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Background: Immunotherapy has transformed cancer treatment, but its efficacy

remains limited in patients with immunologically “cold” tumors. Triple-negative

breast cancer (TNBC), despite elevated PD-L1 expression and high tumormutation

burden, often exhibits poor T cell infiltration, rendering it largely unresponsive to

immune checkpoint blockade. Overcoming the immunosuppressive tumor

immune microenvironment (TIME) remains a major challenge in oncology.

Methods: We defined a tumor immune microenvironment gene expression

signature (TIME-GES) through transcriptomic analysis of clinical samples. Its

performance and relevance were evaluated using representative approaches

including enrichment analysis, immune infiltration profiling, receiver operating

characteristic analysis, and survival assessment. Based on TIME-GES, we

screened 1,865 natural compounds and identified Nitidine Chloride (NCD) as a

potential modulator in TNBC. In vivo efficacy of NCD against TNBC was

examined by representat ive assays such as flow cytometry and

immunofluorescence. Mechanistic insights into TNBC treatment via TIME-GES

were explored through RNA sequencing, quantitative PCR, Western blotting, and

cellular thermal shift assay.

Results: TIME-GES effectively characterizes the tumor immunemicroenvironment

across diverse cancer types. It reliably distinguishes tumor immune phenotypes

and predicts patient responses to immunotherapy. Moreover, TIME-GES is strongly

associated with survival outcomes in patients receiving immunotherapy and

remains a significant prognostic marker for overall survival and mortality in TCGA

pan-cancer cohorts, regardless of treatment. Guided by TIME-GES, NCD was

identified from a natural product library and shown to modulate TIME-GES gene

expression and significantly inhibit TNBC growth in vivo. NCD enhances CD8+ T

cell–mediated antitumor immunity by upregulating TIME-GES genes and targeting

the JAK2-STAT3 signaling pathway, resulting in suppressed tumor growth and
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reprogramming of the TIME toward a more immunologically active,

“hot” phenotype.

Conclusion: This study identified TIME-GES as a novel biomarker capable of

distinguishing tumor immune phenotypes, predicting immunotherapy response,

and evaluating prognosis in TNBC. Furthermore, TIME-GES-guided screening led

to the discovery of NCD, a promising immunomodulatory agent that reprograms

the TIME and enhances anti-tumor immunity in TNBC. This study offers both a

robust immune gene signature and a candidate therapeutic to improve

immunotherapy outcomes in TNBC.
KEYWORDS

tumor immune microenvironment, immunotherapy, gene expression signature, nitidine
chloride, JAK-STAT signaling pathway
GRAPHICAL ABSTRACT
1 Introduction

Tumor immunotherapy, by activating the immune system to

precisely target tumor cells, has overcome the limitations of

traditional chemotherapy and radiotherapy (1), significantly

extending patients’ survival (2). Despite its breakthrough efficacy

in various cancers, the response rate among patients varies
02
considerably, largely due to the high heterogeneity of the tumor

immune microenvironment (TIME). Studies have demonstrated

that the degree of immune cell infiltration within the TIME is a key

determinant of immunotherapy efficacy: “hot” tumors,

characterized by high tumor-infiltrating lymphocytes (TILs), are

highly responsive to immunotherapy and associated with better

prognosis (3), whereas “cold” tumors, with low TILs infiltration,
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respond poorly to treatment and have worse outcomes (4). The

overall immune landscape of a tumor is shaped by the balance

between pro-tumor and anti-tumor immune activities, which

collectively determine its immunological phenotype (5). The

fundamental distinction between these two phenotypes lies in the

ability of T cells to effectively infiltrate tumor tissues. Therefore,

enhancing T cell migration into the tumor microenvironment is a

critical strategy for converting “cold” tumors into “hot” tumors (3),

thereby improving the efficacy of immunotherapy.

Triple-negative breast cancer (TNBC) is the most aggressive

subtype of breast cancer (BC). Due to the lack of estrogen receptor,

progesterone receptor, and human epidermal growth factor

receptor 2 in TNBC cells, patients do not benefit from endocrine

or targeted therapies. Although chemotherapy and radiotherapy

remain the main treatment options for TNBC, its aggressive nature,

early metastasis (6), and high recurrence rate (7) limit clinical

efficacy, necessitating improved patient survival strategies. TNBC is

characterized by high PD-L1 expression and tumor mutation

burden levels (8), making it more suitable for immunotherapy

compared to traditional therapies. However, its typical “cold”

tumor phenotype (9) leads to poor immunotherapy outcomes.

Therefore, reversing the “cold” tumor phenotype of TNBC

through pharmacological means to enhance immunotherapy

efficacy represents a therapeutic breakthrough.

Physiological and pathological states are characterized by distinct

phenotypic and gene expression profiles. Compared to traditional

phenotypic analyses, transcriptional alterations provide deeper

insights into the biological mechanisms underlying disease and can

inform multiple aspects of clinical decision-making, including

treatment strategies, drug development, prognostic evaluation, and

diagnostic assessment (10–12). Gene expression signatures represent

the expression patterns of cells or tissues under specific conditions,

linking diseases, genes, and drugs (13). Currently, high-throughput

sequencing-based high-throughput screening (HTS2) and other

similar technologies, including highly multiplexed and parallel

sequencing (HiMAP-seq) (14), which could detect the expression

of thousands of genes in thousands of samples per test, have been

successfully applied in gene signature guided drug screening (15–18).

By leveraging the gene expression signatures of “cold” and “hot”

tumors, combined with drug perturbed gene expression database, we

can perform large-scale screening for drugs with immune

microenvironment regulatory potential.

As illustrated in the graphical abstract, this study leverages tumor

transcriptomic datasets to define a gene signature representative of

TIME. This signature is then integrated with drug induced

transcriptome datasets to systematically identify candidate drugs

with potential immunotherapeutic efficacy for the treatment of

TNBC. First, we established a TIME gene expression signature

(TIME-GES) by analyzing datasets of “cold” and “hot” tumors and

immunotherapy-treated samples. Subsequently, we systematically

evaluated the performance of TIME-GES in distinguishing tumor

immune phenotypes, predicting immunotherapy response, and

evaluating patient prognosis through immune infiltration analysis,

survival analysis, and other bioinformatics approaches. Finally, based

on TIME-GES, we screened a transcriptome dataset containing 1,865
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natural compounds and identified a potential drug, Nitidine Chloride

(NCD). Through in vitro and in vivo experiments, we disclosed that

NCD upregulates the TIME-GES genes CXCL10, CXCL11, EBI3, and

FLT3LG, promotes CD8+ T cell activation and tumor infiltration,

thereby inhibiting the growth of TNBC.
2 Methods

2.1 TIME-GES

To construct the TIME-GES gene set, differential expression

analyses were applied to lung adenocarcinoma datasets (19) using

the limma package and to anti-PD-1-treated melanoma datasets

(20) using DESeq2. Genes with |log2FC| > 1 and P < 0.05 were

selected. The intersection of consistently up- or downregulated

genes across both datasets yielded a signature. According to prior

studies (21), each gene was assigned a score of “+1” or “-1”

depending on whether its expression was elevated or reduced in

“hot” tumors, and the aggregated score defined the TIME-

GES score.
2.2 Enrichment analysis

Gene Set Enrichment Analysis (GSEA) was carried out using

the clusterProfiler package in R. Differentially expressed genes

(DEGs) were analyzed for pathway involvement through

enrichKEGG and enrichGO functions, with P < 0.05 as the cutoff.
2.3 Correlation analysis for TIME-GES and
immune

Gene expression data and patient clinical information for 30

cancers (including BC) were obtained from the UCSC Xena

database (UCSC Xena, https://xena.ucsc.edu/) (22), combined

with TILs abundance data from TISIDB (TISIDB, http://

cis.hku.hk/TISIDB/) (23). Correlations between TIME-GES genes

and 14 immune cell types were analyzed using R’s “cor.test”

function. The “Immune Estimation” module of the TIMER2.0

platform (TIMER2.0, http://timer.comp-genomics.org/) (24) was

used to evaluate the correlation between TIME-GES genes and

CD8+ T cell infiltration across 40 cancer types.
2.4 Evaluation of TIME-GES for
distinguishing tumor immune phenotypes

The ROCR package in R was employed to evaluate the

predictive performance of TIME-GES for distinguishing “cold”

and “hot” tumors in lung adenocarcinoma datasets (19),

primarily by calculating the area under the curve (AUC). To

enable a comparative analysis, six tumor immune-related gene

signatures (25–30) and four established immune checkpoint
frontiersin.org

https://xena.ucsc.edu/
http://cis.hku.hk/TISIDB/
http://cis.hku.hk/TISIDB/
http://timer.comp-genomics.org/
https://doi.org/10.3389/fimmu.2025.1676768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bai et al. 10.3389/fimmu.2025.1676768
blockade (ICB) response biomarkers were also included for AUC

evaluation. In addition, for TIME-GES, precision, recall, and

accuracy were further assessed using ROCR to comprehensively

characterize its classification performance.
2.5 Clinical data analysis

The R survival package’s “coxph” function was used to analyze

the associations between the expression of TIME-GES genes and

overall survival (OS). Kaplan–Meier survival analyses were

performed for OS, disease-specific survival (DSS), progression-

free interval (PFI), and disease-free interval (DFI). Risk scores

were derived from Cox regression coefficients, with patients

stratified into high or low-risk groups. Immunotherapy datasets

GSE181815 (31), GSE210287 (32), GSE91061 (33) and GSE93157

(34) (GEO, https://www.ncbi.nlm.nih.gov/geo/) (35) were

processed using DESeq2. Kaplan–Meier survival analyses as well

as univariate Cox regression analyses were performed for

melanoma patients with GSE93157 (34) with Progression-Free

Survival (PFS) information.
2.6 Drug screening

The drug screening data used in this program was constructed

by the lab upfront, based on a database of 1,865 natural compounds

perturbation generated using HiMAP-seq technology (14). Gene

expression data for TIME-GES–associated genes in TNBC cell lines

(MDA-MB-231, 21MT2, HCC1143, and HCC1806) were obtained

from DepMap (DepMap, https://depmap.org/portal/) (36). A cutoff

of average normalized gene expression >1 was applied to identify

highly expressed genes (CXCL10, CXCL11, EBI3 and FLT3LG).

Subsequently, probe-based filtering refined the candidate gene set to

CXCL11, EBI3 and FLT3LG. To prioritize compounds, drug–gene

expression profile similarity was evaluated using the RCSM

R package.
2.7 Cell culture

MDA-MB-231 and 4T1 cell lines were sourced from the

Chinese Cancer Cell Line Encyclopedia. MDA-MB-231 cells were

grown in Dulbecco’s Modified Eagle Medium (DMEM, Gibco)

supplemented with 10% fetal bovine serum (FBS, ExCell) and 1%

penicillin–streptomycin solution (Hyclone). For 4T1 cells, Roswell

Park Memorial Institute (RPMI)-1640 medium (Gibco) with 10%

FBS and 1% penicillin–streptomycin was used. All cultures were

maintained at 37°C in a humidified incubator with 5% CO2.
2.8 Cell proliferation

Cells were plated in 96-well plates at a density of 5 × 103 cells

per well. After 24 hours of incubation, the medium was replaced
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with fresh medium containing different concentrations of NCD

(Push-Herbchem), which were dissolved in dimethyl sulfoxide

(DMSO, Solarbio) and incubated for another 24 hours. DMSO-

treated wells served as vehicle controls, while wells without cells

were used as blanks. Cell viability was measured using the Cell

Counting Kit-8 (CCK-8) assay (bgbiotech) following the

manufacturer’s instructions.
2.9 Quantitative polymerase chain reaction

Total RNA was isolated with RNA isolater Total RNA

Extraction Reagent (Vazyme), followed by reverse transcription

using the RT Easy™ II cDNA Synthesis Kit (Foregene).

Quantitative polymerase chain reaction (qPCR) was then carried

out with gene-specific primers listed in Supplementary Table S1.
2.10 Animal experiments

Experiments were carried out in facilities accredited by

AAALAC and were approved by the Institutional Animal Care

and Use Committee of Chengdu University of Traditional Chinese

Medicine (Approval ID: 20240106). The cages were arranged by the

staffs of the laboratory animal research facility of Chengdu

University of TCM, the staffs were not aware of the study design.

An adaptable environment with a natural light cycle, room

temperature (20–23°C), and 50%–60% humidity was provided for

seven days prior to the experiment. A total of 2.5 × 104 4T1 cells in

20 mL of RPMI-1640 medium were orthotopically injected into the

mammary fat pads of 6-week-old wild-type female BALB/c mice (3

mice per cage). The mice were arranged into groups using a random

number method. Mice in the NCD treatment cohorts received daily

intraperitoneal injections of 2.5 or 5 mg/kg, prepared in 5% DMSO/

PBS, for 3 weeks. A positive control group was treated with cisplatin

(1.5 mg/kg), also prepared in 5% DMSO/PBS, administered three

times per week over 2 weeks. Two additional control groups were

included as negative controls: “Control” consisted of non-tumor-

bearing mice, and “Model” consisted of tumor-bearing mice that

received vehicle only. Both groups were administered equivalent

volumes of 5% DMSO/PBS intraperitoneally, consistent with the

treatment groups. Body weight change was assessed daily. Tumor

volume was set as the primary endpoint. Tumor dimensions were

recorded weekly, and volumes were calculated using the formula:

Tumor volume (mm³) = (Width² × Length)/2. At the end of the

study, tumors and blood samples were collected for downstream

analyses. The animals were sacrificed in the designated

dissection facility.
2.11 Flow cytometry

For immunophenotyping, cells were labeled with the following

fluorophore-conjugated antibodies : Bri l l iant Violet™

421-conjugated anti-CD4, PerCP-Cy5.5-conjugated anti-CD8a,
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FITC-conjugated anti-CD3, and APC-eFluor 780-conjugated anti-

CD45. Cell viability was assessed using Fixable Viability Dye

eFluor™ 506. All reagents are from Invitrogen. Samples were

analyzed using FlowJo software.
2.12 Biochemistry test

After blood collection from mice, the samples were left to stand at

room temperature for 1 hour, followed by centrifugation at 1000 × g for

20 minutes at 4°C. The supernatant serum was carefully collected and

subjected to biochemical analysis using an Auto Chemistry Analyzer

BS-240 Vet (Mindray). Specific biochemical parameters, including

aspartate aminotransferase (AST), alanine aminotransferase (ALT),

albumin (ALB), creatinine (CREA), and UREA, were measured

using corresponding assay kits (Mindray).
2.13 Immunofluorescence and
hematoxylin–eosin staining

Tumor tissues and spleen tissues were fixed in 4%

paraformaldehyde (Servicebio), embedded in paraffin, and

sectioned at 4 mm thickness. For hematoxylin-eosin staining

(H&E), tissue sections were stained with Hematoxylin (Sigma-

Aldrich) and Eosin Y, free acid (Ruibio). For immunofluorescence

(IF), sections underwent antigen retrieval and were incubated with

Anti-CD8 alpha antibody (Abcam), followed by fluorescently

labeled secondary antibodies. Nuclei were counterstained with

DAPI (Servicebio).
2.14 RNA sequencing

A total of 2 × 105 MDA-MB-231 cells were plated in 6-well

dishes and exposed to 5 mM NCD for 24 hours. RNA was isolated

using RNA isolater Total RNA Extraction Reagent following the

manufacturer’s protocol. cDNA libraries were constructed using the

Illumina NovaSeq Reagent Kit (Illumina) and subjected to high-

throughput sequencing on the NovaSeq X Plus system. Sequencing

reads were aligned to the human reference genome using HiSat2,

and gene expression levels were quantified via RSEM. Differential

gene expression analysis was performed using DESeq2, with cutoff

criteria set at |log2FC| > 1 and P < 0.05.
2.15 Western blot analysis

Total protein was extracted from cells using RIPA lysis buffer

(Beyotime) supplemented with broad spectrum protease inhibitor

cocktail (Boster) and broad-spectrum phosphatase inhibitor

cocktail (Boster). Protein concentrations were quantified using a

BCA Protein Assay Kit (CWBio). Equal amounts of protein were

then loaded onto SDS-PAGE gels prepared with the One-Step

PAGE Gel Fast Preparation Kit (Vazyme), electrophoresed, and
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transferred to an Immobilon®-PSQ PVDF membrane (Millipore).

Membranes were blocked and then incubated with the following

primary antibodies: Stat3 (124H6) Mouse mAb, Phospho-Stat3

(Tyr705) (D3A7) XP® Rabbit mAb, Jak2 (D2E12) XP® Rabbit

mAb, Phospho-Jak2 (Tyr1007/1008) Antibody (all from Cell

Signaling Technology), and Alpha Tubulin Monoclonal antibody

(Proteintech). Chemiluminescent signals were detected using the

UltraSignal hypersensitive ECL chemiluminescence substrate

(4A Biotech).
2.16 Plasmids

Lentiviral shRNAs were provided by the Vector Core at

Tsinghua University, with specific sequences detailed in

Supplementary Table S2.
2.17 Cellular thermal shift assay

Cells were treated with either 20 mM NCD or DMSO for 1.5

hours. Following treatment, three freeze-thaw cycles were applied to

lyse the cells. The lysates were then incubated at a range of

temperatures and centrifuged at 12,000 rpm for 20 minutes at 4°C.

Supernatants were collected and mixed with Omni-Easy™ loading

buffer (EpiZyme), heated at 95°C for 10 minutes, and subjected to

Western blot analysis to evaluate protein stability.
2.18 Surface plasmon resonance

The binding interaction between NCD and JAK2 protein was

evaluated using a Biacore 1K surface plasmon resonance (SPR)

system (Cytiva). Recombinant human JAK2 protein (TargetMol)

was immobilized on a CM5 sensor chip (Cytiva) through standard

amine-coupling chemistry. Briefly, the sensor surface was activated

with a mixture of 0.2 M EDC (Cytiva) and 0.05 M NHS (Cytiva),

followed by injection of JAK2 at a concentration of 20 mg/mL in 10

mM sodium acetate buffer (pH 4.5) (Cytiva). Unreacted sites were

blocked with 1 M ethanolamine (pH 8.5) (Cytiva). Regeneration of

the sensor surface was achieved using 10 mM glycine-HCl (pH 2.5)

(Cytiva). The compound was prepared in running buffer (PBS with

5% DMSO) at a series of concentrations (0.19, 0.39, 0.78, 1.56, 3.12,

6.25, 12.5 and 25.0 mM) and injected over the immobilized JAK2

surface at a flow rate of 30 mL/min at 25 °C. Each injection included

an association phase of 90 s and a dissociation phase of 60 s.

Binding responses were recorded in real-time, and the equilibrium

dissociation constant (KD) were analyzed using Biacore Evaluation

Software (GE Healthcare).
2.19 Statistical analysis

Image quantification was performed using ImageJ software. All

data were processed using GraphPad Prism version 8.0. Two-tailed
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unpaired Student’s t-tests were applied for comparisons between

two groups, while differences among multiple groups were assessed

using one-way ANOVA. The statistical data were presented as

“mean ± standard error”. Significance was indicated as follows: *P <

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Pearson’s correlation

was used to examine relationships between variables.
3 Results

3.1 Construction of TIME-GES

To establish a TIME-GES, we integrated transcriptomic data

from two independent cohorts: primary lung adenocarcinoma

(GSE180347, n=144) (19) and treatment-naïve anti-PD-1-treated

melanoma (GSE213145, n=20) (20). In the lung adenocarcinoma

cohort, patients were divided into “cold” (n=60) and “hot” (n=84)

tumor groups based on histopathological lymphocyte infiltration

levels (HPF) counts. In the melanoma cohort, patients were

stratified into responders (n=10) and non-responder (n=10)

groups according to their immunotherapy response. Based on the

analyses, we respectively identified 165 and 1,325 DEGs in the lung

adenocarcinoma and melanoma cohorts, respectively (Figures 1A,

B). The GSEA analysis revealed significant enrichment of T cell-

associated processes in both datasets (Figures 1C, D). We

intersected the upregulated and downregulated genes from both

cohorts separately and identified 15 overlapped genes exclusively

among the upregulated set (CCR5, CD1D, CD3E, CD8B, CXCL10,

CXCL11, EBI3, FLT3LG, GZMB, GZMH, IFNG, LAG3, PRF1,

SH2D1A and TNFSF13B), which were collectively defined as the

TIME-GES (Figure 1E). The TIME-GES illustrated a coordinated

high-expression pattern in the “hot” tumor group and the treatment

responder group (Supplementary Figures S1A, B). Furthermore,

TIME-GES genes were significantly associated with immune-

related pathways (Supplementary Figures S1C, D).
3.2 TIME-GES reflects tumor immune
microenvironment characteristics

To explore the relationship between TIME-GES and tumor

immune status, we performed correlation analyses between TIME-

GES and immune cell infiltration in a BC cohort. The results

showed that all 15 TIME-GES genes exhibited significant positive

correlations (P < 0.05) with 14 immune cell subsets, including

activated CD8+ T cell (Act_CD8), effector memory CD8+ T cell

(Tem_CD8), activated CD4+ T cell (Act_CD4), effector memory

CD4+ T cell (Tem_CD4), Type 1 T helper cell (Th1), natural killer T

cell (NKT), activated B cell (Act_B), immature B cell (Imm_B),

natural killer cell (NK), Macrophage, Monocyte, Neutrophil,

immature dendritic cell (iDC) and plasmacytoid dendritic cell

(pDC) (Figure 2A). Among these, T cell subsets (particularly

Act_CD8 and Tem_CD8) displayed the strongest correlations

with the TIME-GES (mean Pearson’s R > 0.65). And this

correlation pattern was consistently observed across 29 additional

tumor types (Supplementary Figures S2-S5).
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To further elucidate the relationship between TIME-GES and

CD8+ T cells infiltration, we employed multiple computational

algorithms, including CIBERSORT, xCell, and TIMER, to assess

the correlation in BC patients. The analysis revealed that nearly all

15 TIME-GES genes were significantly positively correlated with

CD8+ T cells across different algorithms (Figure 2B). This

correlation was also observed across 29 other tumor types,

including adrenocortical carcinoma (ACC), bladder urothelial

carcinoma (BLCA), Cervical squamous cell carcinoma and

endocervical adenocarcinoma (CESC) (Supplementary Figures S6-

S8). In addition, each TIME-GES gene exhibited significant positive

correlations with CD8+ T cells (Figure 2C). What’s more, the

TIME-GES composite score showed a strong positive correlation

with Act_CD8, Tem_CD8, and overall CD8+ T cell infiltration

levels in both BC (R > 0.8, P < 0.001) and TNBC (R > 0.8, P < 0.001)

patients (Figures 2D, E). These findings underscore the strong

association between TIME-GES and tumor immune status.
3.3 TIME-GES predicts responsiveness to
cancer immunotherapy

To assess the predictive capability of TIME-GES in distinguishing

tumor immune phenotypes, we utilized the TIME-GES score to

generate ROC curves. The analysis showed that the AUC was greater

than 0.8, demonstrating strong predictive performance (Figure 3A).

Additionally, the precision and recall of TIME-GES were 0.7 and 0.9,

respectively (Figure 3B), with an overall accuracy of 71% in classifying

tumors as “cold” and “hot” (Figure 3C). To further evaluate the

potential of TIME-GES genes as predictors of tumor immune

responsiveness, we compared its predictive power against six

established tumor immune-related gene signatures (25–30), and four

widely used ICB response biomarkers (15). The results showed that

TIME-GES outperformed existing signatures in identifying “hot”

tumors (Figure 3D).

To determine whether TIME-GES could predict tumor response

to immunotherapy, we analyzed four independent datasets from

patients who had received prior treatments: GSE181815 (31),

GSE210287 (32), GSE91061 (33) and GSE93157 (34). Differential

expression analysis revealed significantly higher expression for

TIME-GES genes in the treatment response group compared to

non-responders (Figure 3E). In the GSE93157 (34) dataset, which

includes PFS data, univariate Cox regression analysis indicated that

high TIME-GES gene expression was significantly associated with

prolonged PFS (Figure 3F). Furthermore, patients with high TIME-

GES scores had significantly better PFS outcomes than those with low

TIME-GES scores (Figure 3G). These findings collectively support

the utility of TIME-GES as a biomarker for distinguishing tumor

immune phenotypes and predicting tumor immune responses.
3.4 TIME-GES is an independent
prognostic biomarker

To elucidate the prognostic significance of TIME-GES genes in BC,

we calculated the correlation between individual TIME-GES genes and
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overall survival (OS). The results revealed that high expression of 12

out of 15 genes (80%) was significantly (P < 0.05) benefited to

prolonged OS (Supplementary Figure S9). Univariate Cox

proportional hazards regression (HR) further showed the protective

role of TIME-GES, with all genes exhibitingHRs below 1.0, indicating a

survival benefit (Figure 4A). To further evaluate the prognostic

usability of the TIME-GES, we derived a composite TIME-GES score
Frontiers in Immunology 07
and a corresponding risk score. And found that BC patients with high

TIME-GES scores exhibited significantly improved OS, PFI, DSS, and

DFI compared to those with low scores (Figure 4B; Supplementary

Figures S10A–C). Conversely, patients with low-risk scores displayed

superior survival across all measured prognostic indicators (OS, PFI,

DSS, DFI) (Figure 4C; Supplementary Figures S10D–F). This trend was

consistently observed across 29 additional cancer types (Supplementary
FIGURE 1

Construction of TIME-GES. (A) Volcano plots showed the DEGs in primary lung adenocarcinoma cohort. (B) Volcano plots showed the DEGs in anti–
PD-1-treated melanoma cohort. (C, D) GSEA showed that immune related pathways enriched by DEGs in primary lung adenocarcinoma and anti–
PD-1-treated melanoma cohorts, respectively. (E) Venn diagram showing overlapped up-regulated and down-regulated DEGs between primary lung
adenocarcinoma and anti–PD-1-treated melanoma cohorts.
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Figures S11-S14). Furthermore, BC patients with high-risk scores had

significantly higher mortality rates compared to those in the low-risk

group (Figures 4D, E). Cross-cancer analyses further confirmed this

pattern, indicating that in the remaining 29 tumor types, patients with
Frontiers in Immunology 08
high-risk scores exhibited significantly worse survival outcomes

(Figure 4F). These findings highlight the potential of TIME-GES as a

prognostic biomarker and underscore its broader applicability across

diverse malignancies.
FIGURE 2

TIME-GES reflects TIME characteristics. (A) Correlation of TIME-GES genes expression with the infiltration for 14 immune cell types in BC.
(B) Correlation of TIME-GES genes expression with T cells infiltration using multiple algorithms in BC. (C) Correlation between TIME-GES gene
expression and CD8+ T cells in BC. (D) Correlation between TIME-GES score and CD8+ T, Act_CD8, and Tem_CD8 in BC. (E) Correlation between
TIME-GES score and CD8+ T, Act_CD8 and Tem_CD8 cells in TNBC.
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3.5 TIME-GES guided identification of NCD
as an immunotherapeutic candidate for
TNBC

Given the strong associations between the TIME-GES and key

tumor immune features, we assessed the utility of TIME-GES for

drug screening for TNBC immunotherapy. Firstly, we analyzed the

expression profiles of the 15 TIME-GES genes in TNBC samples
Frontiers in Immunology 09
and identified four genes that were consistently highly expressed in

TNBC, hereafter referred to as the four-gene subset (CXCL10,

CXCL11, EBI3 and FLT3LG). To ensure compatibility with the

compound screening platform, we next intersected these highly

expressed genes with 3,407 genes detected in large-scale

transcriptomic dataset generated from 1,865 natural compounds

perturbation, yielding three genes (CXCL11, EBI3 and FLT3LG) for

compound scoring (Figure 5A).
FIGURE 3

TIME-GES predicts responsiveness to cancer immunotherapy. (A-C) Performance metrics of TIME-GES in predicting “hot” and “cold” tumors in
primary lung adenocarcinoma. (D) Comparison of AUC. values among TIME-GES, six immune gene panels, and four known ICB biomarkers.
(E) Heatmap for log2FC of TIME-GES genes expression between responders and non-responders across five cohorts (Thymic carcinoma: TC, MM:
Melanoma, HNSC: Head and Neck squamous cell carcinoma). Red indicates genes expressed at higher levels in responders, blue indicates lower
levels, and white indicates no difference; color intensity reflects the magnitude of difference. (F) Univariate Cox analysis of TIME-GES genes in the
melanoma cohort of GSE93157. (G) Kaplan–Meier survival analysis stratified by TIME-GES score in the melanoma samples from GSE93157.
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FIGURE 4

TIME-GES is an independent prognostic biomarker. (A) The forest plot showing the result of univariate Cox analysis for TIME-GES genes and OS in
BC. (B, C) Kaplan–Meier survival curves based on TIME-GES score and risk score in BC. The patients were divided into the high TIME-GES and low
TIME-GES groups based on the TIME-GES score, as well as the high-risk low and risk groups due to risk scores. (D) Top: Risk scores derived from
TIME-GES gene expression and coefficients, ranked across 1102 BC patients. Middle: Distribution of overall survival corresponding to the ranked risk
scores. Bottom: Expression heatmap of individual TIME-GES genes in the 1102 patients. (E) Correlation between risk scores, and mortality in BC.
(F) Correlation of risk score with patient mortality across 29 cancer types.
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FIGURE 5

TIME-GES guided identification of NCD as an immunotherapeutic candidate for TNBC. (A) Venn diagram showing the overlap between 4 highly
expressed genes in TNBC from TIME-GES genes and 3,407 genes detected in large-scale transcriptomic dataset generated from 1,865 natural
products perturbation. (B, C) The rank of scores for 1,865 natural products at 20 mM and 10 mM concentrations datasets, respectively. (D) Chemical
structure of NCD. (E, F) Cell viability assays in MDA-MB-231 and 4T1 cells after 24 h NCD treatment, respectively (n=3). (G, H) mRNA expression of 4
highly expressed genes in BC after NCD treatment in MDA-MB-231 and 4T1 cells, respectively (n=3).
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Using the three-gene set, we performed Zhangscore analysis across

the natural compound library and identified NCD as a promising

candidate, ranking 1st at 20mM and 43rd at 10mM, indicating strong

and concentration-dependent modulation of TIME-GES expression

(Figures 5B–D). Then, we assessed its cytotoxicity for MDA-MB-231

and 4T1 TNBC cell lines through CCK-8 and found that NCD

exhibited moderate cytotoxicity in both cell lines (Figures 5E, F).

Moreover, our qPCR results showed that treatment with NCD

induced dynamic upregulation of the mRNA expression of the

genes, including CXCL10, CXCL11, EBI3 and FLT3LG (Figures 5G,

H). These findings highlight NCD as a potential immunomodulatory

agent for TNBC, capable of modulating key TIME-GES components

and warranting further investigation in preclinical models.
3.6 NCD reprograms TIME and suppresses
TNBC tumor growth in vivo

To investigate the therapeutic efficiency of NCD and its impact

on CD8+ T cell infiltration in TNBC, we established a tumor-

bearing mouse model (Figure 6A). Our results showed that NCD

treatment significantly inhibited tumor volume and weight, with the

high-dose group exhibiting a more pronounced tumor suppression

(Figures 6B, C; Supplementary Figure S15A). Flow Cytometry

(FCM) analysis of tumor tissues revealed a significant increase in

the proportion of CD8+ T cells following NCD treatment, with a

dose-dependent enhancement observed across treatment groups.

Correspondingly, the CD4+/CD8+ ratio showed a significant dose-

dependent decline (Figures 6E, F; Supplementary Figure S15B). In

the spleen, tumor-bearing mice exhibited splenomegaly and an

elevated spleen index; however, the spleen index gradually

decreased in a dose-dependent manner with increasing NCD

dosage (Figure 6D; Supplementary Figure S15C). FCM analysis of

splenic immune cells similarly showed a dose-dependent increase in

the proportion of CD8+ T cells and a concurrent decrease in the

CD4+/CD8+ ratio (Figures 6G, H; Supplementary Figure S15B).

IF staining further validated the increase in CD8+ T cell infiltration,

demonstrating significantly higher CD8+ T cell levels in both tumor

and spleen tissues in NCD 5mg/kg (high dose) group compared to the

untreated model group (Figures 6I–K). Histological examination via

H&E staining revealed a significant decrease in white pulp areas in the

spleen tumor induction, which gradually recovered in a dose-

dependent manner following NCD treatment (Figures 6L, M).

To assess the safety profile of NCD, we monitored mouse body

weight and organ indices. In NCD 5mg/kg (high dose) group, body

weight did not increase over time as observed in the control and

NCD 2.5mg/kg (low dose) groups; however, the final weight (15.83

+/- 0.58 g) remained close to the initial value (16.58 +/- 0.14 g),

indicating minimal weight fluctuation (Supplementary Figure

S15D). No significant changes were detected in heart, liver, or

lung indices across treatment groups. A modest increase in kidney

index was observed at NCD 5mg/kg (high dose) (Supplementary

Figure S15E), but this was not accompanied by any abnormalities in

serum biochemical parameters (AST, ALT, ALB, CREA, UREA),

suggesting preserved renal and hepatic function (Supplementary
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Figure S15F). Together, the findings indicate that NCD effectively

reshapes the TIME and inhibits TNBC tumor growth in vivo, with

minimal toxicity, highlighting its potential as a promising

immunomodulatory agent for TNBC therapy.
3.7 The immune microenvironment–
reprogramming function of NCD is
mediated by JAK2 inhibition

To elucidate the mechanism by which NCD mediates immune

regulation in TNBC, we performed RNA-seq on MDA-MB-231

cells treated with 5 mM NCD. Comparing to negative control

DMSO treatment, NCD treatment resulted in the upregulation of

CXCL10, CXCL11, EBI3 and FLT3LG genes (Figure 7A). Gene

Ontology (GO) enrichment analysis revealed significantly

enrichment of immune-related processes, particularly T cell

proliferation and activation (Supplementary Figure S16) in NCD

treated cells. Kyoto encyclopedia of genes and genomes (KEGG)

enrichment analysis identified multiple enriched pathways, notably

the JAK2-STAT3 signaling pathway, which is known to play a

critical role in immune regulation (37) (Figure 7B).

To validate the involvement of JAK2-STAT3 signaling pathway,

we conducted Western blot experiments in MDA-MB-231 and 4T1

cell lines. In MDA-MB-231 cells, NCD treatment led to a dose-

dependent decrease in both total and phosphorylated JAK2 and

STAT3 protein (Figures 7C, D). In 4T1 cells, phosphorylated JAK2

and STAT3 levels were similarly decreased with increasing NCD

dosage, while total protein levels remained unchanged (Figures 7E,

F). Then, we knocked down the expression of JAK2 using three

different shRNA sequences (Figures 7G–I). Our qPCR results showed

that JAK2 knockdown upregulated the expression of the four-gene

subset (Figure 7I), which is further indicated that the regulation of

NCD on the expression of the four-gene set is mediated by JAK2

inhibition. To investigate whether NCD directly targets JAK2 protein,

we performed CETSA experiment and our results suggested that

JAK2 might be a direct target of NCD, showing enhanced thermal

stability of JAK2 upon NCD treatment (Figures 7J, K). Additionally,

SPR analysis confirmed a direct interaction between NCD and JAK2,

with a measured KD value of 3.41 mM, supporting the notion that

NCD binds JAK2 to modulate its activity (Figures 7L, M).

Collectively, these results suggest that NCD might exert its

immunomodulatory and anti-tumor effects by targeting JAK2 and

inhibiting the JAK2-STAT3 signaling pathway, thereby promoting

the expression of immune-activating genes in TNBC cells.
4 Discussion

In this study, we integrated transcriptomic and survival data from

multiple patient cohorts to define a gene expression–based immune

phenotype signature, termed TIME-GES. This multifunctional

biomarker demonstrated strong potential for distinction of tumor

immune phenotypes, prognostic evaluation, immunotherapy

response prediction, and high-throughput drug screening. Guided
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FIGURE 6

NCD reprograms TIME and suppresses TNBC tumor growth in vivo. (A) Design of animal experiments. (B) Final tumor weight (n=6). (C) Tumor
growth curves (n=6). (D) Mouse spleen index (n=6). (E) FCM analysis of CD8+ T cells populations in tumor (n=3). (F) Quantification of CD8+ T cells
populations in tumors corresponding to (E) (n=3). (G) FCM analysis of CD8+ T cells populations in spleen (n=3). (H) Quantification of CD8+ T cells
populations in spleen corresponding to (G) (n=3). (I) IF staining of CD8+ T cells in tumors from model and high-dose groups (n=3). (J) Quantification
of tumor CD8+ T IF staining (n=3). (K) CD8+ T cells IF staining in spleens of model and high-dose groups (n=3). (L) H&E staining of mouse spleen
(n=3). (M) Quantification of spleen H&E staining corresponding to (L) (n=3). In all panels, “Control” represents non-tumor-bearing mice, while
“Model” indicates mice subjected to tumor induction. Treatment groups are labeled according to NCD dose: “Low” corresponds to 2.5 mg/kg, and
“High” to 5 mg/kg. Cisplatin serves as the positive control. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 7

The immune microenvironment–reprogramming function of NCD is mediated by JAK2 inhibition. (A) Volcano plot of DEGs in MDA-MB-231 cells
treated with or without 5 mM NCD. (B) KEGG enrichment analysis of DEGs. (C) Western blot of JAK2, p-JAK2, STAT3, and p-STAT3 in MDA-MB-231
cells treated with increasing doses of NCD (n=3). (D) Quantification of JAK2, p-JAK2, STAT3, and p-STAT3 proteins corresponding to (C) (n = 3). (E)
Western blot of JAK2, p-JAK2, STAT3, and p-STAT3 in 4T1 cells treated with increasing doses of NCD (n=3). (F) Quantification of JAK2, p-JAK2,
STAT3, and p-STAT3 proteins corresponding to (E) (n = 3). (G) Protein expression levels of JAK2 after knockdown of JAK2 in MDA-MB-231 cell line
(n=3). (H) Quantification of JAK2 protein levels corresponding to (G) (n=3). (I) mRNA expression levels of JAK2, CXCL10, CXCL11, EBI3, FLT3LG after
knockdown of JAK2 in MDA-MB-231 cell (n=3). (J) Protein stability of JAK2 under thermal gradient with or without NCD (n=3). (K) CETSA Melting
Curve (n=3). (L) SPR sensorgrams of JAK2 binding to NCD. (M) Affinity analysis and KD calculation of JAK2-NCD interaction. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001
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by TIME-GES, we identified and validated a candidate drug, NCD,

for the treatment of TNBC, whichmight target JAK2 in tumor cells to

inhibit the JAK2-STAT3 signaling pathway. This inhibition promotes

the secretion of immune-modulatory factors CXCL10, CXCL11,

EBI3, and FLT3LG by tumor cells, thereby alleviating

immunosuppression and enhancing CD8+ T cell recruitment into

the tumor microenvironment and boosting antitumor immunity.

We systematically identified the TIME-GES. Through a

combination of computational analyses and experimental validation,

we demonstrated its clinical relevance in the following aspects (1):

Multifunctional utility of TIME-GES: TIME-GES can serve as a

molecular biomarker for tumor immune status, distinction of tumor

immune phenotypes, prognosis evaluation, and prediction of response

to immunotherapy, thereby supporting personalized treatment

strategies (2); TIME-GES–guided targeted drug discovery:

Combining TIME-GES with characteristics at the genetic level of

different tumors allows the identification of drugs that promote anti-

tumor immunity against different cancers. Compared to other

immune-related gene signatures, TIME-GES demonstrates superior

performance in predicting tumor immunogenicity, particularly in

distinguishing between “cold” and “hot” tumors. Unlike most

existing signatures that are developed and validated in a single

cancer type, TIME-GES has been systematically evaluated across

multiple cancer types, highlighting its broad applicability as a

multifunctional biomarker. Notably, the predictive potential of

TIME-GES has been further validated through both in vitro and in

vivo experiments, a step rarely achieved by other immune-related

signatures. Looking forward, evaluation of TIME-GES across diverse

patient populations—considering genetic background, environmental

influences, and ethnic diversity—may provide valuable insights into its

predictive capacity and further reinforce its potential as a versatile

platform for precision immunotherapy. Collectively, these key features

underscore the advantages of TIME-GES in both research and

potential clinical applications.

Using the TNBCmodel, we demonstrated the utility of TIME-GES

and its four-gene subset in predicting and identifying candidate

immunomodulatory compounds. At present, our screening strategy

relies on evaluating gene expression changes induced by compounds

from large-scale natural product libraries, which offers the advantages

of high throughput and cost-effectiveness. Looking ahead, integrating

cell-based phenotypic readouts with advanced image analysis, machine

learning, and other artificial intelligence approaches—together with the

use of diverse cell line models—could substantially enhance the depth,

breadth, and precision of such screening platforms (38). In parallel,

systematically expanding to larger and more structurally diverse

compound libraries will broaden the chemical space explored and

increase the likelihood of identifying compounds with robust immune-

modulating activity, thereby improving the generalizability and

translational potential of TIME-GES–based drug discovery. However,

a limitation of this study is that experimental validation was confined to

the TNBC context, and the relevance of TIME-GES to other tumor

types remains to be determined. Future studies could extend this

approach to a broader range of malignancies to facilitate drug screening

and immunotherapy development for immunologically “cold” tumors.

Moreover, clinical evaluation of TIME-GES across diverse cancers may
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immunotherapy and translational applications. Finally, it remains to be

explored whether the identified compound, NCD, can exert similar

immunomodulatory effects in other immune-cold tumor types.

NCD is the main bioactive ingredient of the traditional Chinese

medicine Zanthoxylum nitidum (Roxb.) DC. and has the classical

effects of activating blood circulation and removing blood stasis,

detoxifying and subduing swelling (39). Modern pharmacological

studies have demonstrated multiple biological activities of NCD (1):

Immunosuppressive effects: by modulating NF-kB and other

signaling pathways, NCD exerts anti-inflammatory effects in

inflammatory diseases such as osteoarthritis (40), inflammatory

bowel disease (41), and sepsis (42) (2); Direct antitumor effects:

NCD has demonstrated the ability to inhibit the progression of

multiple cancers, including—but not limited to—hepatocellular

carcinoma (43–45) and ovarian cancer (46–48). Mechanistically,

its antitumor activity is associated with the suppression of

epithelial-mesenchymal transition-driven metastasis, induction of

apoptosis, and arrest of the cell cycle at the G1/S phase. In our study,

we found that NCD significantly modulate the expression of

immune-related TIME-GES genes such as CXCL10, CXCL11,

EBI3, and FLT3LG, thereby enhancing antitumor immune

responses and suppressing TNBC progression. Our findings

deepen our understanding about the immunological mechanism

of action of NCD in tumor suppression in TNBC.

Importantly, we observed that these effects were closely associated

with increased infiltration of CD8+ T cells, underscoring their central

role inmediating the immunomodulatory activity of NCD.While our

current work focuses on the regulation of CD8+ T cell abundance and

upstream molecular pathways, future investigations could further

explore functional aspects—such as cytotoxic capacity, persistence,

and memory formation—which would yield a more comprehensive

understanding of how NCD strengthens CD8+ T cell–driven

antitumor immunity. Equally noteworthy, within the dosing

regimen and treatment duration applied in our study, NCD did

not produce any observable toxicity in mice. Although earlier studies

have reported safety concerns at substantially higher equivalent doses

in normal rats (49, 50), our findings highlight a favorable therapeutic

window within the tested range. Looking ahead, expanding research

to include in-depth in vitro and in vivo toxicological and

pharmacokinetic evaluations, could further clarify immunological

effects and NCD’s safety profile, encompassing its cellular toxicity,

systemic tolerance, thereby reinforcing its promise as a candidate for

translational immunotherapy.
5 Conclusion

In summary, our study demonstrates that TIME-GES is a clinically

relevant tool for distinction of tumor immune phenotypes, prognosis

evaluation, and prediction of immunotherapy responses. Moreover,

TIME-GES offers a strategic framework for identifying novel tumor

immune-modulatory compounds. Using this approach, we identified

NCD as a previously unrecognized tumor immunotherapeutic agent

capable of reprogramming the tumor immune microenvironment,
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through upregulating the TIME-GES genes, ultimately enhancing

antitumor immunity. This work might expand therapeutic options

for immunologically “cold” tumors and supports the feasibility of

biomarker-guided discovery of small molecules to potentiate

cancer immunotherapy.
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ACC Adrenocortical Carcinoma
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Act_B Activated B Cell
Act_CD4 Activated CD4+ T Cell
Act_CD8 Activated CD8+ T Cell
ALB Albumin
ALT Alanine Aminotransferase
AST Aspartate Aminotransferase
AUC Area Under the Curve
BC Breast Cancer
BLCA Bladder Urothelial Carcinoma
BRCA-Basal Breast Invasive Carcinoma, Basal-like Subtype
BRCA-Her2 Breast Invasive Carcinoma, HER2-Enriched Subtype
BRCA-LumA Breast Invasive Carcinoma, Luminal A Subtype
BRCA-LumB Breast Invasive Carcinoma, Luminal B Subtype
CCK-8 Cell Counting Kit-8
CESC Cervical Squamous Cell Carcinoma and Endocervical

Adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon Adenocarcinoma
CREA Creatinine
DEGs Differentially Expressed Genes
DEME Dulbecco’s Modified Eagle’s Medium
DFI Disease-Free Interval
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
DMSO Dimethyl Sulfoxide
DSS Disease-Specific Survival
ESCA Esophageal Carcinoma
FBS Fetal Bovine Serum
FCM Flow Cytometry
GBM Glioblastoma Multiforme
GO Gene Ontology
GSEA Gene Set Enrichment Analysis
H&E Hematoxylin and Eosin
HiMAP-seq Highly multiplexed and parallel sequencing
HNSC Head and Neck Squamous Cell Carcinoma
HNSC-HPV- Head and Neck Squamous Cell Carcinoma, HPV-Negative
HNSC-HPV+ Head and Neck Squamous Cell Carcinoma, HPV-Positive
HR Hazard Ratio
HTS2 high-throughput sequencing-based high-throughput

screening
ICB Immune Checkpoint Blockade
iDC Immature Dendritic Cell
IF Immunofluorescence
Imm_B Immature B cell
KEGG Kyoto Encyclopedia of Genes and Genomes
ogy 19
KICH Kidney Chromophobe
KIRC Kidney Renal Clear Cell Carcinoma
KIRP Kidney Renal Papillary Cell Carcinoma
LGG Brain Lower Grade Glioma
LIHC Liver Hepatocellular Carcinoma
LUAD Lung Adenocarcinoma
LUSC Lung Squamous Cell Carcinoma
MESO Mesothelioma
NCD Nitidine Chloride
NK Natural Killer Cell
NKT Natural Killer T Cell
OS Overall Survival
OV Ovarian Serous Cystadenocarcinoma
PAAD Pancreatic Adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
pDC Plasmacytoid Dendritic
PFI Progression-Free Interval
PFS Progression-Free Survival
PRAD Prostate Adenocarcinoma
qPCR Quantitative Polymerase Chain Reaction
READ Rectum Adenocarcinoma
RNA-seq RNA sequencing
ROC Receiver Operating Characteristic
RPMI Roswell Park Memorial Institute
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
SKCM-Metastasis Skin Cutaneous Melanoma, Metastatic
SKCM-Primary Skin Cutaneous Melanoma, Primary Tumor
SPR Surface Plasmon Resonance
STAD Stomach Adenocarcinoma
Tem_CD4 Effector Memory CD4+ T Cell
Tem_CD8 Effector Memory CD8+ T Cell
TGCT Testicular Germ Cell Tumors
Th1 Type 1 T Helper Cell
THCA Thyroid Carcinoma
THYM Thymoma
TIL Tumor-Infiltrating Lymphocyte
TIME Tumor Immune Microenvironment
TIME-GES Tumor Immune Microenvironment Gene Expression

Signature
TNBC Triple-Negative Breast Cancer
UCEC Uterine Corpus Endometrial Carcinoma
UCS Uterine Carcinosarcoma
UVM Uveal Melanoma
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