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Background: Neutrophil extracellular traps (NETs) are fibrous, web like
chromatin structures released by activated neutrophils that entrap and
immobilize pathogens through histones, granule derived proteolytic enzymes,
and myeloperoxidase (MPO) dependent mechanisms. Beyond host defense,
NETs have been implicated in tumor progression; yet anticancer activity also
has been reported, and findings vary across specimen types (tumor tissue versus
blood) and detection methods, antibody panels, leaving their role in oncogenesis
uncertain. We performed a systematic review and meta-analysis to define the
prognostic significance of NETs in cancer, stratified by specimen type, detection
technique, and antibody panels.

Methods: Following PRISMA guidelines, we searched PubMed, EMBASE, and the
Cochrane Library for studies published through August 10, 2023, that reported
quantitative NET measurements linked to oncologic outcomes.

Results: Fifteen studies (5,202 patients; publication years 2016-2023) reporting
hazard ratios (HRs) for overall survival (OS) and disease free survival (DFS) relative
to NET levels met inclusion criteria. Six studies evaluated tumor derived NETs in
tissue and nine assessed circulating NETs in blood. Among tissue studies, two
used immunohistochemistry for citrullinated histone H3 (H3Cit) alone, and four
applied multiplex immunofluorescence for MPO/H3Cit or neutrophil elastase
(NE)/H3Cit. Among blood studies, enzyme linked immunosorbent assays
targeting MPO/DNA predominated, followed by H3Cit assays. Higher NET
levels were significantly associated with worse OS (HR 1.80; 95% Cl 1.35-2.41)
and DFS (HR 2.26; 95% CI 1.82-2.82), irrespective of tissue or blood based
measurement. Prognostic associations were robust for MPO/DNA, H3Cit, and
NE, but not for cell free DNA.

Conclusion: Elevated NET levels predict poorer outcomes in patients with
cancer independent of specimen source and most analytic modalities (except
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cell free DNA), supporting NETs as a promising biomarker for risk stratification
and precision oncologic decision making.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/
view/CRD42025596821.

neutrophil extracellular traps, neoplasms, prognosis, systematic review as topic, meta-

analysis as topic

Introduction

Neutrophils are the first responders of the innate immune system,
and they play a pivotal role not only in defending the host against
invading pathogens (1, 2) but also in modulating the tumor
microenvironment and influencing cancer progression (3). In
addition to their conventional antimicrobial functions, recent
attention has been focused on neutrophil extracellular traps (NETs)
and fibrous web-like chromatin structures released by activated
neutrophils (4-7). NETs contribute to host defense by entrapping
and immobilizing pathogens through a process that relies on
histones, granule-derived proteolytic enzymes, and myeloperoxidase
(MPO) (6, 8).

Emerging evidence has highlighted the pro-tumorigenic role of
NETs in various malignancies (8-10). This role is primarily
attributed to their involvement in cellular injury and tissue
regeneration, which in turn trigger excessive inflammatory
responses (8-10). NETs have been reported to facilitate tumor
cell proliferation (11), metastatic dissemination (12-14), immune
evasion (15), and cancer-associated thrombosis (16-18).

Nevertheless, NETs have also been reported to exert antitumor
effects in certain contexts, and their functional outcomes appear to vary
according to tumor type and microenvironmental conditions (19).
Moreover, studies investigating the prognostic effect of NET's in cancer
have used different sample sources, including blood and tumor tissues.
A wide range of detection methods, such as immunohistochemistry
(IHC) (20, 21), immunofluorescence (IF) (22-25), and enzyme-linked
immunosorbent assay (ELISA) (11, 26-33) have been employed using
diverse antibodies, including citrullinated histone H3 (H3Cit) (20, 21,
26-29), MPO/H3Cit (22-24), neutrophil elastase (NE)/H3Cit (25),
MPO/DNA (11, 27, 28, 30, 31), NE (27, 29, 32), and cell-free DNA
(cfDNA) (26, 27). This methodological variability significantly
contributes to heterogeneity in results, complicating the
interpretation and comparison of results across studies.

We aimed to address the current literature gaps by
systematically analyzing the prognostic relevance of NETs in
cancer. We specifically evaluated the heterogeneous findings of
NET-related studies by stratifying our analyses based on sample
source (tissue vs. blood), detection methodologies, and antibody
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selection. Through this comprehensive meta-analysis, we aimed to
deepen our understanding of the role of NET's in cancer progression
and contribute to future clinical applications, including the
development of NET-targeted therapeutic strategies.

Methods
Search strategy

This meta-analysis was prospectively submitted to PROSPERO
(CRD42025596821) and was approved by the Institutional Review
Board of the Catholic University of Korea, College of Medicine
(UC22ZASI0033). A comprehensive literature search of relevant
English-language articles published up to August 10, 2023, was
conducted across three major electronic databases (PubMed,
EMBASE, and the Cochrane Library) using the search strategy
outlined in Supplementary Table S1. Additionally, a manual search
was performed by screening the reference list of a key article (10).
Potentially relevant titles were cross-checked with records from the
database search, and any unmatched studies underwent full-text
review in accordance with the predefined inclusion and exclusion
criteria. EndNote X20 (Build 10136; Thomson Reuters, New York,
NY, USA) was used to manage the retrieved studies.

Inclusion and exclusion criteria

This meta-analysis applied the following inclusion criteria: 1)
studies on the relationship between NETs and prognosis of patients
with cancer was assessed; 2) NETs identified with accurate
examination; 3) studies that provided sufficient information on
hazard ratios (HRs) of patient survival; 4) studies that demonstrated
an association between NETSs and clinicopathological features; and
5) articles written in English language. The following exclusion
criteria were applied: 1) duplicate studies, reviews, case reports,
letters, and conference proceedings; 2) studies that did not show an
association between NETs and survival or clinicopathological
parameters; 3) studies related to cancer cell lines and animal
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models; and 4) studies with insufficient data on HRs and 95%
confidence intervals (CIs) that could be extracted or calculated.

Data extraction and assessment of study
quality

Data extraction was performed by five independent reviewers
(S. L, EYK, WP, YS.L, and KY.). In cases of disagreement,
consensus was reached among them. The following data were
extracted from all included studies: author, year, ethnicity,
number of patients, antibody, detection method, organ, sample
type, pathological stage, and survival outcomes such as overall
survival (OS) or disease-free survival (DFS). Risk of bias was
assessed, and studies that met the inclusion criteria were selected
using the Quality in Prognostic Studies tool. In studies without HRs,
we used data on the Kaplan-Meier curve to calculate the HR using
the method described by Parmar et al. (34).

Statistical analysis

Statistical analysis was conducted using Review Manager
Software (version 5.4.1; Cochrane Collaboration, Copenhagen,
Denmark). Pooled HRs with 95% CIs were used to assess the
association between NETs and OS. HRs >1 indicated poor
survival, whereas those <1 indicated better survival. The
association between NETs and other clinicopathological
parameters was analyzed using the Mantel-Haenszel pooled odds
ratio (OR) with 95% ClIs and combined effective value. An I? value
of <50% indicated no heterogeneity among the studies. A subgroup
analysis was conducted to explore potential sources of
heterogeneity. The Preferred Reporting Items for Systematic
Reviews and Meta-Analysis flow diagram and forest plots were
generated using Review Manager software.

Results
Eligible studies

An initial literature search included 3,130 articles from PubMed,
EMBASE, and the Cochrane Library (Figure 1). From the reference
list, several articles were initially considered potentially relevant, but
nearly all had already been captured through our database searches,
supporting the robustness of our strategy. One additional article
mentioned “angiogenesis,” yet full-text assessment revealed that it
was study on cancer cell lines and therefore did not meet our
inclusion criteria. After removing 862 duplicate articles, the
remaining 2,268 articles were screened based on the reference type
criteria. The study by Wang et al. (35) was excluded from the
systematic review owing to discrepancies among in figure legends,
corresponding graphical data, and main text descriptions.
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Considering available data on prognosis, clinicopathological
parameters, evaluation methods, and their association with NETs,
15 articles met the inclusion criteria (Figure 1). Most of the studies
showed a low risk of bias (Supplementary Figure S1).

Study characteristics

Fifteen studies were selected for the final analysis that
investigated the relationship between NETs and survival rates.
These studies were conducted in seven different countries and
published between 2016 and 2023 (Table 1; Supplementary Table
S2). Among them, studies analyzing progression-free survival (PFS)
(22, 29) and cancer-specific survival (CSS) (22) were limited to two
and one, respectively, making further analysis challenging (Table 1).
The total number of patients included was 5,202, with individual
study sizes ranging between 27-954 (Table 1; Supplementary Table
S2). The patients were divided into groups with high and low NET
levels for comparative analysis.

High NETs levels and prognosis in patients
with solid cancer

We evaluated the correlation between NETs and prognosis of
patients with solid cancers. Pooled HR for OS and DFS
demonstrated that high NETs levels were significantly associated
with poor OS (HR: 1.80, 95% CI: 1.35-2.41, P < 0.0001) (11, 20, 25—
28, 30, 32) and DFS (HR: 2.26, 95% CI: 1.82-2.82,
P < 0.00001) (Figure 2).

Subgroup analysis based on sample type demonstrated that the
association between high NETs levels and poor prognosis was
consistent, irrespective of sample type (Figure 2). When subgroup
analyses were conducted according to the primary organ site
(Supplementary Figure S2), the included studies were classified
into gastrointestinal cancers [stomach (29, 30), n = 3; rectum (11,
24, 31), n = 3], hepatobiliary cancers [pancreas (21, 22), n = 2; liver
(20), n = 1], and other malignancies [breast (33), urinary bladder
(25), and uterine cervix (23), n = 1 each]. Within these categories,
elevated levels of NETs were consistently associated with poorer
prognosis. In contrast, three studies (26, 27, 32) evaluated the
prognostic role of NET's across a broad spectrum of malignancies.
In this heterogeneous cohort, no significant association between
NETs and prognosis was identified. Except for the study by
Martinez—Cannon et al. (33), all the included studies conducted
multivariate analyses and demonstrated a significant association
between high NET levels and pooled HRs (Figure 2; Supplementary
Figure S3). As Martinez—Cannon et al. (33) did not report HR, data
from their Kaplan-Meier curves were extracted and analyzed using
the method described by Parmar et al. (34). The analysis revealed no
significant association between high NETs and prognosis
(Supplementary Figure S3). Subgroup analyses stratified according
to ethnicity consistently showed that high NET levels were
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FIGURE 1

PRISMA flow diagram showing the study selection process. Of 15 studies included in the qualitative analysis, some utilized co-staining approaches
(e.g., H3Cit/NE and H3Cit/MPO). The total number of markers exceeds the number of studies, as some studies analyzed multiple antibodies. PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analyses; H3Cit, citrullinated histone H3; MPO, myeloperoxidase; NE, neutrophil elastase.

associated with a poor prognosis across all ethnic groups
(Supplementary Figure S4).

Subgroup analyses by detection methods
and antibodies used for NETs analysis

For tissue samples, ITHC with H3Cit alone or multiplex IF with co-
staining with MPO/H3Cit or NE/H3Cit was utilized. The most
frequently used assay for blood samples was ELISA for the MPO/
DNA complex, with H3Cit measurement being the next most
common method. In the OS analysis, MPO/DNA (HR: 2.04, 95%
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CL: 1.43-2.92, P < 0.0001), H3Cit (HR: 2.37, 95% CI: 1.48-3.78,
P =0.0003), NE (HR: 1.79, 95% CI: 1.32-2.44, P = 0.0002), and H3Cit/
NE co-staining (HR: 3.75, 95% CI: 1.67-8.44, P = 0.001) demonstrated
significant associations, while for DFS, MPO/DNA (HR: 2.65, 95% CI:
1.88-3.73, P < 0.00001), H3Cit (HR: 2.14, 95% CIL: 1.45-3.15,
P =0.0001), and H3Cit/MPO co-staining (HR: 1.99, 95% CI: 1.36-
291, P =0.0004) showed significant associations. Notably, MPO-DNA
and H3Cit levels were associated with both OS and DFS, indicating
their potential as key biomarkers. In contrast, NE-DNA (P = 0.97) and
cfDNA (P = 0.44) levels were not significantly different. Furthermore,
MPO, H3Cit-DNA, nucleosomes, and NE-DNA were evaluated in
only one study, limiting the feasibility of further analyses (Figure 3).
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TABLE 1 Main characteristics of all NET studies included in the meta-analysis.

Patients o Detection . Survival
Authors year Ethnicity Organ Antibody
(n) method type
Shinde-Jadhav et al., 2021 (25) 104 Caucasian Bladder Multiplex IF NE/H3Cit Presence oS
Hepatobiliary
Xu et al,, 2021 (21) 135 Asian pancreas IHC H3Cit Presence [oN
(Pancreas)
. X . . i Quartile 3
Yan et al., 2021 (23) 126 Asian Uterine cervix Multiplex IF MPO/H3Cit (275%) DFS
2 0
Hepatobiliary
Tissue Chen et al., 2022 (22) 205 Asian pancreas Multiplex IF MPO/H3Cit Presence PFS, CSS
(Pancreas)
Hepatobilia >8 cells/
1115
Jiang et al., 2022 (20) 80 Asian patobliary IHC H3Cit HPF DFS, 0S
pancreas (Liver)
(x400)
174
traini Gastrointestinal Medi
Zhong et al., 2023 (24) (training) Asian astrotntesiin Multiplex IF | MPO/H3Cit ecian DFS
66 (Rectum) (=50%)
(validation)
. . Medi
Tohme et al, 2016 (31) 35 Caucasian Gastrointestinal ELISA MPO/DNA edian DFS
(Rectum) (=50%)
cfDNA,
Various H3Cit, Quartile 3
Thali 1., 2018 (27 i ELISA
dlin et al, 2018 (27) 60 Caucasian malignancies s MPO, MPO/ (=275%)* 08
DNA, NE
X cfDNA, X
Grilz et al., 2019 (26) 957 Caucasian Various ELISA H3Cit, Quartile 3 0s
malignancies (=75%)
Nucleosomes
trointestinal Medi
Yazdani et al, 2019 (11) 27 Caucasian Gastrointestin ELISA MPO/DNA edian 0s
(Rectum) (=50%)
Blood Gastrointestinal Medi
o0 Zhang et al,, 2020 (29) 53 Asian astrotntestin ELISA H3Cit, NE cdian PES
(Stomach) (=50%)
Vari H3Cit/DNA, Not
Rosell et al., 2021 (32) 106 Caucasian ‘arlous' ELISA v ,0 (6N
malignancies NE available
Gastrointestinal Median
Li et al., 2023 (30 Asi ELISA MPO/DNA DES,
i et al., 2023 (30) 80 sian (Stomach) S O/ (250%) S, OS
>0.6705
Martinez—-Cannon et al., 2023 (33) 40 Caucasian Breast ELISA NE/DNA optical DFS¢
density
133 (H3Cit) . . . .
1 H s M
Okamoto et al, 2023 (28) 67 (MPO/ Asian Gastrointestina ELISA 3cit edian DES, 0S
DNA) (Stomach) MPO/DNA (=50%)

OS, overall survival; DFS, disease-free survival; PES, progression free survival; CSS, cancer specific survival; THC, immunohistochemistry; IF, immunofluorescence; ELISA, enzyme-linked
immunosorbent assay; cfDNA, cell-free DNA; NETSs, neutrophil extracellular traps; H3Cit, citrullinated histone H3; MPO, myeloperoxidase; NE, neutrophil elastase; “cfDNA: >597.5ng/ml,
H3Cit: >29.8ng/ml, MPO: >213.4ng/ml, MPO/DNA: not shown, NE: >110 ng/ml; "cfDNA: >442.6ng/ml, H3Cit: >87.8ng/ml, Nucleosomes: >3.0 multiple-of-the-median, MPO/DNA: not
shown, NE: 2110 ng/ml; “The hazard ratio was calculated them from Kaplan-Meier curve data using the method described by Parmar et al.

High NETs levels and clinicopathological
parameters

Principal clinicopathological parameters associated with
elevated NETs levels, as reported across all studies included in the
meta-analysis, are summarized in Table 2; Supplementary Table S2;
Figure 4. The pooled analysis indicated that larger tumor size (OR:
2.17; 95% CI: 1.28-5.74; P = 0.02) and advanced TNM stage (OR:
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1.63; 95% CI: 1.07-2.50; P = 0.0003) were significantly associated
with high NETs levels (Table 2).

Discussion

Our analysis confirmed that elevated NETs levels were
associated with poor prognosis in patients with cancer, regardless
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Hazard Ratio Hazard Ratio
Study or Subgroup SE_Weight IV, Random, 95% CI 5% CL
2.1.1Tissue
Jiang 2022 HC 09804 04312 75%  267[114,621) —
Shinde-Jathay 2021 Multiplex IF 13229 04133 79%  375[167,8.44) —
Subtotal (95% CI) 15.4%  3.19[1.78,5.72] ->
Heterogeneity: Tau* = 0.00; Chi*= 0.3, df= 1 (P = 0.67); = 0%
Testfor overall effect 7= 3 88 (P = 0.0001)
2.2 Blood
Thilin 2018 ELISA 04535 03083 109%  157(086,288) —
Grilz 2019 ELISA 00477 00293 207%  1.05[0.99,111)
Yazdani 2019 ELISA 08928 0273 122%  244[143,417) —
Rosell 2021 ELISA 02812 00995 190%  1.32[1.09,161) -
Li2023 ELISA 09339 03463 97%  254(1.29,502) -
Okarmotn 2023 ELISA 06763 04401 73%  1.97 (083,466 T
Okarnotn 2023 ELISA 05155 05869 48%  167(053,529) T
Subtotal (95% C1) 846%  153[1.17,2.02] >
Heterogeneity: Tau®= 0.07; Ch7 = 23.97, df = 6 (P = 0.0005); = 75%
Testfor overal effect 2= 3.06 (P = 0.002)
Total (95% CI) 100.0% 176132235 *
Heterogeneity: Tau"= 0.10; Ch¥ = 37.06, df = 8 (P < 0.0001); = 78% oo 00

Testfor overall eflect Z= 383 (P = 0.0001)

01 10
Testfor subaroun diflerences: Chiz=4 93, df=1 (P = 0.03), F=79.7% Favours [experimentall Favours [eontrol

FIGURE 2

B
Hazard Ratio Hazard Ratio

Study or Subgroup SE_Weight IV, Random, 95% CI IV, Randorm, 95% CI
2.2 Tissue

Xu 2021 IHC 07104 0341 92%  203(1.04,397]

Jiang 2022 1HC 06489 03003 118%  1.91 [1.06,3.45]

Yan 2021 Multiplex IF 09766 04002 67%  266[1.21,587]

Zhong 2023 Multiplex IF 0518 02592 159%  168[1.01,279)

Zhong 2023 Multiplex IF 08167 04137 6.3% 2.26[1.01,5.09]

Subtotal (95% Cl) 49.9% 1.98[1.49,2.64]

Heterogeneity Tau®= 0.00; Chi*=1.07, df= 4 (P = 0.90); = 0%
Testfor averall effect Z= 4.67 (P < 0.00001)

22.2Blood
Tohme 2016 ELISA 14398 05666 33%  4.22[1.39,1281]
Yazdani 2018 ELISA 08928 0273 144%  244[143,417)

Okamoto 2023 ELISA 10505 04221 60%  286[1.25,654]
Okamoto 2023 ELISA 12638 05088 41%  354[1.31,9.59)
Martinez-Cannan 2023 ELISA 01039 03401 93%  1.41[057,216) —1

Li 2023 ELISA 08542 02878 129%
Subtotal (95% CI) 50.1%
Heterogeneity Tau* = 0.05; Chi*= 6.7, df= 5 (P = 0.24); F'= 26%
Test for overall efflect Z= 4.77 (P < 0.00001)

236[1.34,413]
231[1.64,3.27)

c | T

Total (95% CI) 100.0%
Heterogeneity. Tau®= 0.00; Chi*=8.30, df= 10 (P = 0.60); F= 0%
Testfor averall effect Z= 7.28 (P < 0.00001)

Testfor subaroun diflerences: Ch=0.46. df = 1 (P= 050). F= 0%

2.12(1.73,260]

01 10 100
Favours [experimental] Favours [control]

Subgroup analysis of neutrophil extracellular traps according to sample source: overall survival (A) and disease-free survival (B) in patients with
cancer. Zhong et al. provided multivariate analysis results for both training and validation cohorts, whereas Okamoto et al. analyzed patient groups
using H3Cit and MPO-DNA antibodies. Additionally, data from studies by Yazdani et al., Okamoto et al,, Li et al., and Jiang et al., who reported OS
and DFS outcomes, were included in the analysis. High NET levels of neutrophil extracellular traps were associated with poor survival outcomes in
both OS and DFS. OS, overall survival; DFS, disease-free survival; NETs, neutrophil extracellular traps.

of whether tissue or blood samples were analyzed (Figure 2). This
association remained consistent across various detection methods
and most antibodies used, with the exception of cfDNA-based
approaches, thereby underscoring the prognostic relevance of
NETs in oncology (Figure 3; Supplementary Figure S5). To the
best of our knowledge, this is the first comprehensive evaluation of
the association between NETs and cancer outcomes, suggesting
their potential clinical utility in cancer treatment and management.

The objective of this review was to comprehensively identify
studies that have investigated NET's across all cancer types. The low

Hazar Hazard Ratio
Study or Subgroup SE_Weight IV, Random, 95% C1 IV, Random, 95% CI
3.1.1 MPODI
Thilin 2018 ELISA 04535 03083  3.2%  157[086,288] T
Yazdani 2019 ELISA 08928 0.3466 26% 244 [124,4.82] ——
Li 2023 ELISA 09333 0.3463  26%  254[129,502) I
Okamoto 2023 ELISA 05155 0.5872  1.0%  167[053,5.29] T
Subtotal (95% CI) 2.04[1.43,2.92] -

Heterogeneity. Tau*= 0.00; Chi*= 1.50, df= 3 (P = 0.68); F'= 0%
Testfor overall effect Z= 3.02 (P < 0.0001)

312 H3CH
Jiang 2022 IHC 09804 0.4312 1.8%  267(1.14,6.21]
Thilin 2018 ELISA 08105 03844  22%  249(117,528]

Grilz 2019 ELISA
Okamoto 2023 ELISA
Subtotal (95% CI) 2
Helerageneily. Tau*= 0.22; Chi*= 10.47, df=3 (P = 0.01), F= 71%
Testfor overall effect Z= 2.00 (P = 0.05)

00912 00277 17.7%
06763 0435 1.7%
3.4%

1.97(084,461)
1.77[1.01,3.09)

Thalin 2016 ELISA 0982 0408 20%  267[1.20,594

Rosell 2021 ELISA 05223 01085 11.4%  1690136,209) b
Subtotal (95% CI) 1.79[1.32,2.44] >
Helerogeneity. Tau"= 0.02; Chi*= 1.18, df=1 (P = 0.28) I'= 16%

Test for overall effect Z= 3,72 (= 0.0002)

3.1.4 cron

Thiiin 2018 ELISA 04317 03603  24%  154[076,312) T
Grilz 2019 ELISA 00477 00298 176%  105(099,111)

Subtotal (95% C1) 200%  1.07[0.90,129]

Heterogeneity Taw= 0.01; Chi=1.13,d7=1 (P =0.20), F= 1%

Test for overall effect Z=0.77 (P = 0.44)

3.1.5MP0

Thilin 2018 ELISA 03001 03498 26% 135068268 prey
Subtotal (95% CI) 26%  1.35[0.68,2.68] -

Heterogeneity. Not applicable
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FIGURE 3

inclusion rate (0.48%) following literature screening reflects the
rigorous selection criteria applied to ensure the inclusion of studies
specifically addressing the role of NETs in various malignancies.
Despite extensive efforts, the limited number of studies reporting PFS
(22, 29) and CSS (22) outcomes, likely reflecting the early stages of
NET studies in oncology, has restricted our ability to conduct detailed
subgroup analyses. Additionally, an insufficient number of studies
investigating MPO (27), H3Cit/DNA (32), nucleosomes (26), NE/
H3Cit (25), and NE/DNA (33) were available, precluding meaningful
subgroup analyses for these markers (Figure 3; Supplementary Figure
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Subgroup analysis according to neutrophil extracellular traps detecting antibodies. Subgroup analysis was performed to evaluate overall survival (A)
and disease-free survival (B) based on the antibodies used to detect neutrophil extracellular traps.
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TABLE 2 Summary of the meta-analysis evaluating the relationship between neutrophil extracellular traps and clinicopathological parameters.

Number of Number of Pooled OR Heterogeneity

PR studies atients (95% ClI) 2
p ° 19(%) P -value Model

Age .
(older) 3 360 0.92 [0.60, 1.40] 0.70 20% 0.29 Fixed
olaer
Sex .
(Fesaale) 5 582 1.08 [0.77, 1.53] 0.65 0% 0.87 Fixed
TNM stage i

3 360 1.63 [1.07, 2.50] 0.02 69% 0.02 Fixed
(advanced)
ASA )
54) 2 62 1.64 [0.46, 5.88] 045 0% 091 Fixed
Adjuvant
chemotherapy 2 235 0.96 [0.56, 1.65] 0.88 0% 0.63 Fixed
(Yes)
. )
(:Smc:)me 3 142 271 [1.28, 5.74] 0.009 0% 0.77 Fixed

OR, Odd ratio; CI, Confidence interval; ASA, American Society of Anesthesiologists classification.

S5). Therefore, expanding the scope of future studies will be essential
in providing a more comprehensive understanding of the role of
NETs in cancer progression.

NETs are web-like structures composed of chromatin filaments
coated with histones, proteases, and various granular and cytosolic
proteins. NETosis is the process in which neutrophils generate and
release NETs. This mechanism facilitates the immobilization and
capture of pathogens, including bacteria, fungi, and viruses, thereby

enhancing the efficiency of host antimicrobial defense (4-7).
Recently, the role of NETs in various cancers has garnered
increasing attention (6-8). Investigations of the antitumor
functions of NETs have been conducted in colorectal cancer (36),
head and neck squamous cell carcinoma (37), and malignant
melanoma (38), predominantly using in vitro experimental
studies. These studies suggested that NET's exert their antitumor
effects by inducing apoptosis (36, 37) and necrosis (38).
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FIGURE 4

Subgroup hazard ratio analysis of neutrophil extracellular traps and pathological parameters in patients with cancer: (A) age, (B) sex, (C) American
Society of Anesthesiologists classification, (D) tumor size, (E) TNM stage, and (F) adjuvant chemotherapy.
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In the present meta-analysis, we confirmed that elevated NET
levels in both human tissues and blood samples were consistently
associated with poor patient survival (Figure 2). This is likely due to
the direct role of NETSs in promoting tumor cell proliferation (11)
and metastasis (12-14). Tumor-derived cytokines (e.g., interleukin
[IL]-8, IL-17, granulocyte colony-stimulating factor, and CXCL6)
recruit neutrophils and induce NETosis, thereby promoting tumor
proliferation (39, 40). High mobility group box 1 (HMGB1), a NET's
component, enhances proliferation by activating mitogen-activated
protein kinase via toll-like receptor 9 (TLR9) and stimulating
nuclear factor kappa B signaling (31) and IL-8 secretion through
Receptor for Advanced Glycation End products (41). Additionally,
NETs promote metastatic progression by degrading vascular
endothelial-cadherin, thereby activating the Wnt/B-catenin
signaling pathway and inducing the expression of epithelial-
mesenchymal transition-related genes such as ZEB1 and Snail
(42, 43). In parallel, HMGBI, a NET-associated component,
facilitates tumor metastasis by activating TLR9, which in turn
stimulates p38 and JNK signaling cascades, enhancing cancer cell
migration and invasion (31).

Circulating NETs also enhance tumor cell survival by
suppressing the cytotoxic activity of infiltrating CD8" T (15).
Additionally, NETs have emerged as key mediators of cancer-
associated thrombosis, the second leading cause of death in
patients with cancer having hypercoagulable states (16). Emerging
evidence indicates that NETs promote cancer-associated
thrombosis by enhancing the adhesion, activation, and
aggregation of platelets and erythrocytes, leading to fibrin
deposition and clot formation (17). This process is partially
mediated by neutrophil-derived histones via TLR2- and TLR4-
dependent platelet activation (18).

High-grade NET's have been associated with poor prognosis in
studies that used various antibodies in tissue samples (20-25). Our
analysis demonstrated that H3Cit (26-28), MPO-DNA (11, 27, 28,
30, 31), and NE (27, 32) were associated with poor prognosis,
whereas cfDNA (26, 27) showed no such association. H3Cit, MPO-
DNA, and NE are the key markers of NET's formation (8). H3Cit is
produced by PAD4-mediated citrullination of histone H3,
promoting chromatin decondenzation (44). MPO-DNA reflects
NETs activity and contributes to metastasis and inflammation
(45). NE released from neutrophil granules facilitate DNA
decondenzation by cleaving histones (8, 44). However, cfDNA is
a non-specific marker for NETs, as it detects extracellular DNA,
regardless of origin (46). Although c¢fDNA can arise from NETosis
(8), it is also released during apoptosis, necrosis, and erythroid
precursor enucleation, and also from NET-like structures produced
by eosinophils and macrophages (46).

This study has several limitations. First, non-English
publications were excluded, potentially introducing a selection
bias. Second, one study lacking HRs with 95% CIs required
indirect data extraction, which may have affected accuracy. Third,
limited data were available on the association between high NET's
and CSS or PFS, warranting further investigation. Despite these
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limitations, our meta-analysis supports the prognostic significance
of elevated NETSs in patients with cancer.

Our analysis confirmed that elevated NETs levels were
associated with poor prognosis in patients with cancer,
irrespective of sample type (tissue or blood). This association was
consistent across most detection methods and antibodies except for
cfDNA-based approaches, highlighting the prognostic relevance of
NETs in oncology. We believe that elevated NETs levels have
potential as a prognostic biomarker and may contribute to risk
stratification and personalized therapeutic approaches in
precision oncology.
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