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Al-assisted peripheral immune
profiling reveals unconventional
lymphocyte signatures
associated with prognosis in soft
tissue sarcoma patients
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Immunotherapy has reshaped the treatment of several cancers, yet patient
responses remain highly variable, partly due to differences in immune
competence. In soft tissue sarcomas (STS), the immune landscape is poorly
characterized, limiting the development of prognostic markers and immune-
based therapeutic strategies. This study aimed to comprehensively profile
circulating and tumor-infiltrating cytotoxic lymphocyte populations in STS.
Peripheral blood from patients and healthy donors was analyzed by
multiparametric flow cytometry combined with Al-assisted unsupervised
clustering, enabling the identification of both conventional and unconventional
subsets. In a pilot cohort, tumor-infiltrating lymphocytes were evaluated using
the same approach to explore systemic—local immune compartmentalization.
STS patients displayed systemic immune imbalance with increased CD8" T cells
and reduced NK cells and CD161" CD8" T cells, consistent with overall
immunosuppression. Several unconventional populations showed prognostic
associations: elevated CD8" v8 T cells and CD4" NKT-like cells correlated with
poorer survival, whereas CD8" NKT-like cells were enriched in immune-
competent patients and linked to better outcomes, suggesting potential
protective functions. Pilot tumor analyses identified ¥ NKT-like cells that were
nearly absent from circulation, suggesting their selective enrichment within the
tumor microenvironment. Together, these findings highlight the contribution of
rarely profiled cytotoxic lymphocytes to systemic immune fitness and disease
outcome in STS. Importantly, despite clinical and histological heterogeneity,
patients showed consistent immune alterations, suggesting shared
immunological features across STS subtypes. While limited by small tumor
sample size and lack of functional assays, this study provides proof-of-concept
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that immune-based profiling can uncover novel prognostic markers and
candidate populations of therapeutic relevance. Future work in larger,
longitudinal cohorts, coupled with functional characterization, will be essential
to validate these subsets and to define their role in STS immune surveillance and
responsiveness to immunotherapy.

soft tissue sarcoma, unconventional lymphocytes, y& T cells, NKT-like cells,
unsupervised clustering, multiparametric flow cytometry

1 Introduction

The introduction of immunotherapy has brought new hope and a
powerful alternative for treating cancer (1, 2). However, even among
patients with the same tumor type, particularly those expected to
respond, clinical outcomes remain highly variable, and many patients
fail to benefit (3). This variability has fueled growing interest in the
concept of immune fitness or competence as a potential predictor of
treatment response (4, 5). Yet, despite its conceptual appeal, how to
assess immune function in a practical, accessible, and clinically
meaningful way remains an open challenge.

In this context, peripheral blood (PB) has emerged as a
promising, minimally invasive alternative to tumor biopsies for
capturing systemic immune states and enabling longitudinal
immune monitoring (6, 7). While the tumor microenvironment
(TME) provides valuable insights into local immune dynamics, it is
not always feasible to access. Consequently, efforts to identify
clinically informative peripheral immune signatures, capable of
reflecting tumor burden, metastatic potential, or response to
therapy, have intensified, driven by the ease and repeatability of
blood sampling (8-10). Establishing such signatures is now a central
objective in the advancement of immune profiling in oncology.

One of the key advantages of immune-based stratification is its
potential to transcend the biological and histological heterogeneity
that characterizes cancer (11). Immune signatures may capture
clinically relevant features that are not necessarily reflected in tumor
classification, offering a functional layer of patient characterization
that could guide treatment decisions. This raises the possibility that
patients, despite underlying molecular or histological differences,
could be stratified and treated according to their immune capacity
to mount an anti-tumor response.

Our group previously explored this concept in a cohort of soft
tissue sarcoma (STS) patients, a particularly highly heterogeneous
group of malignancies (12). Through a comprehensive
immunoprofiling approach that included nearly 300 parameters
(circulating immune cells, immune-related gene expression, and
soluble plasma analytes) we identified three distinct peripheral
immune profiles that correlated with clinical outcomes (13).
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Patients classified as “immune high”, characterized by elevated
levels of activation/cytotoxic markers (e.g., CD69, CD40L, GZMB,
NCR2) and low levels of immunosuppressive/inflammatory
variables (e.g.,, PMN-MDSC, ARGI, GR, and IL17-A), showed
improved survival. In contrast, “immune low” patients displayed
a suppressive, inflammatory and poorly cytotoxic profile, and were
associated with poorer outcome, while an intermediate group
showed a mixed immune phenotype and moderate survival.

Although these findings underscored the prognostic relevance of
immune profiling, it is recognized that such broad, multi-parametric
analyses are not yet feasible in clinical practice due to their complexity,
cost, and response time. As a result, attention has shifted toward simpler
circulating immune markers, such as the neutrophil-to-lymphocyte
ratio (NLR) and monocyte-to-lymphocyte ratio (MLR), which have
shown prognostic value across various cancers (14-16). However, while
accessible, these metrics mainly reflect systemic inflammation and fail
to capture the functional diversity and cytotoxic potential of immune
cells critical for anti-tumor responses, such as NK cells, CD8" T cells,
and unconventional lymphocyte subsets.

To address the gap between comprehensive immune profiling
and clinical feasibility, we used a well-characterized cohort of STS
patients to identify cytotoxic immune cell populations with
potential as accessible and informative biomarkers. Building on
previously defined peripheral immune profiles (“immune high,”
“intermediate,” and “immune low”), this study aimed to
characterize circulating lymphocyte subsets that reflect systemic
cytotoxic immune competence. Although the primary focus was on
PB samples, we also examined tumor samples from a subset of STS
patients to investigate immune differences between circulation and
the TME. To maximize sensitivity and avoid overlooking rare but
clinically relevant populations, we combined multiparametric flow
cytometry with unsupervised, Al-assisted clustering (17-19). This
strategy enabled the identification of both conventional and
unconventional cytotoxic lymphocytes with prospective clinical
relevance. Linking peripheral immune features to systemic
immune competence and clinical outcomes advances the
understanding of the immune landscape in STS and supports the
identification of candidate biomarkers with translational potential.
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2 Material and methods

2.1 STS patients and healthy donors

Between November 2020 and February 2023, PB samples and
clinical data were collected at the Tumor Unit of the Locomotor
Apparatus, University Clinic of Orthopedics, Orthopedic Oncology
Service, Coimbra Local Health Unit, a designated European
Reference Center for Adult STS Treatment. Eligible participants
included adults (218 years) with a confirmed diagnosis of STS,
excluding gastrointestinal stromal tumors. Patients with active viral
or bacterial infections were excluded. A total of 29 PB samples from
STS patients, classified into three immune subgroups: P1 (“immune
high”, n=9), P2 (“immune intermediate”, n=8), and P3 (“immune
low”, n=12), 25 PB samples from healthy donors as control (Ctrl)
group and 9 STS tumor tissue samples, were included in the study.
The subgroup classification was based on previously published STS
immune profiles: P1 (“immune high”) with predominant cytotoxic
markers and better survival; P3 (“immune low”) with suppressor
markers and worse survival; and P2 showing mixed profiles with
intermediate outcomes (13). All procedures involving human
participants followed the ethical standards outlined in the
Declaration of Helsinki. Written informed consent was obtained
from all individuals after a detailed explanation of the study’s
purpose and procedures. Ethical approval was obtained from the
Ethics Committees of the Coimbra Hospital and University Centre
(CHUC-021-19) and the Faculty of Medicine, University of
Coimbra (CE-018/2021). Demographic and clinical data are
summarized in Supplementary Table SI.

2.2 Preparation of single-cell suspensions
from tumor tissue

Tumor tissue samples (1-2 cm?) were collected in 1x Dulbecco’
s Phosphate Buffered Saline (D-PBS, Sigma-Aldrich, St. Louis, MO,
USA) immediately after surgical excision. To eliminate PB
contamination, tissues were first rinsed thoroughly with 1x D-
PBS. Subsequently, samples were finely sliced into ~1 mm?®
fragments using a sterile petri dish. These fragments were then
transferred into 5 mL Eppendorf tubes containing 2.5 mL of a 1x
Collagenase/Hyaluronidase solution (STEMCELL Technologies,
Vancouver, BC, Canada) prepared in Dulbecco’s Modified Eagle’s
Medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA) and
incubated at 37 °C with agitation for 1 hour to overnight,
depending on the tissue origin. Following enzymatic digestion,
the dissociated cell suspensions were transferred into 50 mL
conical tubes containing DMEM supplemented with 10% (v/v) of
7.5% Bovine Serum Albumin (BSA) Fraction V (GibcoTM, Thermo
Fisher Scientific, Waltham, MA, USA). Cells were then centrifuged
at 450 x g for 5 minutes. The supernatant was discarded, and the
pellet resuspended in 1 mL of DMEM with 10% BSA for white
blood cell quantification using a DXH 500 hematology analyzer
(Beckman Coulter, Pasadena, CA, USA).
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2.3 Multiparametric flow cytometry sample
preparation and acquisition

Fresh PB samples collected in EDTA-treated tubes were
processed for immunophenotyping by multiparametric flow
cytometry. Initial whole blood counts were performed using the
DxH 500 hematology analyzer (Beckman Coulter, Pasadena, CA,
USA). For extracellular staining, 100 uL of whole blood or up to 1 x
10° white blood cells were incubated with fluorochrome-conjugated
monoclonal antibodies for 15 minutes at room temperature in the
dark. Red blood cell lysis was then carried out using 2 mL of BD
Lysing Solution (BD Biosciences, San Jose, CA, USA), with a 10-
minute incubation at room temperature in the dark. Samples were
centrifuged at 450 x g for 5 minutes, the supernatant discarded, and
cells washed with 1x D-PBS. After a second centrifugation under the
same conditions, the supernatant was removed, and cells were
resuspended in 300 uL of 1x D- PBS for flow cytometry
acquisition. Data were acquired on a BD FACSCanto II cytometer
and analyzed using BD FACSDiva software (BD Biosciences, San
Jose, CA, USA). Fresh tumor cell suspensions were stained using the
same protocol, starting with 1 x 10° white blood cells. A complete
list of the antibodies used for both PB, and tumor samples is
provided in Supplementary Table S2.

2.4 Unsupervised Al-assisted
multiparametric flow cytometry data
analysis

2.4.1 Quality control and sample preprocessing

Flow cytometry files were imported into FlowJo® software (v10.9,
BD Biosciences, San Jose, CA, USA) for analysis. Quality control was
performed using the FlowAl plugin (20), which filtered out abnormal
events based on flow rate irregularities, signal stability, and fluorescence
intensity range. Samples were annotated with metadata keywords to
indicate group assignments, such as Ctrl, STS, STS immune profiles
(P1, P2, P3), and STS tumor samples. For each individual sample, cells
positive for CD3 and/or CD56 were identified following the gating
strategy illustrated in Supplementary Figure S3. This gated population
was then concatenated by group and the number of events reduced
using the Downsample plugin for FlowJo® software to equalize event
counts across groups, minimizing bias due to varying sample sizes per
group. For more details, see the official Downsample plugin page
(https://www.flowjo.com/exchange/plugin/downsample). For
multiparametric Al-assisted analysis, two separate concatenated
files were created from the downsampled group files to maintain
balanced event representation. One concatenated file combined PB
samples from Ctrl and STS patients (100,000 total events, 50-000
events per Ctrl and STS, and the same event number per STS
subgroups). The other concatenated file merged PB and tumor
samples from STS patients (100,000 events, 50-000 events per PB
and Tumor, and the same event number per STS groups). Each
concatenated dataset was analyzed independently to investigate
cellular phenotypes across sample groups.
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2.4.2 Dimensionality reduction and unsupervised
clustering

Unsupervised clustering was conducted using the FlowSOM plugin
(21), based on the expression of key cytotoxic lymphocyte lineage
markers: CD3, CD4, CD8, CD56, CD161, and TCR /8. FlowSOM was
configured to generate eight metaclusters by grouping cells into self-
organizing maps according to their expression profiles. To visualize cell
distribution and interrelationships, t-SNE was applied using the built-
in FlowJo® plugin, with the following parameters: perplexity = 30,
iterations = 1000, learning rate = 7000.

2.4.3 Cluster annotation and visualization

Cluster Explorer plugin included in FlowJo® software (v10.9,
BD Life Sciences) was used to overlay FlowSOM-derived clusters
onto the t-SNE map, enabling comprehensive visual assessment and
manual annotation based on marker expression intensities.
Heatmaps, histograms, and expression overlays were used to
annotate the phenotypes of immune populations represented by
each cluster. Group identification based on keywords is detailed in
Supplementary Figure S4 and was subsequently used to compare
immune profiles between STS and Ctrl samples, among the STS
immune profiles, P1 (“immune high”), P2 (“immune
intermediate”), and P3 (“immune low”), and between PB and
tumor samples from STS patients.

2.4.4 Per-sample cluster frequency calculation
Cluster Explorer does not allow direct export of cluster frequencies
per individual sample. Therefore, each of the eight annotated clusters
was overlaid onto individual sample gates, defined by sample IDs via
original metadata keywords. The frequencies of each cluster within
individual samples were then exported from Flow]o® for subsequent
statistical analysis. This approach enabled precise determination of
cluster distribution on a per-sample basis. For concatenated analyses,
an equal number of events was randomly selected from CTRL and STS
groups. Within STS subtypes, event numbers were further equalized
across subtypes. Because patient numbers varied between subtypes,
events were normalized at the group level to preserve comparability.
Consequently, not all patients contributed equally to the concatenated
dataset, and results from unsupervised concatenated analyses should be
interpreted with caution when compared to per-sample analyses.

2.5 Statistical analysis

Exported cluster frequencies were used to compare immune
profiles between Ctrl and STS PB samples, among STS immune
profiles (P1, P2, P3), and between PB and tumor samples from STS
patients. Statistical analysis and graph preparation were performed
using GraphPad Prism v9.0.2 (GraphPad Software, San Diego, CA,
USA). Mann-Whitney U tests were used for two-group
comparisons with Holm-Sidak method to correct for multiple
comparisons (PB from Ctrl vs PB from STS; PB from STS vs
tumor from STS), and Kruskal-Wallis tests with Dunn’s post hoc
correction were applied for multi-group comparisons. Adjusted p-
values were considered. Survival analyses based on time-to-event

Frontiers in Immunology

10.3389/fimmu.2025.1677408

data were carried out using IBM SPSS Statistics version 26.0 for Mac
OS (IBM Corp, Armonk, NY, USA). Kaplan-Meier survival curves
and log-rank tests were used to assess the impact of the studied
parameters on patient survival. Time was defined as the duration
from the sample collection date to either death or the end of the
study (time after collection, TAC). Statistical significance was set
at p < 0.05.

3 Results

To characterize the systemic cytotoxic immune landscape in STS
and identify peripheral lymphocyte subsets with potential prognostic
value, we analyzed flow cytometry data from 29 PB samples of STS
patients and 25 healthy donors (control group, Ctrl). Building on
previously defined immune profiles, “immune high” (P1, n = 9),
“intermediate” (P2, n = 8), and “immune low” (P3, n = 12), patients
were stratified accordingly to investigate associations between immune
cell populations, systemic immune states, and clinical outcomes. To
maximize resolution, Al-assisted unsupervised clustering and
dimensionality reduction techniques were applied to identify both
conventional and unconventional CD3" and/or CD56" lymphocyte
populations. As a complementary analysis, tumor samples from a subset
of STS patients (n = 9) were included to provide preliminary insight into
the relationship between circulating and tumor-infiltrating
immune populations.

3.1 STS exhibit distinct patterns of
circulating CD3" and/or CD56"
populations

Prior to unsupervised clustering, quality control of flow cytometry
files was performed using the FlowAl plugin (20), which filtered out
anomalous events. Additionally, samples were annotated with metadata
keywords to indicate group assignments, such as Ctrl, STS, and STS
immune profiles (P1, P2, P3). Next, all samples underwent manual
analysis to identify the relevant cell populations, those expressing CD3
and/or CD56, selective for NK and T populations key mediators of
cytotoxic anti-tumor responses (Supplementary Figure S3). CD3" and/
or CD56" lymphocytes were concatenated into a single flow cytometry
file, and cluster analysis was performed using the FlowSOM algorithm
(21). This analysis generated eight metaclusters based on the expression
of CD3, CD4, CD8, CD56, CD161, and TCR /3 (Figure 1).

To further explore the structure of FlowSOM-derived clusters,
Cluster Explorer was employed for dimensionality reduction and
annotation. The t-SNE map displayed the distribution of cells across
the eight clusters identifled in PB samples from STS and Ctrl groups
(Figure 2A). Each cluster formed a distinct island in the 2D space,
suggesting robust separation based on marker expression profiles. The
corresponding bar plot summarizes the proportion of cells assigned to
each cluster across the concatenated dataset, each cluster was defined as
Pop 0 to Pop 7 (Figure 2B). Pop 1 and Pop 2 represented the most
abundant populations, followed by Pop 0. Pop 3, 4, 5, 6 and 7 accounted
for only a minor fraction of the total events.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1677408
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Almeida et al.

® ® ®

®
®

®

®

® © ® ® O ®
A OOB « % OH®
.o ® ®
® ® o
®®»®®® o

(O O 0o 8 ® © O & ®
®@®HE®®® -
®®H®®® o o

6) ® ®
®

® ©

FIGURE 1

10.3389/fimmu.2025.1677408

® (D) CD4 CD8
CcD3 (%) TCRgd
CD56 CD161
® &
background
© ©

0

® ® ® ®®»H ® ®
® ® ®® ®®» o o ® ©

9

Unsupervised clustering and dimensionality reduction of PB CD3+ and/or CD56+ immune cell populations from STS and Ctrl samples. FlowSOM
clustering of concatenated samples including only CD3" and/or CD56" lymphocytes. Cells were clustered based on the expression of CD3, CD4,
CD8, CD56, CD161 and TCR /8 and grouped into eight metaclusters reflecting major immune populations indicated by background color scale (0
to 7). Each node represents a cluster, with size indicating relative abundance and color scale reflecting marker expression intensity.

To characterize the immune phenotypes represented by each
cluster, the expression patterns of key surface markers was analyzed
using the Cluster Explorer heatmap (Figure 2C). Each cluster
exhibited a distinct marker expression profile, enabling the
inference of putative immune cell identities (Figures 2A-C). Pop
0 displayed high CD56 expression and lacked CD3, suggesting a
population of NK cells. Pop 1 and 2 expressed CD3 along with high
levels of CD4 and CDS8, respectively, consistent with conventional
CD4" and CD8" T cells. Pop 3 co-expressed CD56, CD3, and CD4,
likely corresponding to CD4" NKT-like cells. Pop 4 showed high
expression of CD3 and TCR /6, with no expression of CD4 or CDS,
suggesting a population of double-negative (DN) y8 T cells. In
contrast, Pop 5 shared the same profile as Pop 4 but expressed CD8,
indicating CD8" ¥0 T cells. Pop 6 was distinguished from Pop 2 by
the additional expression of CD161, suggesting CD161" CD8" T
cells. Finally, Pop 7 differed from Pop 3 by expressing CD8 and
lacking CD4, consistent with a population of CD8" NKT-like cells.

To characterize the distribution of immune populations, it was
analyzed the relative composition of each FlowSOM-defined cluster
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(Pop 0-Pop 7) based on the contribution of group samples. This
cluster-centered perspective reflects the proportion of events from
each group that make up 100% of each population. Stratification of
STS and Ctrl group revealed distinct population distributions
(Figures 2C, D). The most prominent differences were the higher
contribution of STS-derived events to CD8" T cells (Pop 5) and the
lower contribution to CD161" CD8" T cells (Pop 6) and CD8"
NKT-like cells (Pop 7). In contrast, NK cells (Pop 0) and CD4" T
cells (Pop 1) showed a slight predominance of CTRL-derived
events. Further stratification of the STS group according to
immune profiles (P1-P3) revealed distinct distribution patterns
(Figures 2C, E). Pl-derived events were mainly associated with
CD8" NKT-like cells (Pop 7), whereas P2-derived events
contributed predominantly to CD8" y8 T cells (Pop 5) and DN
YO T cells (Pop 4). Conversely, P3-derived events were enriched in
CD161" CD8" T cells (Pop 6) and NK cells (Pop 0). CD8" T cells
(Pop 5) had comparable contributions from P1 and P2, while CD4"
NKT-like cells (Pop 3) and CD4" T cells (Pop 1) were similarly
represented by P1- and P3-derived events.
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cells; Pop 7 — CD8" NKT-like cells.

3.2 STS show alterations in circulating
lymphocytes: lower NK and CD161* CD8*
T cells, and higher CD8* T cells

Since Cluster Explorer does not support the direct export of
cluster frequencies at the individual sample level, we performed a
back-gating of the identified populations by sample using FlowJo®.
This allowed for sample-level quantification within both the STS
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and Ctrl groups, including stratification by peripheral immune
profiles (P1, P2, and P3) (13). Figure 3A shows a t-SNE map
illustrating the distribution of the eight identified populations
across study groups, alongside a bar graph displaying their
relative frequency contributions within each group. Interestingly,
in Figure 3A (bottom), total CD8" and CD4" T cells exhibited
distinct distribution patterns across patient immune profiles, likely
reflecting differences in underlying classical T cell subsets.
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Sample-level comparison of immune cluster frequencies in PB reveals immunotype-specific alterations in STS. (A) t-SNE plots colored by FlowSOM-
assigned clusters, representing: all samples combined (total), Ctrl samples, STS samples, and the three STS immunotypes (P1, P2, P3). Bar plot
representation of FlowSOM-defined immune cluster frequencies in PB across analyzed groups. (B) Comparative analysis of cluster frequencies
between STS and Ctrl samples. Statistical analysis was performed using the Mann—Whitney U test with Holm-Sidak method to correct for multiple
comparisons. (C) Cluster frequency comparisons across STS immunotypes (P1, P2, and P3), using Kruskal-Wallis test with post hoc Dunn'’s
correction for multiple comparisons. Adjusted p-values are reported, with significance set at p < 0.05. Legend: PB — peripheral blood, STS — soft
tissue sarcoma, Ctrl — control; P1 — “immune high”; P2 — “immune intermediate”; P3 - “immune low"; *p < 0.05; **p < 0.01.

Quantitative comparison at the individual sample level revealed that
NK cells (Pop 0) and CD161" CD8" T cells (Pop 6) were
significantly reduced in STS patients (Pop 0 = 8.96, 1.61 — 39.06;
Pop 6 = 0.26, 0.00 - 4.58) comparing with Ctrl samples (Pop
0 = 13.30, 8.15 - 28.30, adj p = 0,017282; Pop 6 = 0.75, 0.05 - 5.04,
adj p = 0.006274), whereas CD8" T cells (Pop 2) was significantly
increased in the STS group (Pop 2 = 37.80, 14.20 - 71.10) compared
with Ctrl (Pop 2 = 25.20, 12.40 - 43.60, adj p = 0.026830)
(Figure 3B). Further comparison among STS subgroups did not
reveal significant differences, yet a trend was observed for higher
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levels of CD8" NKT-like cells (Pop 7) in P1 patients (Pop 7 = 0.54,
0.00 - 4.98) comparatively with P2 (Pop 7 = 0.02, 0.00 - 0.31, adj
p = 0.0727) and P3 (Pop 7 = 0.10, 0.00 — 1.29, adj p = 0.1444)
patients (Figure 3C). It is important to note that, for CD161" CD8"
T cells, the association with the P3 immunotype observed in the
cluster-based analysis was not evident at the individual sample level.
In fact, P1 patients displayed a higher median frequency than P3,
although variability was greater in P3, as reflected by a higher
standard deviation. Together with the unequal number of patients
per group, this explains the discrepancy between the two analytical
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approaches. For the other populations, distribution patterns were
consistent across both analyses.

3.3 Circulating y0 T and NKT-like
subpopulations show prognostic relevance
in STS

Despite the lack of statistically significant differences in immune
cell cluster frequencies across STS immune profiles previously linked
to survival, it was hypothesize that specific lymphocyte subsets could
still possess prognostic relevance at the individual patient level. Since
the patients included in this analysis represent a subset of those from a
previously published study (13), a survival analysis across the defined
immune profiles (P1, P2, P3) was performed within this subgroup to
assess whether the association with clinical outcomes remained
consistent. The impact of peripheral immunotypes on clinical
outcomes was assessed using time-to-event from the date of sample
collection to either the date of death or the end of follow-up, referred
to as time after collection (TAC). Although no statistically significant
differences were observed, likely due to the small sample size, the
survival trend previously reported was maintained: P1 patients
showed better survival, P3 patients had the poorest outcomes, and
P2 patients displayed intermediate survival (Supplementary Figure
S5). The difference between P1 and P3 patients approached statistical
significance (p = 0.074), further supporting the relevance of these
immune profiles to clinical prognosis.

These immune profile classifications capture group-level
patterns of population distribution. Survival outcomes were then
evaluated at the individual patient level by analyzing subtype
frequencies per sample, with subtype-based immune profiles and
individual-level survival analyses providing complementary but
distinct perspectives on the data. Patients were stratified into
‘high” and ‘low’ groups based on the median frequency of each
identified immune cell cluster, and survival analyses based on TAC
were conducted. Kaplan-Meier curves for each population are
presented in Figure 4. Higher frequencies of CD4" NKT-like cells
(p = 0.017) and CD8" ¥8 T cells (p = 0.028) were significantly
associated with reduced survival. In contrast, a trend toward
improved outcomes was observed in patients with higher levels of
CD8" NKT-like cells (p = 0.091). No significant associations were
found for the remaining immune populations.

3.4 STS tumors exhibit distinct patterns of
CD3" and/or CD56™ populations compared
to blood

Using the same approach applied to PB samples from STS and Ctrl
groups, we conducted a new analysis that included the same STS PB
samples and a set of 9 STS tumor samples, aiming to explore differences
between the peripheral and tumor compartments. It is important to
note that not all tumor samples were paired with corresponding PB
samples, preventing a true paired analysis. As a result, only four tumor
samples could be classified based on the patients’ peripheral immune
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profiles, specifically, two samples were representative of the P1
(“immune high”) profile and two of the P3 (“immune low”) profile.
Following quality control assessment, sample annotation, and manual
gating of CD3" and/or CD56" lymphocytes, a single file containing the
cells of interest was generated. FlowSOM clustering was then
performed on these CD3" and/or CD56" lymphocytes, configured to
produce eight metaclusters based on the expression of CD3, CD4, CD8,
CD56, CD161, and TCR /8. Cluster Explorer was then employed for
dimensionality reduction and annotation. The t-SNE map displays the
distribution of cells across the eight clusters identified in PB and tumor
samples (Figure 5A). The corresponding bar plot summarizes the
proportion of events assigned to each cluster, which by default in
ClusterExplorer are labeled Pop 0 to Pop 7 and cannot be changed. To
avoid confusion with the populations previously defined in blood, these
clusters were manually labeled Pop 8 to Pop 15 (Figure 5B). In this
analysis, Pop 8 and Pop 12 represented the most abundant populations,
followed by Pop 15. Pop 9, 10, 11, 13 and 14 accounted for only a
minor fraction of the total events.

To characterize the immune phenotypes represented by each
cluster, the expression patterns of key surface markers using the
Cluster Explorer heatmap were analyzed (Figure 5C). Each cluster
exhibited a distinct marker expression profile, enabling the
inference of putative immune cell identities (Figures 5A-C). Pop
8 exhibited high expression of CD3 and CD8, consistent with CD8*
T cells. Pop 9 expressed CD3, CD8, and TCR 7§, consistent with
CD8" 3 T cells. Pop 10 co-expressed CD3 and TCR ¥, lacking the
expression of CD4 and CD8 suggesting DN v T cells. Pop 11
expressed CD3, CD4, CD56 and TCR 79, consistent with CD4" y§
NKT-like cells. Pop 12 co-expressed CD3 and CD4, consistent with
CD4" T cells. Pop 13 highly express CD56, CD3, CD8, and TCR 79,
suggesting CD8" yd NKT-like cells. Pop 14 express CD56 and CD8
suggestive of CD8" NK cells and Pop 15 only express CD56
consistent with NK cells.

Then, we examined the contribution of each sample group to
the FlowSOM-defined clusters (Pop 8-Pop 15). Stratification of
tumor and PB samples revealed distinct population distributions
(Figures 5C, D). Tumor-derived events contributed slightly more to
CD8" T cells (Pop 8) and NK cells (Pop 15). In contrast, CD8" NK
cells (Pop 14) were mainly derived from PB samples, which also
contributed modestly to CD8" 3 T cells (Pop 9), DN ¥d T cells (Pop
10), and CD4" T cells (Pop 12). Interestingly, although rare, two
populations, CD4" y3 NKT-like cells (Pop 11) and CD8" y3 NKT-
like cells (Pop 13), were almost exclusively tumor-derived,
underscoring their selective presence in the TME and near
absence in peripheral blood. Given that only two tumor samples
were assigned to the P1 and P3 immune profiles, analyses based on
STS profiles are purely illustrative (Figures 5C, E).

3.5 STS tumors harbor rare CD8+ v6 NKT-
like cells absent in peripheral blood

The back-gating of the FlowSOM populations for sample-level

quantification within PB and tumor samples from STS patients was
then performed. Figure 6A shows a t-SNE map illustrating the
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FIGURE 4

Immune clusters individually associated with patient survival. Kaplan—Meier curves were generated for STS patients stratified into high and low
groups based on the median frequency of each identified immune cell population. Censored events are indicated by crosses on the corresponding
curves. Log-rank test was used to compare high and low curves, with significance set at p < 0.05. Legend: TAC - time after collection.

distribution of the eight identified populations in PB and tumor
samples, alongside a bar graph displaying their relative frequency
contributions within each group. Despite their low frequency,
individual sample analysis revealed a consistent and significant
presence of CD8" y8 NKT-like cells (Pop 13) in tumor samples (Pop
13 = 0.55, 0.00-0.79) compared with near absence in PB samples
(Pop 13 = 0.00, 0.00-0.19, adj p < 0.0001) (Figure 6B). Similarly,
although not statistically significant, CD4" yd NKT-like cells (Pop
11) were primarily observed in tumor samples (Pop 11 = 0.02, 0.00-
4.22) and were nearly absent in PB samples (Pop 11 = 0.00, 0.00-
0.10, adj p = 0.0718). No other statistically significant differences
were detected.

Considering both cluster- and individual sample-based
analyses, similar distribution patterns were observed, with slightly
higher levels of NK cells (Pop 15) and CD8" T cells (Pop 8), and
lower levels of CD4" T cells (Pop 12) in tumor samples. For CD8"
NK cells (Pop 14), individual sample analysis did not clearly show
higher prevalence in PB samples, as median values were similar
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between PB and tumor; however, variability was higher in PB, with
some patients displaying elevated levels. Since event numbers were
equalized per group, these high-level samples contributed to the
higher prevalence observed in cluster-based analysis. In contrast,
CD8" ¥8 T cells (Pop 9) appeared elevated in more tumor samples
at the individual level, whereas cluster-based analysis suggested
slight enrichment in PB. Overall, these observations should be
interpreted as preliminary, given the limited number of
tumor samples.

4 Discussion

Our group previously performed a comprehensive analysis of
the immune cellular landscape in STS, including myeloid
(monocytes, dendritic cells, granulocytes) and lymphoid
populations (B cells, NK cells, T cells, as well as Th and Treg
subsets), together with immune-related genes and soluble factors
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Cluster Explorer analysis reveals differential distribution of immune cell populations between PB and tumor samples from STS patients. Cluster
Explorer analysis was performed using FlowSOM and t-SNE results based on the expression of CD3, CD4, CD8, CD56, CD161, and TCR /3, resulting
in eight metaclusters representing major immune cell populations. (A) t-SNE map displaying FlowSOM-defined clusters based on multiparametric
marker expression. Each dot represents a single cell, with colors corresponding to FlowSOM-assigned clusters. (B) Bar plot showing the relative
frequency of each identified immune population across all samples. (C) Cluster Explorer heatmap summarizing marker expression profiles per
cluster. Rows represent individual clusters; columns represent surface markers. Color intensities represent median expression levels; (+) indicates
higher intensity, whereas (-) indicates lower intensity. (D) Bar plot showing the distribution of PB and tumor samples across each immune cluster. (E)
Bar plot showing the distribution of STS immune subtypes (P1 and P3) per cluster. Legend: PB — peripheral blood; STS — soft tissue sarcoma, P1 —
‘immune high”; P3 — ‘immune low"; Pop 0 — CD8+ T cells; Pop 1 — CD8" ¥5 T cells; Pop 2 - CD8-CD4- (DN) ¥5 T cells; Pop 3 — CD4" v NKT-like
cells; Pop 4 — CD4™ T cells; Pop 5 — CD8* y§ NKT-like cells; Pop 6 — CD8+ NK cells; Pop 7 — NK cells.

(13). That study revealed overall immunosuppression and reduced
cytotoxic potential in STS. Moreover, three distinct immune
profiles, “immune high” (P1), “immune intermediate” (P2), and
“immune low” (P3), were identified and correlated with survival.
Patients with higher cytotoxic and lower suppressive factors
(“immune high”) showed better outcomes, whereas the opposite
pattern (“immune low”) was linked to worse prognosis.

Building on these findings, we hypothesized that impaired anti-
tumor activity in STS may also involve cytotoxic lymphocyte
populations not captured by conventional approaches, such as
unconventional T cells. To test this, we analyzed CD3" and/or
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CD56" lymphocytes in a subset of patients from the previous cohort
using multiparametric flow cytometry, and applied Al-assisted
unsupervised clustering to comprehensively map the systemic
cytotoxic immune landscape in STS. This approach enabled the
identification of less frequent lymphocyte subsets with recognized
cytotoxic potential. In parallel, we performed a pilot analysis of
tumor samples using the same strategy to obtain preliminary
insights into the compartmentalization of these populations.
Consistent with our previous findings, STS patients showed a
significant increase in circulating CD8" T cells and a slight decrease
in CD4" T cells compared with healthy donors, in line with reports
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FIGURE 6

Comparative analysis of immune cluster frequencies in PB and tumor samples from STS patients reveals compartmentalized immune profiles. (A) t-SNE plots
colored by FlowSOM-assigned clusters, representing PB and tumor samples. Bar plot representation of FlowSOM-defined immune cluster frequencies in all
samples and across analyzed groups, PB and tumor samples from STS patients. (B) Comparative analysis of cluster frequencies between STS and Ctrl
samples. Statistical analysis was performed using the Mann—Whitney U test with Holm-Sidak method to correct for multiple comparisons. Adjusted p-values
are reported, with significance set at p < 0.05. Legend: PB — peripheral blood, STS — soft tissue sarcoma; ****p < 0.0001.

of elevated antigen-specific CD8" T cells in cancer patients (13, 22,
23), which is more evident in P3 patients. No significant association
between total CD8" or CD4" T cells and STS immunotypes was
observed. However, t-SNE visualization suggested distinct
distribution patterns of these cells across P1, P2, and P3 patients,
indicating potential differences in CD8" and CD4" T
subpopulations among immunotypes. Although these subsets
could not be fully characterized here, our earlier study in a larger
cohort (13) showed that P3 (“immune low”) patients had higher
levels of Th2 cells and lower Thl cells, whereas P1 patients
displayed the opposite profile.

Circulating NK cells were significantly reduced in STS patients,
consistent with our previous study (13) and with other reports in
cancer, where NK cell depletion, critical for controlling tumor
dissemination through elimination of circulating tumor cells (24),
has been linked to poorer survival and higher metastatic potential in
both hematologic and solid tumors (25-29). Interestingly, although
not statistically significant, P3 patients showed a higher frequency
of NK cells compared with other immunotypes. Given that P3 is
associated with worse prognosis, this finding appears contradictory
to the expected protective role of NK cells and instead suggests that,
despite their higher frequency, NK cell function may be
compromised in these patients. Supporting this, our previous
study showed reduced expression of cytotoxic effector molecules
such as GZMB and PRFI in P3 patients, indicating impaired NK
cell cytotoxicity.

Among the less represented clusters, STS patients showed a
significantly lower frequency of CD161" CD8" T cells. CD161
expression on T cells is associated with innate-like properties
relevant to mucosal and tissue immunity (30, 31), and in cancer,
their presence in circulation or within tumors has been linked to
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preserved immune competence (32, 33). Thus, their reduced levels in
STS patients are consistent with an impaired immune status.
Concatenated analyses indicated that P3 patients contributed
disproportionately to this population. Although the median
frequency of CD161" CD8" T cells was lower in P3 than in PI,
greater variability was observed, with some P3 patients displaying
relatively high levels. This discrepancy likely reflects methodological
limitations, including unequal group sizes and event equalization in
clustering. Nevertheless, taken cautiously, these findings may suggest a
compensatory or dysregulated immune response in P3 patients.
Alternatively, it may point to altered tissue distribution or functional
impairment of these cells in more immunosuppressed individuals.

& T cells are innate-like lymphocytes with well-recognized
anti-tumor activity (34-36). In this study, we identified two
circulating Y3 T cell populations: double-negative (DN) vd T cells
and CD8" 3 T cells. DN 3 T cells, which constitute the majority of
circulating y8 T cells, are typically associated with
immunoregulatory functions (37), whereas the less frequent CD8"
¥ T cells are known for strong cytotoxic and pro-inflammatory
activity in cancer (38-40). Both populations were similarly
represented in STS patients and healthy controls. Within STS,
higher levels were observed in P2 patients, although this
difference was not statistically significant. Notably, survival
analysis revealed that patients with higher frequencies of
circulating CD8" y8 T cells had significantly reduced survival.
This counterintuitive finding may reflect compensatory immune
activation in response to more aggressive disease or an exhausted
phenotype limiting effective anti-tumor function.

Two clusters of NKT-like cells were identified: CD4* and CD8"
NKT-like cells. These T lymphocytes express CD56 and other NK
cell markers, with frequencies increasing with age (41, 42). They
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combine conventional T cell functions with NK-like cytotoxicity via
receptors such as NKG2D, enabling rapid cytokine production and
potent cytotoxic responses. Altered frequencies or phenotypes of
NKT-like cells have been linked to immune dysregulation in several
malignancies (43-48), and CD56 expression is associated with
enhanced anti-tumor activity (49). CD8" NKT-like cells are
generally considered cytotoxic, whereas CD4" NKT-like cells may
exhibit helper or regulatory functions (50). In this study, CD8"
NKT-like cells tended to be more frequent in healthy controls than
in STS patients, though not significantly at the individual level.
Within STS, they were enriched in the P1 (“immune high”)
subgroup and showed a trend toward higher frequencies in
patients with better survival. In contrast, CD4" NKT-like cells
displayed no major differences across groups or immune profiles
but were associated with poorer survival when present at higher
frequencies. These findings underscore the heterogeneity of NKT-
like cells in shaping systemic immune competence and disease
outcomes in STS. It is conceivable that CD8" NKT-like cells could
be therapeutically expanded using cytokine-induced approaches,
similar to cytokine-induced killer (CIK) cell strategies (45, 51),
although their functional potential in STS remains untested.

Additionally, a pilot analysis was performed on a small subset of
STS tumor samples using the same strategy to gain preliminary
insights into tumor-infiltrating lymphocytes (TIL, CD3" and/or
CD56" cells). Comparing with PB, tumor samples showed slightly
higher levels of CD8" T cells and NK cells, and lower levels of CD4"
T cells, consistent with the established role of CD8"* T cells and NK
cells as key effectors in tumor infiltration and cytotoxic activity
(52-54).

When analyzing peripheral blood from STS and control
patients, only a single NK cell population was identified. CD8
expression within this population was moderate, insufficient to
define a distinct CD8" NK cell cluster. In contrast, analysis of
tumor-infiltrating lymphocytes (TIL) revealed two NK cell
populations based on CD8 expression. Although little is known
about CD8" NK cells, evidence suggests that transient CD8
expression marks a highly functional state, while sustained
expression may indicate reduced activity and an inhibitory role in
NK function (55, 56). In cluster-based analysis, PB-derived events
contributed predominantly to the CD8" NK cell population.
However, individual sample analysis showed similar median
frequencies in both PB and tumor samples, with considerable
variability among PB samples; some patients exhibited higher
frequencies, which disproportionately influenced the cluster
analysis due to unequal group sizes. Illustrative examples from P1
and P3 patients suggested higher infiltration of CD8" NK cells in P3
tumors, though no conclusions can be drawn. These observations
highlight the need to further investigate the role of CD8" NK cells in
STS tumors.

DN 3 T cells and CD8" yd T cells were also identified in tumor
samples. In cluster analysis, PB samples contributed slightly more to
these populations; however, individual sample analysis revealed
substantial variability in CD8" yd T cell frequencies across
tumors. Notably, illustrative examples from P1 and P3 patients
showed higher infiltration of CD8" y§ T cells in the P3 tumors.
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Although these findings must be interpreted with caution, they are
consistent with peripheral blood data, where elevated CD8" y3 T
cell levels correlated with reduced survival. This raises the
possibility that tumor-infiltrating CD8" y3 T cells may also hold
prognostic significance. A larger cohort analysis will be necessary to
validate these preliminary observations and to clarify whether CD8"
vd T cells represent a compensatory, dysfunctional, or
prognostically relevant population in STS.

Interestingly, despite their low frequency at the individual level,
two y0 NKT-like subpopulations, CD8" and CD4" ¥ NKT-like
cells, were identified in tumors but were nearly absent in circulation.
CD8" y0 NKT-like cells, in particular, were consistently observed
across the tumor samples analyzed, even though the sample number
was limited. Although little is known about these cells, previous
studies suggest that Y5 NKT-like cells can exert potent cytotoxic
effects against solid tumors such as squamous cell carcinoma and
produce high levels of IFN-y (40, 57-59). Increased frequencies
have also been reported in malignant compared with normal liver
tissue (60, 61). Their selective enrichment in STS tumors could
therefore reflect local recruitment or expansion within the tumor
microenvironment, potentially contributing to antitumor immune
responses. Nevertheless, the very small number of tumor samples
analyzed restricts the robustness of this observation. These findings
should thus be regarded as preliminary and interpreted with
caution. Even so, they highlight potentially important tumor-
associated populations that warrant further investigation in larger
STS cohorts.

This study has several limitations that should be acknowledged.
First, concatenated analyses, performed without an equal number of
samples per group, normalize event numbers at the group or
subtype level but do not guarantee equal contributions from all
patients. This can lead to discrepancies when comparing group-
level and per-sample analyses, highlighting the need to consider
both approaches to properly capture inter-patient heterogeneity.
Second, the overall sample size was small, especially for tumor
samples, which restricts the generalizability of the findings. Third,
peripheral blood samples were collected at different time points
relative to diagnosis and disease stage, introducing variability that
may affect immune measurements and complicate comparisons
across patients. In addition, not all tumor samples could be matched
to a peripheral immune profile, and some were not collected in
parallel with blood, limiting paired analyses and reducing the ability
to directly link systemic and intratumoral features. Finally, the lack
of functional characterization of key immune subsets, particularly
those associated with survival, remains a major gap. Future studies
with larger, longitudinal cohorts and standardized sampling,
coupled with functional assays of cytokine production, cytotoxic
activity, inhibitory receptor expression, and soluble mediators, will
be essential to validate these findings and clarify the prognostic and
therapeutic relevance of the immune populations identified.

This study expands the understanding of the cytotoxic immune
landscape in STS by integrating multiparametric flow cytometry
with unsupervised clustering to identify both conventional and
unconventional lymphocyte populations, with the main findings
summarized in Figure 7. Consistent with previous findings, STS
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Schematic representation of immune alterations in soft tissue sarcoma (STS). Patients displayed systemic immune imbalance with increased CD8* T
cells and reduced NK cells and CD161* CD8™ T cells, consistent with overall immunosuppression. Prognostic associations were observed for
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enriched in immune-competent patients and associated with better outcomes. Pilot tumor analyses revealed Y6 NKT-like cells that were nearly
absent in circulation but present within the tumor microenvironment, suggesting potential selective enrichment.

patients displayed overall systemic immunosuppression, with
reduced NK cells and CD161% CD8" T cells, and distinct
distribution patterns of CD4" and CD8" T cells across immune
subgroups. Notably, CD8" yd T cells emerged as a paradoxical
population, enriched in some patients and associated with poorer
survival, suggesting compensatory activation or dysfunction in
advanced disease. In contrast, CD8" NKT-like cells showed a
trend toward favorable outcomes, while CD4" NKT-like cells
were linked to poorer prognosis, underscoring the functional
heterogeneity of these populations. Pilot tumor analyses further
revealed differences between blood and tumor compartments,
including the detection of CD8" NK cells, variable infiltration of
CD8" ¥8 T cells, and the selective enrichment of Y3 NKT-like
subsets within tumors. Although preliminary and limited by small
sample size, these findings highlight tumor-associated populations
that may contribute to disease progression or control. Together,
these results reinforce the role of cytotoxic and unconventional
lymphocyte subsets in shaping systemic and intratumoral immunity
in STS. Larger, longitudinal studies integrating functional assays
will be essential to validate their prognostic relevance, clarify their
contribution to tumor control, and assess their potential as
therapeutic targets.
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