drug] ratio as a model-
informed metric to evaluate ADA effects on PK and to guide
mitigation strategies, such as adjusting dose or frequency to
sustain therapeutic drug levels. QSP models can integrate diverse
non-clinical data across immunogenicity pathways. Developing
these models alongside non-clinical assessment methods will

improve immunogenicity prediction.
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