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AI-assisted peripheral immune
profiling reveals unconventional
lymphocyte signatures
associated with prognosis in soft
tissue sarcoma patients
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Immunotherapy has reshaped the treatment of several cancers, yet patient

responses remain highly variable, partly due to differences in immune

competence. In soft tissue sarcomas (STS), the immune landscape is poorly

characterized, limiting the development of prognostic markers and immune-

based therapeutic strategies. This study aimed to comprehensively profile

circulating and tumor-infiltrating cytotoxic lymphocyte populations in STS.

Peripheral blood from patients and healthy donors was analyzed by

multiparametric flow cytometry combined with AI-assisted unsupervised

clustering, enabling the identification of both conventional and unconventional

subsets. In a pilot cohort, tumor-infiltrating lymphocytes were evaluated using

the same approach to explore systemic–local immune compartmentalization.

STS patients displayed systemic immune imbalance with increased CD8+ T cells

and reduced NK cells and CD161+ CD8+ T cells, consistent with overall

immunosuppression. Several unconventional populations showed prognostic

associations: elevated CD8+ gd T cells and CD4+ NKT-like cells correlated with

poorer survival, whereas CD8+ NKT-like cells were enriched in immune-

competent patients and linked to better outcomes, suggesting potential

protective functions. Pilot tumor analyses identified gd NKT-like cells that were

nearly absent from circulation, suggesting their selective enrichment within the

tumor microenvironment. Together, these findings highlight the contribution of

rarely profiled cytotoxic lymphocytes to systemic immune fitness and disease

outcome in STS. Importantly, despite clinical and histological heterogeneity,

patients showed consistent immune alterations, suggesting shared

immunological features across STS subtypes. While limited by small tumor

sample size and lack of functional assays, this study provides proof-of-concept
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677408/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677408/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677408/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677408/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677408/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1677408&domain=pdf&date_stamp=2025-10-27
mailto:paulo.santos@fmed.uc.pt
https://doi.org/10.3389/fimmu.2025.1677408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1677408
https://www.frontiersin.org/journals/immunology


Almeida et al. 10.3389/fimmu.2025.1677408

Frontiers in Immunology
that immune-based profiling can uncover novel prognostic markers and

candidate populations of therapeutic relevance. Future work in larger,

longitudinal cohorts, coupled with functional characterization, will be essential

to validate these subsets and to define their role in STS immune surveillance and

responsiveness to immunotherapy.
KEYWORDS

soft tissue sarcoma, unconventional lymphocytes, gd T cells, NKT-like cells,
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1 Introduction

The introduction of immunotherapy has brought new hope and a

powerful alternative for treating cancer (1, 2). However, even among

patients with the same tumor type, particularly those expected to

respond, clinical outcomes remain highly variable, and many patients

fail to benefit (3). This variability has fueled growing interest in the

concept of immune fitness or competence as a potential predictor of

treatment response (4, 5). Yet, despite its conceptual appeal, how to

assess immune function in a practical, accessible, and clinically

meaningful way remains an open challenge.

In this context, peripheral blood (PB) has emerged as a

promising, minimally invasive alternative to tumor biopsies for

capturing systemic immune states and enabling longitudinal

immune monitoring (6, 7). While the tumor microenvironment

(TME) provides valuable insights into local immune dynamics, it is

not always feasible to access. Consequently, efforts to identify

clinically informative peripheral immune signatures, capable of

reflecting tumor burden, metastatic potential, or response to

therapy, have intensified, driven by the ease and repeatability of

blood sampling (8–10). Establishing such signatures is now a central

objective in the advancement of immune profiling in oncology.

One of the key advantages of immune-based stratification is its

potential to transcend the biological and histological heterogeneity

that characterizes cancer (11). Immune signatures may capture

clinically relevant features that are not necessarily reflected in tumor

classification, offering a functional layer of patient characterization

that could guide treatment decisions. This raises the possibility that

patients, despite underlying molecular or histological differences,

could be stratified and treated according to their immune capacity

to mount an anti-tumor response.

Our group previously explored this concept in a cohort of soft

tissue sarcoma (STS) patients, a particularly highly heterogeneous

group of malignancies (12). Through a comprehensive

immunoprofiling approach that included nearly 300 parameters

(circulating immune cells, immune-related gene expression, and

soluble plasma analytes) we identified three distinct peripheral

immune profiles that correlated with clinical outcomes (13).
02
Patients classified as “immune high”, characterized by elevated

levels of activation/cytotoxic markers (e.g., CD69, CD40L, GZMB,

NCR2) and low levels of immunosuppressive/inflammatory

variables (e.g., PMN-MDSC, ARG1, GR, and IL17-A), showed

improved survival. In contrast, “immune low” patients displayed

a suppressive, inflammatory and poorly cytotoxic profile, and were

associated with poorer outcome, while an intermediate group

showed a mixed immune phenotype and moderate survival.

Although these findings underscored the prognostic relevance of

immune profiling, it is recognized that such broad, multi-parametric

analyses are not yet feasible in clinical practice due to their complexity,

cost, and response time. As a result, attention has shifted toward simpler

circulating immune markers, such as the neutrophil-to-lymphocyte

ratio (NLR) and monocyte-to-lymphocyte ratio (MLR), which have

shown prognostic value across various cancers (14–16). However, while

accessible, these metrics mainly reflect systemic inflammation and fail

to capture the functional diversity and cytotoxic potential of immune

cells critical for anti-tumor responses, such as NK cells, CD8+ T cells,

and unconventional lymphocyte subsets.

To address the gap between comprehensive immune profiling

and clinical feasibility, we used a well-characterized cohort of STS

patients to identify cytotoxic immune cell populations with

potential as accessible and informative biomarkers. Building on

previously defined peripheral immune profiles (“immune high,”

“intermediate,” and “immune low”), this study aimed to

characterize circulating lymphocyte subsets that reflect systemic

cytotoxic immune competence. Although the primary focus was on

PB samples, we also examined tumor samples from a subset of STS

patients to investigate immune differences between circulation and

the TME. To maximize sensitivity and avoid overlooking rare but

clinically relevant populations, we combined multiparametric flow

cytometry with unsupervised, AI-assisted clustering (17–19). This

strategy enabled the identification of both conventional and

unconventional cytotoxic lymphocytes with prospective clinical

relevance. Linking peripheral immune features to systemic

immune competence and clinical outcomes advances the

understanding of the immune landscape in STS and supports the

identification of candidate biomarkers with translational potential.
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2 Material and methods

2.1 STS patients and healthy donors

Between November 2020 and February 2023, PB samples and

clinical data were collected at the Tumor Unit of the Locomotor

Apparatus, University Clinic of Orthopedics, Orthopedic Oncology

Service, Coimbra Local Health Unit, a designated European

Reference Center for Adult STS Treatment. Eligible participants

included adults (≥18 years) with a confirmed diagnosis of STS,

excluding gastrointestinal stromal tumors. Patients with active viral

or bacterial infections were excluded. A total of 29 PB samples from

STS patients, classified into three immune subgroups: P1 (“immune

high”, n=9), P2 (“immune intermediate”, n=8), and P3 (“immune

low”, n=12), 25 PB samples from healthy donors as control (Ctrl)

group and 9 STS tumor tissue samples, were included in the study.

The subgroup classification was based on previously published STS

immune profiles: P1 (“immune high”) with predominant cytotoxic

markers and better survival; P3 (“immune low”) with suppressor

markers and worse survival; and P2 showing mixed profiles with

intermediate outcomes (13). All procedures involving human

participants followed the ethical standards outlined in the

Declaration of Helsinki. Written informed consent was obtained

from all individuals after a detailed explanation of the study’s

purpose and procedures. Ethical approval was obtained from the

Ethics Committees of the Coimbra Hospital and University Centre

(CHUC-021-19) and the Faculty of Medicine, University of

Coimbra (CE-018/2021). Demographic and clinical data are

summarized in Supplementary Table S1.
2.2 Preparation of single-cell suspensions
from tumor tissue

Tumor tissue samples (1–2 cm²) were collected in 1x Dulbecco′
s Phosphate Buffered Saline (D-PBS, Sigma-Aldrich, St. Louis, MO,

USA) immediately after surgical excision. To eliminate PB

contamination, tissues were first rinsed thoroughly with 1x D-

PBS. Subsequently, samples were finely sliced into ~1 mm²

fragments using a sterile petri dish. These fragments were then

transferred into 5 mL Eppendorf tubes containing 2.5 mL of a 1x

Collagenase/Hyaluronidase solution (STEMCELL Technologies,

Vancouver, BC, Canada) prepared in Dulbecco′s Modified Eagle′s
Medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA) and

incubated at 37 °C with agitation for 1 hour to overnight,

depending on the tissue origin. Following enzymatic digestion,

the dissociated cell suspensions were transferred into 50 mL

conical tubes containing DMEM supplemented with 10% (v/v) of

7.5% Bovine Serum Albumin (BSA) Fraction V (Gibco™, Thermo

Fisher Scientific, Waltham, MA, USA). Cells were then centrifuged

at 450 x g for 5 minutes. The supernatant was discarded, and the

pellet resuspended in 1 mL of DMEM with 10% BSA for white

blood cell quantification using a DXH 500 hematology analyzer

(Beckman Coulter, Pasadena, CA, USA).
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2.3 Multiparametric flow cytometry sample
preparation and acquisition

Fresh PB samples collected in EDTA-treated tubes were

processed for immunophenotyping by multiparametric flow

cytometry. Initial whole blood counts were performed using the

DxH 500 hematology analyzer (Beckman Coulter, Pasadena, CA,

USA). For extracellular staining, 100 μL of whole blood or up to 1 x

106 white blood cells were incubated with fluorochrome-conjugated

monoclonal antibodies for 15 minutes at room temperature in the

dark. Red blood cell lysis was then carried out using 2 mL of BD

Lysing Solution (BD Biosciences, San Jose, CA, USA), with a 10-

minute incubation at room temperature in the dark. Samples were

centrifuged at 450 x g for 5 minutes, the supernatant discarded, and

cells washed with 1x D-PBS. After a second centrifugation under the

same conditions, the supernatant was removed, and cells were

resuspended in 300 μL of 1x D- PBS for flow cytometry

acquisition. Data were acquired on a BD FACSCanto II cytometer

and analyzed using BD FACSDiva software (BD Biosciences, San

Jose, CA, USA). Fresh tumor cell suspensions were stained using the

same protocol, starting with 1 x 106 white blood cells. A complete

list of the antibodies used for both PB, and tumor samples is

provided in Supplementary Table S2.
2.4 Unsupervised AI-assisted
multiparametric flow cytometry data
analysis

2.4.1 Quality control and sample preprocessing
Flow cytometry files were imported into FlowJo® software (v10.9,

BD Biosciences, San Jose, CA, USA) for analysis. Quality control was

performed using the FlowAI plugin (20), which filtered out abnormal

events based on flow rate irregularities, signal stability, and fluorescence

intensity range. Samples were annotated with metadata keywords to

indicate group assignments, such as Ctrl, STS, STS immune profiles

(P1, P2, P3), and STS tumor samples. For each individual sample, cells

positive for CD3 and/or CD56 were identified following the gating

strategy illustrated in Supplementary Figure S3. This gated population

was then concatenated by group and the number of events reduced

using the Downsample plugin for FlowJo® software to equalize event

counts across groups, minimizing bias due to varying sample sizes per

group. For more details, see the official Downsample plugin page

(https://www.flowjo.com/exchange/plugin/downsample). For

multiparametric AI-assisted analysis, two separate concatenated

files were created from the downsampled group files to maintain

balanced event representation. One concatenated file combined PB

samples from Ctrl and STS patients (100,000 total events, 50–000

events per Ctrl and STS, and the same event number per STS

subgroups). The other concatenated file merged PB and tumor

samples from STS patients (100,000 events, 50–000 events per PB

and Tumor, and the same event number per STS groups). Each

concatenated dataset was analyzed independently to investigate

cellular phenotypes across sample groups.
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2.4.2 Dimensionality reduction and unsupervised
clustering

Unsupervised clustering was conducted using the FlowSOMplugin

(21), based on the expression of key cytotoxic lymphocyte lineage

markers: CD3, CD4, CD8, CD56, CD161, and TCR g/d. FlowSOMwas

configured to generate eight metaclusters by grouping cells into self-

organizing maps according to their expression profiles. To visualize cell

distribution and interrelationships, t-SNE was applied using the built-

in FlowJo® plugin, with the following parameters: perplexity = 30,

iterations = 1000, learning rate = 7000.

2.4.3 Cluster annotation and visualization
Cluster Explorer plugin included in FlowJo® software (v10.9,

BD Life Sciences) was used to overlay FlowSOM-derived clusters

onto the t-SNE map, enabling comprehensive visual assessment and

manual annotation based on marker expression intensities.

Heatmaps, histograms, and expression overlays were used to

annotate the phenotypes of immune populations represented by

each cluster. Group identification based on keywords is detailed in

Supplementary Figure S4 and was subsequently used to compare

immune profiles between STS and Ctrl samples, among the STS

immune profi les , P1 (“ immune high”) , P2 (“ immune

intermediate”), and P3 (“immune low”), and between PB and

tumor samples from STS patients.

2.4.4 Per-sample cluster frequency calculation
Cluster Explorer does not allow direct export of cluster frequencies

per individual sample. Therefore, each of the eight annotated clusters

was overlaid onto individual sample gates, defined by sample IDs via

original metadata keywords. The frequencies of each cluster within

individual samples were then exported from FlowJo® for subsequent

statistical analysis. This approach enabled precise determination of

cluster distribution on a per-sample basis. For concatenated analyses,

an equal number of events was randomly selected from CTRL and STS

groups. Within STS subtypes, event numbers were further equalized

across subtypes. Because patient numbers varied between subtypes,

events were normalized at the group level to preserve comparability.

Consequently, not all patients contributed equally to the concatenated

dataset, and results from unsupervised concatenated analyses should be

interpreted with caution when compared to per-sample analyses.
2.5 Statistical analysis

Exported cluster frequencies were used to compare immune

profiles between Ctrl and STS PB samples, among STS immune

profiles (P1, P2, P3), and between PB and tumor samples from STS

patients. Statistical analysis and graph preparation were performed

using GraphPad Prism v9.0.2 (GraphPad Software, San Diego, CA,

USA). Mann–Whitney U tests were used for two-group

comparisons with Holm-Šıd́ák method to correct for multiple

comparisons (PB from Ctrl vs PB from STS; PB from STS vs

tumor from STS), and Kruskal–Wallis tests with Dunn’s post hoc

correction were applied for multi-group comparisons. Adjusted p-

values were considered. Survival analyses based on time-to-event
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data were carried out using IBM SPSS Statistics version 26.0 for Mac

OS (IBM Corp, Armonk, NY, USA). Kaplan-Meier survival curves

and log-rank tests were used to assess the impact of the studied

parameters on patient survival. Time was defined as the duration

from the sample collection date to either death or the end of the

study (time after collection, TAC). Statistical significance was set

at p < 0.05.
3 Results

To characterize the systemic cytotoxic immune landscape in STS

and identify peripheral lymphocyte subsets with potential prognostic

value, we analyzed flow cytometry data from 29 PB samples of STS

patients and 25 healthy donors (control group, Ctrl). Building on

previously defined immune profiles, “immune high” (P1, n = 9),

“intermediate” (P2, n = 8), and “immune low” (P3, n = 12), patients

were stratified accordingly to investigate associations between immune

cell populations, systemic immune states, and clinical outcomes. To

maximize resolution, AI-assisted unsupervised clustering and

dimensionality reduction techniques were applied to identify both

conventional and unconventional CD3+ and/or CD56+ lymphocyte

populations. As a complementary analysis, tumor samples from a subset

of STS patients (n = 9) were included to provide preliminary insight into

the relationship between circulating and tumor-infiltrating

immune populations.
3.1 STS exhibit distinct patterns of
circulating CD3+ and/or CD56+

populations

Prior to unsupervised clustering, quality control of flow cytometry

files was performed using the FlowAI plugin (20), which filtered out

anomalous events. Additionally, samples were annotated with metadata

keywords to indicate group assignments, such as Ctrl, STS, and STS

immune profiles (P1, P2, P3). Next, all samples underwent manual

analysis to identify the relevant cell populations, those expressing CD3

and/or CD56, selective for NK and T populations key mediators of

cytotoxic anti-tumor responses (Supplementary Figure S3). CD3+ and/

or CD56+ lymphocytes were concatenated into a single flow cytometry

file, and cluster analysis was performed using the FlowSOM algorithm

(21). This analysis generated eight metaclusters based on the expression

of CD3, CD4, CD8, CD56, CD161, and TCR g/d (Figure 1).

To further explore the structure of FlowSOM-derived clusters,

Cluster Explorer was employed for dimensionality reduction and

annotation. The t-SNE map displayed the distribution of cells across

the eight clusters identified in PB samples from STS and Ctrl groups

(Figure 2A). Each cluster formed a distinct island in the 2D space,

suggesting robust separation based on marker expression profiles. The

corresponding bar plot summarizes the proportion of cells assigned to

each cluster across the concatenated dataset, each cluster was defined as

Pop 0 to Pop 7 (Figure 2B). Pop 1 and Pop 2 represented the most

abundant populations, followed by Pop 0. Pop 3, 4, 5, 6 and 7 accounted

for only a minor fraction of the total events.
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To characterize the immune phenotypes represented by each

cluster, the expression patterns of key surface markers was analyzed

using the Cluster Explorer heatmap (Figure 2C). Each cluster

exhibited a distinct marker expression profile, enabling the

inference of putative immune cell identities (Figures 2A–C). Pop

0 displayed high CD56 expression and lacked CD3, suggesting a

population of NK cells. Pop 1 and 2 expressed CD3 along with high

levels of CD4 and CD8, respectively, consistent with conventional

CD4+ and CD8+ T cells. Pop 3 co-expressed CD56, CD3, and CD4,

likely corresponding to CD4+ NKT-like cells. Pop 4 showed high

expression of CD3 and TCR g/d, with no expression of CD4 or CD8,
suggesting a population of double-negative (DN) gd T cells. In

contrast, Pop 5 shared the same profile as Pop 4 but expressed CD8,

indicating CD8+ gd T cells. Pop 6 was distinguished from Pop 2 by

the additional expression of CD161, suggesting CD161+ CD8+ T

cells. Finally, Pop 7 differed from Pop 3 by expressing CD8 and

lacking CD4, consistent with a population of CD8+ NKT-like cells.

To characterize the distribution of immune populations, it was

analyzed the relative composition of each FlowSOM-defined cluster
Frontiers in Immunology 05
(Pop 0–Pop 7) based on the contribution of group samples. This

cluster-centered perspective reflects the proportion of events from

each group that make up 100% of each population. Stratification of

STS and Ctrl group revealed distinct population distributions

(Figures 2C, D). The most prominent differences were the higher

contribution of STS-derived events to CD8+ T cells (Pop 5) and the

lower contribution to CD161+ CD8+ T cells (Pop 6) and CD8+

NKT-like cells (Pop 7). In contrast, NK cells (Pop 0) and CD4+ T

cells (Pop 1) showed a slight predominance of CTRL-derived

events. Further stratification of the STS group according to

immune profiles (P1–P3) revealed distinct distribution patterns

(Figures 2C, E). P1-derived events were mainly associated with

CD8+ NKT-like cells (Pop 7), whereas P2-derived events

contributed predominantly to CD8+ gd T cells (Pop 5) and DN

gd T cells (Pop 4). Conversely, P3-derived events were enriched in

CD161+ CD8+ T cells (Pop 6) and NK cells (Pop 0). CD8+ T cells

(Pop 5) had comparable contributions from P1 and P2, while CD4+

NKT-like cells (Pop 3) and CD4+ T cells (Pop 1) were similarly

represented by P1- and P3-derived events.
FIGURE 1

Unsupervised clustering and dimensionality reduction of PB CD3+ and/or CD56+ immune cell populations from STS and Ctrl samples. FlowSOM
clustering of concatenated samples including only CD3+ and/or CD56+ lymphocytes. Cells were clustered based on the expression of CD3, CD4,
CD8, CD56, CD161 and TCR g/d and grouped into eight metaclusters reflecting major immune populations indicated by background color scale (0
to 7). Each node represents a cluster, with size indicating relative abundance and color scale reflecting marker expression intensity.
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3.2 STS show alterations in circulating
lymphocytes: lower NK and CD161+ CD8+

T cells, and higher CD8+ T cells

Since Cluster Explorer does not support the direct export of

cluster frequencies at the individual sample level, we performed a

back-gating of the identified populations by sample using FlowJo®.

This allowed for sample-level quantification within both the STS
Frontiers in Immunology 06
and Ctrl groups, including stratification by peripheral immune

profiles (P1, P2, and P3) (13). Figure 3A shows a t-SNE map

illustrating the distribution of the eight identified populations

across study groups, alongside a bar graph displaying their

relative frequency contributions within each group. Interestingly,

in Figure 3A (bottom), total CD8+ and CD4+ T cells exhibited

distinct distribution patterns across patient immune profiles, likely

reflecting differences in underlying classical T cell subsets.
FIGURE 2

Cluster Explorer analysis reveals distinct immune cell populations in PB from STS and Ctrl samples. (A) t-SNE map displaying FlowSOM-defined
clusters based on multiparametric marker expression. Each dot represents a single cell, with colors corresponding to FlowSOM-assigned clusters. (B)
Bar plot showing the relative frequency of each identified immune population across all samples. (C) Cluster Explorer heatmap summarizing marker
expression profiles per cluster. Rows represent individual clusters; columns represent surface markers. Color intensities represent median expression
levels; (+) indicates higher intensity, whereas (–) indicates lower intensity. (D) Bar plot showing the distribution of STS and Ctrl samples across each
immune cluster. (E) Bar plot showing the distribution of STS peripheral immunotypes (P1, P2, and P3) per cluster. Legend: PB – peripheral blood; STS
– soft tissue sarcoma; Ctrl – control; P1 – “immune high”; P2 – “immune intermediate”; P3 – “immune low”; Pop 0 – NK cells; Pop 1 – CD4+ T
cells; Pop 2 – CD8+ T cells; Pop 3 – CD4+ NKT-like cells; Pop 4 – CD8-CD4- (DN) gd T cells; Pop 5 – CD8+ gd T cells; Pop 6 – CD161+ CD8+ T
cells; Pop 7 – CD8+ NKT-like cells.
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Quantitative comparison at the individual sample level revealed that

NK cells (Pop 0) and CD161+ CD8+ T cells (Pop 6) were

significantly reduced in STS patients (Pop 0 = 8.96, 1.61 – 39.06;

Pop 6 = 0.26, 0.00 – 4.58) comparing with Ctrl samples (Pop

0 = 13.30, 8.15 – 28.30, adj p = 0,017282; Pop 6 = 0.75, 0.05 – 5.04,

adj p = 0.006274), whereas CD8+ T cells (Pop 2) was significantly

increased in the STS group (Pop 2 = 37.80, 14.20 – 71.10) compared

with Ctrl (Pop 2 = 25.20, 12.40 – 43.60, adj p = 0.026830)

(Figure 3B). Further comparison among STS subgroups did not

reveal significant differences, yet a trend was observed for higher
Frontiers in Immunology 07
levels of CD8+ NKT-like cells (Pop 7) in P1 patients (Pop 7 = 0.54,

0.00 – 4.98) comparatively with P2 (Pop 7 = 0.02, 0.00 – 0.31, adj

p = 0.0727) and P3 (Pop 7 = 0.10, 0.00 – 1.29, adj p = 0.1444)

patients (Figure 3C). It is important to note that, for CD161+ CD8+

T cells, the association with the P3 immunotype observed in the

cluster-based analysis was not evident at the individual sample level.

In fact, P1 patients displayed a higher median frequency than P3,

although variability was greater in P3, as reflected by a higher

standard deviation. Together with the unequal number of patients

per group, this explains the discrepancy between the two analytical
FIGURE 3

Sample-level comparison of immune cluster frequencies in PB reveals immunotype-specific alterations in STS. (A) t-SNE plots colored by FlowSOM-
assigned clusters, representing: all samples combined (total), Ctrl samples, STS samples, and the three STS immunotypes (P1, P2, P3). Bar plot
representation of FlowSOM-defined immune cluster frequencies in PB across analyzed groups. (B) Comparative analysis of cluster frequencies
between STS and Ctrl samples. Statistical analysis was performed using the Mann–Whitney U test with Holm-Šıd́ák method to correct for multiple
comparisons. (C) Cluster frequency comparisons across STS immunotypes (P1, P2, and P3), using Kruskal–Wallis test with post hoc Dunn’s
correction for multiple comparisons. Adjusted p-values are reported, with significance set at p < 0.05. Legend: PB – peripheral blood; STS – soft
tissue sarcoma; Ctrl – control; P1 – “immune high”; P2 – “immune intermediate”; P3 – “immune low”; *p < 0.05; **p < 0.01.
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approaches. For the other populations, distribution patterns were

consistent across both analyses.
3.3 Circulating gd T and NKT-like
subpopulations show prognostic relevance
in STS

Despite the lack of statistically significant differences in immune

cell cluster frequencies across STS immune profiles previously linked

to survival, it was hypothesize that specific lymphocyte subsets could

still possess prognostic relevance at the individual patient level. Since

the patients included in this analysis represent a subset of those from a

previously published study (13), a survival analysis across the defined

immune profiles (P1, P2, P3) was performed within this subgroup to

assess whether the association with clinical outcomes remained

consistent. The impact of peripheral immunotypes on clinical

outcomes was assessed using time-to-event from the date of sample

collection to either the date of death or the end of follow-up, referred

to as time after collection (TAC). Although no statistically significant

differences were observed, likely due to the small sample size, the

survival trend previously reported was maintained: P1 patients

showed better survival, P3 patients had the poorest outcomes, and

P2 patients displayed intermediate survival (Supplementary Figure

S5). The difference between P1 and P3 patients approached statistical

significance (p = 0.074), further supporting the relevance of these

immune profiles to clinical prognosis.

These immune profile classifications capture group-level

patterns of population distribution. Survival outcomes were then

evaluated at the individual patient level by analyzing subtype

frequencies per sample, with subtype-based immune profiles and

individual-level survival analyses providing complementary but

distinct perspectives on the data. Patients were stratified into

‘high’ and ‘low’ groups based on the median frequency of each

identified immune cell cluster, and survival analyses based on TAC

were conducted. Kaplan–Meier curves for each population are

presented in Figure 4. Higher frequencies of CD4+ NKT-like cells

(p = 0.017) and CD8+ gd T cells (p = 0.028) were significantly

associated with reduced survival. In contrast, a trend toward

improved outcomes was observed in patients with higher levels of

CD8+ NKT-like cells (p = 0.091). No significant associations were

found for the remaining immune populations.
3.4 STS tumors exhibit distinct patterns of
CD3+ and/or CD56+ populations compared
to blood

Using the same approach applied to PB samples from STS and Ctrl

groups, we conducted a new analysis that included the same STS PB

samples and a set of 9 STS tumor samples, aiming to explore differences

between the peripheral and tumor compartments. It is important to

note that not all tumor samples were paired with corresponding PB

samples, preventing a true paired analysis. As a result, only four tumor

samples could be classified based on the patients’ peripheral immune
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profiles, specifically, two samples were representative of the P1

(“immune high”) profile and two of the P3 (“immune low”) profile.

Following quality control assessment, sample annotation, and manual

gating of CD3+ and/or CD56+ lymphocytes, a single file containing the

cells of interest was generated. FlowSOM clustering was then

performed on these CD3+ and/or CD56+ lymphocytes, configured to

produce eight metaclusters based on the expression of CD3, CD4, CD8,

CD56, CD161, and TCR g/d. Cluster Explorer was then employed for

dimensionality reduction and annotation. The t-SNE map displays the

distribution of cells across the eight clusters identified in PB and tumor

samples (Figure 5A). The corresponding bar plot summarizes the

proportion of events assigned to each cluster, which by default in

ClusterExplorer are labeled Pop 0 to Pop 7 and cannot be changed. To

avoid confusion with the populations previously defined in blood, these

clusters were manually labeled Pop 8 to Pop 15 (Figure 5B). In this

analysis, Pop 8 and Pop 12 represented themost abundant populations,

followed by Pop 15. Pop 9, 10, 11, 13 and 14 accounted for only a

minor fraction of the total events.

To characterize the immune phenotypes represented by each

cluster, the expression patterns of key surface markers using the

Cluster Explorer heatmap were analyzed (Figure 5C). Each cluster

exhibited a distinct marker expression profile, enabling the

inference of putative immune cell identities (Figures 5A–C). Pop

8 exhibited high expression of CD3 and CD8, consistent with CD8+

T cells. Pop 9 expressed CD3, CD8, and TCR gd, consistent with
CD8+ gd T cells. Pop 10 co-expressed CD3 and TCR gd, lacking the
expression of CD4 and CD8 suggesting DN gd T cells. Pop 11

expressed CD3, CD4, CD56 and TCR gd, consistent with CD4+ gd
NKT-like cells. Pop 12 co-expressed CD3 and CD4, consistent with

CD4+ T cells. Pop 13 highly express CD56, CD3, CD8, and TCR gd,
suggesting CD8+ gd NKT-like cells. Pop 14 express CD56 and CD8

suggestive of CD8+ NK cells and Pop 15 only express CD56

consistent with NK cells.

Then, we examined the contribution of each sample group to

the FlowSOM-defined clusters (Pop 8–Pop 15). Stratification of

tumor and PB samples revealed distinct population distributions

(Figures 5C, D). Tumor-derived events contributed slightly more to

CD8+ T cells (Pop 8) and NK cells (Pop 15). In contrast, CD8+ NK

cells (Pop 14) were mainly derived from PB samples, which also

contributed modestly to CD8+ gd T cells (Pop 9), DN gd T cells (Pop

10), and CD4+ T cells (Pop 12). Interestingly, although rare, two

populations, CD4+ gd NKT-like cells (Pop 11) and CD8+ gd NKT-

like cells (Pop 13), were almost exclusively tumor-derived,

underscoring their selective presence in the TME and near

absence in peripheral blood. Given that only two tumor samples

were assigned to the P1 and P3 immune profiles, analyses based on

STS profiles are purely illustrative (Figures 5C, E).
3.5 STS tumors harbor rare CD8+ gd NKT-
like cells absent in peripheral blood

The back-gating of the FlowSOM populations for sample-level

quantification within PB and tumor samples from STS patients was

then performed. Figure 6A shows a t-SNE map illustrating the
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distribution of the eight identified populations in PB and tumor

samples, alongside a bar graph displaying their relative frequency

contributions within each group. Despite their low frequency,

individual sample analysis revealed a consistent and significant

presence of CD8+ gdNKT-like cells (Pop 13) in tumor samples (Pop

13 = 0.55, 0.00–0.79) compared with near absence in PB samples

(Pop 13 = 0.00, 0.00–0.19, adj p < 0.0001) (Figure 6B). Similarly,

although not statistically significant, CD4+ gd NKT-like cells (Pop

11) were primarily observed in tumor samples (Pop 11 = 0.02, 0.00–

4.22) and were nearly absent in PB samples (Pop 11 = 0.00, 0.00–

0.10, adj p = 0.0718). No other statistically significant differences

were detected.

Considering both cluster- and individual sample-based

analyses, similar distribution patterns were observed, with slightly

higher levels of NK cells (Pop 15) and CD8+ T cells (Pop 8), and

lower levels of CD4+ T cells (Pop 12) in tumor samples. For CD8+

NK cells (Pop 14), individual sample analysis did not clearly show

higher prevalence in PB samples, as median values were similar
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between PB and tumor; however, variability was higher in PB, with

some patients displaying elevated levels. Since event numbers were

equalized per group, these high-level samples contributed to the

higher prevalence observed in cluster-based analysis. In contrast,

CD8+ gd T cells (Pop 9) appeared elevated in more tumor samples

at the individual level, whereas cluster-based analysis suggested

slight enrichment in PB. Overall, these observations should be

interpreted as preliminary, given the limited number of

tumor samples.
4 Discussion

Our group previously performed a comprehensive analysis of

the immune cellular landscape in STS, including myeloid

(monocytes, dendritic cells, granulocytes) and lymphoid

populations (B cells, NK cells, T cells, as well as Th and Treg

subsets), together with immune-related genes and soluble factors
FIGURE 4

Immune clusters individually associated with patient survival. Kaplan–Meier curves were generated for STS patients stratified into high and low
groups based on the median frequency of each identified immune cell population. Censored events are indicated by crosses on the corresponding
curves. Log-rank test was used to compare high and low curves, with significance set at p < 0.05. Legend: TAC – time after collection.
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(13). That study revealed overall immunosuppression and reduced

cytotoxic potential in STS. Moreover, three distinct immune

profiles, “immune high” (P1), “immune intermediate” (P2), and

“immune low” (P3), were identified and correlated with survival.

Patients with higher cytotoxic and lower suppressive factors

(“immune high”) showed better outcomes, whereas the opposite

pattern (“immune low”) was linked to worse prognosis.

Building on these findings, we hypothesized that impaired anti-

tumor activity in STS may also involve cytotoxic lymphocyte

populations not captured by conventional approaches, such as

unconventional T cells. To test this, we analyzed CD3+ and/or
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CD56+ lymphocytes in a subset of patients from the previous cohort

using multiparametric flow cytometry, and applied AI-assisted

unsupervised clustering to comprehensively map the systemic

cytotoxic immune landscape in STS. This approach enabled the

identification of less frequent lymphocyte subsets with recognized

cytotoxic potential. In parallel, we performed a pilot analysis of

tumor samples using the same strategy to obtain preliminary

insights into the compartmentalization of these populations.

Consistent with our previous findings, STS patients showed a

significant increase in circulating CD8+ T cells and a slight decrease

in CD4+ T cells compared with healthy donors, in line with reports
FIGURE 5

Cluster Explorer analysis reveals differential distribution of immune cell populations between PB and tumor samples from STS patients. Cluster
Explorer analysis was performed using FlowSOM and t-SNE results based on the expression of CD3, CD4, CD8, CD56, CD161, and TCR g/d, resulting
in eight metaclusters representing major immune cell populations. (A) t-SNE map displaying FlowSOM-defined clusters based on multiparametric
marker expression. Each dot represents a single cell, with colors corresponding to FlowSOM-assigned clusters. (B) Bar plot showing the relative
frequency of each identified immune population across all samples. (C) Cluster Explorer heatmap summarizing marker expression profiles per
cluster. Rows represent individual clusters; columns represent surface markers. Color intensities represent median expression levels; (+) indicates
higher intensity, whereas (–) indicates lower intensity. (D) Bar plot showing the distribution of PB and tumor samples across each immune cluster. (E)
Bar plot showing the distribution of STS immune subtypes (P1 and P3) per cluster. Legend: PB – peripheral blood; STS – soft tissue sarcoma; P1 –
“immune high”; P3 – “immune low”; Pop 0 – CD8+ T cells; Pop 1 – CD8+ gd T cells; Pop 2 – CD8-CD4- (DN) gd T cells; Pop 3 – CD4+ gd NKT-like
cells; Pop 4 – CD4+ T cells; Pop 5 – CD8+ gd NKT-like cells; Pop 6 – CD8+ NK cells; Pop 7 – NK cells.
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of elevated antigen-specific CD8+ T cells in cancer patients (13, 22,

23), which is more evident in P3 patients. No significant association

between total CD8+ or CD4+ T cells and STS immunotypes was

observed. However, t-SNE visualization suggested distinct

distribution patterns of these cells across P1, P2, and P3 patients,

indicating potential differences in CD8+ and CD4+ T

subpopulations among immunotypes. Although these subsets

could not be fully characterized here, our earlier study in a larger

cohort (13) showed that P3 (“immune low”) patients had higher

levels of Th2 cells and lower Th1 cells, whereas P1 patients

displayed the opposite profile.

Circulating NK cells were significantly reduced in STS patients,

consistent with our previous study (13) and with other reports in

cancer, where NK cell depletion, critical for controlling tumor

dissemination through elimination of circulating tumor cells (24),

has been linked to poorer survival and higher metastatic potential in

both hematologic and solid tumors (25–29). Interestingly, although

not statistically significant, P3 patients showed a higher frequency

of NK cells compared with other immunotypes. Given that P3 is

associated with worse prognosis, this finding appears contradictory

to the expected protective role of NK cells and instead suggests that,

despite their higher frequency, NK cell function may be

compromised in these patients. Supporting this, our previous

study showed reduced expression of cytotoxic effector molecules

such as GZMB and PRF1 in P3 patients, indicating impaired NK

cell cytotoxicity.

Among the less represented clusters, STS patients showed a

significantly lower frequency of CD161+ CD8+ T cells. CD161

expression on T cells is associated with innate-like properties

relevant to mucosal and tissue immunity (30, 31), and in cancer,

their presence in circulation or within tumors has been linked to
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preserved immune competence (32, 33). Thus, their reduced levels in

STS patients are consistent with an impaired immune status.

Concatenated analyses indicated that P3 patients contributed

disproportionately to this population. Although the median

frequency of CD161+ CD8+ T cells was lower in P3 than in P1,

greater variability was observed, with some P3 patients displaying

relatively high levels. This discrepancy likely reflects methodological

limitations, including unequal group sizes and event equalization in

clustering. Nevertheless, taken cautiously, these findings may suggest a

compensatory or dysregulated immune response in P3 patients.

Alternatively, it may point to altered tissue distribution or functional

impairment of these cells in more immunosuppressed individuals.

gd T cells are innate-like lymphocytes with well-recognized

anti-tumor activity (34–36). In this study, we identified two

circulating gd T cell populations: double-negative (DN) gd T cells

and CD8+ gd T cells. DN gd T cells, which constitute the majority of

c irculat ing gd T cel l s , are typica l ly associated with

immunoregulatory functions (37), whereas the less frequent CD8+

gd T cells are known for strong cytotoxic and pro-inflammatory

activity in cancer (38–40). Both populations were similarly

represented in STS patients and healthy controls. Within STS,

higher levels were observed in P2 patients, although this

difference was not statistically significant. Notably, survival

analysis revealed that patients with higher frequencies of

circulating CD8+ gd T cells had significantly reduced survival.

This counterintuitive finding may reflect compensatory immune

activation in response to more aggressive disease or an exhausted

phenotype limiting effective anti-tumor function.

Two clusters of NKT-like cells were identified: CD4+ and CD8+

NKT-like cells. These T lymphocytes express CD56 and other NK

cell markers, with frequencies increasing with age (41, 42). They
FIGURE 6

Comparative analysis of immune cluster frequencies in PB and tumor samples from STS patients reveals compartmentalized immune profiles. (A) t-SNE plots
colored by FlowSOM-assigned clusters, representing PB and tumor samples. Bar plot representation of FlowSOM-defined immune cluster frequencies in all
samples and across analyzed groups, PB and tumor samples from STS patients. (B) Comparative analysis of cluster frequencies between STS and Ctrl
samples. Statistical analysis was performed using the Mann–Whitney U test with Holm-Šıd́ák method to correct for multiple comparisons. Adjusted p-values
are reported, with significance set at p < 0.05. Legend: PB – peripheral blood; STS – soft tissue sarcoma; ****p < 0.0001.
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combine conventional T cell functions with NK-like cytotoxicity via

receptors such as NKG2D, enabling rapid cytokine production and

potent cytotoxic responses. Altered frequencies or phenotypes of

NKT-like cells have been linked to immune dysregulation in several

malignancies (43–48), and CD56 expression is associated with

enhanced anti-tumor activity (49). CD8+ NKT-like cells are

generally considered cytotoxic, whereas CD4+ NKT-like cells may

exhibit helper or regulatory functions (50). In this study, CD8+

NKT-like cells tended to be more frequent in healthy controls than

in STS patients, though not significantly at the individual level.

Within STS, they were enriched in the P1 (“immune high”)

subgroup and showed a trend toward higher frequencies in

patients with better survival. In contrast, CD4+ NKT-like cells

displayed no major differences across groups or immune profiles

but were associated with poorer survival when present at higher

frequencies. These findings underscore the heterogeneity of NKT-

like cells in shaping systemic immune competence and disease

outcomes in STS. It is conceivable that CD8+ NKT-like cells could

be therapeutically expanded using cytokine-induced approaches,

similar to cytokine-induced killer (CIK) cell strategies (45, 51),

although their functional potential in STS remains untested.

Additionally, a pilot analysis was performed on a small subset of

STS tumor samples using the same strategy to gain preliminary

insights into tumor-infiltrating lymphocytes (TIL, CD3+ and/or

CD56+ cells). Comparing with PB, tumor samples showed slightly

higher levels of CD8+ T cells and NK cells, and lower levels of CD4+

T cells, consistent with the established role of CD8+ T cells and NK

cells as key effectors in tumor infiltration and cytotoxic activity

(52–54).

When analyzing peripheral blood from STS and control

patients, only a single NK cell population was identified. CD8

expression within this population was moderate, insufficient to

define a distinct CD8+ NK cell cluster. In contrast, analysis of

tumor-infiltrating lymphocytes (TIL) revealed two NK cell

populations based on CD8 expression. Although little is known

about CD8+ NK cells, evidence suggests that transient CD8

expression marks a highly functional state, while sustained

expression may indicate reduced activity and an inhibitory role in

NK function (55, 56). In cluster-based analysis, PB-derived events

contributed predominantly to the CD8+ NK cell population.

However, individual sample analysis showed similar median

frequencies in both PB and tumor samples, with considerable

variability among PB samples; some patients exhibited higher

frequencies, which disproportionately influenced the cluster

analysis due to unequal group sizes. Illustrative examples from P1

and P3 patients suggested higher infiltration of CD8+ NK cells in P3

tumors, though no conclusions can be drawn. These observations

highlight the need to further investigate the role of CD8+ NK cells in

STS tumors.

DN gd T cells and CD8+ gd T cells were also identified in tumor

samples. In cluster analysis, PB samples contributed slightly more to

these populations; however, individual sample analysis revealed

substantial variability in CD8+ gd T cell frequencies across

tumors. Notably, illustrative examples from P1 and P3 patients

showed higher infiltration of CD8+ gd T cells in the P3 tumors.
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Although these findings must be interpreted with caution, they are

consistent with peripheral blood data, where elevated CD8+ gd T

cell levels correlated with reduced survival. This raises the

possibility that tumor-infiltrating CD8+ gd T cells may also hold

prognostic significance. A larger cohort analysis will be necessary to

validate these preliminary observations and to clarify whether CD8+

gd T cells represent a compensatory, dysfunctional, or

prognostically relevant population in STS.

Interestingly, despite their low frequency at the individual level,

two gd NKT-like subpopulations, CD8+ and CD4+ gd NKT-like

cells, were identified in tumors but were nearly absent in circulation.

CD8+ gd NKT-like cells, in particular, were consistently observed

across the tumor samples analyzed, even though the sample number

was limited. Although little is known about these cells, previous

studies suggest that gd NKT-like cells can exert potent cytotoxic

effects against solid tumors such as squamous cell carcinoma and

produce high levels of IFN-g (40, 57–59). Increased frequencies

have also been reported in malignant compared with normal liver

tissue (60, 61). Their selective enrichment in STS tumors could

therefore reflect local recruitment or expansion within the tumor

microenvironment, potentially contributing to antitumor immune

responses. Nevertheless, the very small number of tumor samples

analyzed restricts the robustness of this observation. These findings

should thus be regarded as preliminary and interpreted with

caution. Even so, they highlight potentially important tumor-

associated populations that warrant further investigation in larger

STS cohorts.

This study has several limitations that should be acknowledged.

First, concatenated analyses, performed without an equal number of

samples per group, normalize event numbers at the group or

subtype level but do not guarantee equal contributions from all

patients. This can lead to discrepancies when comparing group-

level and per-sample analyses, highlighting the need to consider

both approaches to properly capture inter-patient heterogeneity.

Second, the overall sample size was small, especially for tumor

samples, which restricts the generalizability of the findings. Third,

peripheral blood samples were collected at different time points

relative to diagnosis and disease stage, introducing variability that

may affect immune measurements and complicate comparisons

across patients. In addition, not all tumor samples could be matched

to a peripheral immune profile, and some were not collected in

parallel with blood, limiting paired analyses and reducing the ability

to directly link systemic and intratumoral features. Finally, the lack

of functional characterization of key immune subsets, particularly

those associated with survival, remains a major gap. Future studies

with larger, longitudinal cohorts and standardized sampling,

coupled with functional assays of cytokine production, cytotoxic

activity, inhibitory receptor expression, and soluble mediators, will

be essential to validate these findings and clarify the prognostic and

therapeutic relevance of the immune populations identified.

This study expands the understanding of the cytotoxic immune

landscape in STS by integrating multiparametric flow cytometry

with unsupervised clustering to identify both conventional and

unconventional lymphocyte populations, with the main findings

summarized in Figure 7. Consistent with previous findings, STS
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patients displayed overall systemic immunosuppression, with

reduced NK cells and CD161+ CD8+ T cells, and distinct

distribution patterns of CD4+ and CD8+ T cells across immune

subgroups. Notably, CD8+ gd T cells emerged as a paradoxical

population, enriched in some patients and associated with poorer

survival, suggesting compensatory activation or dysfunction in

advanced disease. In contrast, CD8+ NKT-like cells showed a

trend toward favorable outcomes, while CD4+ NKT-like cells

were linked to poorer prognosis, underscoring the functional

heterogeneity of these populations. Pilot tumor analyses further

revealed differences between blood and tumor compartments,

including the detection of CD8+ NK cells, variable infiltration of

CD8+ gd T cells, and the selective enrichment of gd NKT-like

subsets within tumors. Although preliminary and limited by small

sample size, these findings highlight tumor-associated populations

that may contribute to disease progression or control. Together,

these results reinforce the role of cytotoxic and unconventional

lymphocyte subsets in shaping systemic and intratumoral immunity

in STS. Larger, longitudinal studies integrating functional assays

will be essential to validate their prognostic relevance, clarify their

contribution to tumor control, and assess their potential as

therapeutic targets.
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Schematic representation of immune alterations in soft tissue sarcoma (STS). Patients displayed systemic immune imbalance with increased CD8+ T
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unconventional populations: elevated CD8+ gd T cells and CD4+ NKT-like cells correlated with poorer survival, whereas CD8+ NKT-like cells were
enriched in immune-competent patients and associated with better outcomes. Pilot tumor analyses revealed gd NKT-like cells that were nearly
absent in circulation but present within the tumor microenvironment, suggesting potential selective enrichment.
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Embracing cancer complexity: Hallmarks of systemic disease. Cell. (2024)
28;187:1589–616. doi: 10.1016/j.cell.2024.02.009

12. WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours.
In: WHO classification of tumours series, 5th ed, vol. vol. 3. International Agency for
Research on Cancer, Lyon, France (2020). Available online at: https://publications.Iarc.
fr/588 (Accessed July 31, 2025).

13. Almeida JS, Sousa LM, Couceiro P, Andrade TF, Alves V, Martinho A, et al.
Peripheral immune profiling of soft tissue sarcoma: perspectives for disease
monitoring. Front Immunol. (2024) 15:1391840. doi: 10.3389/fimmu.2024.1391840

14. Mei P, Feng W, Zhan Y, Guo X. Prognostic value of lymphocyte-to-monocyte ratio in
gastric cancer patients treated with immune checkpoint inhibitors: a systematic review and
meta-analysis. Front Immunol. (2023) 14:1321584. doi: 10.3389/fimmu.2023.1321584

15. Shimada E, Endo M, Matsumoto Y, Tsuchihashi K, Ito M, Kusaba H, et al. Does
the use of peripheral immune- related markers indicate whether to administer
pazopanib, trabectedin, or eribulin to advanced soft tissue sarcoma patients? J Clin
Med. (2021) 10:4972. doi: 10.3390/jcm10214972

16. Mihara A, Iwanaga R, Yukata K, Fujii K, Muramatsu K, Ihara K, et al.
Neutrophil-, monocyte- and platelet-to-lymphocyte ratios, and absolute lymphocyte
count for diagnosis of Malignant soft-tissue tumors. Anticancer Res. (2023) 43:3349–57.
doi: 10.21873/anticanres.16511
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677408/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677408/full#supplementary-material
https://doi.org/10.1016/S1470-2045(22)00518-6
https://doi.org/10.1016/S1470-2045(22)00518-6
https://doi.org/10.1016/S0140-6736(22)00562-1
https://doi.org/10.1038/s41422-020-0343-4
https://doi.org/10.1016/j.xcrm.2025.101992
https://doi.org/10.1182/bloodadvances.2023011242
https://doi.org/10.1182/bloodadvances.2023011242
https://doi.org/10.1186/s40425-019-0799-2
https://doi.org/10.1038/s41591-024-03398-5
https://doi.org/10.1016/j.ccell.2024.04.008
https://doi.org/10.3390/cancers13061305
https://doi.org/10.1136/jitc-2019-000363
https://doi.org/10.1136/jitc-2019-000363
https://doi.org/10.1016/j.cell.2024.02.009
https://publications.Iarc.fr/588
https://publications.Iarc.fr/588
https://doi.org/10.3389/fimmu.2024.1391840
https://doi.org/10.3389/fimmu.2023.1321584
https://doi.org/10.3390/jcm10214972
https://doi.org/10.21873/anticanres.16511
https://doi.org/10.3389/fimmu.2025.1677408
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Almeida et al. 10.3389/fimmu.2025.1677408
17. Baumgaertner P, Sankar M, Herrera F, Benedetti F, Barras D, Thierry AC, et al.
Unsupervised analysis of flow cytometry data in a clinical setting captures cell diversity
and allows population discovery. Front Immunol. (2021) 12:633910. doi: 10.3389/
fimmu.2021.633910

18. Bechi Genzano C, Bezzecchi E, Carnovale D, Mandelli A, Morotti E, Castorani
V, et al. Combined unsupervised and semi-automated supervised analysis of flow
cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric
type 1 diabetes. Front Immunol. (2022) 13:1026416. doi: 10.3389/fimmu.2022.1026416

19. Lu Z, Morita M, Yeager TS, Lyu Y, Wang SY, Wang Z, et al. Validation of
artificial intelligence (AI)-assisted flow cytometry analysis for immunological disorders.
Diagnost (Basel). (2024) 14:420. doi: 10.3390/diagnostics14040420

20. Monaco G, Chen H, Poidinger M, Chen J, de Magalhães JP, Larbi A. flowAI:
automatic and interactive anomaly discerning tools for flow cytometry data.
Bioinformatics. (2016) 32:2473–80. doi: 10.1093/bioinformatics/btw191

21. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P,
Dhaene T, et al. FlowSOM: Using self-organizing maps for visualization and
interpretation of cytometry data. Cytometry A. (2015) 87:636–45. doi: 10.1002/
cyto.a.22625

22. Hou J, Yang X, Xie S, Zhu B, Zha H. Circulating T cells: a promising biomarker
of anti-PD-(L)1 therapy. Front Immunol. (2024) 15:1371559. doi: 10.3389/
fimmu.2024.1371559

23. Yossef R, Krishna S, Sindiri S, Lowery FJ, Copeland AR, Gartner JJ, et al.
Phenotypic signatures of circulating neoantigen- reactive CD8+ T cells in patients with
metastatic cancers. Cancer Cell . (2023) 41:2154–2165.e5. doi: 10.1016/
j.ccell.2023.11.005

24. Masmoudi D, Villalba M, Alix-Panabières C. Natural killer cells: the immune
frontline against circulating tumor cells. J Exp Clin Cancer Res. (2025) 44:118.
doi: 10.1186/s13046-025-03375-x

25. Shafer D, Smith MR, Borghaei H, Millenson MM, Li T, Litwin S, et al. Low NK
cell counts in peripheral blood are associated with inferior overall survival in patients
with follicular lymphoma. Leuk Res . (2013) 37:1213–5. doi: 10.1016/
j.leukres.2013.07.038

26. Wang S, Zhao M, Gao Z, Yang X, Lu Y, Fu J. Prognostic value of circulating
lymphocyte subsets in cervical cancer following postoperative radiotherapy. Int J Med
Sci. (2025) 22:1029–38. doi: 10.7150/ijms.107392

27. Krijgsman D, de Vries NL, Skovbo A, Andersen MN, Swets M, Bastiaannet E,
et al. Characterization of circulating T-, NK-, and NKT cell subsets in patients with
colorectal cancer: the peripheral blood immune cell profile. Cancer Immunol
Immunother. (2019) 68:1011–24. doi: 10.1007/s00262-019-02343-7

28. Tenuta M, Pandozzi C, Sciarra F, Campolo F, Gelibter AJ, Sirgiovanni G, et al.
Circulating natural killer cells as prognostic value for non-small-cell lung cancer
patients treated with immune checkpoint inhibitors: correlation with sarcopenia.
Cancers (Basel). (2023) 15:3592. doi: 10.3390/cancers15143592

29. Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer
cells at the frontline in the fight against cancer. Cell Death Dis. (2024) 15:614.
doi: 10.1038/s41419-024-06976-0

30. Konduri V, Oyewole-Said D, Vazquez-Perez J, Weldon SA, Halpert MM, Levitt
JM, et al. CD8+CD161+ T-cells: cytotoxic memory cells with high therapeutic potential.
Front Immunol. (2021) 11:613204. doi: 10.3389/fimmu.2020.613204

31. Iiai T, Watanabe H, Suda T, Okamoto H, Abo T, Hatakeyama K. CD161+ T
(NT) cells exist predominantly in human intestinal epithelium as well as in liver. Clin
Exp Immunol. (2002) 129:92–8. doi: 10.1046/j.1365-2249.2002.01886.x

32. Chen Q, Yin H, Jiang Z, He T, Xie Y, Mao W, et al. Poor clinical outcomes and
immunoevasive contexture in CD161+CD8+ T cells barren human pancreatic cancer. J
Immunother Cancer. (2024) 12:e008694. doi: 10.1136/jitc-2023-008694

33. Li Z, Zheng B, Qiu X, Wu R, Wu T, Yang S, et al. The identification and
functional analysis of CD8+PD-1+CD161+ T cells in hepatocellular carcinoma. NPJ
Precis Oncol. (2020) 4:28. doi: 10.1038/s41698-020-00133-4

34. Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, et al. gd T cells: origin and fate, subsets,
diseases and immunotherapy. Signal Transduct Target Ther. (2023) 8:434. doi: 10.1038/
s41392-023-01653-8

35. Ribot JC, Lopes N, Silva-Santos B. gd T cells in tissue physiology and
surveillance. Nat Rev Immunol. (2021) 21:221–32. doi: 10.1038/s41577-020-00452-4

36. Park JH, Lee HK. Function of gd T cells in tumor immunology and their
application to cancer therapy. Exp Mol Med. (2021) 53:318–27. doi: 10.1038/s12276-
021-00576-0

37. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, et al.
Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(-)
CD8- double-negative regulatory T cells. Blood. (2005) 105:2828–35. doi: 10.1182/
blood-2004-07-2583

38. Roy Chowdhury R, Valainis JR, Dubey M, von Boehmer L, Sola E, Wilhelmy J,
et al. NK-like CD8+ gd T cells are expanded in persistent Mycobacterium tuberculosis
infection. Sci Immunol. (2023) 8:eade3525. doi: 10.1126/sciimmunol.ade3525
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