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Introduction: The comorbidity of atopic dermatitis (AD) and depression has
garnered increased attention in recent years, yet the immunopathological
mechanisms underlying this connection remain unclear. To bridge this gap, the
study aimed to uncover the immune regulatory networks and identify key genetic
markers involved in the comorbidity of depression in AD.

Methods: We performed RNA sequencing on peripheral blood mononuclear cells
(PBMCs) collected from 20 AD patients with and without depression. By integrating
bioinformatics analyses with machine learning, we conducted weighted gene
co-expression network analysis (WGCNA), functional enrichment analysis, and
employed machine learning models of least absolute shrinkage and selection
operator (LASSO) and support vector machine-recursive feature elimination
(SVM-RFE). Additionally, validation was carried out in an independent cohort of 20
participants to confirm the expression of the identified potential pivotal gene.
Results: A total of 394 differentially expressed genes (DEGs) were identified in AD
patients with depression as compared to those non-depressed counterparts.
Weighted gene co-expression network analysis (WGCNA) pinpointed a pink
module encompassing 83 genes strongly linked to depressive symptoms.
Functional enrichment analysis highlighted biological processes related to
neurotransmitter uptake and the negative regulation of T-helper (Th) 17 cell
differentiation. Furthermore, machine learning models of least absolute shrinkage
and selection operator (LASSO) and support vector machine-recursive feature
elimination (SVM-RFE) consistently identified CHN1 as a potential pivotal gene
upregulated in AD patients with depression. The expression level of CHN1
demonstrated positive correlation with Th2 and Thl7 cytokine signatures, as well
as with the Hospital Anxiety and Depression Scale-Depression (HADS-D) score, and
the Eczema Area and Severity Index (EASI). Validation in an independent cohort of 20
participants confirmed the significant upregulation of CHN1 in depressed AD patients.
Discussion: Together, these findings reveal previously unrecognized
immunoinflammatory axis underlying AD-associated depression, and shed light
on CHN1 as a potential molecular bridge connecting peripheral inflammation
and neuropsychiatric manifestations.

KEYWORDS

atopic dermatitis (AD), depression, CHN1, neuro-immune mechanism,
comorbidity, gene

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677275/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677275/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1677275/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1677275&domain=pdf&date_stamp=2025-11-17
mailto:905625548@qq.com
https://doi.org/10.3389/fimmu.2025.1677275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1677275
https://www.frontiersin.org/journals/immunology

Wang et al.

1 Introduction

Atopic dermatitis (AD), the most common chronic
inflammatory skin disease, affects up to 20% of children and 10%
of adults, imposing significant burdens to patients’ quality of life
and mental health (1-3). Patients with AD are commonly
characterized by eczematous rashes, diffuse xerosis, intense
pruritus, with Staphylococcus aureus infections (4). Numerous
clinical and epidemiological studies have established a significant
association between AD and various psychiatric comorbidities
(5-10). Such mental comorbidity not only exacerbates individual
suffering, but also imposes substantial socioeconomic burdens,
particularly in the long-term management of chronic diseases
(11). Among these psychiatric disorders, depression is one of the
most prevalent, manifesting as persistent low mood, fatigue, and
cognitive impairment (12). Existing research data have revealed a
dose-response relationship between AD severity and the risk of
developing depression (7).In one cohort of 695 patients, 14.68%
exhibited moderate-to-severe depressive symptoms, which closely
fluctuated with the severity of AD (13). Despite these observations,
the central mechanisms linking AD to depression comorbidity
remains poorly defined, impeding progress in early identification
and targeted intervention.

Chronic peripheral inflammation is thought to play a critical
role in triggering central neuropsychiatric disorders (14). Mounting
evidence indicates that peripheral immune dysregulation
contributes to the onset and maintenance of AD-associated
depressive symptoms (15, 16). In AD, a pronounced T-helper 2
(Th2) cell response, marked by the secretion of Interleukin (IL)-4,
IL-5, IL-33, and IL-13, contributes to the formation of a complex
cytokine milieu (17-20). This environment can activate peripheral
sensory nerves that transmit chronic itching signals to the central
nervous system (CNS), thereby affecting neural circuits responsible
for pruritus and mood regulation (21). Additionally, peripheral
inflammatory factors can compromise blood-brain barrier integrity,
and activate microglia and astrocytes, which exacerbates
neuroinflammatory cascades, ultimately contributing to depressive
phenotypes (22-24). However, researches on these mechanisms
remain fragmented, and the interplay between the peripheral
immune networks and central neuropsychiatric comorbidities has
yet to be systemically explored.

Peripheral blood mononuclear cells (PBMCs) from patients
with AD exhibit distinct transcriptional signatures that mirror their
systemic inflammation activation, making them an accessible model
for studying disease-related inflammation. Integrating
transcriptomic data from PBMCs with machine learning
approaches allowing comprehensive analysis of high-dimensional
transcriptomic datasets, can identify key genes, construct immune
regulatory networks, and pinpoint potential biomarkers with
unprecedented accuracy (25, 26).

In this study, we conducted transcriptomic analyses of PBMCs
from AD patients with or without depression, and employed
integrative bioinformatics and machine learning approaches to
systemically delineate the molecular mechanisms underlying the
depression comorbidity. We further validated the key genes and
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examined their associations with immune pathways, the disease
severity, and depressive symptom scores. These findings provide
new insights into the inflammation-depression axis in AD and lay
the groundwork for precision diagnostics and targeted
interventions in AD-related neuropsychiatric comorbidities. The
overall analytical workflow is illustrated in Figure 1.

2 Materials and methods
2.1 Participants

The study enrolled 40 adult patients diagnosed with AD at
Wuhan Union Hospital. The inclusion criteria were: (i) a confirmed
diagnosis of AD, established by dermatologists according to the
guidelines of the American Academy of Allergy, Asthma and
Immunology (27), and (ii) being 18 years of age or older. The
exclusion criteria included: (i) pregnancy or breastfeeding; (ii) the
presence of other known systemic inflammatory diseases,
autoimmune disorders, or infections; and (iii) the use of any
topical medications within the previous 2 weeks or systemic
immunosuppressive or antidepressant therapy within the previous
12 weeks. Among the participants, 19 met the diagnostic criteria for
depressive disorder, based on the psychiatrists’ application using the
Fifth Edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5), detailed in Supplementary Table 1 (28). All
participants provided written informed consent. The study was
approved by the Ethics Committee of Wuhan Union Hospital
(protocol No. UHCT240584), and conducted in accordance with
the Declaration of Helsinki.

2.2 Assessment of clinical characteristics

Clinical characteristics were evaluated including the SCORing
of Atopic Dermatitis (SCORAD), Eczema Area and Severity
Index (EASI), Hospital Anxiety and Depression Scale-Anxiety
(HADS-A) subscale, and HADS-Depression (HADS-D) subscale.
SCORAD assesses objective signs (lesion area and severity, 0-80),
subjective symptoms (pruritus and sleep disturbance, 0-20), and a
visual analog scale (VAS, 0-10) for overall severity, with a total
score ranging from 0 to 100 (29). EASI focuses on objective
evaluation, including lesion area (weighted by body regions, 0-6)
and severity (erythema, infiltration/papulation, excoriation,
lichenification, 0-72), with a total score of 0-72 (30). Each
HADS subscale uses seven 0-3 Likert items to yield anxiety and
depression scores from 0 to 21, with > 8 indicating clinically
significant symptoms (31, 32).

2.3 PBMC isolation, RNA extraction and
library preparation

Peripheral blood samples were collected from participants in
heparin-coated tubes. PBMCs were isolated using Lymphocyte
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FIGURE 1
Analytical workflow of the study

Separation Medium (Corning, Manassas, VA) through density-
gradient centrifugation. Cell counts were determined using the
Cellometer Auto 2000 (Nexcelom, Lawrence, MA), and cells were
cultured at a density of 2 x 10° cells/ml. Total RNA was extracted
from PBMCs using TRIzol reagent (Invitrogen, Carlsbad, CA), and
RNA quality was assessed using the NanoDrop ND-1000
spectrophotometer (ThermoFisher Scientific, Waltham, MA).
Strand-specific RNA-seq libraries were subsequently prepared
with the VAHTS Universal V6 RNA-seq Library Prep Kit
following the manufacturer’s instructions.
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2.4 RNA sequencing and differential gene
expression analysis

Libraries were sequenced on an Illumina NovaSeq 6000
platform, generating ~60 million 150-bp paired-end reads per
sample. After adapter trimming and quality filtering with fastp,
an average of 57.2 million clean reads (Q30 > 93%) remained. These
were aligned to the GRCh38 reference genome with HISAT2
(unique-mapping rate 91.8%), and gene-level abundances were
quantified as both FPKM (StringTie) and raw counts (HTSeq-
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count). All raw data have been deposited in the GEO database
(accession GSE307177).

Differential gene expression analysis comparing AD patients with
and without comorbid depression was performed using the DESeq2
packages in R software. Raw read counts were normalized with the
built-in median-of-ratios method, and baseMean values were used to
estimate average expression levels. Fold changes were calculated from
the normalized counts, and significance was assessed by a negative-
binomial Wald test implemented in DESeq2 (33). Differentially
expressed genes (DEGs) were identified based on the criteria of
adjusted P < 0.05 (Benjamini-Hochberg) and [log, fold change
(logoFC) | > 1 (34). Volcano plots and heatmaps were generated to
visualize DEGs using the ‘heatmap’ and ‘ggplot2’ packages.

2.5 Weighted gene co-expression network
analysis

WGCNA was performed using the WGCNA R package to identify
co-expression gene modules, potentially related to depression in AD. A
soft thresholding was applied to establish a scale-free network topology.
Modules were identified using hierarchical clustering with a dynamic
tree-cut algorithm. Module eigengenes (MEs) were calculated to
represent the first principal component of each module, and
correlation analysis between MEs and clinical traits was performed
to identify depression-related modules (35).

2.6 Pathway enrichment analysis

Pathway enrichment in AD-related depression datasets was
evaluated using Gene Set Variation Analysis (GSVA). All hallmark
gene sets were obtained from the Molecular Signature Database
(MSigDB). An adjusted P-value < 0.05 was considered statistically
significant after Benjamini and Hochberg correction (36).

2.7 Functional enrichment analysis

Functional enrichment analysis of DEGs was performed using
the Gene Ontology (GO) plot, ReactomePA and clusterProfiler
packages in R. GO functional annotation, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses, Reactome and
WikiPathways enrichment analysis were conducted to explore the
biological roles of hub genes. The annotation terms with P-value <
0.05 were considered significantly enriched, and results were
visualized in a bubble diagram and heat map (37, 38).

2.8 Machine learning for key genes

Two machine learning algorithms were employed to identify
key genes associated with depression in AD patients. Least Absolute
Shrinkage and Selection Operator (LASSO) was performed (glmnet
R package) to select a subset of genes with the highest predictive
power. The model was fitted with 10-fold cross-validation and
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nlambda = 100, and the A value was selected to minimize the mean-
squared error, which represents the optimal LASSO fit and
minimizes the cross-validation error. The gene count at this point
is taken as the number of disease-signature genes. Support Vector
Machine Recursive Feature Elimination (SVM-RFE) was conducted
(caret package) to rank genes based on their importance in
predicting depression. Ten-fold cross-validation (with a fixed
random seed) was applied to the SVM-RFE pipeline. The average
rank of each feature across all folds was computed to determine the
optimal feature subset and used plotting functions to visualize the
trends in both generalization error and classification accuracy
across gene numbers. A Venn diagram was constructed to
identify overlapping genes selected by both methods (38-40).

2.9 Receiver operating characteristic curve
analysis

ROC curve analysis was performed in R to assess the diagnostic
performance of key genes. The area under the curve (AUC) was
calculated to validate the diagnostic value of key genes.

2.10 Quantitative reverse transcription-
polymerase chain reaction

Total RNA extracted from participants’ PBMCs was reverse—
transcribed into cDNA. Following cDNA synthesis, RT-qPCR was
conducted using CHN1-specific primers (Table 1), and the relative
expression levels were quantified and statistically analyzed using
standard AACt methods and analyzed statistically.

2.11 Immunohistochemistry staining

Skin lesion samples all collected from the limbs were used for
IHC. Slides were immunostained for CHN1, and the extent of
immunostaining was reviewed and scored by two independent
dermatopathologists, blinded to clinical details. Immunostaining
scores were calculated by multiplying the percentage of positive cells
by staining intensity.

2.12 Statistical analysis

All statistical analyses were performed using R software.
Continuous variables were compared using Student’s t-test, and

TABLE 1 The primer sequences of CHN1 and ACTB.

Forward primer Reverse primer

Gene

(5" to 3)) (5" to 3))
CHN1  CCTGTACTTGCGAGGTGGAA ~CCAAAGTGTAGGTCCCTGGC
ACTB | GCCGCCAGCTCACCAT GCTGACTGTGAACTCCCTCC

CHNI1, chimerin-1; ACTB, B- Actin.
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TABLE 2 Characteristics of study participants and data on disease characteristics and comorbid depression.

Discover set in AD Validation set in AD
Characteristic Depression No depression Depression No depression
n=8 n=12 P-value n=11 n=9 P-value
Age (years), mean + SD 49.00 + 18.89 36.08 + 18.53 0.147 3891 + 16.71 40.11 + 17.00 0.876
Female, n (% 3 (37.50 4(33.33 > 0.999 5 (45.45 > 0.999
emale, n (%) ( ) ( ) ( ) 3 (33.33)
Body mass index (kg/m?), mean
+ D 23.04 + 1.74 21.59 + 1.63 0.200 2326 + 1.98 22.86 + 1.52 0.725
Disease duration (years), mean +
D 7.25 + 5.90 5.88 + 5.53 0.602 7.73 + 6.66 8.33 + 7.00 0.845
SCORAD, mean + SD 62.24 + 17.86 4828 +20.10 0.130 63.71 + 18.23 58.29 + 20.08 0.838
EASI, mean + SD 22.13 +10.83 17.28 + 1351 0.408 37.85 + 15.51 34.30 + 18.88 0.837
HADS-A, mean + SD 11.50 + 4.50 5.42 + 3.90 0.005 1527 + 237 444 +328 <0.0001
HADS-D, mean + SD 13.00 + 3.07 3.33 +2.61 <0.001 14.36 + 2.91 3.33 £2.50 < 0.0001

AD, atopic dermatitis; SD, standard deviation; SCORAD, scoring atopic dermatitis; EASI, eczema area and severity index; HADS-A, Hospital Anxiety and Depression Scale-Anxiety; HADS-D,
Hospital Anxiety and Depression Scale-Depression.
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Baseline gene expression analysis in AD patients with and without depression. (A) Volcano plot showing DEGs in depressed AD patients compared
with non-depressed counterparts. Blue dots represent downregulated genes and red plots represent upregulated genes. (B) Bar chart showing the
number of down- and up-regulated DEGs in AD patients with depression. (C) Top 10 up- and down-regulated DEGs ranked by fold change and
Log2FC (P < 0.05). (D) Heatmap displaying GSVA enrichment analysis results, highlighting key pathways associated with depression in AD patients.
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categorical variables were compared using chi-square or Fisher’s
exact test. Correlation analysis was performed using Pearson’s
correlation coefficients, depending on the normality of the data.
A two-tailed P-value <0.05 was considered statistically significant.

3 Results
3.1 Participants characteristics

Skin lesion and PBMC samples were collected from two
independent participant cohorts. The discovery cohort included 8
AD patients with depression and 12 without, whose PBMCs were
subjected to RNA sequencing and DEG analysis. The validation
cohort consisted of 11 AD patients with depression and 9 without,
providing clinical samples to validate the identified DEGs (Table 2).
All patients met the established diagnostic criteria. No statistically
significant differences were observed in demographics or skin
severity scores (SCORAD, EASI) between groups. However,
anxiety and depression scale (HADS-A, HADS-D) scores were
substantially higher in AD patients with depression relative to
those without.

10.3389/fimmu.2025.1677275

3.2 DEG analysis of AD patients with and
without depression

To identify the molecular features associated with depression in
AD, we analyzed PBMC transcriptomes from both groups. Under
the criteria of P-adjustment <0.05 and log, FC >1, a total of 394
DEGs were identified, 257 up-regulated and 137 down-regulated
genes, in depressed AD patients compared with non-depressed
counterparts. These genes were visualized using a volcano plot
(Figures 2A, B), and the top 10 up- and down-regulated DEGs were
visualized using a volcano plot (Figure 2C). GSVA analysis revealed
that the gene profiles of AD patients with depression were mainly
enriched in the T-cell receptor signaling pathway, GnRH signaling
pathway, Apelin signaling pathway, and the cGMP-PKG signaling
pathway, etc (Figure 2D).

3.3 ldentification of key modules via
WGCNA

WGCNA analysis was constructed to screen out the core genes
associated with depression in AD patients As shown in Figure 3A,
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with a soft threshold to 14 (R®>0.82) and a high average
connectivity, 15 modules were identified after merging the
strongly associated modules using a height cutoff of 0.25.
Supplementary Figure 1 further validated the test results at power
14 and showed the Topological Overlap Matrix (TOM). The
module clustering dendrogram showed the primed and merged
modules in AD patients with depression (Figure 3B). Correlation
analysis of ME values and clinical manifestations revealed a
significant association between the pink module and depression (r
= 0.48, P < 0.05), while a negative correlation was observed with
non-depression (r = —0.48, P < 0.05) (Figure 3C). Genes in the grey
module, which lack module assignment, were excluded from further
analysis. The scatter plot analysis confirmed the strong association
between the pink module and depression (Figure 3D), and 83 genes
within this module were selected for further analysis.
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3.4 Functional enrichment analysis of
critical module genes

Functional enrichment analysis within the pink module
uncovered the biological roles of DEGs, which most reflected the
key signaling pathways activated in AD patients with depression. GO
analysis revealed associations with neural and immune pathways,
including adaptive immune response, negative regulation of Th17 cell
differentiation, T cell activation, positive regulation of chemokine
CCL5 production and neurotransmitter uptake (Figure 4A). KEGG
enrichment analysis highlighted pathways such as antigen processing
and presentation, natural killer cell-mediated cytotoxicity, apoptosis,
arachidonic acid metabolism, and the MAPK signaling pathway
(Figure 4B). Reactome pathway analysis showed enrichment in
immune system interactions, immunoregulatory interactions
between a lymphoid and a non-lymphoid cell, IL-17 signaling, etc.
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enrichment analysis, (C) Reactome enrichment analysis, and (D) WikiPathways enrichment analysis identifying key signaling pathways within the pink

module that are associated with AD patients with depression.
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(Figure 4C). WikiPathways analysis emphasized high enrichment
scores in IL-18 signaling pathway, aryl hydrocarbon receptor
pathway, T-cell antigen receptor pathway during staphylococcus
aureus infection, and Th17 cell differentiation pathway (Figure 4D).

3.5 Identification of key genes by machine

learning

Key genes were identified using LASSO regression analysis
and SVM-RFE algorithms. Through the rigorous process of

A 13 13 1 10 0
(=3
8 -
2
c
8
g 8-
o e
T T T T T
-5 -4 -3 -2 -1
Log Lambda
D ¢,
S
wn
@
o
s o
[T
3
5 8
- o
o
8 4
o
0
S = 2 -0.146
T T T T T T T
2 4 6 8 10 12 14
Number of Features
1.0 —
.
///
2&8 //’/
g
go.s L
] .
8
Qos s
o .
=] ’
2 .
'_u.z /’,
e == Reference
0wl b7 ~——— ROC (AUC = 0.98)
00 0.2 04 0.6 08 1.0
False Positive Rate
FIGURE 5

B

Mean-Squared Error

True Positive Pate

0.15 0.20 0.25

0.10

LASSO analysis (10-fold CV, mean AUC = 0.81 +
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yielded (Figures 5A, B), while SVM-RFE (10-fold CV,
AUC = 0.75 * 0.17) identified 12 genes (7 upregulated and 5
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0.3), 15

down-regulated) (Figures 5C, D). The Venn diagram revealed

the overlap of key genes identified by the two machine learning

methods discussed above (Figure 5E). From the pool of identified

genes, CHNI and HEXD-ITI emerged as upregulated in AD
patients with comorbid depression, whereas CXCR6 was
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(> 0.8), indicating a strong association of these two genes with
AD-related depression (Figure 5F).

3.6 Immune-related interactions of key
genes

To delve deeper into the immunological functions of key genes,
we investigated their connections with activators across the four
principal immune cell families. In the Th1 lineage, IL2 exhibited a
substantial positive linkage with CHNI (Figure 6A). In the Th2
family, markers such as GATA3, CCR3, and ILIRLI demonstrated
significant associations with CHNI (Figure 6B). Within the Th17
subset, IL17 and IL23 were strongly correlated with the elevated
expression of CHNI and HEXD-ITI, underscoring their
significance within the immune response landscape (Figure 6C).
Conversely, no significant associations were detected between
CXCR6 and the Thl, Th2 or Thl7 families. However, in the
Treg family, TGFBR2, ILIORB, and TGFBI were negatively
correlated with CHNI and HEXD-ITI but positively correlated

10.3389/fimmu.2025.1677275

with CXCR6 (Figure 6D). These findings suggest that the Th2 and
Th17 pathways may drive the comorbidity of anxiety and
depression in AD, while Treg family might exert a counter-
regulatory effect.

3.7 Correlations between key genes and
clinical features

Subsequently, we investigated the association of CHNI and
CXCR6 with the clinical features of AD patients (Figure 7). CHNI
expression positively correlated with SCORAD (r = 0.53, P = 0.015),
EASI (r = 0.47, P = 0.037) and HADS-D (r = 0.56, P = 0.011).
However, no significant correlation was observed with HADS-A
(r = 0.44, P = 0.053). In contrast, CXCR6 expression showed no
significant correlation with SCORAD (r = -0.28, P = 0.238), EASI
(r=-0.28, P = 0.230), HADS-A (r = -0.17, P = 0.474) and HADS-D
(r = -0.40, P = 0.079). TheX3se findings suggested CHNI as a
potential biomarker of both lesion severity and psychological

burden in AD patients with comorbid depression.
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3.8 Validation of CHN1 expression in
clinical samples

To further verify the correlation between CHNI and AD-related
depression, qPCR and IHC analysis were performed in samples of
AD patients with (N = 11) and without depression (N = 9), with
cohort demographics and clinical characteristics detailed in Table 2.
THC staining of the skin lesions revealed markedly stronger CHNI
expression in the lesion tissues of AD patients with depression
compared to those without (Figures 8A, B). Similarly, qPCR
analysis demonstrated significantly higher levels of CHNI
expression in PBMCs of AD patients with depression (Figure 8C).
These findings supported the critical role of CHNI in the
pathogenesis of AD-related depression.

4 Discussion

This study firstly combined machine learning techniques with
whole-blood transcriptome analysis to explore inflammation-related
depression in AD patients. Through these analyses, we identified
several key neural and immune pathways enriched in depressed AD,
including T-cell receptor signaling, immunoregulatory interactions,
negative regulation of Th17 cell differentiation, and neurotransmitter
uptake. We further pinpointed CHNT as a potential biomarker closely
linked to both the inflammatory response and depression severity.
These findings suggest that depression in AD may be driven by
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long-lasting peripheral inflammation influencing central nervous
system function.

The comorbidity of AD with anxiety and depression has been
observed through large-scale epidemiological and neuroimaging
studies (8, 41-43). Skin inflammation activates lesional sensory
neurons through cytokine receptors (e.g., IL-31R, IL-4R, etc.) and
ion channel receptors (e.g, TRPV1, PAR2, etc.), which transmit
signals along a three-neuron pathway to the brain, affecting central
itch perception and emotional regulation (44, 45). Chronic pruritus
activates brain regions involved in emotion regulation, thereby
exacerbating anxiety and depression. A DNFB-induced chronic-
pruritus mouse model identified a key anxiety-related circuit- the
parabrachial nucleus (PBN) - central medial nucleus of the thalamus
(CM) - medial prefrontal cortex (mPFC) pathway (46, 47).
Additional mechanisms involving the hippocampus and amygdala
dysfunction, further contribute to psychiatric comorbidities (48-50).
Notably, chronic skin inflammation also affect the nervous system via
the bloodstream, leading to comorbidities across organs and tissues,
known as the “atopic march”. For example, cutaneous inflammation
in AD can gradually promote the progression of allergic colitis
through multiple pathways, including the succinate-Tuft cells-IL-
25-TLC2s axis, mitochondrial DNA-STING signaling pathway, and
the TSLP-eosinophil axis, which all mediate organ-to-organ
communication through the circulation (51, 52). Elevated levels of
pro-inflammatory factors in the circulation are likewise common in
depressed patients, supporting a mechanistic link between peripheral
immune activation and the neuropsychiatric disorders (53, 54). Our
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findings expand on this concept, suggesting that inflammatory
mediators transmitted through the blood circulation may
contribute to the development of psychiatric comorbidities in AD.
We further identified CHNI as a key gene significantly
upregulated in PBMCs of AD patients with depression.
Correlation analysis demonstrated a positive association between
CHNI expression and clinical severity scores, including HADS-D,
SCORAD, and EASI scores. CHNI encodes a2-chimaerin, a
regulator of the Rho GTPase - activating protein (GAP), crucial
in neurogenesis and axon guidance (55, 56). As a negative regulator
of Racl in hippocampal neurons, loss of CHNI disrupts dendritic
branching and augments poly - innervated spine formation (57, 58).

10.3389/fimmu.2025.1677275

The deficiency of CHNI during the embryonic or juvenile period
results in a remarkable impact on the cognitive function and
behavioral manifestations (59). Moreover, CHNI has been
implicated in neurodegenerative diseases, such as Alzheimer’s
disease and Parkinson’s disease (60, 61), and has shown to have
differential expression in inflammatory disorders like asthma (62),
psoriasis (63), and dermatomyositis (64), suggesting a role in neuro-
immune signaling linking peripheral inflammation to the neural
function. In our validation cohort, gPCR and IHC confirm CHNI
upregulation in both peripheral blood and skin lesions of AD
patients with depression. Given prior evidence of neuro-immune
circuit engagement in AD, we propose that neuronal CHNI
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Verification of CHN1 expression in clinical samples. (A) IHC staining showing representative CHN1 expression in skin lesions of AD patients. (B)

Histograms showing IHC scores of CHN1 expression in AD patients with depression (N = 11) and without depression (N

=9). (C) gPCR analysis of

CHN1 mRNA expression levels in PBMCs from AD patients with (N = 11) and without depression (N = 9). **p < 0.01.
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elevation may remodel Racl-dependent axons, heighten
pruriceptor excitability, and amplify neuropeptide release that
skews cutaneous immunity (65, 66). These results identify CHNI
as a key neuroimmune mediator and potential biomarker for
depression risk in AD. Clinically, CHNI assessment could enable
(i) the early identification of high-risk patients, (ii) monitoring of
symptom burden and therapeutic response, and (iii) development
of CHINI- targeted interventions once mechanistic pathways
are validated. Longitudinal and interventional researches are
warranted to establish robust assay platforms, clinically
meaningful cutoffs, and correlations with standardized
psychiatric outcomes.

Despite these advances, several limitations requiring
consideration. The modest size of the validation cohort may
restrict the statistical power, increase the risk of overfitting and
biological uncertainty, common challenges in small-sample
WGCNA analysis and machine-learning analyses that can
generate overly optimistic performance estimates. Also, age and
SCORAD/EASI scores were not modeled as continuous covariates
in the RNA-seq analysis, which may have inflated the number of
false-positive DEGs. The limitation may restrict the generalizability
of our findings and the robustness of validating CHNI as a stable
biomarker, particularly given the heterogeneity of immune pathway
dysregulation among different subgroups of patients with AD and
depression comorbidity. Future multi-center studies with larger
cohorts are therefore needed to validate the reliability of CHNI
and refine its clinical applicability. Additionally, mechanistic
studies should further elucidate the pathways underlying f
neuropsychiatric comorbidities in AD, ultimately guiding targeted
therapeutic strategies to improve the mental-health outcomes in
AD populations.

5 Conclusion

This study advances our understanding of the intricate relationship
between AD and depression. By employing bioinformatics and
machine learning techniques, we identified CHNI as a promising
biomarker associated with depression in AD patients. Clinical
validation confirmed a marked upregulation of CHNI in peripheral
blood and its strong correlation with disease-severity indices. Moreover,
increased expression of CHNI in skin lesions of AD patients with
depression underscored CHNT’s potential as a biomarker or therapeutic
target. Targeting CHNI may provide new insights into the neuro-
immune mechanisms driving depressive symptoms and pave the way
for more precise and effective management of neuropsychiatric
comorbid symptoms in AD population.
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