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Neurological disorders, including acute insults such as stroke and traumatic brain

injury and chronic neurodegenerative diseases like Alzheimer’s disease and

Parkinson’s disease, exert a profound global health burden. Ferroptosis, a

distinct form of regulated cell death driven by iron accumulation, lipid

peroxidation, and oxidative stress, has emerged as a central pathological

mechanism across these conditions. Exosomes, nanoscale extracellular

vesicles capable of crossing the blood-brain barrier and delivering functional

cargos such as microRNAs, long non-coding RNAs, and proteins, have

demonstrated remarkable potential in modulating ferroptotic signaling.

Through regulation of the GPX4–GSH axis, ferritinophagy, iron homeostasis,

and antioxidant pathways, exosome-based interventions offer neuroprotective

benefits in diverse models of neurological injury. This review synthesizes current

advances in the mechanistic understanding of ferroptosis and highlights

emerging strategies leveraging exosomes as precision delivery platforms for

ferroptosis-targeted therapy. We also discuss the translational challenges and

future directions necessary to realize exosome-guided neuroprotection as a

viable clinical paradigm.
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1 Introduction

Neurological disorders, encompassing both acute brain injuries

such as ischemic stroke and traumatic brain injury (TBI), and chronic

neurodegenerative diseases such as Alzheimer’s disease (AD) and

Parkinson’s disease (PD), represent a mounting global health crisis (1).

These conditions collectively account for a substantial proportion of

mortality and long-term disability worldwide, global DALY counts

attributed to these conditions increased by 18.2% (8.7–26.7) between

1990 and 2021, as reported in the Global Burden of Disease Study

2021 (2). Despite their clinical heterogeneity, they share convergent

pathophysiological mechanisms, most notably, oxidative stress,

neuroinflammation, and iron dysregulation, which synergistically

drive progressive neural cell damage and functional decline (3).

The scale of the global burden is striking. Data from the World

Stroke Organization and GBD 2021 indicate that stroke affects 93.8

million people globally, with approximately 11.9 million new cases

and 7.3 million deaths (10.7% of all deaths) reported in 2021 alone (4).

The World Health Organization estimates that TBI, often resulting

from falls, vehicular accidents, or sports-related trauma, accounts for

an estimated 50–60 million new cases each year and incurs a global

economic burden of over $400 billion (5). Meanwhile, Alzheimer’s

Disease International (ADI) reports that neurodegenerative diseases

such as AD and PD afflict over 50 million people globally, a number

projected to surpass 139 million by 2050 due to population aging (6).

With the aging of the world ’s population, age-related

neurodegenerative diseases have become one of the biggest

problems to be solved urgently in modern society (7). These

conditions are not only devastating to individuals and families but

also place extraordinary strain on healthcare systems.

Emerging evidence implicates ferroptosis as a common and

critical form of regulated cell death underlying diverse neurological

disorders. Ferroptosis is an iron-dependent, non-apoptotic cell

death modality characterized by overwhelming lipid peroxidation

and reactive oxygen species (ROS) accumulation. Central to this

process is the dysregulation of intracellular iron metabolism and the

depletion of key antioxidant systems, particularly glutathione

(GSH) and its associated enzyme GSH peroxidase 4 (GPX4) (8).

In acute neurological insults such as ischemic stroke and TBI,

ferroptosis is initiated by iron overload and ROS generation

through Fenton chemistry, leading to neuronal injury and

secondary damage (9, 10). Ferroptosis plays a pivotal role in the

pathogenesis of neurodegenerative diseases, and targeting key

regulatory genes involved in this process can effectively delay

neurodegeneration (11, 12).

Given its pivotal role in neuronal vulnerability, ferroptosis has

emerged as an attractive target for therapeutic intervention across a

spectrum of neurological conditions. Among the innovative

strategies under investigation, exosomes, a subtype of extracellular

vesicles (40–160 nm) secreted by various cell types, have garnered

increasing attention as both biomarkers and delivery vehicles for

therapeutic agents (13, 14). Exosomes carry a cargo of bioactive

molecules, including proteins, lipids, and nucleic acids (eg.,

mRNAs, microRNAs (miRNAs), long non-coding RNAs, DNA,

etc.), which they transfer between cells to regulate intercellular
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communication and modulate recipient cell function (13, 15). Their

ability to cross physiological barriers such as the blood-brain barrier

(BBB), evade immune detection, and deliver functional cargo to

specific cell types renders them highly promising candidates for

neurotherapeutics (16, 17). Importantly, emerging research suggests

that exosomes may exert direct neuroprotective effects by

modulating ferroptosis-related pathways (18). Through targeted

delivery of antioxidant molecules, iron regulators, and gene-

modifying RNAs, exosomes can suppress oxidative stress, restore

redox balance, and inhibit ferroptosis-driven neural damage.

Compared to synthetic nanocarriers, exosomes offer superior

biocompatibility, reduced toxicity, and intrinsic targeting

potential, making them a versatile platform for developing next-

generation therapies for neurological disorders (Figure 1).

Nevertheless, despite the substantial burden of neurological

disorders and growing evidence for ferroptosis as a convergent

pathological mechanism, the therapeutic potential of exosome-

based ferroptosis modulation remains underexplored. Few studies

provide systematic comparisons across exosome sources or disease

contexts, and clinical validation is still lacking. Addressing these

knowledge gaps provides the rationale for this review.

This review aims to systematically elucidate the mechanistic

interplay between exosome biology and ferroptosis regulation in

neurological diseases. We first dissect the molecular underpinnings

of ferroptosis and its contribution to acute and chronic

neurodegeneration. We then explore how exosome-mediated

delivery of therapeutic cargos—particularly regulatory RNAs and

antioxidant proteins—modulates ferroptotic signaling cascades.

Finally, we discuss the challenges and innovations in exosome

engineering for Central nervous system(CNS)-targeted therapy,

offering perspectives on the clinical translation of exosome-based

interventions for ferroptosis-driven neurological injury.
2 The molecular mechanisms of
ferroptosis and its pathological role in
neurological disorders

2.1 Molecular mechanisms underlying
ferroptosis

Ferroptosis is a distinct, iron-dependent form of regulated cell

death characterized by the accumulation of lethal lipid peroxides

and uncontrolled oxidative stress (19). Unlike apoptosis, necrosis,

and autophagy, ferroptosis is fundamentally driven by iron-

mediated redox imbalance and extensive lipid membrane damage,

and it has been recognized as a central mechanism underlying the

progression of various neurological disorders (8, 20, 21). At the

molecular level, ferroptosis is primarily orchestrated by three

interconnected pathways: iron metabolism, lipid peroxidation,

and the cellular antioxidant defense system.

2.1.1 Dysregulation of iron homeostasis
Iron plays a critical role in numerous physiological processes,

including DNA synthesis, oxygen transport, and mitochondrial
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energy metabolism. Physiologically, ferric iron (Fe³+) circulates in a

redox-inactive form bound to transferrin, whereas ferrous iron

(Fe²+) is highly reactive and soluble (22). When cellular iron

regulation is impaired, excess Fe²+ catalyzes the Fenton reaction,

producing hydroxyl radicals (·OH) that inflict widespread oxidative

damage (23).

Key regulators of systemic and cellular iron homeostasis include

hepcidin, which inhibits intestinal iron absorption by promoting

the degradation of the iron exporter ferroportin (FPN), and

hypoxia-inducible factors (HIFs), which suppress hepcidin under

hypoxic conditions, thereby enhancing iron mobilization (24, 25).

Overload of labile iron leads to the generation of toxic non-

transferrin-bound iron (NTBI), promoting ROS formation and

initiating lipid peroxidation cascades (26, 27). Intracellularly, iron

is safely sequestered within ferritin complexes. Under pathological

conditions, ferritin is degraded via autophagic pathways mediated

by nuclear receptor coactivator 4 (NCOA4), a process termed

ferritinophagy, liberating iron into the labile pool and

exacerbating oxidative stress (22).

2.1.2 Induction of lipid peroxidation
The hallmark of ferroptosis is the iron-catalyzed peroxidation of

polyunsaturated fatty acids (PUFAs) incorporated into

phospholipids of cellular membranes. Critical enzymes such as

acyl-CoA synthetase long-chain family member 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) facilitate the
Frontiers in Immunology 03
esterification and remodeling of PUFAs into membrane

phospholipids, rendering them susceptible to oxidative

damage (28).

Upon ROS attack, PUFAs are converted into lipid

hydroperoxides (PUFA-OOH) (29, 30). If not adequately

detoxified, these peroxides disrupt membrane integrity, cause

bioenergetic failure, and trigger ferroptotic cell death. In contrast,

monounsaturated fatty acids (MUFAs) can attenuate lipid

peroxidation by competing with PUFAs for incorporation into

membranes, a process involving ACSL3 activity, thus serving as a

protective mechanism against ferroptosis (31, 32).

2.1.3 Failure of antioxidant defense systems
The redox homeostasis of the cell is crucial for preventing

ferroptosis. Central to this defense is GSH, the most abundant

cellular antioxidant, and its associated enzyme GPX4. GPX4

catalyzes the reduction of phospholipid hydroperoxides into non-

toxic phospholipid alcohols, preserving membrane integrity (33).

The system Xc- transporter, composed of Solute carrier family 7

member 11(SLC7A11) and Solute carrier family 3, member 2

(SLC3A2) subunits, imports cystine in exchange for glutamate,

thereby sustaining intracellular cysteine levels essential for GSH

synthesis. Disruption of system Xc- activity, whether by

extracellular glutamate accumulation or pharmacological

inhibition, depletes GSH, reduces GPX4 activity, and sensitizes

cells to ferroptosis (34).
FIGURE 1

Exosomes are nanoscale extracellular vesicles released by multiple cell types, including endothelial cells, mesenchymal stem cells, immune cells, and
smooth muscle cells. They carry bioactive cargos such as proteins, lipids, and non-coding RNAs, and mediate intercellular communication by
regulating gene expression, cell survival, angiogenesis, and epigenetic processes within recipient cells.
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Mitochondrial redox balance also plays a critical role, with

solute carrier proteins such as Solute carrier family 25 member 11

(SLC25A11) and Solute carrier family 25 member 10(SLC25A10)

mediating GSH transport across mitochondrial membranes. Loss of

mitochondrial antioxidant capacity exacerbates ferroptotic stress

(35). Notably, direct inhibition of GPX4, either through genetic

deletion or chemical inhibitors, rapidly triggers ferroptosis,

highlighting its indispensable role in maintaining neuronal

survival under oxidative conditions.

2.1.4 GPX4-independent ferroptosis suppressor
pathways

In addition to the canonical GPX4–GSH system, several parallel

pathways have been identified that independently suppress

ferroptosis. Ferroptosis suppressor protein 1 (FSP1), a flavoprotein

localized to the plasma membrane, catalyzes the NAD(P)H-

dependent reduction of Coenzyme Q10(CoQ10) to Coenzyme Q

H2(CoQH2), thereby halting lipid peroxidation chain reactions; it can

also reduce vitamin K, providing an additional antioxidant defense

(36, 37). Structural and pharmacological studies further revealed that

FSP1 functions as a dimeric flavoprotein generating 6-hydroxy-FAD

with intrinsic anti-ferroptotic activity, while small-molecule

inhibitors such as iFSP1 competitively target its NAD(P)H-binding

site (38, 39). A second ferroptosis defense pathway involves

dihydroorotate dehydrogenase (DHODH), a mitochondrial inner

membrane enzyme primarily recognized for its role in pyrimidine

biosynthesis. Beyond this metabolic function, DHODH reduces

CoQ10 within mitochondria, maintaining redox homeostasis and

preventing lipid peroxidation–induced ferroptosis (40). Together,

FSP1 and DHODH complement GPX4 to form a multilayered

protective network that safeguards cellular and mitochondrial

integrity under oxidative stress.
2.2 The pathological role of ferroptosis in
neurological disorders

Accumulating evidence implicates ferroptosis as a pivotal

pathological mechanism across a spectrum of neurological

diseases, including stroke, TBI, AD, and PD. The contribution of

ferroptosis to neural injury can be attributed to three major

interrelated processes: oxidative stress amplification, membrane

lipid peroxidation, and iron-dependent neuronal death.

2.2.1 Oxidative stress and iron-driven neurotoxicity
In acute brain injuries such as ischemic and hemorrhagic stroke,

as well as TBI, BBB disruption and hemorrhage result in excessive

iron deposition in the parenchyma. This iron catalyzes ROS

production via Fenton chemistry, causing oxidative damage to

proteins, nucleic acids, and lipids, and ultimately impairing

neuronal function and viability (41).

In AD models, ferroptosis-related molecular alterations have

been demonstrated (Figure 2). Representative evidence shows that
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restoring antioxidant enzymes (e.g., GPX4, xCT, FSP1), modulating

ferritinophagy (via NCOA4–FTH1 axis), and improving redox

balance collectively mitigate ferroptotic injury and may enhance

neuronal viability in AD.

Beyond AD, similar dysregulation of iron homeostasis has been

observed in other chronic neurodegenerative diseases such as PD,

leading to pathological iron accumulation in vulnerable brain

regions (e.g., substantia nigra, hippocampus) (45, 46). A recent

review also highlights that oxidative stress, immunological

dysfunction, and microbiota shifts collectively shape the

pathogenesis of ferroptosis-related neurodegeneration (47). Such

elevation of labile iron pools perpetuates oxidative stress, thereby

exacerbating synaptic dysfunction and neuronal death.

2.2.2 Lipid peroxidation and membrane
disruption

A defining feature of ferroptosis-mediated neural injury is

extensive lipid peroxidation. ROS-induced oxidation of PUFA-

containing phospholipids compromises membrane fluidity and

integrity, resulting in increased membrane permeability, cytoplasmic

leakage, and organelle dysfunction. Lipid peroxidation products, such

as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), further

amplify cellular injury by forming cytotoxic adducts with proteins and

DNA, thereby propagating neurodegeneration (48).

2.2.3 Neuronal ferroptotic death and functional
impairment

Loss of GPX4 activity and GSH depletion render neurons

exceptionally vulnerable to ferroptosis. Reduced capacity to detoxify

lipid peroxides leads to the activation of ferroptotic death pathways,

contributing to neuronal loss and functional deterioration in both

acute injuries and chronic neurodegenerative conditions (49).

Preclinical studies have demonstrated that pharmacological

inhibition of ferroptosis, using agents such as ferrostatin-1 and

liproxstatin-1, or enhancement of antioxidant defenses through N-

acetylcysteine supplementation, can significantly reduce infarct

volume, improve neurological outcomes, and protect against

cognitive decline in various models of stroke, TBI, and

neurodegeneration (50).

These findings underscore the critical role of ferroptosis as a

unifying mechanism driving neuronal damage and identify it as a

promising therapeutic target for the treatment of neurological disorders.

As shown in Figure 3, ferroptosis-associated oxidative stress has

been implicated in TBI, contributing to secondary neuronal

damage. High-altitude hypoxia further aggravates ferroptosis by

upregulating Bach1, increasing ROS levels, and reducing Ferritin

heavy chain 1 (FTH1) expression, thereby weakening antioxidant

defenses. Conversely, NRF2 activation via DMF treatment restores

the xCT–GPX4 axis and enhances FSP1–ferritin–mediated iron

sequestration, ultimately maintaining redox homeostasis. These

findings underscore that ferroptosis in TBI is dynamically

regulated by the balance between pro-oxidant (Bach1-driven) and

antioxidant (NRF2-dependent) signaling.
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2.3 Disease-specific differences in
ferroptosis across neurological disorders

Ferroptosis manifests with disease-specific features across

neurological conditions. In ischemic stroke, cerebral ischemia/

reperfusion rapidly triggers iron accumulation, lipid peroxidation,

and GPX4/SLC7A11 depression; the ferroptosis inhibitor ferrostatin-1

reduces infarct volume and improves neurobehavioral outcomes in

middle cerebral artery occlusion (MCAO) models, consistent with an

Protein kinase B/Glycogen Synthase Kinase 3 Beta (AKT/GSK3b)-
dependent protection (53). In hemorrhagic contexts, hemin/

hemoglobin drives a variant of neuronal ferroptosis with distinct

signaling; pharmacologic inhibition and ferroptosis blockers mitigate

injury in ICH models, and in subarachnoid hemorrhage, liproxstatin-

1 preserves GPX4, downregulates ACSL4/COX-2, and attenuates

neurological deficits (54, 55). In traumatic brain injury, ferroptosis

contributes to secondary damage; ferrostatin-1 decreases lesion
Frontiers in Immunology 05
volume and improves long-term sensorimotor/cognitive outcomes

(56). In Alzheimer’s disease, neuronal loss of the iron exporter

ferroportin precipitates ferroptosis and memory impairment, while

liproxstatin-1/ferrostatin-1 rescue Ab-induced neuronal death and

cognitive defects (12). In Parkinson’s disease, dopamine oxidation

promotes GPX4 ubiquitination and loss, provoking dopaminergic

neuron ferroptosis; restoring GPX4 ameliorates degeneration and

motor deficits (57). In multiple sclerosis (MS), patient lesions/

Cerebrospinal Fluid (CSF) show iron overload and oxidized

phospholipids; late-stage treatment with a ferroptosis inhibitor

(UAMC-3203) or delayed anti-ferroptotic therapy in chronic

experimental autoimmune encephalomyelitis (EAE) ameliorates

disease severity and pathology, underscoring ferroptosis as a

targetable driver of progressive MS (58, 59).

These disease-specific patterns suggest that any exosome-based

intervention should be disease-tailored to the dominant ferroptosis

drivers in each condition, which we consider next.
FIGURE 2

The role and therapeutic modulation of ferroptosis in AD. (A) Blood–brain barrier-targeted double selenium nanoparticles restored GPX4 activity,
enhanced antioxidant defenses, and improved cognitive outcomes in APP/PS1 mice. Reproduced from Wang et al., 2023, Biomaterials, with
permission (42). (B) Tetrahedral framework nucleic acids increased cell viability and GSH levels while reducing Fe²+, MDA, LDH, and lipid peroxidation
in Ab-treated N2a cells. Reproduced from Tan et al., 2024, Nanobiotechnology, with permission (43). (C) Tau K677R mutation alleviated ferroptosis
by regulating NCOA4-dependent ferritinophagy and upregulating FTH1 expression, thereby maintaining iron homeostasis and neuronal viability.
Reproduced from An et al., 2024, Free Radical Biology and Medicine, with permission (44). APP/PS1, amyloid precursor protein/presenilin-1; WT, wild
type; CLNDSe, core–liposome–nanodots selenium nanoparticle; ACSL4, acyl-CoA synthetase long-chain family member 4; GPX4, glutathione
peroxidase 4; FTH1, ferritin heavy chain 1; COX2, cyclooxygenase-2; DAPI, 4′,6-diamidino-2-phenylindole; Cy5, cyanine 5; TFNA, tetrahedral
framework nucleic acid; NRF2, nuclear factor erythroid 2–related factor 2; FSP1, ferroptosis suppressor protein 1; SLC7A11/xCT, cystine/glutamate
antiporter; NCOA4, nuclear receptor coactivator 4; Tau K677R, Tau K677R mutation; b-ACTIN, beta-actin.
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3 Exosome-mediated modulation of
ferroptosis in neurological disorders

3.1 Stem cell-derived exosomes in
modulating ferroptosis in neural cells

Exosomes derived frommesenchymal stem cells (MSCs) and other

stem cell populations exhibit notable potential in regulating ferroptotic

signaling through delivery of regulatory RNAs and proteins (60) (61).
Frontiers in Immunology 06
Recent studies have uncovered distinct molecular mechanisms through

which these exosomes alleviate oxidative stress, modulate iron

homeostasis, and enhance antioxidant defenses in the CNS.
3.1.1 IL-1b-primed MSC-derived exosomes target
the HSPA5/GPX4 axis in intracerebral
hemorrhage

Li et al. (2024) reported that exosomes derived from MSCs

preconditioned with interleukin-1b (IL-1b-Exos) significantly
FIGURE 3

Experimental evidence of ferroptosis regulation in TBI models. (A) High-altitude hypoxia aggravates traumatic brain injury by upregulating Bach1,
which suppresses antioxidant gene expression and promotes ferroptotic damage. Reproduced from Peng et al., 2025, Cell Death Discov, with
permission (51). (B) NRF2 activation alleviates TBI-induced ferroptosis by restoring the xCT–GPX4 antioxidant system, enhancing ferritin (FTH/FTL)-
mediated iron sequestration, and maintaining redox balance through FSP1–CoQ10-dependent lipid repair. Reproduced from Cheng et al., 2023,
Antioxidants, with permission (52). GFAP, glial fibrillary acidic protein; BACH1, BTB and CNC homology 1; FTH1, ferritin heavy chain 1; DAPI, 4′,6-
diamidino-2-phenylindole; ROS, reactive oxygen species; b-ACTIN, beta-actin; WT, wild type; Nrf2-/-, nuclear factor erythroid 2–related factor 2
knockout; DMF, dimethyl fumarate; FTL, ferritin light chain; xCT, cystine/glutamate antiporter (SLC7A11); GPX4, glutathione peroxidase 4; FSP1,
ferroptosis suppressor protein 1; Fe²+, ferrous iron; Nissl, Nissl staining; dpi, days post injury; LAS, low-altitude sham; LAT, low-altitude TBI; HAS,
high-altitude sham; HAT, high-altitude TBI; Tubulin, structural protein used as internal control.
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inhibited neuronal ferroptosis in a rat model of intracerebral

hemorrhage (ICH). Mechanistically, these exosomes upregulated

GPX4, a critical lipid peroxidation-detoxifying enzyme, and heat

shock protein A5 (HSPA5), a molecular chaperone that stabilizes

GPX4 by preventing its degradation. Additionally, IL-1b-Exos
downregulated iron metabolism-related genes, thereby reducing

the intracellular labile iron pool and limiting ROS accumulation.

Enhanced activity of antioxidant enzymes, including superoxide

dismutase (SOD), GSH peroxidase (GSH-Px), and increased GSH

levels—further reinforced the suppression of ferroptotic cell

death (62).

3.1.2 BMMSC-derived exosomes alleviate SCI via
IL-17 pathway suppression

Tang et al. (2024) reported that BMMSC-derived exosomes

could mitigate ferroptosis and inflammatory injury in spinal cord

injury models, partly via modulation of the IL-17 signaling pathway

(63). These findings highlight the capacity of BMMSC-Exos to

modulate immune–oxidative interplay in ferroptotic cascades and

provide insight into their multifaceted neuroprotective

mechanisms. Similarly, ADSC-derived exosomes have also been

demonstrated to suppress ferroptotic cell death through antioxidant

and metabolic reprogramming mechanisms, further emphasizing

the therapeutic diversity of stem cell–derived exosomal cargos.

3.1.3 miRNA- and lncRNA-enriched exosomes
regulate ferroptosis via multiple signaling axes

In addition to protein regulation, exosomal non-coding RNAs

have emerged as powerful post-transcriptional modulators

of ferroptosis:

miR-367-3p, delivered via umbilical cord MSC-derived

exosomes, targets enhancer of zeste homolog 2 (EZH2), relieving

transcriptional repression of SLC7A11, thereby restoring cystine

uptake and GPX4 activity (64, 65).

miR-194, from MSC-derived exosomes, suppresses Bach1,

activating the Nrf2/HO-1 antioxidant axis, leading to reduced

iron-induced oxidative injury (66, 67).

lncGm36569, enriched in exosomes, acts as a ceRNA for miR-

5627-5p, upregulating FSP1, a GPX4-independent ferroptosis

inhibitor that catalyzes CoQ10-mediated lipid antioxidant

activity (68).

miR-19b-3p, carried by adipose-derived stem cell (ADSC)

exosomes, targets iron regulatory protein 2 (IRP2), restoring iron

balance via upregulation of FPN and downregulation of TfR1, thus

reducing ROS and ferroptosis in ICH models (69).

In addition, the tissue origin of MSCs significantly shapes the

properties of their exosomes. UCMSC-Exos are obtained non-

invasively, with high yield and low immunogenicity, and are

enriched in antioxidant miRNAs that enhance GPX4/SLC7A11

signaling (70, 71). BMMSC-Exos, though historically the most

studied, require invasive bone marrow aspiration and show donor

variability; they carry regulatory miRNAs such as miR-367-3p that

suppress ferroptosis through iron metabolism pathways (72).

ADSC-Exos are abundant and easily harvested, enriched in
Frontiers in Immunology 07
metabolic and anti-inflammatory miRNAs, and have been shown

to alleviate ferroptosis by activating the NRF2/SLC7A11/GPX4

pathway or modulating the FXR2/ATF3/SLC7A11 axis (73, 74).

As summarized in Table 1, stem cell–derived exosomes from

multiple sources converge on HSPA5/GPX4, IL-17/GPX4/

SLC7A11/ACSL4, and ncRNA-mediated axes to alleviate

ferroptosis across CNS injury models.
3.2 Comparative roles of exosomes from
different cellular origins in ferroptosis
regulation

Despite their heterogeneity, exosomes from different cellular

sources share common ferroptosis-regulatory features. Most

vesicles alleviate oxidative stress by upregulating GPX4/SLC7A11,

suppressing lipid peroxidation, and limiting iron overload.

However, source-specific differences are evident. MSC-Exos

display broad-spectrum protection, with IL-1b-preconditioned
vesicles acting via the HSPA5/GPX4 axis, and engineered ADSC-

Exos targeting microglia through the FXR2/ATF3/SLC7A11

pathway (62, 74). Microglia-Exos are strongly phenotype

dependent: M2-derived vesicles suppress ferroptosis by delivering

miR-124-3p to inhibit NCOA4/ferritinophagy or by activating

FUNDC1 mitophagy, whereas M1-Exos may exert opposite effects

(75, 76). Neuronal lineage exosomes are less studied, but NSC-Exos

carrying CDC42 reduce ACSL4-driven ferroptosis in Parkinson’s

models (77). In addition, astrocyte-derived exosomes preserve

GPX4 and attenuate hemin-induced ferroptosis (78), while

endothelial progenitor exosomes deliver miR-199a-3p to inhibit

SP1, thereby suppressing endothelial ferroptosis (79).

Together, these findings indicate that exosomes form a cell-

origin–specific yet complementary network against ferroptosis.

Representative studies of exosomes from different cellular sources

and their ferroptosis-regulatory mechanisms are outlined

in Table 2.
4 The molecular mechanism
underlying exosome-mediated
modulation of ferroptosis in
neurological injuries

4.1 Ferroptosis-related signaling pathways
as core targets

Ferroptosis is governed by several critical signaling pathways,

including the GPX4–GSH axis, the xCT–SLC7A11 system, the

FSP1–CoQ10 pathway, the DHODH–CoQ10 mitochondrial

mechanism, and the Nrf2/HO-1 antioxidant response. These

interconnected cascades collectively determine neuronal

susceptibility to ferroptosis by controlling iron homeostasis, lipid

peroxidation, and oxidative defense.
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4.2 Exosomal miRNAs orchestrating
ferroptosis via signaling pathways

Exosomal miRNAs orchestrate ferroptosis regulation by

targeting specific nodes in iron metabolism, lipid peroxidation,

and antioxidant defense (80). In oxygen-glucose deprivation/

reperfusion (OGD/R)-injured hippocampal neurons, exosome-

delivered miR-124 from M2 microglia suppresses NCOA4,
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limiting ferritinophagy and intracellular iron release, thereby

reducing ROS and MDA while restoring GSH and cell viability

(75). In TBI and ischemia models, miR-124 also downregulates

ubiquitin-specific protease 14 (USP14), mitigating injury-related

inflammation and proteotoxic stress (81).

miR-367-3p, enriched in human umbilical cord mesenchymal

stem cells (hUCMSC) -derived exosomes, inhibits EZH2, relieving

transcriptional repression on SLC7A11 (82). This enhances cystine
TABLE 1 Stem cell-derived exosomes in the regulation of ferroptosis in the CNS.

Exosome
source

Key
cargo

Target
molecule/
pathway

Neurological
model

Biological effects References

IL-1b-primed
MSCs

HSPA5,
GPX4

HSPA5/GPX4 axis
Intracerebral
Hemorrhage

Enhances GPX4 stability, reduces Fe²+ and ROS, increases
SOD/GSH, inhibits ferroptosis

(62)

Bone Marrow
MSCs

GPX4, xCT,
↓ACSL4

IL-17/GPX4/xCT/
ACSL4

SCI
Reduces oxidative stress and inflammation, restores redox

homeostasis, suppresses ferroptosis
(63)

Umbilical Cord
MSCs

miR-367-3p EZH2/SLC7A11 Neurodegeneration
Promotes xCT expression, enhances GSH synthesis, inhibits

lipid peroxidation
(64)

MSCs miR-194 Bach1/Nrf2/HO-1 OGD/R injury
Activates antioxidant transcriptional response, protects

neurons
(66)

MSCs lncGm36569 miR-5627-5p/FSP1
Acute Spinal Cord
Injury (ASCI)

Enhances CoQ10-mediated detoxification, mitigates ROS and
ferroptosis

(68)

ADSCs miR-19b-3p IRP2/FPN/TfR1
Intracerebral
Hemorrhage

Reduces iron overload, improves antioxidant capacity,
prevents ferroptosis-induced neural injury

(69)
MSCs, mesenchymal stem cells; ADSCs, adipose-derived stem cells; ASCI, acute spinal cord injury; SCI, spinal cord injury; OGD/R, oxygen-glucose deprivation/reperfusion; ICH, intracerebral
hemorrhage; IL-1b, interleukin-1b; HSPA5, heat shock protein A5; GPX4, glutathione peroxidase 4; FSP1, ferroptosis suppressor protein 1; CoQ10, coenzyme Q10; FPN, ferroportin; TfR1,
transferrin receptor 1; FTH1, ferritin heavy chain 1; IRP2, iron regulatory protein 2; ROS, reactive oxygen species; SOD, superoxide dismutase; GSH, glutathione; ACSL4, acyl-CoA synthetase
long-chain family member 4; xCT (SLC7A11), cystine/glutamate antiporter; EZH2, enhancer of zeste homolog 2; Bach1, BTB and CNC homology 1; Nrf2, nuclear factor erythroid 2–related
factor 2; HO-1, heme oxygenase-1; lncGm36569, long non-coding RNA Gm36569; miR-5627-5p, microRNA-5627-5p.
TABLE 2 Representative studies on exosomes from different cellular origins in ferroptosis regulation.

Exosome
source

Key cargo
Target

molecule/
pathway

Ferroptosis-regulatory
effect

Distinctive features References

MSCs

HSPA5-related
proteins;

FXR2→ATF3/
SLC7A11

HSPA5/GPX4;
SLC7A11/GPX4

Inhibit neuronal ferroptosis, reduce
lipid peroxidation

Broad protection; enhanced by IL-1b
preconditioning; engineered ADSC-Exos

target M2 microglia
(62, 74)

Microglia
(M2)

miR-124-3p;
mitophagy-related

cargo

NCOA4/
ferritinophagy;

FUNDC1
mitophagy

Suppress ferritinophagy, activate
mitophagy, attenuate neuronal

ferroptosis

Strong phenotype dependency; M2
protective, M1 may aggravate ferroptosis

(75, 76)

Neuronal
lineage
(NSCs)

CDC42
ACSL4/lipid
metabolism

Reduce ACSL4-driven ferroptosis;
improve vascular and behavioral

deficits in PD

Limited direct evidence; suggest potential
role of neuronal lineage exosomes

(77)

Astrocytes
Hypoxia-

preconditioned
exosomal cargo

GPX4 regulation
Mitigate hemin-induced neuronal

ferroptosis
Emerging evidence; first experimental proof
of astrocyte-derived exosomes in ferroptosis

(78)

Endothelial
progenitors
(EPCs)

miR-199a-3p
miR-199a-3p →

SP1
Suppress endothelial ferroptosis;

reduce lipid peroxidation
Emphasize vascular protection; highlight

peripheral–central crosstalk
(79)
MSCs, mesenchymal stem cells; ADSCs, adipose-derived stem cells; NSCs, neural stem cells; M1, M1-polarized macrophage/microglia; M2, M2-polarized macrophage/microglia; ADSC-Exos,
adipose-derived stem cell exosomes; IL-1b, interleukin-1b; HSPA5, heat shock protein A5; GPX4, glutathione peroxidase 4; FXR2, fragile X mental retardation syndrome–related protein 2; ATF3,
activating transcription factor 3; SLC7A11, solute carrier family 7 member 11; NCOA4, nuclear receptor coactivator 4; FUNDC1, FUN14 domain-containing protein 1; ACSL4, acyl-CoA
synthetase long-chain family member 4; SP1, specificity protein 1; miR-124-3p, microRNA-124-3p; miR-199a-3p, microRNA-199a-3p.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1677808
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bao et al. 10.3389/fimmu.2025.1677808
uptake and GSH synthesis, reinforcing the xCT–GSH–GPX4 axis

and suppressing ferroptosis. This mechanism is implicated in

models of multiple sclerosis and AD.

Additionally, exosomal miR-484 from skeletal muscle stem cells

inhibits ACSL4, indirectly enhancing GPX4 activity by limiting

PUFA incorporation into phospholipids, thereby attenuating iron-

dependent lipid peroxidation (83).

These findings collectively define a modular system wherein

distinct exosomal miRNAs modulate upstream and downstream

ferroptosis drivers with high specificity and translational potential.
4.3 Exosomal proteins and lncRNAs in
pathway-specific ferroptosis regulation

Exosomal non-coding RNAs and stress-response proteins

enable post-transcriptional and protein-level intervention in

ferroptotic signaling. In an ICH model, IL-1b-induced MSC-

derived exosomes upregulate HSPA5, which stabilizes GPX4,

preventing lipid peroxide accumulation. These exosomes

concurrently reduce Fe2+, MDA, and ROS, and restore enzymatic

antioxidants including SOD and GSH-Px (62).

In SCI, BMMSC-derived exosomes modulate ferroptosis

through simultaneous suppression of IL-17 signaling and

rebalancing of lipid metabolism. They upregulate GPX4 and

SLC7A11, downregulate ACSL4, and attenuate inflammation by

decreasing IL-17A, Act1, and IL-17RA expression (63).

The lncGm36569/miR-5627-5p/FSP1 axis, delivered via MSC-

derived exosomes, activates a GPX4-independent ferroptosis

checkpoint. By derepressing FSP1, it facilitates CoQ10 recycling

and membrane repair under oxidative stress, notably in ASCI

models (68).

Exosomes from LPS-stimulated M1 microglia reduce GPX4,

SLC7A11, and FTH1 in neurons, exacerbating ferroptotic

sensitivity (84, 85). Transcriptomic data confirm these M1-

derived vesicles drive ferroptosis-linked transcriptional changes,

especially in genes controlling iron handling and lipid ROS

metabolism (86).

Thus, exosomal cargo from differently primed stem or immune

cells can exert either protective or deleterious ferroptotic effects,

dependent on the inflammatory or reparative state of the donor cell.
4.4 Exosome-mediated antioxidant
signaling

Beyond direct targeting of ferroptosis regulators, exosomal

cargos activate systemic antioxidant networks that confer

neuroprotection (87). In ischemic stroke models, BMSC-derived

exosomes enhance Nrf2 nuclear translocation and downstream

HO-1, SOD, and catalase expression, restoring redox homeostasis

and inhibiting ferroptotic injury (88, 89).

In TBI, hUCMSC exosomes upregulate lncRNA TUBB6, which

modulates Nrf2-dependent transcription and suppresses ACSL4,

while maintaining GPX4 expression. Mitochondrial morphology
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and lipid peroxide levels are normalized, indicating structural and

biochemical ferroptosis suppression (71).

In aging-related delayed neurocognitive recovery, exosomes

boost SIRT1, facilitating Nrf2 nuclear translocation and

subsequent HO-1 activation. This reduces free iron, lipid

oxidation, and neuronal loss, ultimately improving cognitive

outcomes (90). These pathways converge on Nrf2’s master

regulatory role in coordinating cellular defense against oxidative

ferroptotic damage, with exosomes acting as both inducers and

amplifiers of this response. A schematic illustration of these

exosome-mediated pathways is presented in Figure 4.
5 Challenges and application
prospects

Exosomes have emerged as promising therapeutic agents for

neurological disorders due to their ability to modulate ferroptosis.

However, their clinical application faces several challenges that need

to be addressed. There exists a diverse array of exosome species,

with complex sources. Based on the presence or absence of artificial

modifications, exosomes can be categorized into engineered and

natural exosomes. Natural exosomes are further classified into those

derived from animals and those derived from plants (91). The

therapeutic efficacy and safety assessment of exosomes sourced

from various origins currently lack systematic analysis.

Furthermore, research on the mechanisms underlying exosome

function is still insufficient; more in-depth investigations are

required regarding cellular uptake, signaling pathways, and targets

associated with these vesicles. The prevailing technology for

isolating exosomes—ultracentrifugation—can yield them to a

certain extent; however, this method often results in low purity

levels, requires expensive equipment, and may inadvertently

damage the exosomes or lead to their loss (92). Additionally, the

relatively limited clinical application of exosome-based therapeutics

and inadequate ethical support concerning some human-derived

exosomes present significant barriers to translating research

outcomes into practical applications.
5.1 Biological stability and immune safety

In vivo, exosomes are susceptible to rapid clearance by the

mononuclear phagocyte system, limiting their therapeutic efficacy

(93). Moreover, exosomes may carry immunogenic molecules that

trigger immune responses (94).

Seohyun Kim et al. modified exosomes using signal regulatory

protein alpha(SIRPa) variants to enhance their ability to evade

immune detection and prolong their circulation time. The SIRP-EV

achieves active immune escape by mimicking the CD47-SIRPa
immune checkpoint signal and significantly extends circulation

time through the optimization of surface charge and protein

corona control, which reduces non-target retention (95).

A study conducted by the University of Toledo in Toledo, Ohio,

USA, demonstrated a dual-mode synergy of “targeting + escape”—
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where the CD47p110–130 peptide facilitates “escape escort”, and

the Arg-Gly-Asp(RGD) peptide provides “targeting guidance”.

ExoSmart overcomes the limitations of traditional exosome

delivery, presenting a new paradigm for the precise treatment of

solid tumors, such as pancreatic cancer (96).

Advanced separation and purification techniques can diminish

the presence of immunogenic contaminants, thereby improving the

safety and efficacy of exosome-based therapies (97). Furthermore, it

was discovered that combining exosomes with biomaterials, such as

hydrogels, can facilitate local and sustained release, enhancing their

therapeutic effects while minimizing systemic clearance (98–100).
5.2 BBB penetration

The BBB presents a significant obstacle for the delivery of

therapeutic agents to the CNS. Although exosomes have inherent

abilities to cross the BBB, their efficiency remains suboptimal (101).

Engineering exosomes with targeting ligands, such as rabies virus

glycoprotein peptides that bind to nicotinic acetylcholine receptors,

can enhance BBB penetration (102). Exosomes enriched with

miRNA have been demonstrated to transiently enhanceBBB

permeability by down-regulating tight junction proteins, such as
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claudin-5 (103). Additionally, external stimuli like focused

ultrasound have been employed to transiently disrupt the BBB,

facilitating exosome entry (104, 105).
5.3 Targeted delivery efficiency

Achieving targeted delivery of exosomes to specific neuronal

populations is crucial for maximizing therapeutic outcomes and

minimizing off-target effects (106). Surface functionalization of

exosomes with antibodies or ligands specific to neuronal markers,

such as L1 cell adhesion molecule (L1CAM) or neural cell adhesion

molecule(NCAM), can enhance targeting specificity (74, 107).

Furthermore, magnetic guidance using superparamagnetic iron

oxide nanoparticles incorporated into exosomes allows for spatial

control of delivery under an external magnetic field (108).

Extracellular vesicles in engineering present a promising option

for targeted delivery. A monoclonal antibody that targets the

growth-associated protein-43 (GAP43) has been employed to

direct extracellular vesicles towards the extracellular environment

of damaged neurons in an ischemic stroke model. This approach

ensures that the extracellular vesicles accurately deliver their

contents to the specific neuronal population intended (109).
FIGURE 4

Exosome-mediated suppression of ferroptosis in neural injury. Exosomes deliver functional cargos, including miRNAs (miR-124, miR-367-3p, miR-
484), lncRNAs (lncGm36569, TUBB6), and proteins (HSPA5, SIRT1), that modulate key regulators such as NCOA4, EZH2, SLC7A11, GPX4, FSP1, and
Nrf2. These pathways converge to suppress iron accumulation, lipid peroxidation, and oxidative stress, thereby protecting neurons from ferroptotic
death. MSC, mesenchymal stem cell; ADSC, adipose-derived stem cell; NSC, neural stem cell; ESC, embryonic stem cell; iPSC, induced pluripotent
stem cell; microglia, brain-resident immune cell; astrocyte, glial support cell; GPX4, glutathione peroxidase 4; FSP1, ferroptosis suppressor protein 1;
DHODH, dihydroorotate dehydrogenase; NRF2, nuclear factor erythroid 2–related factor 2; HO-1, heme oxygenase-1; ROS, reactive oxygen species;
Fe²+, ferrous iron; GSH, glutathione; SLC7A11 (xCT), cystine/glutamate antiporter; ACSL4, acyl-CoA synthetase long-chain family member 4; COX2,
cyclooxygenase-2; TFR1, transferrin receptor 1; NCOA4, nuclear receptor coactivator 4; FTH1, ferritin heavy chain 1.
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5.4 Exosome engineering for enhanced
therapeutic efficacy

Advancements in exosome engineering have enabled the

incorporation of therapeutic molecules, including miRNAs, proteins,

and small molecules, to modulate ferroptosis pathways effectively (110).

For instance, loading exosomes with miR-124 can downregulate

NCOA4, reducing ferritinophagy and iron accumulation. Similarly,

exosomes enriched with miR-367-3p can suppress EZH2, leading to

upregulation of SLC7A11 and enhanced GSH synthesis. Prof. Li Xukun

and his colleagues from Wenzhou Medical University have conducted

research on the utilization of exosomes for drug loading and targeted

delivery through genetic engineering and chemical modification. They

successfully delivered Fibroblast Growth Factor 20(FGF20) for the

treatment of ischemic stroke and collaborated with endogenous

miRNAs, such as miR-181b-5p, to enhance neural plasticity (111).

These modifications can be achieved through electroporation,

transfection, or incubation methods (64).
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5.5 Standardization and scalability of
exosome production

For clinical translation, standardized and scalable production of

exosomes is essential. Current isolation methods, such as

ultracentrifugation and size-exclusion chromatography, have

limitations in yield and purity. Emerging techniques like

tangential flow filtration and microfluidic-based isolation offer

improved scalability and consistency (112, 113). Establishing

Good Manufacturing Practice compliant protocols will be critical

for regulatory approval and widespread clinical use.

A study demonstrates that the combination of Tangential flow

filtration (TFF) and Size exclusion chromatography(SEC) can

enhance particle concentration by 16.9 times, establishing it as a

viable method for mass production (114). Furthermore, researchers

from the Department of Pharmacy at Yonsei University in Korea

have discovered that hypotonic stimulation and cytochalasin-B

therapy can significantly increase exosome yield and drug-
FIGURE 5

Future improvements and prospects of exosome applications.
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carrying capacity (115). Future improvements and translational

prospects for exosome-based therapies are depicted in Figure 5.
6 Safety considerations for exosome-
based therapies

6.1 Potential safety risks

6.1.1 Off-target effects
Extracellular vesicle surface targeting ligands (such as RVG

peptides) may bind to non target cell receptors (such as peripheral

nerve nAChR), leading to drug delivery to non target tissues (such as

heart, muscle) (102). In addition, the regulatory RNA carried by it (such

as miR-181b-5p) may interfere with the normal signaling pathway of

receptor cells (such as the PTEN/PI3K-AKT pathway), affecting cell

metabolism or proliferation. In acute lymphoblastic leukemia (ALL),

miR-181b-5p carried by exosomes is internalized into leukemia cells,

upregulated in expression, promoting cell proliferation, migration, and

invasion, while inhibiting cell apoptosis (116). Such off target effects

may induce organ toxicity, metabolic disorders, or tumor risk.

6.1.2 Immunogenicity concerns
The immune system itself has inherent immunogenicity.

Extracellular vesicle membrane proteins may activate host

immune responses and trigger a storm of inflammatory factors

(117, 118). Residual donor cell DNA/RNA may trigger the TLR

signaling pathway, leading to dendritic cell activation and adaptive

immune response. In animal models, serum complement activation

and neutrophil infiltration can usually be observed after injection of

unpurified extracellular vesicles (119).
6.2 Strategies to mitigate safety risks

6.2.1 Donor cell screening and modification
To effectively screen donor cells for practical applications, it is

essential to select low immunogenicity cell sources, such as

autologous MSCs or immune-exempt induced pluripotent stem

cells (iPSCs), while avoiding the expression of allogeneic major

histocompatibility complex (MHC) molecules. Gene editing

techniques, such as CRISPR-Cas9, can be employed to knock out

immunogenic genes, exemplified by silencing the B2M gene to

eliminate MHC-I expression, thereby reducing immunogenic

interference from the source (120–122). Furthermore, engineering

modifications, including the display of immune evasion molecules

on the cell surface, inhibition of macrophage phagocytosis,

introduction of tissue-specific targeting peptides, and

enhancement of brain-specific delivery, can also mitigate

common risks associated with donor cell utilization (123).

6.2.2 Exosome purification and quality control
During the extraction process of extracellular vesicles, free

proteins and apoptotic bodies are typically removed using

ultracentrifugation in conjunction with size exclusion
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chromatography (124, 125). Additionally, anti-CD63/CD81

antibody columns may be employed for purification to ensure the

uniformity of exosome subpopulations (126, 127). Furthermore, the

quality of extracellular vesicles produced from different batches was

monitored through nanoparticle tracking analysis (NTA), Western

blotting (WB), and endotoxin level assessments. Together, these

procedures establish a standardized quality-control framework that

improves batch-to-batch consistency and regulatory readiness.

6.2.3 Off target effect control and loading safety
The quality of extracellular vesicles (EVs) produced from

different batches can be significantly enhanced through advanced

separation techniques such as size exclusion chromatography (SEC)

and density gradient ultracentrifugation. These methods effectively

remove unwanted proteins and cytokines that may induce off-target

effects. For instance, EV formulations that are depleted of soluble

cytokines, such as VEGF-A and Monocyte chemoattractant protein

1 (MCP-1), exhibit enhanced immunomodulatory activity. Such

purification techniques ensure that extracellular vesicles retain their

therapeutic potential while minimizing adverse reactions to the

greatest extent possible (128). Furthermore, electroporation or

chemical transfection can be employed to load exogenous cargo

onto exosomes. However, these technologies must be meticulously

optimized to prevent damage to the EV membrane or alterations in

functionality. For example, the CRISPR ribonucleoprotein (RNP)

complex was successfully encapsulated into EVs using a protein

binding strategy, demonstrating high delivery efficiency (129).

Additionally, it is crucial to avoid the direct loading of highly

toxic drugs. The quality of the EVs was monitored through

NTAandWB, and endotoxin level assessments. Optimized loading

conditions and stringent release testing minimize off-target risks

while preserving vesicle integrity and therapeutic function,

complementing the purification workflow described above.
6.3 Clinical translation framework

Before clinical application, drugs typically undergo a

comprehensive safety evaluation that primarily assesses their

immunotoxicity through the detection of serum complement

activity, lymphocyte subsets, and cytokine profiles. Furthermore,

organ toxicity is evaluated through histopathological examinations

of major organs and long-term monitoring for carcinogenicity.

Additionally, administering drugs based on particle count rather

than protein dosage ensures consistent quality across batches. These

methods are essential for evaluating and validating safety prior to

clinical use.
7 Conclusions

Ferroptosis has emerged as a key driver of neuronal death in a

wide spectrum of neurological disorders, from acute brain injuries

to chronic neurodegeneration. In this context, exosomes offer a

unique and highly adaptable platform for targeted therapeutic
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intervention. By leveraging their innate ability to cross the BBB and

deliver functional cargo such as regulatory miRNAs, lncRNAs, and

proteins, exosomes can modulate core ferroptosis pathways, such as

the GPX4-GSH axis, ferritinophagy, and lipid peroxidation, at both

transcriptional and post-translational levels. Engineered exosomes

further expand this potential through surface ligand modification,

cargo enrichment, and responsive delivery systems, enabling precise

spatial and molecular targeting within injured neural tissues.

Despite this promise, substantial barriers remain, including

limited in vivo stability, heterogeneity in large-scale production,

and the need for validated clinical-grade manufacturing and safety

frameworks. Moving forward, the convergence of nanotechnology,

molecular neuroscience, and synthetic biology will be essential to

transform exosome-based ferroptosis modulation from a preclinical

concept into a clinically actionable therapy. With continued

interdisciplinary innovation, exosomes are poised to become a

next-generation strategy for combating ferroptosis-driven brain

injury and advancing the frontier of neuroprotective medicine.
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AD Alzheimer’s disease
Frontiers in Immunol
PD Parkinson’s disease
TBI Traumatic brain injury
ADI Alzheimer’s Disease International
ROS Reactive oxygen species
BBB Blood–brain barrier
CNS Central nervous system
GPX4 Glutathione peroxidase 4
GSH Glutathione
Fe²⁺ Ferrous iron
Fe³⁺ Ferric iron
OH Hydroxyl radicals
FPN Ferroportin
HIFs Hypoxia-inducible factors
NTBI Non-transferrin-bound iron
NCOA4 Nuclear receptor coactivator 4
PUFAs Polyunsaturated fatty acids
ACSL4 Acyl-CoA synthetase long-chain family member 4
ACSL3 Acyl-CoA synthetase long-chain family member 3
LPCAT3 Lysophosphatidylcholine acyltransferase 3
PUFA-OOH Lipid hydroperoxides
MUFAs Monounsaturated fatty acids
SLC7A11/xCT Solute carrier family 7 member 11
SLC3A2 Solute carrier family 3 member 2
SLC25A11 Solute carrier family 25 member 11
SLC25A10 Solute carrier family 25 member 10
MDA Malondialdehyde
4-HNE 4-Hydroxynonenal
MSCs Mesenchymal stem cells
ICH Intracerebral hemorrhage
HSPA5 Heat shock protein A5
IL-1b Interleukin-1b
SOD Superoxide dismutase
GSH-Px Glutathione peroxidase
BMMSC-Exos Exosomes derived from bone marrow MSCs
ADSCs Adipose-derived stem cells
ASCI Acute spinal cord injury
FSP1 Ferroptosis suppressor protein 1
hUCMSCs Human umbilical cord mesenchymal stem cells
EZH2 Enhancer of zeste homolog 2
CoQ10 Coenzyme Q10
CoQH₂ Coenzyme Q H₂
IRP2 Iron regulatory protein 2
FTH1 Ferritin heavy chain 1
BMSCs Marrow-derived mesenchymal stem cells
Nrf2 Nuclear factor erythroid 2–related factor 2
KEAP1 Kelch-like ECH-associated protein 1
ogy 17
HO-1 Heme oxygenase-1
FGF2 Fibroblast growth factor 2
DHODH Dihydroorotate dehydrogenase
DMF Dimethyl fumarate
Bach1 BTB and CNC homology 1
PTGS2 Prostaglandin-endoperoxide synthase 2
miRNA MicroRNA
lncRNA Long non-coding RNA
PDENs Plant-derived exosome-like nanoparticles
VEGF Vascular endothelial growth factor
VEGF-A Vascular endothelial growth factor A
PINK1 PTEN-induced kinase 1
MFF Mitochondrial fission factor
FUNDC1 FUN14 domain containing 1
NADPH Nicotinamide adenine dinucleotide phosphate
RNS Reactive nitrogen species
mPTP Mitochondrial permeability transition pore
DOELNs Dendrobium officinale exosome-like nanoparticles
EVs Extracellular vesicles
DOX Doxorubicin
TNF-a Tumor necrosis factor alpha
IL-6 Interleukin-6
IL-17 Interleukin-17
IL-17RA Interleukin-17 receptor A
eIF2a Eukaryotic translation initiation factor 2a
OGD/R Oxygen–glucose deprivation/reoxygenation
rTMS Repetitive transcranial magnetic stimulation
ATF3 Activating transcription factor 3
FXR2 Fragile X mental retardation syndrome-related protein 2
MCP-1 Monocyte chemoattractant protein 1
EVs Extracellular vesicles
RNP Ribonucleoprotein
CRISPR Clustered regularly interspaced short palindromic repeats
NTA Nanoparticle tracking analysis
WB Western blot
TFF Tangential flow filtration
SEC Size exclusion chromatography
FGF20 Fibroblast growth factor 20
SIRPa Signal regulatory protein alpha
RGD Arg-Gly-Asp
L1CAM L1 cell adhesion molecule
NCAM Neural cell adhesion molecule
GAP43 Growth-associated protein-43
USP14 Ubiquitin-specific protease 14
MCAO Middle cerebral artery occlusion
AKT Protein kinase B
GSK3b Glycogen synthase kinase 3 beta
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CSF Cerebrospinal Fluid
ogy 18
EAE Experimental autoimmune encephalomyelitis
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