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Background: Neutrophil extracellular traps (NETs) are fibrous, web like

chromatin structures released by activated neutrophils that entrap and

immobilize pathogens through histones, granule derived proteolytic enzymes,

and myeloperoxidase (MPO) dependent mechanisms. Beyond host defense,

NETs have been implicated in tumor progression; yet anticancer activity also

has been reported, and findings vary across specimen types (tumor tissue versus

blood) and detection methods, antibody panels, leaving their role in oncogenesis

uncertain. We performed a systematic review and meta-analysis to define the

prognostic significance of NETs in cancer, stratified by specimen type, detection

technique, and antibody panels.

Methods: Following PRISMA guidelines, we searched PubMed, EMBASE, and the

Cochrane Library for studies published through August 10, 2023, that reported

quantitative NET measurements linked to oncologic outcomes.

Results: Fifteen studies (5,202 patients; publication years 2016–2023) reporting

hazard ratios (HRs) for overall survival (OS) and disease free survival (DFS) relative

to NET levels met inclusion criteria. Six studies evaluated tumor derived NETs in

tissue and nine assessed circulating NETs in blood. Among tissue studies, two

used immunohistochemistry for citrullinated histone H3 (H3Cit) alone, and four

applied multiplex immunofluorescence for MPO/H3Cit or neutrophil elastase

(NE)/H3Cit. Among blood studies, enzyme linked immunosorbent assays

targeting MPO/DNA predominated, followed by H3Cit assays. Higher NET

levels were significantly associated with worse OS (HR 1.80; 95% CI 1.35–2.41)

and DFS (HR 2.26; 95% CI 1.82–2.82), irrespective of tissue or blood based

measurement. Prognostic associations were robust for MPO/DNA, H3Cit, and

NE, but not for cell free DNA.

Conclusion: Elevated NET levels predict poorer outcomes in patients with

cancer independent of specimen source and most analytic modalities (except
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cell free DNA), supporting NETs as a promising biomarker for risk stratification

and precision oncologic decision making.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

view/CRD42025596821.
KEYWORDS

neutrophil extracellular traps, neoplasms, prognosis, systematic review as topic, meta-
analysis as topic
Introduction

Neutrophils are the first responders of the innate immune system,

and they play a pivotal role not only in defending the host against

invading pathogens (1, 2) but also in modulating the tumor

microenvironment and influencing cancer progression (3). In

addition to their conventional antimicrobial functions, recent

attention has been focused on neutrophil extracellular traps (NETs)

and fibrous web-like chromatin structures released by activated

neutrophils (4–7). NETs contribute to host defense by entrapping

and immobilizing pathogens through a process that relies on

histones, granule-derived proteolytic enzymes, and myeloperoxidase

(MPO) (6, 8).

Emerging evidence has highlighted the pro-tumorigenic role of

NETs in various malignancies (8–10). This role is primarily

attributed to their involvement in cellular injury and tissue

regeneration, which in turn trigger excessive inflammatory

responses (8–10). NETs have been reported to facilitate tumor

cell proliferation (11), metastatic dissemination (12–14), immune

evasion (15), and cancer-associated thrombosis (16–18).

Nevertheless, NETs have also been reported to exert antitumor

effects in certain contexts, and their functional outcomes appear to vary

according to tumor type and microenvironmental conditions (19).

Moreover, studies investigating the prognostic effect of NETs in cancer

have used different sample sources, including blood and tumor tissues.

A wide range of detection methods, such as immunohistochemistry

(IHC) (20, 21), immunofluorescence (IF) (22–25), and enzyme-linked

immunosorbent assay (ELISA) (11, 26–33) have been employed using

diverse antibodies, including citrullinated histone H3 (H3Cit) (20, 21,

26–29), MPO/H3Cit (22–24), neutrophil elastase (NE)/H3Cit (25),

MPO/DNA (11, 27, 28, 30, 31), NE (27, 29, 32), and cell-free DNA

(cfDNA) (26, 27). This methodological variability significantly

contributes to heterogeneity in results, complicating the

interpretation and comparison of results across studies.

We aimed to address the current literature gaps by

systematically analyzing the prognostic relevance of NETs in

cancer. We specifically evaluated the heterogeneous findings of

NET-related studies by stratifying our analyses based on sample

source (tissue vs. blood), detection methodologies, and antibody
02
selection. Through this comprehensive meta-analysis, we aimed to

deepen our understanding of the role of NETs in cancer progression

and contribute to future clinical applications, including the

development of NET-targeted therapeutic strategies.
Methods

Search strategy

This meta-analysis was prospectively submitted to PROSPERO

(CRD42025596821) and was approved by the Institutional Review

Board of the Catholic University of Korea, College of Medicine

(UC22ZASI0033). A comprehensive literature search of relevant

English-language articles published up to August 10, 2023, was

conducted across three major electronic databases (PubMed,

EMBASE, and the Cochrane Library) using the search strategy

outlined in Supplementary Table S1. Additionally, a manual search

was performed by screening the reference list of a key article (10).

Potentially relevant titles were cross-checked with records from the

database search, and any unmatched studies underwent full-text

review in accordance with the predefined inclusion and exclusion

criteria. EndNote X20 (Build 10136; Thomson Reuters, New York,

NY, USA) was used to manage the retrieved studies.
Inclusion and exclusion criteria

This meta-analysis applied the following inclusion criteria: 1)

studies on the relationship between NETs and prognosis of patients

with cancer was assessed; 2) NETs identified with accurate

examination; 3) studies that provided sufficient information on

hazard ratios (HRs) of patient survival; 4) studies that demonstrated

an association between NETs and clinicopathological features; and

5) articles written in English language. The following exclusion

criteria were applied: 1) duplicate studies, reviews, case reports,

letters, and conference proceedings; 2) studies that did not show an

association between NETs and survival or clinicopathological

parameters; 3) studies related to cancer cell lines and animal
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models; and 4) studies with insufficient data on HRs and 95%

confidence intervals (CIs) that could be extracted or calculated.
Data extraction and assessment of study
quality

Data extraction was performed by five independent reviewers

(S. L., E.Y.K., W.P., Y.S.L., and K.Y.). In cases of disagreement,

consensus was reached among them. The following data were

extracted from all included studies: author, year, ethnicity,

number of patients, antibody, detection method, organ, sample

type, pathological stage, and survival outcomes such as overall

survival (OS) or disease-free survival (DFS). Risk of bias was

assessed, and studies that met the inclusion criteria were selected

using the Quality in Prognostic Studies tool. In studies without HRs,

we used data on the Kaplan–Meier curve to calculate the HR using

the method described by Parmar et al. (34).
Statistical analysis

Statistical analysis was conducted using Review Manager

Software (version 5.4.1; Cochrane Collaboration, Copenhagen,

Denmark). Pooled HRs with 95% CIs were used to assess the

association between NETs and OS. HRs >1 indicated poor

survival, whereas those <1 indicated better survival. The

association between NETs and other clinicopathological

parameters was analyzed using the Mantel–Haenszel pooled odds

ratio (OR) with 95% CIs and combined effective value. An I2 value

of <50% indicated no heterogeneity among the studies. A subgroup

analysis was conducted to explore potential sources of

heterogeneity. The Preferred Reporting Items for Systematic

Reviews and Meta-Analysis flow diagram and forest plots were

generated using Review Manager software.
Results

Eligible studies

An initial literature search included 3,130 articles from PubMed,

EMBASE, and the Cochrane Library (Figure 1). From the reference

list, several articles were initially considered potentially relevant, but

nearly all had already been captured through our database searches,

supporting the robustness of our strategy. One additional article

mentioned “angiogenesis,” yet full-text assessment revealed that it

was study on cancer cell lines and therefore did not meet our

inclusion criteria. After removing 862 duplicate articles, the

remaining 2,268 articles were screened based on the reference type

criteria. The study by Wang et al. (35) was excluded from the

systematic review owing to discrepancies among in figure legends,

corresponding graphical data, and main text descriptions.
Frontiers in Immunology 03
Considering available data on prognosis, clinicopathological

parameters, evaluation methods, and their association with NETs,

15 articles met the inclusion criteria (Figure 1). Most of the studies

showed a low risk of bias (Supplementary Figure S1).
Study characteristics

Fifteen studies were selected for the final analysis that

investigated the relationship between NETs and survival rates.

These studies were conducted in seven different countries and

published between 2016 and 2023 (Table 1; Supplementary Table

S2). Among them, studies analyzing progression-free survival (PFS)

(22, 29) and cancer-specific survival (CSS) (22) were limited to two

and one, respectively, making further analysis challenging (Table 1).

The total number of patients included was 5,202, with individual

study sizes ranging between 27–954 (Table 1; Supplementary Table

S2). The patients were divided into groups with high and low NET

levels for comparative analysis.
High NETs levels and prognosis in patients
with solid cancer

We evaluated the correlation between NETs and prognosis of

patients with solid cancers. Pooled HR for OS and DFS

demonstrated that high NETs levels were significantly associated

with poor OS (HR: 1.80, 95% CI: 1.35–2.41, P < 0.0001) (11, 20, 25–

28, 30, 32) and DFS (HR: 2 .26, 95% CI: 1 .82–2.82,

P < 0.00001) (Figure 2).

Subgroup analysis based on sample type demonstrated that the

association between high NETs levels and poor prognosis was

consistent, irrespective of sample type (Figure 2). When subgroup

analyses were conducted according to the primary organ site

(Supplementary Figure S2), the included studies were classified

into gastrointestinal cancers [stomach (29, 30), n = 3; rectum (11,

24, 31), n = 3], hepatobiliary cancers [pancreas (21, 22), n = 2; liver

(20), n = 1], and other malignancies [breast (33), urinary bladder

(25), and uterine cervix (23), n = 1 each]. Within these categories,

elevated levels of NETs were consistently associated with poorer

prognosis. In contrast, three studies (26, 27, 32) evaluated the

prognostic role of NETs across a broad spectrum of malignancies.

In this heterogeneous cohort, no significant association between

NETs and prognosis was identified. Except for the study by

Martinez–Cannon et al. (33), all the included studies conducted

multivariate analyses and demonstrated a significant association

between high NET levels and pooled HRs (Figure 2; Supplementary

Figure S3). As Martinez–Cannon et al. (33) did not report HR, data

from their Kaplan–Meier curves were extracted and analyzed using

the method described by Parmar et al. (34). The analysis revealed no

significant association between high NETs and prognosis

(Supplementary Figure S3). Subgroup analyses stratified according

to ethnicity consistently showed that high NET levels were
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associated with a poor prognosis across all ethnic groups

(Supplementary Figure S4).
Subgroup analyses by detection methods
and antibodies used for NETs analysis

For tissue samples, IHC with H3Cit alone or multiplex IF with co-

staining with MPO/H3Cit or NE/H3Cit was utilized. The most

frequently used assay for blood samples was ELISA for the MPO/

DNA complex, with H3Cit measurement being the next most

common method. In the OS analysis, MPO/DNA (HR: 2.04, 95%
Frontiers in Immunology 04
CI: 1.43–2.92, P < 0.0001), H3Cit (HR: 2.37, 95% CI: 1.48–3.78,

P = 0.0003), NE (HR: 1.79, 95% CI: 1.32–2.44, P = 0.0002), and H3Cit/

NE co-staining (HR: 3.75, 95% CI: 1.67–8.44, P = 0.001) demonstrated

significant associations, while for DFS, MPO/DNA (HR: 2.65, 95% CI:

1.88–3.73, P < 0.00001), H3Cit (HR: 2.14, 95% CI: 1.45–3.15,

P = 0.0001), and H3Cit/MPO co-staining (HR: 1.99, 95% CI: 1.36–

2.91, P = 0.0004) showed significant associations. Notably, MPO-DNA

and H3Cit levels were associated with both OS and DFS, indicating

their potential as key biomarkers. In contrast, NE-DNA (P = 0.97) and

cfDNA (P = 0.44) levels were not significantly different. Furthermore,

MPO, H3Cit-DNA, nucleosomes, and NE-DNA were evaluated in

only one study, limiting the feasibility of further analyses (Figure 3).
FIGURE 1

PRISMA flow diagram showing the study selection process. Of 15 studies included in the qualitative analysis, some utilized co-staining approaches
(e.g., H3Cit/NE and H3Cit/MPO). The total number of markers exceeds the number of studies, as some studies analyzed multiple antibodies. PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analyses; H3Cit, citrullinated histone H3; MPO, myeloperoxidase; NE, neutrophil elastase.
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High NETs levels and clinicopathological
parameters

Principal clinicopathological parameters associated with

elevated NETs levels, as reported across all studies included in the

meta-analysis, are summarized in Table 2; Supplementary Table S2;

Figure 4. The pooled analysis indicated that larger tumor size (OR:

2.17; 95% CI: 1.28–5.74; P = 0.02) and advanced TNM stage (OR:
Frontiers in Immunology 05
1.63; 95% CI: 1.07–2.50; P = 0.0003) were significantly associated

with high NETs levels (Table 2).
Discussion

Our analysis confirmed that elevated NETs levels were

associated with poor prognosis in patients with cancer, regardless
TABLE 1 Main characteristics of all NET studies included in the meta-analysis.

Sample
type

Authors year
Patients

(n)
Ethnicity Organ

Detection
method

Antibody Cut-off
Survival
type

Tissue

Shinde-Jadhav et al., 2021 (25) 104 Caucasian Bladder Multiplex IF NE/H3Cit Presence OS

Xu et al., 2021 (21) 135 Asian
Hepatobiliary
pancreas
(Pancreas)

IHC H3Cit Presence OS

Yan et al., 2021 (23) 126 Asian Uterine cervix Multiplex IF MPO/H3Cit
Quartile 3
(≥75%)

DFS

Chen et al., 2022 (22) 205 Asian
Hepatobiliary
pancreas
(Pancreas)

Multiplex IF MPO/H3Cit Presence PFS, CSS

Jiang et al., 2022 (20) 80 Asian
Hepatobiliary

pancreas (Liver)
IHC H3Cit

>8 cells/
HPF
(x400)

DFS, OS

Zhong et al., 2023 (24)

174
(training)

66
(validation)

Asian
Gastrointestinal

(Rectum)
Multiplex IF MPO/H3Cit

Median
(≥50%)

DFS

Blood

Tohme et al., 2016 (31) 35 Caucasian
Gastrointestinal

(Rectum)
ELISA MPO/DNA

Median
(≥50%)

DFS

Thålin et al., 2018 (27) 60 Caucasian
Various

malignancies
ELISA

cfDNA,
H3Cit,

MPO, MPO/
DNA, NE

Quartile 3
(≥75%)a

OS

Grilz et al., 2019 (26) 957 Caucasian
Various

malignancies
ELISA

cfDNA,
H3Cit,

Nucleosomes

Quartile 3
(≥75%)b

OS

Yazdani et al., 2019 (11) 27 Caucasian
Gastrointestinal

(Rectum)
ELISA MPO/DNA

Median
(≥50%)

OS

Zhang et al., 2020 (29) 53 Asian
Gastrointestinal

(Stomach)
ELISA H3Cit, NE

Median
(≥50%)

PFS

Rosell et al., 2021 (32) 106 Caucasian
Various

malignancies
ELISA

H3Cit/DNA,
NE

Not
available

OS

Li et al., 2023 (30) 80 Asian
Gastrointestinal

(Stomach)
ELISA MPO/DNA

Median
(≥50%)

DFS, OS

Martinez–Cannon et al., 2023 (33) 40 Caucasian Breast ELISA NE/DNA
>0.6705
optical
density

DFSc

Okamoto et al., 2023 (28)
133 (H3Cit)
67 (MPO/
DNA)

Asian
Gastrointestinal

(Stomach)
ELISA

H3Cit,
MPO/DNA

Median
(≥50%)

DFS, OS
fr
OS, overall survival; DFS, disease-free survival; PFS, progression free survival; CSS, cancer specific survival; IHC, immunohistochemistry; IF, immunofluorescence; ELISA, enzyme-linked
immunosorbent assay; cfDNA, cell-free DNA; NETs, neutrophil extracellular traps; H3Cit, citrullinated histone H3; MPO, myeloperoxidase; NE, neutrophil elastase; acfDNA: ≥597.5ng/ml,
H3Cit: ≥29.8ng/ml, MPO: ≥213.4ng/ml, MPO/DNA: not shown, NE: ≥110 ng/ml; bcfDNA: >442.6ng/ml, H3Cit: >87.8ng/ml, Nucleosomes: >3.0 multiple-of-the-median, MPO/DNA: not
shown, NE: ≥110 ng/ml; cThe hazard ratio was calculated them from Kaplan–Meier curve data using the method described by Parmar et al.
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of whether tissue or blood samples were analyzed (Figure 2). This

association remained consistent across various detection methods

and most antibodies used, with the exception of cfDNA-based

approaches, thereby underscoring the prognostic relevance of

NETs in oncology (Figure 3; Supplementary Figure S5). To the

best of our knowledge, this is the first comprehensive evaluation of

the association between NETs and cancer outcomes, suggesting

their potential clinical utility in cancer treatment and management.

The objective of this review was to comprehensively identify

studies that have investigated NETs across all cancer types. The low
Frontiers in Immunology 06
inclusion rate (0.48%) following literature screening reflects the

rigorous selection criteria applied to ensure the inclusion of studies

specifically addressing the role of NETs in various malignancies.

Despite extensive efforts, the limited number of studies reporting PFS

(22, 29) and CSS (22) outcomes, likely reflecting the early stages of

NET studies in oncology, has restricted our ability to conduct detailed

subgroup analyses. Additionally, an insufficient number of studies

investigating MPO (27), H3Cit/DNA (32), nucleosomes (26), NE/

H3Cit (25), and NE/DNA (33) were available, precluding meaningful

subgroup analyses for these markers (Figure 3; Supplementary Figure
FIGURE 2

Subgroup analysis of neutrophil extracellular traps according to sample source: overall survival (A) and disease-free survival (B) in patients with
cancer. Zhong et al. provided multivariate analysis results for both training and validation cohorts, whereas Okamoto et al. analyzed patient groups
using H3Cit and MPO-DNA antibodies. Additionally, data from studies by Yazdani et al., Okamoto et al., Li et al., and Jiang et al., who reported OS
and DFS outcomes, were included in the analysis. High NET levels of neutrophil extracellular traps were associated with poor survival outcomes in
both OS and DFS. OS, overall survival; DFS, disease-free survival; NETs, neutrophil extracellular traps.
FIGURE 3

Subgroup analysis according to neutrophil extracellular traps detecting antibodies. Subgroup analysis was performed to evaluate overall survival (A)
and disease-free survival (B) based on the antibodies used to detect neutrophil extracellular traps.
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S5). Therefore, expanding the scope of future studies will be essential

in providing a more comprehensive understanding of the role of

NETs in cancer progression.

NETs are web-like structures composed of chromatin filaments

coated with histones, proteases, and various granular and cytosolic

proteins. NETosis is the process in which neutrophils generate and

release NETs. This mechanism facilitates the immobilization and

capture of pathogens, including bacteria, fungi, and viruses, thereby
Frontiers in Immunology 07
enhancing the efficiency of host antimicrobial defense (4–7).

Recently, the role of NETs in various cancers has garnered

increasing attention (6–8). Investigations of the antitumor

functions of NETs have been conducted in colorectal cancer (36),

head and neck squamous cell carcinoma (37), and malignant

melanoma (38), predominantly using in vitro experimental

studies. These studies suggested that NETs exert their antitumor

effects by inducing apoptosis (36, 37) and necrosis (38).
TABLE 2 Summary of the meta-analysis evaluating the relationship between neutrophil extracellular traps and clinicopathological parameters.

Parameters
Number of
studies

Number of
patients

Pooled OR
(95% CI)

p-value
Heterogeneity

I2(%) P -value Model

Age
(older)

3 360 0.92 [0.60, 1.40] 0.70 20% 0.29 Fixed

Sex
(Female)

5 582 1.08 [0.77, 1.53] 0.65 0% 0.87 Fixed

TNM stage
(advanced)

3 360 1.63 [1.07, 2.50] 0.02 69% 0.02 Fixed

ASA
(3,4)

2 62 1.64 [0.46, 5.88] 0.45 0% 0.91 Fixed

Adjuvant
chemotherapy
(Yes)

2 235 0.96 [0.56, 1.65] 0.88 0% 0.63 Fixed

Tumor size
(≥5 cm)

3 142 2.71 [1.28, 5.74] 0.009 0% 0.77 Fixed
OR, Odd ratio; CI, Confidence interval; ASA, American Society of Anesthesiologists classification.
FIGURE 4

Subgroup hazard ratio analysis of neutrophil extracellular traps and pathological parameters in patients with cancer: (A) age, (B) sex, (C) American
Society of Anesthesiologists classification, (D) tumor size, (E) TNM stage, and (F) adjuvant chemotherapy.
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In the present meta-analysis, we confirmed that elevated NET

levels in both human tissues and blood samples were consistently

associated with poor patient survival (Figure 2). This is likely due to

the direct role of NETs in promoting tumor cell proliferation (11)

and metastasis (12–14). Tumor-derived cytokines (e.g., interleukin

[IL]-8, IL-17, granulocyte colony-stimulating factor, and CXCL6)

recruit neutrophils and induce NETosis, thereby promoting tumor

proliferation (39, 40). High mobility group box 1 (HMGB1), a NETs

component, enhances proliferation by activating mitogen-activated

protein kinase via toll-like receptor 9 (TLR9) and stimulating

nuclear factor kappa B signaling (31) and IL-8 secretion through

Receptor for Advanced Glycation End products (41). Additionally,

NETs promote metastatic progression by degrading vascular

endothelial-cadherin, thereby activating the Wnt/b-catenin
signaling pathway and inducing the expression of epithelial–

mesenchymal transition-related genes such as ZEB1 and Snail

(42, 43). In parallel, HMGB1, a NET-associated component,

facilitates tumor metastasis by activating TLR9, which in turn

stimulates p38 and JNK signaling cascades, enhancing cancer cell

migration and invasion (31).

Circulating NETs also enhance tumor cell survival by

suppressing the cytotoxic activity of infiltrating CD8+ T (15).

Additionally, NETs have emerged as key mediators of cancer-

associated thrombosis, the second leading cause of death in

patients with cancer having hypercoagulable states (16). Emerging

evidence indicates that NETs promote cancer-associated

thrombosis by enhancing the adhesion, activation, and

aggregation of platelets and erythrocytes, leading to fibrin

deposition and clot formation (17). This process is partially

mediated by neutrophil-derived histones via TLR2- and TLR4-

dependent platelet activation (18).

High-grade NETs have been associated with poor prognosis in

studies that used various antibodies in tissue samples (20–25). Our

analysis demonstrated that H3Cit (26–28), MPO-DNA (11, 27, 28,

30, 31), and NE (27, 32) were associated with poor prognosis,

whereas cfDNA (26, 27) showed no such association. H3Cit, MPO-

DNA, and NE are the key markers of NETs formation (8). H3Cit is

produced by PAD4-mediated citrullination of histone H3,

promoting chromatin decondenzation (44). MPO-DNA reflects

NETs activity and contributes to metastasis and inflammation

(45). NE released from neutrophil granules facilitate DNA

decondenzation by cleaving histones (8, 44). However, cfDNA is

a non-specific marker for NETs, as it detects extracellular DNA,

regardless of origin (46). Although cfDNA can arise from NETosis

(8), it is also released during apoptosis, necrosis, and erythroid

precursor enucleation, and also from NET-like structures produced

by eosinophils and macrophages (46).

This study has several limitations. First, non-English

publications were excluded, potentially introducing a selection

bias. Second, one study lacking HRs with 95% CIs required

indirect data extraction, which may have affected accuracy. Third,

limited data were available on the association between high NETs

and CSS or PFS, warranting further investigation. Despite these
Frontiers in Immunology 08
limitations, our meta-analysis supports the prognostic significance

of elevated NETs in patients with cancer.

Our analysis confirmed that elevated NETs levels were

associated with poor prognosis in patients with cancer,

irrespective of sample type (tissue or blood). This association was

consistent across most detection methods and antibodies except for

cfDNA-based approaches, highlighting the prognostic relevance of

NETs in oncology. We believe that elevated NETs levels have

potential as a prognostic biomarker and may contribute to risk

stratification and personalized therapeutic approaches in

precision oncology.
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