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Introduction: The comorbidity of atopic dermatitis (AD) and depression has

garnered increased attention in recent years, yet the immunopathological

mechanisms underlying this connection remain unclear. To bridge this gap, the

study aimed to uncover the immune regulatory networks and identify key genetic

markers involved in the comorbidity of depression in AD.

Methods: We performed RNA sequencing on peripheral blood mononuclear cells

(PBMCs) collected from 20 AD patients with and without depression. By integrating

bioinformatics analyses with machine learning, we conducted weighted gene

co-expression network analysis (WGCNA), functional enrichment analysis, and

employed machine learning models of least absolute shrinkage and selection

operator (LASSO) and support vector machine-recursive feature elimination

(SVM-RFE). Additionally, validation was carried out in an independent cohort of 20

participants to confirm the expression of the identified potential pivotal gene.

Results: A total of 394 differentially expressed genes (DEGs) were identified in AD

patients with depression as compared to those non-depressed counterparts.

Weighted gene co-expression network analysis (WGCNA) pinpointed a pink

module encompassing 83 genes strongly linked to depressive symptoms.

Functional enrichment analysis highlighted biological processes related to

neurotransmitter uptake and the negative regulation of T-helper (Th) 17 cell

differentiation. Furthermore, machine learning models of least absolute shrinkage

and selection operator (LASSO) and support vector machine-recursive feature

elimination (SVM-RFE) consistently identified CHN1 as a potential pivotal gene

upregulated in AD patients with depression. The expression level of CHN1

demonstrated positive correlation with Th2 and Th17 cytokine signatures, as well

as with the Hospital Anxiety and Depression Scale-Depression (HADS-D) score, and

the Eczema Area and Severity Index (EASI). Validation in an independent cohort of 20

participants confirmed the significant upregulation ofCHN1 in depressed ADpatients.

Discussion: Together, these findings reveal previously unrecognized

immunoinflammatory axis underlying AD-associated depression, and shed light

on CHN1 as a potential molecular bridge connecting peripheral inflammation

and neuropsychiatric manifestations.
KEYWORDS
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1 Introduction

Atopic dermatitis (AD), the most common chronic

inflammatory skin disease, affects up to 20% of children and 10%

of adults, imposing significant burdens to patients’ quality of life

and mental health (1–3). Patients with AD are commonly

characterized by eczematous rashes, diffuse xerosis, intense

pruritus, with Staphylococcus aureus infections (4). Numerous

clinical and epidemiological studies have established a significant

association between AD and various psychiatric comorbidities

(5–10). Such mental comorbidity not only exacerbates individual

suffering, but also imposes substantial socioeconomic burdens,

particularly in the long-term management of chronic diseases

(11). Among these psychiatric disorders, depression is one of the

most prevalent, manifesting as persistent low mood, fatigue, and

cognitive impairment (12). Existing research data have revealed a

dose-response relationship between AD severity and the risk of

developing depression (7).In one cohort of 695 patients, 14.68%

exhibited moderate-to-severe depressive symptoms, which closely

fluctuated with the severity of AD (13). Despite these observations,

the central mechanisms linking AD to depression comorbidity

remains poorly defined, impeding progress in early identification

and targeted intervention.

Chronic peripheral inflammation is thought to play a critical

role in triggering central neuropsychiatric disorders (14). Mounting

evidence indicates that peripheral immune dysregulation

contributes to the onset and maintenance of AD-associated

depressive symptoms (15, 16). In AD, a pronounced T-helper 2

(Th2) cell response, marked by the secretion of Interleukin (IL)-4,

IL-5, IL-33, and IL-13, contributes to the formation of a complex

cytokine milieu (17–20). This environment can activate peripheral

sensory nerves that transmit chronic itching signals to the central

nervous system (CNS), thereby affecting neural circuits responsible

for pruritus and mood regulation (21). Additionally, peripheral

inflammatory factors can compromise blood-brain barrier integrity,

and activate microglia and astrocytes, which exacerbates

neuroinflammatory cascades, ultimately contributing to depressive

phenotypes (22–24). However, researches on these mechanisms

remain fragmented, and the interplay between the peripheral

immune networks and central neuropsychiatric comorbidities has

yet to be systemically explored.

Peripheral blood mononuclear cells (PBMCs) from patients

with AD exhibit distinct transcriptional signatures that mirror their

systemic inflammation activation, making them an accessible model

for studying disease-related inflammation. Integrating

transcriptomic data from PBMCs with machine learning

approaches allowing comprehensive analysis of high-dimensional

transcriptomic datasets, can identify key genes, construct immune

regulatory networks, and pinpoint potential biomarkers with

unprecedented accuracy (25, 26).

In this study, we conducted transcriptomic analyses of PBMCs

from AD patients with or without depression, and employed

integrative bioinformatics and machine learning approaches to

systemically delineate the molecular mechanisms underlying the

depression comorbidity. We further validated the key genes and
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examined their associations with immune pathways, the disease

severity, and depressive symptom scores. These findings provide

new insights into the inflammation-depression axis in AD and lay

the groundwork for precision diagnostics and targeted

interventions in AD-related neuropsychiatric comorbidities. The

overall analytical workflow is illustrated in Figure 1.
2 Materials and methods

2.1 Participants

The study enrolled 40 adult patients diagnosed with AD at

Wuhan Union Hospital. The inclusion criteria were: (i) a confirmed

diagnosis of AD, established by dermatologists according to the

guidelines of the American Academy of Allergy, Asthma and

Immunology (27), and (ii) being 18 years of age or older. The

exclusion criteria included: (i) pregnancy or breastfeeding; (ii) the

presence of other known systemic inflammatory diseases,

autoimmune disorders, or infections; and (iii) the use of any

topical medications within the previous 2 weeks or systemic

immunosuppressive or antidepressant therapy within the previous

12 weeks. Among the participants, 19 met the diagnostic criteria for

depressive disorder, based on the psychiatrists’ application using the

Fifth Edition of the Diagnostic and Statistical Manual of Mental

Disorders (DSM-5), detailed in Supplementary Table 1 (28). All

participants provided written informed consent. The study was

approved by the Ethics Committee of Wuhan Union Hospital

(protocol No. UHCT240584), and conducted in accordance with

the Declaration of Helsinki.
2.2 Assessment of clinical characteristics

Clinical characteristics were evaluated including the SCORing

of Atopic Dermatitis (SCORAD), Eczema Area and Severity

Index (EASI), Hospital Anxiety and Depression Scale-Anxiety

(HADS-A) subscale, and HADS-Depression (HADS-D) subscale.

SCORAD assesses objective signs (lesion area and severity, 0-80),

subjective symptoms (pruritus and sleep disturbance, 0-20), and a

visual analog scale (VAS, 0-10) for overall severity, with a total

score ranging from 0 to 100 (29). EASI focuses on objective

evaluation, including lesion area (weighted by body regions, 0-6)

and severity (erythema, infiltration/papulation, excoriation,

lichenification, 0-72), with a total score of 0-72 (30). Each

HADS subscale uses seven 0–3 Likert items to yield anxiety and

depression scores from 0 to 21, with ≥ 8 indicating clinically

significant symptoms (31, 32).
2.3 PBMC isolation, RNA extraction and
library preparation

Peripheral blood samples were collected from participants in

heparin-coated tubes. PBMCs were isolated using Lymphocyte
frontiersin.org
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Separation Medium (Corning, Manassas, VA) through density-

gradient centrifugation. Cell counts were determined using the

Cellometer Auto 2000 (Nexcelom, Lawrence, MA), and cells were

cultured at a density of 2 × 106 cells/ml. Total RNA was extracted

from PBMCs using TRIzol reagent (Invitrogen, Carlsbad, CA), and

RNA quality was assessed using the NanoDrop ND-1000

spectrophotometer (ThermoFisher Scientific, Waltham, MA).

Strand-specific RNA-seq libraries were subsequently prepared

with the VAHTS Universal V6 RNA-seq Library Prep Kit

following the manufacturer’s instructions.
Frontiers in Immunology 03
2.4 RNA sequencing and differential gene
expression analysis

Libraries were sequenced on an Illumina NovaSeq 6000

platform, generating ~60 million 150-bp paired-end reads per

sample. After adapter trimming and quality filtering with fastp,

an average of 57.2 million clean reads (Q30 ≥ 93%) remained. These

were aligned to the GRCh38 reference genome with HISAT2

(unique-mapping rate 91.8%), and gene-level abundances were

quantified as both FPKM (StringTie) and raw counts (HTSeq-
FIGURE 1

Analytical workflow of the study.
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count). All raw data have been deposited in the GEO database

(accession GSE307177).

Differential gene expression analysis comparing AD patients with

and without comorbid depression was performed using the DESeq2

packages in R software. Raw read counts were normalized with the

built-in median-of-ratios method, and baseMean values were used to

estimate average expression levels. Fold changes were calculated from

the normalized counts, and significance was assessed by a negative-

binomial Wald test implemented in DESeq2 (33). Differentially

expressed genes (DEGs) were identified based on the criteria of

adjusted P < 0.05 (Benjamini–Hochberg) and |log2 fold change

(log2FC) | > 1 (34). Volcano plots and heatmaps were generated to

visualize DEGs using the ‘heatmap’ and ‘ggplot2’ packages.
2.5 Weighted gene co-expression network
analysis

WGCNAwas performed using theWGCNA R package to identify

co-expression gene modules, potentially related to depression in AD. A

soft thresholding was applied to establish a scale-free network topology.

Modules were identified using hierarchical clustering with a dynamic

tree-cut algorithm. Module eigengenes (MEs) were calculated to

represent the first principal component of each module, and

correlation analysis between MEs and clinical traits was performed

to identify depression-related modules (35).
2.6 Pathway enrichment analysis

Pathway enrichment in AD-related depression datasets was

evaluated using Gene Set Variation Analysis (GSVA). All hallmark

gene sets were obtained from the Molecular Signature Database

(MSigDB). An adjusted P-value < 0.05 was considered statistically

significant after Benjamini and Hochberg correction (36).
2.7 Functional enrichment analysis

Functional enrichment analysis of DEGs was performed using

the Gene Ontology (GO) plot, ReactomePA and clusterProfiler

packages in R. GO functional annotation, Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses, Reactome and

WikiPathways enrichment analysis were conducted to explore the

biological roles of hub genes. The annotation terms with P-value <

0.05 were considered significantly enriched, and results were

visualized in a bubble diagram and heat map (37, 38).
2.8 Machine learning for key genes

Two machine learning algorithms were employed to identify

key genes associated with depression in AD patients. Least Absolute

Shrinkage and Selection Operator (LASSO) was performed (glmnet

R package) to select a subset of genes with the highest predictive

power. The model was fitted with 10-fold cross-validation and
Frontiers in Immunology 04
nlambda = 100, and the l value was selected to minimize the mean-

squared error, which represents the optimal LASSO fit and

minimizes the cross-validation error. The gene count at this point

is taken as the number of disease-signature genes. Support Vector

Machine Recursive Feature Elimination (SVM-RFE) was conducted

(caret package) to rank genes based on their importance in

predicting depression. Ten-fold cross-validation (with a fixed

random seed) was applied to the SVM-RFE pipeline. The average

rank of each feature across all folds was computed to determine the

optimal feature subset and used plotting functions to visualize the

trends in both generalization error and classification accuracy

across gene numbers. A Venn diagram was constructed to

identify overlapping genes selected by both methods (38–40).
2.9 Receiver operating characteristic curve
analysis

ROC curve analysis was performed in R to assess the diagnostic

performance of key genes. The area under the curve (AUC) was

calculated to validate the diagnostic value of key genes.
2.10 Quantitative reverse transcription-
polymerase chain reaction

Total RNA extracted from participants’ PBMCs was reverse—

transcribed into cDNA. Following cDNA synthesis, RT-qPCR was

conducted using CHN1-specific primers (Table 1), and the relative

expression levels were quantified and statistically analyzed using

standard DDCt methods and analyzed statistically.
2.11 Immunohistochemistry staining

Skin lesion samples all collected from the limbs were used for

IHC. Slides were immunostained for CHN1, and the extent of

immunostaining was reviewed and scored by two independent

dermatopathologists, blinded to clinical details. Immunostaining

scores were calculated by multiplying the percentage of positive cells

by staining intensity.
2.12 Statistical analysis

All statistical analyses were performed using R software.

Continuous variables were compared using Student’s t-test, and
TABLE 1 The primer sequences of CHN1 and ACTB.

Gene
Forward primer
(5’ to 3’)

Reverse primer
(5’ to 3’)

CHN1 CCTGTACTTGCGAGGTGGAA CCAAAGTGTAGGTCCCTGGC

ACTB GCCGCCAGCTCACCAT GCTGACTGTGAACTCCCTCC
CHN1, chimerin-1; ACTB, b- Actin.
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TABLE 2 Characteristics of study participants and data on disease characteristics and comorbid depression.

Characteristic

Discover set in AD

P-value

Validation set in AD

P-value
Depression

n=8
No depression

n=12
Depression

n=11
No depression

n=9

Age (years), mean ± SD 49.00 ± 18.89 36.08 ± 18.53 0.147 38.91 ± 16.71 40.11 ± 17.00 0.876

Female, n (%) 3 (37.50) 4 (33.33) > 0.999 5 (45.45)
3 (33.33)

> 0.999

Body mass index (kg/m2), mean
± SD

23.04 ± 1.74 21.59 ± 1.63 0.200 23.26 ± 1.98 22.86 ± 1.52 0.725

Disease duration (years), mean ±
SD

7.25 ± 5.90 5.88 ± 5.53 0.602 7.73 ± 6.66 8.33 ± 7.00 0.845

SCORAD, mean ± SD 62.24 ± 17.86 48.28 ± 20.10 0.130 63.71 ± 18.23 58.29 ± 20.08 0.838

EASI, mean ± SD 22.13 ± 10.83 17.28 ± 13.51 0.408 37.85 ± 15.51 34.30 ± 18.88 0.837

HADS-A, mean ± SD 11.50 ± 4.50 5.42 ± 3.90 0.005 15.27 ± 2.37 4.44 ± 3.28 < 0.0001

HADS-D, mean ± SD 13.00 ± 3.07 3.33 ± 2.61 < 0.001 14.36 ± 2.91 3.33 ± 2.50 < 0.0001
F
rontiers in Immunology
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 fro
AD, atopic dermatitis; SD, standard deviation; SCORAD, scoring atopic dermatitis; EASI, eczema area and severity index; HADS-A, Hospital Anxiety and Depression Scale-Anxiety; HADS-D,
Hospital Anxiety and Depression Scale-Depression.
FIGURE 2

Baseline gene expression analysis in AD patients with and without depression. (A) Volcano plot showing DEGs in depressed AD patients compared
with non-depressed counterparts. Blue dots represent downregulated genes and red plots represent upregulated genes. (B) Bar chart showing the
number of down- and up-regulated DEGs in AD patients with depression. (C) Top 10 up- and down-regulated DEGs ranked by fold change and
Log2FC (P < 0.05). (D) Heatmap displaying GSVA enrichment analysis results, highlighting key pathways associated with depression in AD patients.
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categorical variables were compared using chi-square or Fisher’s

exact test. Correlation analysis was performed using Pearson’s

correlation coefficients, depending on the normality of the data.

A two-tailed P-value <0.05 was considered statistically significant.
3 Results

3.1 Participants characteristics

Skin lesion and PBMC samples were collected from two

independent participant cohorts. The discovery cohort included 8

AD patients with depression and 12 without, whose PBMCs were

subjected to RNA sequencing and DEG analysis. The validation

cohort consisted of 11 AD patients with depression and 9 without,

providing clinical samples to validate the identified DEGs (Table 2).

All patients met the established diagnostic criteria. No statistically

significant differences were observed in demographics or skin

severity scores (SCORAD, EASI) between groups. However,

anxiety and depression scale (HADS-A, HADS-D) scores were

substantially higher in AD patients with depression relative to

those without.
Frontiers in Immunology 06
3.2 DEG analysis of AD patients with and
without depression

To identify the molecular features associated with depression in

AD, we analyzed PBMC transcriptomes from both groups. Under

the criteria of P-adjustment <0.05 and log2 FC >1, a total of 394

DEGs were identified, 257 up-regulated and 137 down-regulated

genes, in depressed AD patients compared with non-depressed

counterparts. These genes were visualized using a volcano plot

(Figures 2A, B), and the top 10 up- and down-regulated DEGs were

visualized using a volcano plot (Figure 2C). GSVA analysis revealed

that the gene profiles of AD patients with depression were mainly

enriched in the T-cell receptor signaling pathway, GnRH signaling

pathway, Apelin signaling pathway, and the cGMP-PKG signaling

pathway, etc (Figure 2D).
3.3 Identification of key modules via
WGCNA

WGCNA analysis was constructed to screen out the core genes

associated with depression in AD patients As shown in Figure 3A,
FIGURE 3

Identification of modules highly correlated with depression in AD patients. (A) Topology analysis and mean connectivity assessment across a range
of soft threshold powers. (B) Heatmap illustrating the relevance of various modules with depression. (C) Dendrogram of module clustering, with
distinct module colors representing different gene module. (D) The pink module was identified as the module most significantly correlated with
depression in AD. The scatter plot presenting the correlation between module membership and gene significance within the module.
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with a soft threshold to 14 (R2>0.82) and a high average

connectivity, 15 modules were identified after merging the

strongly associated modules using a height cutoff of 0.25.

Supplementary Figure 1 further validated the test results at power

14 and showed the Topological Overlap Matrix (TOM). The

module clustering dendrogram showed the primed and merged

modules in AD patients with depression (Figure 3B). Correlation

analysis of ME values and clinical manifestations revealed a

significant association between the pink module and depression (r

= 0.48, P < 0.05), while a negative correlation was observed with

non-depression (r = −0.48, P < 0.05) (Figure 3C). Genes in the grey

module, which lack module assignment, were excluded from further

analysis. The scatter plot analysis confirmed the strong association

between the pink module and depression (Figure 3D), and 83 genes

within this module were selected for further analysis.
Frontiers in Immunology 07
3.4 Functional enrichment analysis of
critical module genes

Functional enrichment analysis within the pink module

uncovered the biological roles of DEGs, which most reflected the

key signaling pathways activated in AD patients with depression. GO

analysis revealed associations with neural and immune pathways,

including adaptive immune response, negative regulation of Th17 cell

differentiation, T cell activation, positive regulation of chemokine

CCL5 production and neurotransmitter uptake (Figure 4A). KEGG

enrichment analysis highlighted pathways such as antigen processing

and presentation, natural killer cell-mediated cytotoxicity, apoptosis,

arachidonic acid metabolism, and the MAPK signaling pathway

(Figure 4B). Reactome pathway analysis showed enrichment in

immune system interactions, immunoregulatory interactions

between a lymphoid and a non-lymphoid cell, IL-17 signaling, etc.
FIGURE 4

Functional enrichment analysis of genes within the pink module. (A) GO enrichment analysis in biological processes (BP), (B) KEGG pathway
enrichment analysis, (C) Reactome enrichment analysis, and (D) WikiPathways enrichment analysis identifying key signaling pathways within the pink
module that are associated with AD patients with depression.
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(Figure 4C). WikiPathways analysis emphasized high enrichment

scores in IL-18 signaling pathway, aryl hydrocarbon receptor

pathway, T-cell antigen receptor pathway during staphylococcus

aureus infection, and Th17 cell differentiation pathway (Figure 4D).
3.5 Identification of key genes by machine
learning

Key genes were identified using LASSO regression analysis

and SVM-RFE algorithms. Through the rigorous process of
Frontiers in Immunology 08
LASSO analysis (10-fold CV, mean AUC = 0.81 ± 0.3), 15

feature genes (10 up-regulated and 5 down-regulated) were

yielded (Figures 5A, B), while SVM-RFE (10-fold CV,

AUC = 0.75 ± 0.17) identified 12 genes (7 upregulated and 5

down-regulated) (Figures 5C, D). The Venn diagram revealed

the overlap of key genes identified by the two machine learning

methods discussed above (Figure 5E). From the pool of identified

genes, CHN1 and HEXD-IT1 emerged as upregulated in AD

patients with comorbid depression, whereas CXCR6 was

pinpointed as a downregulated gene. ROC analysis illustrated

revealed that CHN1 and HEXD-IT1 exhibited high AUC values
FIGURE 5

Identification of key genes in AD patients with and without depression using machine learning methods. (A, B) Identification of hub genes in AD
patients with depression using LASSO regression analysis, and (C, D) SVM-RFE algorithms. (E) Venn diagram screening overlapping hub genes
identified by both LASSO regression analysis and SVM-RFE. (F) ROC curve analysis of core genes.
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(> 0.8), indicating a strong association of these two genes with

AD-related depression (Figure 5F).
3.6 Immune-related interactions of key
genes

To delve deeper into the immunological functions of key genes,

we investigated their connections with activators across the four

principal immune cell families. In the Th1 lineage, IL2 exhibited a

substantial positive linkage with CHN1 (Figure 6A). In the Th2

family, markers such as GATA3, CCR3, and IL1RL1 demonstrated

significant associations with CHN1 (Figure 6B). Within the Th17

subset, IL17 and IL23 were strongly correlated with the elevated

expression of CHN1 and HEXD-IT1, underscoring their

significance within the immune response landscape (Figure 6C).

Conversely, no significant associations were detected between

CXCR6 and the Th1, Th2 or Th17 families. However, in the

Treg family, TGFBR2, IL10RB, and TGFB1 were negatively

correlated with CHN1 and HEXD-IT1 but positively correlated
Frontiers in Immunology 09
with CXCR6 (Figure 6D). These findings suggest that the Th2 and

Th17 pathways may drive the comorbidity of anxiety and

depression in AD, while Treg family might exert a counter-

regulatory effect.
3.7 Correlations between key genes and
clinical features

Subsequently, we investigated the association of CHN1 and

CXCR6 with the clinical features of AD patients (Figure 7). CHN1

expression positively correlated with SCORAD (r = 0.53, P = 0.015),

EASI (r = 0.47, P = 0.037) and HADS-D (r = 0.56, P = 0.011).

However, no significant correlation was observed with HADS-A

(r = 0.44, P = 0.053). In contrast, CXCR6 expression showed no

significant correlation with SCORAD (r = -0.28, P = 0.238), EASI

(r = -0.28, P = 0.230), HADS-A (r = -0.17, P = 0.474) and HADS-D

(r = -0.40, P = 0.079). TheX3se findings suggested CHN1 as a

potential biomarker of both lesion severity and psychological

burden in AD patients with comorbid depression.
FIGURE 6

Relationship between immune-related active molecules and key genes. Correlation analysis of key genes with members of the (A) Th1, (B) Th2,
(C) Th17, and (D) Treg family members. *p < 0.05, *p < 0.01, **p < 0.01, ***p < 0.001.
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3.8 Validation of CHN1 expression in
clinical samples

To further verify the correlation between CHN1 and AD-related

depression, qPCR and IHC analysis were performed in samples of

AD patients with (N = 11) and without depression (N = 9), with

cohort demographics and clinical characteristics detailed in Table 2.

IHC staining of the skin lesions revealed markedly stronger CHN1

expression in the lesion tissues of AD patients with depression

compared to those without (Figures 8A, B). Similarly, qPCR

analysis demonstrated significantly higher levels of CHN1

expression in PBMCs of AD patients with depression (Figure 8C).

These findings supported the critical role of CHN1 in the

pathogenesis of AD-related depression.
4 Discussion

This study firstly combined machine learning techniques with

whole-blood transcriptome analysis to explore inflammation-related

depression in AD patients. Through these analyses, we identified

several key neural and immune pathways enriched in depressed AD,

including T-cell receptor signaling, immunoregulatory interactions,

negative regulation of Th17 cell differentiation, and neurotransmitter

uptake. We further pinpointed CHN1 as a potential biomarker closely

linked to both the inflammatory response and depression severity.

These findings suggest that depression in AD may be driven by
Frontiers in Immunology 10
long-lasting peripheral inflammation influencing central nervous

system function.

The comorbidity of AD with anxiety and depression has been

observed through large-scale epidemiological and neuroimaging

studies (8, 41–43). Skin inflammation activates lesional sensory

neurons through cytokine receptors (e.g., IL-31R, IL-4R, etc.) and

ion channel receptors (e.g., TRPV1, PAR2, etc.), which transmit

signals along a three-neuron pathway to the brain, affecting central

itch perception and emotional regulation (44, 45). Chronic pruritus

activates brain regions involved in emotion regulation, thereby

exacerbating anxiety and depression. A DNFB-induced chronic-

pruritus mouse model identified a key anxiety-related circuit- the

parabrachial nucleus (PBN) – central medial nucleus of the thalamus

(CM) – medial prefrontal cortex (mPFC) pathway (46, 47).

Additional mechanisms involving the hippocampus and amygdala

dysfunction, further contribute to psychiatric comorbidities (48–50).

Notably, chronic skin inflammation also affect the nervous system via

the bloodstream, leading to comorbidities across organs and tissues,

known as the “atopic march”. For example, cutaneous inflammation

in AD can gradually promote the progression of allergic colitis

through multiple pathways, including the succinate-Tuft cells-IL-

25-ILC2s axis, mitochondrial DNA-STING signaling pathway, and

the TSLP-eosinophil axis, which all mediate organ-to-organ

communication through the circulation (51, 52). Elevated levels of

pro-inflammatory factors in the circulation are likewise common in

depressed patients, supporting a mechanistic link between peripheral

immune activation and the neuropsychiatric disorders (53, 54). Our
FIGURE 7

Correlation between CHN1 and CXCR6 expression and clinical characteristics. Pearson correlation analysis of CHN1 mRNA expression levels with
clinical characteristics, including (A) SCORAD, (B) EASI, (C) HADS-A, and (D) HADS-D. Correlation of CXCR6 mRNA expression levels with (E)
SCORAD, (F) EASI, (G) HADS-A, and (H) HADS-D.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1677275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1677275
findings expand on this concept, suggesting that inflammatory

mediators transmitted through the blood circulation may

contribute to the development of psychiatric comorbidities in AD.

We further identified CHN1 as a key gene significantly

upregulated in PBMCs of AD patients with depression.

Correlation analysis demonstrated a positive association between

CHN1 expression and clinical severity scores, including HADS-D,

SCORAD, and EASI scores. CHN1 encodes a2-chimaerin, a

regulator of the Rho GTPase - activating protein (GAP), crucial

in neurogenesis and axon guidance (55, 56). As a negative regulator

of Rac1 in hippocampal neurons, loss of CHN1 disrupts dendritic

branching and augments poly - innervated spine formation (57, 58).
Frontiers in Immunology 11
The deficiency of CHN1 during the embryonic or juvenile period

results in a remarkable impact on the cognitive function and

behavioral manifestations (59). Moreover, CHN1 has been

implicated in neurodegenerative diseases, such as Alzheimer’s

disease and Parkinson’s disease (60, 61), and has shown to have

differential expression in inflammatory disorders like asthma (62),

psoriasis (63), and dermatomyositis (64), suggesting a role in neuro-

immune signaling linking peripheral inflammation to the neural

function. In our validation cohort, qPCR and IHC confirm CHN1

upregulation in both peripheral blood and skin lesions of AD

patients with depression. Given prior evidence of neuro-immune

circuit engagement in AD, we propose that neuronal CHN1
FIGURE 8

Verification of CHN1 expression in clinical samples. (A) IHC staining showing representative CHN1 expression in skin lesions of AD patients. (B)
Histograms showing IHC scores of CHN1 expression in AD patients with depression (N = 11) and without depression (N = 9). (C) qPCR analysis of
CHN1 mRNA expression levels in PBMCs from AD patients with (N = 11) and without depression (N = 9). **p < 0.01.
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elevation may remodel Rac1-dependent axons, heighten

pruriceptor excitability, and amplify neuropeptide release that

skews cutaneous immunity (65, 66). These results identify CHN1

as a key neuroimmune mediator and potential biomarker for

depression risk in AD. Clinically, CHN1 assessment could enable

(i) the early identification of high-risk patients, (ii) monitoring of

symptom burden and therapeutic response, and (iii) development

of CHIN1- targeted interventions once mechanistic pathways

are validated. Longitudinal and interventional researches are

warranted to establish robust assay platforms, clinically

meaningful cutoffs, and correlations with standardized

psychiatric outcomes.

Despite these advances, several limitations requiring

consideration. The modest size of the validation cohort may

restrict the statistical power, increase the risk of overfitting and

biological uncertainty, common challenges in small-sample

WGCNA analysis and machine-learning analyses that can

generate overly optimistic performance estimates. Also, age and

SCORAD/EASI scores were not modeled as continuous covariates

in the RNA-seq analysis, which may have inflated the number of

false-positive DEGs. The limitation may restrict the generalizability

of our findings and the robustness of validating CHN1 as a stable

biomarker, particularly given the heterogeneity of immune pathway

dysregulation among different subgroups of patients with AD and

depression comorbidity. Future multi-center studies with larger

cohorts are therefore needed to validate the reliability of CHN1

and refine its clinical applicability. Additionally, mechanistic

studies should further elucidate the pathways underlying f

neuropsychiatric comorbidities in AD, ultimately guiding targeted

therapeutic strategies to improve the mental-health outcomes in

AD populations.
5 Conclusion

This study advances our understanding of the intricate relationship

between AD and depression. By employing bioinformatics and

machine learning techniques, we identified CHN1 as a promising

biomarker associated with depression in AD patients. Clinical

validation confirmed a marked upregulation of CHN1 in peripheral

blood and its strong correlation with disease-severity indices. Moreover,

increased expression of CHN1 in skin lesions of AD patients with

depression underscoredCHN1’s potential as a biomarker or therapeutic

target. Targeting CHN1 may provide new insights into the neuro-

immune mechanisms driving depressive symptoms and pave the way

for more precise and effective management of neuropsychiatric

comorbid symptoms in AD population.
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