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Neurological disorders, including acute insults such as stroke and traumatic brain
injury and chronic neurodegenerative diseases like Alzheimer's disease and
Parkinson's disease, exert a profound global health burden. Ferroptosis, a
distinct form of requlated cell death driven by iron accumulation, lipid
peroxidation, and oxidative stress, has emerged as a central pathological
mechanism across these conditions. Exosomes, nanoscale extracellular
vesicles capable of crossing the blood-brain barrier and delivering functional
cargos such as microRNAs, long non-coding RNAs, and proteins, have
demonstrated remarkable potential in modulating ferroptotic signaling.
Through regulation of the GPX4-GSH axis, ferritinophagy, iron homeostasis,
and antioxidant pathways, exosome-based interventions offer neuroprotective
benefits in diverse models of neurological injury. This review synthesizes current
advances in the mechanistic understanding of ferroptosis and highlights
emerging strategies leveraging exosomes as precision delivery platforms for
ferroptosis-targeted therapy. We also discuss the translational challenges and
future directions necessary to realize exosome-guided neuroprotection as a
viable clinical paradigm.
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1 Introduction

Neurological disorders, encompassing both acute brain injuries
such as ischemic stroke and traumatic brain injury (TBI), and chronic
neurodegenerative diseases such as Alzheimer’s disease (AD) and
Parkinson’s disease (PD), represent a mounting global health crisis (1).
These conditions collectively account for a substantial proportion of
mortality and long-term disability worldwide, global DALY counts
attributed to these conditions increased by 18.2% (8.7-26.7) between
1990 and 2021, as reported in the Global Burden of Disease Study
2021 (2). Despite their clinical heterogeneity, they share convergent
pathophysiological mechanisms, most notably, oxidative stress,
neuroinflammation, and iron dysregulation, which synergistically
drive progressive neural cell damage and functional decline (3).

The scale of the global burden is striking. Data from the World
Stroke Organization and GBD 2021 indicate that stroke affects 93.8
million people globally, with approximately 11.9 million new cases
and 7.3 million deaths (10.7% of all deaths) reported in 2021 alone (4).
The World Health Organization estimates that TBI, often resulting
from falls, vehicular accidents, or sports-related trauma, accounts for
an estimated 50-60 million new cases each year and incurs a global
economic burden of over $400 billion (5). Meanwhile, Alzheimer’s
Disease International (ADI) reports that neurodegenerative diseases
such as AD and PD afflict over 50 million people globally, a number
projected to surpass 139 million by 2050 due to population aging (6).
With the aging of the world’s population, age-related
neurodegenerative diseases have become one of the biggest
problems to be solved urgently in modern society (7). These
conditions are not only devastating to individuals and families but
also place extraordinary strain on healthcare systems.

Emerging evidence implicates ferroptosis as a common and
critical form of regulated cell death underlying diverse neurological
disorders. Ferroptosis is an iron-dependent, non-apoptotic cell
death modality characterized by overwhelming lipid peroxidation
and reactive oxygen species (ROS) accumulation. Central to this
process is the dysregulation of intracellular iron metabolism and the
depletion of key antioxidant systems, particularly glutathione
(GSH) and its associated enzyme GSH peroxidase 4 (GPX4) (8).
In acute neurological insults such as ischemic stroke and TBI,
ferroptosis is initiated by iron overload and ROS generation
through Fenton chemistry, leading to neuronal injury and
secondary damage (9, 10). Ferroptosis plays a pivotal role in the
pathogenesis of neurodegenerative diseases, and targeting key
regulatory genes involved in this process can effectively delay
neurodegeneration (11, 12).

Given its pivotal role in neuronal vulnerability, ferroptosis has
emerged as an attractive target for therapeutic intervention across a
spectrum of neurological conditions. Among the innovative
strategies under investigation, exosomes, a subtype of extracellular
vesicles (40-160 nm) secreted by various cell types, have garnered
increasing attention as both biomarkers and delivery vehicles for
therapeutic agents (13, 14). Exosomes carry a cargo of bioactive
molecules, including proteins, lipids, and nucleic acids (eg.,
mRNAs, microRNAs (miRNAs), long non-coding RNAs, DNA,
etc.), which they transfer between cells to regulate intercellular
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communication and modulate recipient cell function (13, 15). Their
ability to cross physiological barriers such as the blood-brain barrier
(BBB), evade immune detection, and deliver functional cargo to
specific cell types renders them highly promising candidates for
neurotherapeutics (16, 17). Importantly, emerging research suggests
that exosomes may exert direct neuroprotective effects by
modulating ferroptosis-related pathways (18). Through targeted
delivery of antioxidant molecules, iron regulators, and gene-
modifying RNAs, exosomes can suppress oxidative stress, restore
redox balance, and inhibit ferroptosis-driven neural damage.
Compared to synthetic nanocarriers, exosomes offer superior
biocompatibility, reduced toxicity, and intrinsic targeting
potential, making them a versatile platform for developing next-
generation therapies for neurological disorders (Figure 1).

Nevertheless, despite the substantial burden of neurological
disorders and growing evidence for ferroptosis as a convergent
pathological mechanism, the therapeutic potential of exosome-
based ferroptosis modulation remains underexplored. Few studies
provide systematic comparisons across exosome sources or disease
contexts, and clinical validation is still lacking. Addressing these
knowledge gaps provides the rationale for this review.

This review aims to systematically elucidate the mechanistic
interplay between exosome biology and ferroptosis regulation in
neurological diseases. We first dissect the molecular underpinnings
of ferroptosis and its contribution to acute and chronic
neurodegeneration. We then explore how exosome-mediated
delivery of therapeutic cargos—particularly regulatory RNAs and
antioxidant proteins—modulates ferroptotic signaling cascades.
Finally, we discuss the challenges and innovations in exosome
engineering for Central nervous system(CNS)-targeted therapy,
offering perspectives on the clinical translation of exosome-based
interventions for ferroptosis-driven neurological injury.

2 The molecular mechanisms of
ferroptosis and its pathological role in
neurological disorders

2.1 Molecular mechanisms underlying
ferroptosis

Ferroptosis is a distinct, iron-dependent form of regulated cell
death characterized by the accumulation of lethal lipid peroxides
and uncontrolled oxidative stress (19). Unlike apoptosis, necrosis,
and autophagy, ferroptosis is fundamentally driven by iron-
mediated redox imbalance and extensive lipid membrane damage,
and it has been recognized as a central mechanism underlying the
progression of various neurological disorders (8, 20, 21). At the
molecular level, ferroptosis is primarily orchestrated by three
interconnected pathways: iron metabolism, lipid peroxidation,
and the cellular antioxidant defense system.

2.1.1 Dysregulation of iron homeostasis

Iron plays a critical role in numerous physiological processes,
including DNA synthesis, oxygen transport, and mitochondrial
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Exosomes are nanoscale extracellular vesicles released by multiple cell types, including endothelial cells, mesenchymal stem cells, immune cells, and
smooth muscle cells. They carry bioactive cargos such as proteins, lipids, and non-coding RNAs, and mediate intercellular communication by
regulating gene expression, cell survival, angiogenesis, and epigenetic processes within recipient cells.

energy metabolism. Physiologically, ferric iron (Fe**) circulates in a
redox-inactive form bound to transferrin, whereas ferrous iron
(Fe*™) is highly reactive and soluble (22). When cellular iron
regulation is impaired, excess Fe’" catalyzes the Fenton reaction,
producing hydroxyl radicals (-OH) that inflict widespread oxidative
damage (23).

Key regulators of systemic and cellular iron homeostasis include
hepcidin, which inhibits intestinal iron absorption by promoting
the degradation of the iron exporter ferroportin (FPN), and
hypoxia-inducible factors (HIFs), which suppress hepcidin under
hypoxic conditions, thereby enhancing iron mobilization (24, 25).
Overload of labile iron leads to the generation of toxic non-
transferrin-bound iron (NTBI), promoting ROS formation and
initiating lipid peroxidation cascades (26, 27). Intracellularly, iron
is safely sequestered within ferritin complexes. Under pathological
conditions, ferritin is degraded via autophagic pathways mediated
by nuclear receptor coactivator 4 (NCOA4), a process termed
ferritinophagy, liberating iron into the labile pool and
exacerbating oxidative stress (22).

2.1.2 Induction of lipid peroxidation

The hallmark of ferroptosis is the iron-catalyzed peroxidation of
polyunsaturated fatty acids (PUFAs) incorporated into
phospholipids of cellular membranes. Critical enzymes such as
acyl-CoA synthetase long-chain family member 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3) facilitate the
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esterification and remodeling of PUFAs into membrane
phospholipids, rendering them susceptible to oxidative
damage (28).

Upon ROS attack, PUFAs are converted into lipid
hydroperoxides (PUFA-OOH) (29, 30). If not adequately
detoxified, these peroxides disrupt membrane integrity, cause
bioenergetic failure, and trigger ferroptotic cell death. In contrast,
monounsaturated fatty acids (MUFAs) can attenuate lipid
peroxidation by competing with PUFAs for incorporation into
membranes, a process involving ACSL3 activity, thus serving as a
protective mechanism against ferroptosis (31, 32).

2.1.3 Failure of antioxidant defense systems

The redox homeostasis of the cell is crucial for preventing
ferroptosis. Central to this defense is GSH, the most abundant
cellular antioxidant, and its associated enzyme GPX4. GPX4
catalyzes the reduction of phospholipid hydroperoxides into non-
toxic phospholipid alcohols, preserving membrane integrity (33).

The system Xc” transporter, composed of Solute carrier family 7
member 11(SLC7A11) and Solute carrier family 3, member 2
(SLC3A2) subunits, imports cystine in exchange for glutamate,
thereby sustaining intracellular cysteine levels essential for GSH
synthesis. Disruption of system Xc  activity, whether by
extracellular glutamate accumulation or pharmacological
inhibition, depletes GSH, reduces GPX4 activity, and sensitizes
cells to ferroptosis (34).
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Mitochondrial redox balance also plays a critical role, with
solute carrier proteins such as Solute carrier family 25 member 11
(SLC25A11) and Solute carrier family 25 member 10(SLC25A10)
mediating GSH transport across mitochondrial membranes. Loss of
mitochondrial antioxidant capacity exacerbates ferroptotic stress
(35). Notably, direct inhibition of GPX4, either through genetic
deletion or chemical inhibitors, rapidly triggers ferroptosis,
highlighting its indispensable role in maintaining neuronal
survival under oxidative conditions.

2.1.4 GPX4-independent ferroptosis suppressor
pathways

In addition to the canonical GPX4-GSH system, several parallel
pathways have been identified that independently suppress
ferroptosis. Ferroptosis suppressor protein 1 (ESP1), a flavoprotein
localized to the plasma membrane, catalyzes the NAD(P)H-
dependent reduction of Coenzyme Q10(CoQ10) to Coenzyme Q
H,(CoQH,), thereby halting lipid peroxidation chain reactions; it can
also reduce vitamin K, providing an additional antioxidant defense
(36, 37). Structural and pharmacological studies further revealed that
FSP1 functions as a dimeric flavoprotein generating 6-hydroxy-FAD
with intrinsic anti-ferroptotic activity, while small-molecule
inhibitors such as iFSP1 competitively target its NAD(P)H-binding
site (38, 39). A second ferroptosis defense pathway involves
dihydroorotate dehydrogenase (DHODH), a mitochondrial inner
membrane enzyme primarily recognized for its role in pyrimidine
biosynthesis. Beyond this metabolic function, DHODH reduces
CoQ10 within mitochondria, maintaining redox homeostasis and
preventing lipid peroxidation-induced ferroptosis (40). Together,
FSP1 and DHODH complement GPX4 to form a multilayered
protective network that safeguards cellular and mitochondrial
integrity under oxidative stress.

2.2 The pathological role of ferroptosis in
neurological disorders

Accumulating evidence implicates ferroptosis as a pivotal
pathological mechanism across a spectrum of neurological
diseases, including stroke, TBI, AD, and PD. The contribution of
ferroptosis to neural injury can be attributed to three major
interrelated processes: oxidative stress amplification, membrane
lipid peroxidation, and iron-dependent neuronal death.

2.2.1 Oxidative stress and iron-driven neurotoxicity

In acute brain injuries such as ischemic and hemorrhagic stroke,
as well as TBIL, BBB disruption and hemorrhage result in excessive
iron deposition in the parenchyma. This iron catalyzes ROS
production via Fenton chemistry, causing oxidative damage to
proteins, nucleic acids, and lipids, and ultimately impairing
neuronal function and viability (41).

In AD models, ferroptosis-related molecular alterations have
been demonstrated (Figure 2). Representative evidence shows that
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restoring antioxidant enzymes (e.g., GPX4, xCT, FSP1), modulating
ferritinophagy (via NCOA4-FTHI axis), and improving redox
balance collectively mitigate ferroptotic injury and may enhance
neuronal viability in AD.

Beyond AD, similar dysregulation of iron homeostasis has been
observed in other chronic neurodegenerative diseases such as PD,
leading to pathological iron accumulation in vulnerable brain
regions (e.g., substantia nigra, hippocampus) (45, 46). A recent
review also highlights that oxidative stress, immunological
dysfunction, and microbiota shifts collectively shape the
pathogenesis of ferroptosis-related neurodegeneration (47). Such
elevation of labile iron pools perpetuates oxidative stress, thereby
exacerbating synaptic dysfunction and neuronal death.

2.2.2 Lipid peroxidation and membrane
disruption

A defining feature of ferroptosis-mediated neural injury is
extensive lipid peroxidation. ROS-induced oxidation of PUFA-
containing phospholipids compromises membrane fluidity and
integrity, resulting in increased membrane permeability, cytoplasmic
leakage, and organelle dysfunction. Lipid peroxidation products, such
as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), further
amplify cellular injury by forming cytotoxic adducts with proteins and
DNA, thereby propagating neurodegeneration (48).

2.2.3 Neuronal ferroptotic death and functional
impairment

Loss of GPX4 activity and GSH depletion render neurons
exceptionally vulnerable to ferroptosis. Reduced capacity to detoxify
lipid peroxides leads to the activation of ferroptotic death pathways,
contributing to neuronal loss and functional deterioration in both
acute injuries and chronic neurodegenerative conditions (49).

Preclinical studies have demonstrated that pharmacological
inhibition of ferroptosis, using agents such as ferrostatin-1 and
liproxstatin-1, or enhancement of antioxidant defenses through N-
acetylcysteine supplementation, can significantly reduce infarct
volume, improve neurological outcomes, and protect against
cognitive decline in various models of stroke, TBI, and
neurodegeneration (50).

These findings underscore the critical role of ferroptosis as a
unifying mechanism driving neuronal damage and identify it as a
promising therapeutic target for the treatment of neurological disorders.

As shown in Figure 3, ferroptosis-associated oxidative stress has
been implicated in TBI, contributing to secondary neuronal
damage. High-altitude hypoxia further aggravates ferroptosis by
upregulating Bachl, increasing ROS levels, and reducing Ferritin
heavy chain 1 (FTH1) expression, thereby weakening antioxidant
defenses. Conversely, NRF2 activation via DMF treatment restores
the xCT-GPX4 axis and enhances FSP1-ferritin-mediated iron
sequestration, ultimately maintaining redox homeostasis. These
findings underscore that ferroptosis in TBI is dynamically
regulated by the balance between pro-oxidant (Bachl-driven) and
antioxidant (NRF2-dependent) signaling.
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The role and therapeutic modulation of ferroptosis in AD. (A) Blood—brain barrier-targeted double selenium nanoparticles restored GPX4 activity,
enhanced antioxidant defenses, and improved cognitive outcomes in APP/PS1 mice. Reproduced from Wang et al., 2023, Biomaterials, with
permission (42). (B) Tetrahedral framework nucleic acids increased cell viability and GSH levels while reducing Fe?*, MDA, LDH, and lipid peroxidation
in AB-treated N2a cells. Reproduced from Tan et al., 2024, Nanobiotechnology, with permission (43). (C) Tau K677R mutation alleviated ferroptosis
by regulating NCOA4-dependent ferritinophagy and upregulating FTH1 expression, thereby maintaining iron homeostasis and neuronal viability.
Reproduced from An et al., 2024, Free Radical Biology and Medicine, with permission (44). APP/PS1, amyloid precursor protein/presenilin-1; WT, wild
type; CLNDSe, core-liposome—nanodots selenium nanoparticle; ACSL4, acyl-CoA synthetase long-chain family member 4; GPX4, glutathione
peroxidase 4; FTH1, ferritin heavy chain 1; COX2, cyclooxygenase-2; DAPI, 4’,6-diamidino-2-phenylindole; Cy5, cyanine 5; TFNA, tetrahedral
framework nucleic acid; NRF2, nuclear factor erythroid 2—-related factor 2; FSP1, ferroptosis suppressor protein 1; SLC7A11/xCT, cystine/glutamate
antiporter; NCOA4, nuclear receptor coactivator 4; Tau K677R, Tau K677R mutation; B-ACTIN, beta-actin.

2.3 Disease-specific differences in
ferroptosis across neurological disorders

Ferroptosis manifests with disease-specific features across
neurological conditions. In ischemic stroke, cerebral ischemia/
reperfusion rapidly triggers iron accumulation, lipid peroxidation,
and GPX4/SLC7A11 depression; the ferroptosis inhibitor ferrostatin-1
reduces infarct volume and improves neurobehavioral outcomes in
middle cerebral artery occlusion (MCAO) models, consistent with an
Protein kinase B/Glycogen Synthase Kinase 3 Beta (AKT/GSK3p)-
dependent protection (53). In hemorrhagic contexts, hemin/
hemoglobin drives a variant of neuronal ferroptosis with distinct
signaling; pharmacologic inhibition and ferroptosis blockers mitigate
injury in ICH models, and in subarachnoid hemorrhage, liproxstatin-
1 preserves GPX4, downregulates ACSL4/COX-2, and attenuates
neurological deficits (54, 55). In traumatic brain injury, ferroptosis
contributes to secondary damage; ferrostatin-1 decreases lesion

Frontiers in Immunology

volume and improves long-term sensorimotor/cognitive outcomes
(56). In Alzheimer’s disease, neuronal loss of the iron exporter
ferroportin precipitates ferroptosis and memory impairment, while
liproxstatin-1/ferrostatin-1 rescue AB-induced neuronal death and
cognitive defects (12). In Parkinson’s disease, dopamine oxidation
promotes GPX4 ubiquitination and loss, provoking dopaminergic
neuron ferroptosis; restoring GPX4 ameliorates degeneration and
motor deficits (57). In multiple sclerosis (MS), patient lesions/
Cerebrospinal Fluid (CSF) show iron overload and oxidized
phospholipids; late-stage treatment with a ferroptosis inhibitor
(UAMC-3203) or delayed anti-ferroptotic therapy in chronic
experimental autoimmune encephalomyelitis (EAE) ameliorates
disease severity and pathology, underscoring ferroptosis as a
targetable driver of progressive MS (58, 59).

These disease-specific patterns suggest that any exosome-based
intervention should be disease-tailored to the dominant ferroptosis
drivers in each condition, which we consider next.
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Experimental evidence of ferroptosis regulation in TBI models. (A) High-altitude hypoxia aggravates traumatic brain injury by upregulating Bachl,
which suppresses antioxidant gene expression and promotes ferroptotic damage. Reproduced from Peng et al.,, 2025, Cell Death Discov, with
permission (51). (B) NRF2 activation alleviates TBI-induced ferroptosis by restoring the xXCT-GPX4 antioxidant system, enhancing ferritin (FTH/FTL)-
mediated iron sequestration, and maintaining redox balance through FSP1-CoQ10-dependent lipid repair. Reproduced from Cheng et al.,, 2023,
Antioxidants, with permission (52). GFAP, glial fibrillary acidic protein; BACH1, BTB and CNC homology 1; FTH1, ferritin heavy chain 1; DAPI, 4’,6-
diamidino-2-phenylindole; ROS, reactive oxygen species; B-ACTIN, beta-actin; WT, wild type; Nrf27/", nuclear factor erythroid 2-related factor 2
knockout; DMF, dimethyl fumarate; FTL, ferritin light chain; xCT, cystine/glutamate antiporter (SLC7A11); GPX4, glutathione peroxidase 4; FSP1,
ferroptosis suppressor protein 1; Fe?*, ferrous iron; Nissl, Nissl staining; dpi, days post injury; LAS, low-altitude sham; LAT, low-altitude TBI; HAS,
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3 Exosome-mediated modulation of
ferroptosis in neurological disorders

3.1 Stem cell-derived exosomes in
modulating ferroptosis in neural cells

Exosomes derived from mesenchymal stem cells (MSCs) and other

stem cell populations exhibit notable potential in regulating ferroptotic
signaling through delivery of regulatory RNAs and proteins (60) (61).
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Recent studies have uncovered distinct molecular mechanisms through
which these exosomes alleviate oxidative stress, modulate iron
homeostasis, and enhance antioxidant defenses in the CNS.

3.1.1 IL-1B-primed MSC-derived exosomes target
the HSPA5/GPX4 axis in intracerebral
hemorrhage

Li et al. (2024) reported that exosomes derived from MSCs
preconditioned with interleukin-1B (IL-1B-Exos) significantly
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inhibited neuronal ferroptosis in a rat model of intracerebral
hemorrhage (ICH). Mechanistically, these exosomes upregulated
GPX4, a critical lipid peroxidation-detoxifying enzyme, and heat
shock protein A5 (HSPAS5), a molecular chaperone that stabilizes
GPX4 by preventing its degradation. Additionally, IL-1B-Exos
downregulated iron metabolism-related genes, thereby reducing
the intracellular labile iron pool and limiting ROS accumulation.
Enhanced activity of antioxidant enzymes, including superoxide
dismutase (SOD), GSH peroxidase (GSH-Px), and increased GSH
levels—further reinforced the suppression of ferroptotic cell
death (62).

3.1.2 BMMSC-derived exosomes alleviate SCl via
IL-17 pathway suppression

Tang et al. (2024) reported that BMMSC-derived exosomes
could mitigate ferroptosis and inflammatory injury in spinal cord
injury models, partly via modulation of the IL-17 signaling pathway
(63). These findings highlight the capacity of BMMSC-Exos to
modulate immune-oxidative interplay in ferroptotic cascades and
provide insight into their multifaceted neuroprotective
mechanisms. Similarly, ADSC-derived exosomes have also been
demonstrated to suppress ferroptotic cell death through antioxidant
and metabolic reprogramming mechanisms, further emphasizing
the therapeutic diversity of stem cell-derived exosomal cargos.

3.1.3 miRNA- and IncRNA-enriched exosomes
regulate ferroptosis via multiple signaling axes

In addition to protein regulation, exosomal non-coding RNAs
have emerged as powerful post-transcriptional modulators
of ferroptosis:

miR-367-3p, delivered via umbilical cord MSC-derived
exosomes, targets enhancer of zeste homolog 2 (EZH2), relieving
transcriptional repression of SLC7Al11, thereby restoring cystine
uptake and GPX4 activity (64, 65).

miR-194, from MSC-derived exosomes, suppresses Bachl,
activating the Nrf2/HO-1 antioxidant axis, leading to reduced
iron-induced oxidative injury (66, 67).

IncGm36569, enriched in exosomes, acts as a ceRNA for miR-
5627-5p, upregulating FSP1, a GPX4-independent ferroptosis
inhibitor that catalyzes CoQl0-mediated lipid antioxidant
activity (68).

miR-19b-3p, carried by adipose-derived stem cell (ADSC)
exosomes, targets iron regulatory protein 2 (IRP2), restoring iron
balance via upregulation of FPN and downregulation of TfR1, thus
reducing ROS and ferroptosis in ICH models (69).

In addition, the tissue origin of MSCs significantly shapes the
properties of their exosomes. UCMSC-Exos are obtained non-
invasively, with high yield and low immunogenicity, and are
enriched in antioxidant miRNAs that enhance GPX4/SLC7A11
signaling (70, 71). BMMSC-Exos, though historically the most
studied, require invasive bone marrow aspiration and show donor
variability; they carry regulatory miRNAs such as miR-367-3p that
suppress ferroptosis through iron metabolism pathways (72).
ADSC-Exos are abundant and easily harvested, enriched in
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metabolic and anti-inflammatory miRNAs, and have been shown
to alleviate ferroptosis by activating the NRF2/SLC7A11/GPX4
pathway or modulating the FXR2/ATF3/SLC7A11 axis (73, 74).

As summarized in Table 1, stem cell-derived exosomes from
multiple sources converge on HSPA5/GPX4, IL-17/GPX4/
SLC7A11/ACSL4, and ncRNA-mediated axes to alleviate
ferroptosis across CNS injury models.

3.2 Comparative roles of exosomes from
different cellular origins in ferroptosis
regulation

Despite their heterogeneity, exosomes from different cellular
sources share common ferroptosis-regulatory features. Most
vesicles alleviate oxidative stress by upregulating GPX4/SLC7A11,
suppressing lipid peroxidation, and limiting iron overload.

However, source-specific differences are evident. MSC-Exos
display broad-spectrum protection, with IL-1B3-preconditioned
vesicles acting via the HSPA5/GPX4 axis, and engineered ADSC-
Exos targeting microglia through the FXR2/ATF3/SLC7A1l
pathway (62, 74). Microglia-Exos are strongly phenotype
dependent: M2-derived vesicles suppress ferroptosis by delivering
miR-124-3p to inhibit NCOA4/ferritinophagy or by activating
FUNDCI mitophagy, whereas M1-Exos may exert opposite effects
(75, 76). Neuronal lineage exosomes are less studied, but NSC-Exos
carrying CDC42 reduce ACSL4-driven ferroptosis in Parkinson’s
models (77). In addition, astrocyte-derived exosomes preserve
GPX4 and attenuate hemin-induced ferroptosis (78), while
endothelial progenitor exosomes deliver miR-199a-3p to inhibit
SP1, thereby suppressing endothelial ferroptosis (79).

Together, these findings indicate that exosomes form a cell-
origin-specific yet complementary network against ferroptosis.
Representative studies of exosomes from different cellular sources
and their ferroptosis-regulatory mechanisms are outlined
in Table 2.

4 The molecular mechanism
underlying exosome-mediated
modulation of ferroptosis in
neurological injuries

4.1 Ferroptosis-related signaling pathways
as core targets

Ferroptosis is governed by several critical signaling pathways,
including the GPX4-GSH axis, the xCT-SLC7A11 system, the
FSP1-CoQI10 pathway, the DHODH-CoQ10 mitochondrial
mechanism, and the Nrf2/HO-1 antioxidant response. These
interconnected cascades collectively determine neuronal
susceptibility to ferroptosis by controlling iron homeostasis, lipid
peroxidation, and oxidative defense.
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TABLE 1 Stem cell-derived exosomes in the regulation of ferroptosis in the CNS.

Target :
Exosome Neurological . -
molecule/ Biological effects References
source model
pathway
IL-1B-primed HSPAS5, i Intracerebral Enhances GPX4 stability, reduces Fe>* and ROS, increases
HSPA5/GPX4 62
MSCs GPX4 / s Hemorrhage SOD/GSH, inhibits ferroptosis ©62)
Bone Marrow GPX4, xCT, IL-17/GPX4/xCT/ scl Reduces oxidative stress and inflammation, restores redox 63)
MSCs JACSL4 ACSL4 homeostasis, suppresses ferroptosis
Umbilical Cord miR-367-3p EZH2/SLCTALL Neurodegeneration Promotes xCT expre5§i<?n, enhar.lces‘ GSH synthesis, inhibits (64)
MSCs lipid peroxidation
Acti ioxi t ipti 1 X t
MSCs miR-194 Bach1/Nrf2/HO-1 OGDIR injury ctivates antioxidant transcriptional response, protects (66)
neurons
MSCs IncGm36569 miR-5627-5p/FSP1 Acut.e Spinal Cord Enhances CoQ10-mediated detoxiflcation, mitigates ROS and ©8)
Injury (ASCI) ferroptosis
ADSCs miR-19b-3p IRP2/FPN/TfR1 Intracerebral Reduces iron overload, i‘rnl?roves antioxida}ntA capacity, (©9)
Hemorrhage prevents ferroptosis-induced neural injury

MSCs, mesenchymal stem cells; ADSCs, adipose-derived stem cells; ASCI, acute spinal cord injury; SCI, spinal cord injury; OGD/R, oxygen-glucose deprivation/reperfusion; ICH, intracerebral
hemorrhage; IL-1p, interleukin-1f; HSPAS5, heat shock protein A5; GPX4, glutathione peroxidase 4; FSP1, ferroptosis suppressor protein 1; CoQ10, coenzyme Q10; FPN, ferroportin; TfR1,
transferrin receptor 1; FTHI, ferritin heavy chain 1; IRP2, iron regulatory protein 2; ROS, reactive oxygen species; SOD, superoxide dismutase; GSH, glutathione; ACSL4, acyl-CoA synthetase
long-chain family member 4; xCT (SLC7A11), cystine/glutamate antiporter; EZH2, enhancer of zeste homolog 2; Bachl, BTB and CNC homology 1; Nrf2, nuclear factor erythroid 2-related
factor 2; HO-1, heme oxygenase-1; IncGm36569, long non-coding RNA Gm36569; miR-5627-5p, microRNA-5627-5p.

limiting ferritinophagy and intracellular iron release, thereby
reducing ROS and MDA while restoring GSH and cell viability
(75). In TBI and ischemia models, miR-124 also downregulates

4.2 Exosomal miRNAs orchestrating
ferroptosis via signaling pathways

Exosomal miRNAs orchestrate ferroptosis regulation by  ubiquitin-specific protease 14 (USP14), mitigating injury-related

targeting specific nodes in iron metabolism, lipid peroxidation, inflammation and proteotoxic stress (81).
miR-367-3p, enriched in human umbilical cord mesenchymal
stem cells (hUCMSC) -derived exosomes, inhibits EZH2, relieving

transcriptional repression on SLC7A11 (82). This enhances cystine

and antioxidant defense (80). In oxygen-glucose deprivation/
reperfusion (OGD/R)-injured hippocampal neurons, exosome-
delivered miR-124 from M2 microglia suppresses NCOA4,

TABLE 2 Representative studies on exosomes from different cellular origins in ferroptosis regulation.

Target .
Exosome Ferroptosis-regulatory e
Key cargo molecule/ Distinctive features References
source effect
pathway
HSPA5-related
Broad protection; enhanced by IL-1
MSCs proteins; HSPA5/GPX4; Inhibit neuronal ferroptosis, reduce rez(:l diIt’ir(j)n?rcl 1'0; e;e::; ADYSC Efos (62, 74)
FXR2>ATE3/ SLC7A11/GPX4 lipid peroxidation P & englneerec '
target M2 microglia
SLC7A11
NCOA4
. . miR-124-3p; . (,:O / Suppress ferritinophagy, activate
Microglia mitophagy-related ferritinophagy; mitophagy, attenuate neuronal Strong phenotype dependency; M2 (75, 76)
(M2) phagy FUNDC1 phagy. . protective, M1 may aggravate ferroptosis ’
cargo . ferroptosis
mitophagy
N al Reduce ACSL4-dri fe tosis;
‘euron ACSL4/lipid 'e uee rven errop' osis Limited direct evidence; suggest potential
lineage CDC42 metabolism improve vascular and behavioral role of neuronal lineage exosomes (77)
(NSCs) deficits in PD 8
Hypoxia- Mitigate hemin-induced I Emerging evidence; first experimental proof
1tigate hemin-imnduced neuronal merging evidence; nrst experiment TOO!
Astrocytes preconditioned GPX4 regulation 8 X sing R P K P K (78)
ferroptosis of astrocyte-derived exosomes in ferroptosis
exosomal cargo
Endothelial
nao ‘e 1 . miR-199a-3p — Suppress endothelial ferroptosis; Emphasize vascular protection; highlight
progenitors miR-199a-3p . A ) (79)
(EPCs) SP1 reduce lipid peroxidation peripheral—central crosstalk

MSCs, mesenchymal stem cells; ADSCs, adipose-derived stem cells; NSCs, neural stem cells; M1, M1-polarized macrophage/microglia; M2, M2-polarized macrophage/microglia; ADSC-Exos,
adipose-derived stem cell exosomes; IL-1, interleukin-1f3; HSPAS5, heat shock protein A5; GPX4, glutathione peroxidase 4; FXR2, fragile X mental retardation syndrome-related protein 2; ATF3,
activating transcription factor 3; SLC7A11, solute carrier family 7 member 11; NCOA4, nuclear receptor coactivator 4; FUNDCI, FUN14 domain-containing protein 1; ACSL4, acyl-CoA
synthetase long-chain family member 4; SP1, specificity protein 1; miR-124-3p, microRNA-124-3p; miR-199a-3p, microRNA-199a-3p.
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uptake and GSH synthesis, reinforcing the xCT-GSH-GPX4 axis
and suppressing ferroptosis. This mechanism is implicated in
models of multiple sclerosis and AD.

Additionally, exosomal miR-484 from skeletal muscle stem cells
inhibits ACSL4, indirectly enhancing GPX4 activity by limiting
PUFA incorporation into phospholipids, thereby attenuating iron-
dependent lipid peroxidation (83).

These findings collectively define a modular system wherein
distinct exosomal miRNAs modulate upstream and downstream
ferroptosis drivers with high specificity and translational potential.

4.3 Exosomal proteins and IncRNAs in
pathway-specific ferroptosis regulation

Exosomal non-coding RNAs and stress-response proteins
enable post-transcriptional and protein-level intervention in
ferroptotic signaling. In an ICH model, IL-1B-induced MSC-
derived exosomes upregulate HSPAS, which stabilizes GPX4,
preventing lipid peroxide accumulation. These exosomes
concurrently reduce Fe?", MDA, and ROS, and restore enzymatic
antioxidants including SOD and GSH-Px (62).

In SCI, BMMSC-derived exosomes modulate ferroptosis
through simultaneous suppression of IL-17 signaling and
rebalancing of lipid metabolism. They upregulate GPX4 and
SLC7A11, downregulate ACSL4, and attenuate inflammation by
decreasing IL-17A, Actl, and IL-17RA expression (63).

The IncGm36569/miR-5627-5p/FSP1 axis, delivered via MSC-
derived exosomes, activates a GPX4-independent ferroptosis
checkpoint. By derepressing FSP1, it facilitates CoQ10 recycling
and membrane repair under oxidative stress, notably in ASCI
models (68).

Exosomes from LPS-stimulated M1 microglia reduce GPX4,
SLC7A11, and FTHI in neurons, exacerbating ferroptotic
sensitivity (84, 85). Transcriptomic data confirm these MI-
derived vesicles drive ferroptosis-linked transcriptional changes,
especially in genes controlling iron handling and lipid ROS
metabolism (86).

Thus, exosomal cargo from differently primed stem or immune
cells can exert either protective or deleterious ferroptotic effects,
dependent on the inflammatory or reparative state of the donor cell.

4.4 Exosome-mediated antioxidant
signaling

Beyond direct targeting of ferroptosis regulators, exosomal
cargos activate systemic antioxidant networks that confer
neuroprotection (87). In ischemic stroke models, BMSC-derived
exosomes enhance Nrf2 nuclear translocation and downstream
HO-1, SOD, and catalase expression, restoring redox homeostasis
and inhibiting ferroptotic injury (88, 89).

In TBL, hUCMSC exosomes upregulate IncRNA TUBB6, which
modulates Nrf2-dependent transcription and suppresses ACSL4,
while maintaining GPX4 expression. Mitochondrial morphology
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and lipid peroxide levels are normalized, indicating structural and
biochemical ferroptosis suppression (71).

In aging-related delayed neurocognitive recovery, exosomes
boost SIRTI, facilitating Nrf2 nuclear translocation and
subsequent HO-1 activation. This reduces free iron, lipid
oxidation, and neuronal loss, ultimately improving cognitive
outcomes (90). These pathways converge on Nrf2’s master
regulatory role in coordinating cellular defense against oxidative
ferroptotic damage, with exosomes acting as both inducers and
amplifiers of this response. A schematic illustration of these
exosome-mediated pathways is presented in Figure 4.

5 Challenges and application
prospects

Exosomes have emerged as promising therapeutic agents for
neurological disorders due to their ability to modulate ferroptosis.
However, their clinical application faces several challenges that need
to be addressed. There exists a diverse array of exosome species,
with complex sources. Based on the presence or absence of artificial
modifications, exosomes can be categorized into engineered and
natural exosomes. Natural exosomes are further classified into those
derived from animals and those derived from plants (91). The
therapeutic efficacy and safety assessment of exosomes sourced
from various origins currently lack systematic analysis.
Furthermore, research on the mechanisms underlying exosome
function is still insufficient; more in-depth investigations are
required regarding cellular uptake, signaling pathways, and targets
associated with these vesicles. The prevailing technology for
isolating exosomes—ultracentrifugation—can yield them to a
certain extent; however, this method often results in low purity
levels, requires expensive equipment, and may inadvertently
damage the exosomes or lead to their loss (92). Additionally, the
relatively limited clinical application of exosome-based therapeutics
and inadequate ethical support concerning some human-derived
exosomes present significant barriers to translating research
outcomes into practical applications.

5.1 Biological stability and immune safety

In vivo, exosomes are susceptible to rapid clearance by the
mononuclear phagocyte system, limiting their therapeutic efficacy
(93). Moreover, exosomes may carry immunogenic molecules that
trigger immune responses (94).

Seohyun Kim et al. modified exosomes using signal regulatory
protein alpha(SIRPo) variants to enhance their ability to evade
immune detection and prolong their circulation time. The SIRP-EV
achieves active immune escape by mimicking the CD47-SIRPo.
immune checkpoint signal and significantly extends circulation
time through the optimization of surface charge and protein
corona control, which reduces non-target retention (95).

A study conducted by the University of Toledo in Toledo, Ohio,
USA, demonstrated a dual-mode synergy of “targeting + escape”—
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FIGURE 4

Exosome-mediated suppression of ferroptosis in neural injury. Exosomes deliver functional cargos, including miRNAs (miR-124, miR-367-3p, miR-
484), IncRNAs (IncGm36569, TUBB6), and proteins (HSPA5, SIRT1), that modulate key regulators such as NCOA4, EZH2, SLC7A11, GPX4, FSP1, and
Nrf2. These pathways converge to suppress iron accumulation, lipid peroxidation, and oxidative stress, thereby protecting neurons from ferroptotic
death. MSC, mesenchymal stem cell; ADSC, adipose-derived stem cell; NSC, neural stem cell; ESC, embryonic stem cell; iPSC, induced pluripotent
stem cell; microglia, brain-resident immune cell; astrocyte, glial support cell; GPX4, glutathione peroxidase 4; FSP1, ferroptosis suppressor protein 1;
DHODH, dihydroorotate dehydrogenase; NRF2, nuclear factor erythroid 2—-related factor 2; HO-1, heme oxygenase-1; ROS, reactive oxygen species;
Fe®*, ferrous iron; GSH, glutathione; SLC7A11 (xCT), cystine/glutamate antiporter; ACSL4, acyl-CoA synthetase long-chain family member 4; COX2,
cyclooxygenase-2; TFR1, transferrin receptor 1; NCOA4, nuclear receptor coactivator 4; FTH1, ferritin heavy chain 1.

where the CD47p110-130 peptide facilitates “escape escort”, and
the Arg-Gly-Asp(RGD) peptide provides “targeting guidance”.
ExoSmart overcomes the limitations of traditional exosome
delivery, presenting a new paradigm for the precise treatment of
solid tumors, such as pancreatic cancer (96).

Advanced separation and purification techniques can diminish
the presence of immunogenic contaminants, thereby improving the
safety and efficacy of exosome-based therapies (97). Furthermore, it
was discovered that combining exosomes with biomaterials, such as
hydrogels, can facilitate local and sustained release, enhancing their
therapeutic effects while minimizing systemic clearance (98-100).

5.2 BBB penetration

The BBB presents a significant obstacle for the delivery of
therapeutic agents to the CNS. Although exosomes have inherent
abilities to cross the BBB, their efficiency remains suboptimal (101).
Engineering exosomes with targeting ligands, such as rabies virus
glycoprotein peptides that bind to nicotinic acetylcholine receptors,
can enhance BBB penetration (102). Exosomes enriched with
miRNA have been demonstrated to transiently enhanceBBB
permeability by down-regulating tight junction proteins, such as
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claudin-5 (103). Additionally, external stimuli like focused
ultrasound have been employed to transiently disrupt the BBB,
facilitating exosome entry (104, 105).

5.3 Targeted delivery efficiency

Achieving targeted delivery of exosomes to specific neuronal
populations is crucial for maximizing therapeutic outcomes and
minimizing off-target effects (106). Surface functionalization of
exosomes with antibodies or ligands specific to neuronal markers,
such as L1 cell adhesion molecule (L1CAM) or neural cell adhesion
molecule(NCAM), can enhance targeting specificity (74, 107).
Furthermore, magnetic guidance using superparamagnetic iron
oxide nanoparticles incorporated into exosomes allows for spatial
control of delivery under an external magnetic field (108).
Extracellular vesicles in engineering present a promising option
for targeted delivery. A monoclonal antibody that targets the
growth-associated protein-43 (GAP43) has been employed to
direct extracellular vesicles towards the extracellular environment
of damaged neurons in an ischemic stroke model. This approach
ensures that the extracellular vesicles accurately deliver their
contents to the specific neuronal population intended (109).
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5.4 Exosome engineering for enhanced
therapeutic efficacy

Advancements in exosome engineering have enabled the
incorporation of therapeutic molecules, including miRNAs, proteins,
and small molecules, to modulate ferroptosis pathways effectively (110).
For instance, loading exosomes with miR-124 can downregulate
NCOA4, reducing ferritinophagy and iron accumulation. Similarly,
exosomes enriched with miR-367-3p can suppress EZH2, leading to
upregulation of SLC7A11 and enhanced GSH synthesis. Prof. Li Xukun
and his colleagues from Wenzhou Medical University have conducted
research on the utilization of exosomes for drug loading and targeted
delivery through genetic engineering and chemical modification. They
successfully delivered Fibroblast Growth Factor 20(FGF20) for the
treatment of ischemic stroke and collaborated with endogenous
miRNAs, such as miR-181b-5p, to enhance neural plasticity (111).
These modifications can be achieved through electroporation,
transfection, or incubation methods (64).

10.3389/fimmu.2025.1677808

5.5 Standardization and scalability of
exosome production

For clinical translation, standardized and scalable production of
exosomes is essential. Current isolation methods, such as
ultracentrifugation and size-exclusion chromatography, have
limitations in yield and purity. Emerging techniques like
tangential flow filtration and microfluidic-based isolation offer
improved scalability and consistency (112, 113). Establishing
Good Manufacturing Practice compliant protocols will be critical
for regulatory approval and widespread clinical use.

A study demonstrates that the combination of Tangential flow
filtration (TFF) and Size exclusion chromatography(SEC) can
enhance particle concentration by 16.9 times, establishing it as a
viable method for mass production (114). Furthermore, researchers
from the Department of Pharmacy at Yonsei University in Korea
have discovered that hypotonic stimulation and cytochalasin-B
therapy can significantly increase exosome yield and drug-
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FIGURE 5
Future improvements and prospects of exosome applications.
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carrying capacity (115). Future improvements and translational
prospects for exosome-based therapies are depicted in Figure 5.

6 Safety considerations for exosome-
based therapies

6.1 Potential safety risks

6.1.1 Off-target effects

Extracellular vesicle surface targeting ligands (such as RVG
peptides) may bind to non target cell receptors (such as peripheral
nerve nAChR), leading to drug delivery to non target tissues (such as
heart, muscle) (102). In addition, the regulatory RNA carried by it (such
as miR-181b-5p) may interfere with the normal signaling pathway of
receptor cells (such as the PTEN/PI3K-AKT pathway), affecting cell
metabolism or proliferation. In acute lymphoblastic leukemia (ALL),
miR-181b-5p carried by exosomes is internalized into leukemia cells,
upregulated in expression, promoting cell proliferation, migration, and
invasion, while inhibiting cell apoptosis (116). Such off target effects
may induce organ toxicity, metabolic disorders, or tumor risk.

6.1.2 Immunogenicity concerns

The immune system itself has inherent immunogenicity.
Extracellular vesicle membrane proteins may activate host
immune responses and trigger a storm of inflammatory factors
(117, 118). Residual donor cell DNA/RNA may trigger the TLR
signaling pathway, leading to dendritic cell activation and adaptive
immune response. In animal models, serum complement activation
and neutrophil infiltration can usually be observed after injection of
unpurified extracellular vesicles (119).

6.2 Strategies to mitigate safety risks

6.2.1 Donor cell screening and modification

To effectively screen donor cells for practical applications, it is
essential to select low immunogenicity cell sources, such as
autologous MSCs or immune-exempt induced pluripotent stem
cells (iPSCs), while avoiding the expression of allogeneic major
histocompatibility complex (MHC) molecules. Gene editing
techniques, such as CRISPR-Cas9, can be employed to knock out
immunogenic genes, exemplified by silencing the B2M gene to
eliminate MHC-I expression, thereby reducing immunogenic
interference from the source (120-122). Furthermore, engineering
modifications, including the display of immune evasion molecules
on the cell surface, inhibition of macrophage phagocytosis,
introduction of tissue-specific targeting peptides, and
enhancement of brain-specific delivery, can also mitigate
common risks associated with donor cell utilization (123).

6.2.2 Exosome purification and quality control
During the extraction process of extracellular vesicles, free

proteins and apoptotic bodies are typically removed using

ultracentrifugation in conjunction with size exclusion
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chromatography (124, 125). Additionally, anti-CD63/CD81
antibody columns may be employed for purification to ensure the
uniformity of exosome subpopulations (126, 127). Furthermore, the
quality of extracellular vesicles produced from different batches was
monitored through nanoparticle tracking analysis (NTA), Western
blotting (WB), and endotoxin level assessments. Together, these
procedures establish a standardized quality-control framework that
improves batch-to-batch consistency and regulatory readiness.

6.2.3 Off target effect control and loading safety
The quality of extracellular vesicles (EVs) produced from
different batches can be significantly enhanced through advanced
separation techniques such as size exclusion chromatography (SEC)
and density gradient ultracentrifugation. These methods effectively
remove unwanted proteins and cytokines that may induce off-target
effects. For instance, EV formulations that are depleted of soluble
cytokines, such as VEGF-A and Monocyte chemoattractant protein
1 (MCP-1), exhibit enhanced immunomodulatory activity. Such
purification techniques ensure that extracellular vesicles retain their
therapeutic potential while minimizing adverse reactions to the
greatest extent possible (128). Furthermore, electroporation or
chemical transfection can be employed to load exogenous cargo
onto exosomes. However, these technologies must be meticulously
optimized to prevent damage to the EV membrane or alterations in
functionality. For example, the CRISPR ribonucleoprotein (RNP)
complex was successfully encapsulated into EVs using a protein
binding strategy, demonstrating high delivery efficiency (129).
Additionally, it is crucial to avoid the direct loading of highly
toxic drugs. The quality of the EVs was monitored through
NTAandWB, and endotoxin level assessments. Optimized loading
conditions and stringent release testing minimize off-target risks
while preserving vesicle integrity and therapeutic function,
complementing the purification workflow described above.

6.3 Clinical translation framework

Before clinical application, drugs typically undergo a
comprehensive safety evaluation that primarily assesses their
immunotoxicity through the detection of serum complement
activity, lymphocyte subsets, and cytokine profiles. Furthermore,
organ toxicity is evaluated through histopathological examinations
of major organs and long-term monitoring for carcinogenicity.
Additionally, administering drugs based on particle count rather
than protein dosage ensures consistent quality across batches. These
methods are essential for evaluating and validating safety prior to
clinical use.

7 Conclusions

Ferroptosis has emerged as a key driver of neuronal death in a
wide spectrum of neurological disorders, from acute brain injuries
to chronic neurodegeneration. In this context, exosomes offer a
unique and highly adaptable platform for targeted therapeutic
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intervention. By leveraging their innate ability to cross the BBB and
deliver functional cargo such as regulatory miRNAs, IncRNAs, and
proteins, exosomes can modulate core ferroptosis pathways, such as
the GPX4-GSH axis, ferritinophagy, and lipid peroxidation, at both
transcriptional and post-translational levels. Engineered exosomes
further expand this potential through surface ligand modification,
cargo enrichment, and responsive delivery systems, enabling precise
spatial and molecular targeting within injured neural tissues.
Despite this promise, substantial barriers remain, including
limited in vivo stability, heterogeneity in large-scale production,
and the need for validated clinical-grade manufacturing and safety
frameworks. Moving forward, the convergence of nanotechnology,
molecular neuroscience, and synthetic biology will be essential to
transform exosome-based ferroptosis modulation from a preclinical
concept into a clinically actionable therapy. With continued
interdisciplinary innovation, exosomes are poised to become a
next-generation strategy for combating ferroptosis-driven brain
injury and advancing the frontier of neuroprotective medicine.
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