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Single-cell atlas of the tumor
immune microenvironment
across syngeneic murine models
Jia Wang †, Bin Jiang †, Minjuan Deng, Han Yan, Pei Zhang,
Wei Jin and Zhirong Shen*

Translational Discovery, Research and Medicine, BeOne Medicines, Beijing, China
The tumor immune microenvironment plays a critical role in tumor progression

and responses to immunotherapy. Nevertheless, its cellular complexity and

heterogeneity remain incompletely understood. In this study, we employed

high-resolution single-cell RNA sequencing on CD45+ immune cells isolated

from ten syngeneic murine tumor models, representing seven distinct cancer

types under treatment-naïve conditions, thereby enabling a comprehensive

profiling of tumor-infiltrating immune cells. We identified seven principal

immune cell populations and provided an in-depth characterization of T cells,

NK/innate lymphoid cells, dendritic cells, monocytes/macrophages, and

neutrophils. Cross-species analyses further delineated conserved immune cell

states and transcriptomic features within the T cell and monocyte/macrophage

compartments that are shared across syngeneic models and human tumors. To

investigate the functional relevance of the predominant monocyte/macrophage

compartment and the notable presence of neutrophils in syngeneic tumors, we

evaluated responses to anti-PD-1 therapy across various models and analyzed

the enrichment of monocyte/macrophage subsets in tumors that responded to

treatment. Furthermore, we conducted neutrophil depletion experiments using

anti-Ly6G antibodies, administered both as monotherapy and in combination

with PD-1 blockade. Remarkably, an interferon-stimulated gene-high (ISGhigh)

monocyte subset was significantly enriched in models responsive to anti-PD-1

therapy. Neutrophil depletion resulted in variable antitumor effects across

models but failed to enhance the efficacy of PD-1 blockade. In summary, our

single-cell profiling offered a detailed atlas of the immune microenvironment

across multiple syngeneicmouse tumor models, thereby enabling rational model

selection for immuno-oncology studies. We uncovered an ISGhigh monocyte

subset enriched in anti-PD-1 responsive models, and showed the context-

dependent effects of neutrophil depletion on tumor immunity and

immunotherapy, underscoring the heterogeneity and functional divergence of

immune cell sublineages.
KEYWORDS

tumor immune microenvironment, syngeneic murine models, single-cell atlas, anti-PD-
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Introduction

The tumor microenvironment (TME) is a complex and

heterogeneous ecosystem, comprising the extracellular matrix,

non-immune cells (such as endothelial and stromal cells), and a

diverse array of immune cells that collectively constitute the tumor

immune microenvironment (TIME). Mounting evidence highlights

the critical role of the TIME in tumor progression, recurrence,

metastasis, and, notably, in modulating responses to

immunotherapies (1).

Accordingly, immunotherapies that target the inhibitory

receptors expressed by immune cells have yielded remarkable

therapeutic benefits in clinical practice. However, even the most

successful immune checkpoint blockade (ICB) strategies encounter

significant challenges related to treatment resistance. For example,

anti-PD-1/PD-L1 therapies only demonstrate an average durable

objective response rate of merely 25% in solid malignancies. In

melanoma, the most responsive cancer type, approximately 1/4 to

1/3 responders experience relapse after a period of treatment (2).

Retrospective studies have identified the characteristics of the TIME

as key determinants of therapeutic response and resistance,

underscoring the imperative for a more profound understanding

of its cellular composition and molecular features (1–3).

Murine syngeneic tumor models, established by implanting

tumor cell lines into genetically identical mouse strains, are

widely used in preclinical cancer immunology due to their

immunocompetence and intact immune systems. Previous studies

have characterized the TIME in various syngeneic models, revealing

differences in gene expression, immune composition, and the

functional roles of specific immune cell populations (see

Discussion) (4–12). However, a comprehensive cross-model

analysis of the TIME - particularly of less abundant or less well-

characterized immune subsets - remains limited.

Here, we utilized high-resolution single-cell RNA sequencing

(scRNA-seq) to systematically characterize the baseline immune

landscape across ten commonly used murine syngeneic tumor

models, providing detailed insights into immune cell infiltration

and heterogeneity. We delineated features conserved across human

and mouse TIMEs and resolved the discrete contributions of

macrophage and neutrophil subpopulations to antitumor

immunity and responsiveness to anti-PD-1 therapy, thereby

underscoring the translational value of this atlas.
Materials and methods

Animal models

Three immunocompetent mouse strains - Balb/C, C57BL/6N

and FVB - were utilized in this study. All animals were female, aged

6 to 8 weeks, and sourced from Beijing Vital River Laboratory

Animal Technology Co., Ltd. Mice were housed in a vivarium under

specific pathogen-free conditions, with up to five animals per cage.

All procedures involving animals were carried out with the approval
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of the Institutional Animal Care and Use Committee (IACUC) of

BeOne Medicines.
Cell lines

Ten distinct murine tumor cell lines were used to establish

syngeneic models. The origins and culture conditions of these cell

lines were detailed in Table 1. The conditions for cell implantation

in mice were summarized in Table 2.
Single-cell sorting and library preparation

Tumors were harvested when they reached a volume of

approximately 250–300 mm3. For each model, three tumors were

collected, mechanically dissociated, and resuspended in 2.35 mL of

RPMI 1640 medium supplemented with 100 μL of Enzyme D, 50 μL

of Enzyme R, and 12.5 μL of Enzyme A (Miltenyi Biotec, Cat# 130-

096-730). Tissue dissociation was performed using the

gentleMACS™ Octo Dissociator with Heaters (Miltenyi Biotec,

Cat# 130-096-427) according to the manufacturer ’ s

program (37C_m_TDK_1).

Following dissociation, cell suspensions were filtered through a

70 mm mesh and washed with fluorescence-activated cell sorting

(FACS) buffer (1% FBS in PBS). Cells were centrifuged at 500 × g for

5 minutes and resuspended in 500 mL of FACS buffer. For flow

cytometry analysis, cells were stained with PerCP-Cy5.5 anti-mouse

CD45 (BD Biosciences, clone 30-F11, Cat# 550994) and Fixable

Viability Stain 450 (BD Biosciences, Cat# 562247). Following

staining, viable CD45+ cells were isolated via FACS using a BD

FACSAria™ SORP cell sorter (BD Biosciences, configured with 5

lasers (355nm, 405 nm, 488 nm, 561nm, and 640 nm) and 16

fluorescence detectors). Post-sorting reanalysis confirmed that

>80% of cells used for downstream scRNA-seq were viable, as

determined by the exclusion of Fixable Viability Stain 450-positive

(non-viable) cells. CD45+ viable cells were washed in PBS and

resuspended at a concentration of 1 × 106 cells/mL. Single-cell

suspensions were subsequently loaded onto a Chromium Controller

(10x Genomics, Pleasanton, CA) using the Single Cell 3’ Library and

Gel Bead Kit v3 (10x Genomics) for droplet-based encapsulation

and library preparation.
Efficacy evaluation in syngeneic mouse
models

Anti-PD-1 response
To assess the efficacy of anti-PD-1 treatment in each model,

mice bearing tumors were randomly assigned to treatment groups

based on tumor volume or body weight. Mice received

intraperitoneal (i.p.) injections of either an anti-mouse PD-1

antibody (clone Ch15mt, 3 mpk, produced by BIODURO on

behalf of BeOne Medicines) or vehicle control (PBS solvent) once

a week as monotherapy, initiated when tumor size reached 100–200
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mm³. Body weight and tumor volume were measured biweekly.

Tumor volume (mm³) was calculated using the formula: V = 0.5 (a x

b²), where a and b represent the tumor’s long and short diameters,

respectively. Mice were euthanized via carbon dioxide inhalation if

tumor volume exceeded 2000 mm³, tumors became ulcerated, or

body weight loss exceeded 20%. All outcome assessments and data

ana lys i s were per formed by researchers b l inded to

group assignments.
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In vivo neutrophil depletion
To evaluate the role of neutrophils in antitumor efficacy, mice

were administered intraperitoneal (i.p.) injections of an anti-mouse

Ly6G antibody (Bio X Cell, clone 1A8, Cat# BE0075-1) at a dose of

50 mg in 100 mL PBS or an isotype control once daily, starting on

Day1 after grouping. Mice were euthanized using carbon dioxide

once their tumor volume reaches ≥2000 mm3, the tumor became

ulcerated, or body weight loss exceeds 20%. Neutrophil depletion

efficiency was assessed by flow cytometry after 2 days of treatment

with the anti-Ly6G antibody. For combination therapy studies, the

anti-PD-1 antibody was administered as described above, starting

on Day1 after grouping. Group sizes for each model were as follows:

CT26.WT (n = 10), and EMT6 (n = 10) per group.
Flow cytometry for neutrophil
quantification

Neutrophil abundance was assessed by flow cytometry using the

same protocol described for single-cell sorting. Cells were stained

with eFluor™ 506 (eBioscience, Cat# 65-0866-18, diluted 1:1000),

BV786-CD45 (Biolegend, clone 30-F11, Cat# 103149, diluted 1:800,

final concentration 0.25 mg/mL), FITC-CD19 (BD Biosciences,

clone 1D3, Cat# 553785, diluted 1:200, final concentration 2.5 mg/
mL), FITC-CD3e (BD Biosciences, clone 145-2C11, Cat# 553062,

diluted 1:200, final concentration 2.5 mg/mL), FITC-CD335 (BD

Biosciences, clone 29A1.4, Cat# 560756, diluted 1:200, final

concentration 2.5 mg/mL), APC-CD11b (BD Biosciences, clone

M1/70, Cat# 561690, diluted 1:400, final concentration 0.5 mg/
TABLE 2 Implantation parameters for syngeneic tumor models.

Cell line
Mouse
strain

Cell
number

Implanted
position

4T1 Balb/C 3X10^5 mammary fat pad

EMT6 Balb/C 5X10^4 mammary fat pad

MMTV-
PyMT

FVB 1X10^6 mammary fat pad

CT26.WT Balb/C 1X10^5 rear right flank

MC38 C57BL/6N 1X10^6 rear right flank

GL261 C57BL/6N 1X10^7 rear right flank

Renca Balb/C 1X10^6 rear right flank

LL2 C57BL/6N 3X10^5 rear right flank

B16F10 C57BL/6N 3X10^5 rear right flank

Pan02 C57BL/6N 1X10^7 rear right flank
TABLE 1 Information about the murine tumor cell lines used in this study.

Cell line Source Culture medium

4T1 ATCC
(CRL-2539)

RPMI-1640 medium (Gibco, Cat# 22400-105) supplemented with 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-141) and
100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)

CT26.WT ATCC
(CRL-2638)

GL261 NCI (E-172-2015)

Pan02 NCI (E-050-2016)

LL2 ATCC
(CRL-1642) DMEM (Gibco, Cat# 11965092) supplemented with 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-141) and 100 ug/ml of

penicillin and streptomycin (Gibco, Cat# 15140-122)B16F10 ATCC
(CRL-6475)

EMT6 ATCC
(CRL-2755)

Waymouth medium (Gibco, Cat# 11220035) supplemented with 15% (v/v) fetal bovine serum (Gibco, Cat# 10099-141) and
100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)

MMTV-PyMT
JAX mice (#002374)

DMEM/F12 medium (Gibco, Cat# 11320-082) supplemented with 1X Insulin-Transferrin-Selenium (ITS) (Gibco, Cat# 51500-
056), 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-141), and 100 ug/ml of penicillin and streptomycin (Gibco, Cat#
15140-122)

MC38
Kerafast (ENH204)

DMEM (Gibco, Cat# 11965092) supplemented with 10 mM HEPES (Gibco, Cat# 15630-080), 50 μg/mL gentamicin
(PhytoTechnology, G3350-10ML), 0.1 mM NEAA (Gibco, Cat# 11140-050), 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-
141), and 100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)

Renca
ATCC
(CRL-2947)

RPMI-1640 medium (Gibco, Cat# 22400-105) supplemented with 1 mM sodium pyruvate (Corning, Cat# R25-000-Cl), 2 mM
L-glutamine (Gibco, Cat# 25030-081), 0.1 mM NEAA (Gibco, Cat# 11140-050), 10% (v/v) fetal bovine serum (Gibco, Cat#
10099-141), and 100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)
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mL), PerCP-Cy5.5-Ly6G and Ly6C (BD Biosciences, clone RB6-

8C5, Cat# 552093, diluted 1:400, final concentration 0.5 mg/mL) and

PE/Cy7-CD115 (Biolegend, clone AFS98, Cat# 135524, diluted

1:200, final concentration 1 mg/mL) to identify neutrophil

populations. The samples were incubated in the dark at 4 °C for

30 minutes, washed twice with PBS, and then resuspended in 200

mL of PBS. Each sample was analyzed on a Cytek Aurora full

spectrum flow cytometer (Cytek Biosciences, configured with 3

lasers (405 nm, 488 nm, and 640 nm) and 38 fluorescence channels

(16V-14B-8R)), with acquisition of no fewer than 10,000 live CD45

+ cell events per sample. Data were analyzed using SpectroFlo

software (version 3.0.3). Group sizes for each model were as follows:

CT26.WT (n = 5) and EMT6 (n = 4).
scRNA-seq data processing and cell type
annotation

scRNA-seq was performed on CD45+ immune cells isolated

from 30 tumor samples representing 10 syngeneic murine tumor

models, with each model replicated in triplicate using individual

animals. Raw sequencing data were processed using the Cell Ranger

Single-Cell Software Suite v3.1.0 and aligned to the mm10 mouse

reference genome.

The resulting gene expression matrices were imported into

Seurat (version 5.1.0) (13) for downstream analysis. Quality

control filtering excluded cells with <500 UMIs, <250 detected

genes, or a gene-to-UMI ratio < 10^0.8. Cells with >10%

mitochondrial gene content, potential doublets (identified via

DoubletFinder (14) with optimized pK), or extreme values

(>40,000 UMIs or >6,000 genes) were also removed. Genes

expressed in fewer than 10 cells were excluded from

further analysis.

Remaining cells were normalized using Seurat’s “Log

Transform” function. The top 2,000 highly variable genes were

selected for canonical correlation analysis (CCA)-based data

integration (15) and principal component analysis. Clustering was

performed using the “FindNeighbours” and “FindClusters”

functions and visualized via uniform manifold approximation and

projection (UMAP).

Major immune cell clusters emerged during unsupervised

clustering at a resolution of 0.1. We assessed canonical immune

marker gene expression across clusters and merged those with

highly similar expression patterns. The final seven principal

immune cell populations were annotated based on the following

markers: Cd3e (T cells), Ncr1 (NK cells), Cd68 (monocytes/

macrophages), Csf3r (neutrophils), Siglech (plasmacytoid dendritic

cells), Fscn1, Cd209a, and H2-DMb2 (conventional dendritic cells),

Ms4a2 (mast cells), and Ms4a1 (B cells). For T cells, NK cells,

dendritic cells, monocytes/macrophages, and neutrophils, we

refined initial lineage assignments by iteratively increasing

clustering resolution to reveal heterogeneous substructures. For

each subcluster, we performed differential expression analysis

with Seurat’s FindMarkers function (Wilcoxon rank-sum test)

and single-cell gene set enrichment analysis with RunScGSEA
Frontiers in Immunology 04
function (category C5, GO: BP). Subclusters that exhibited at least

three significantly differentially expressed genes relative to other

subclusters (Benjamini-Hochberg-adjusted p-value < 0.05; average

log2 fold-change > 0.5) were retained as separate clusters. As

reference panels, we additionally applied automated annotation

with SingleR against two mouse immune-relevant reference

at lases (ImmGenData and MouseRNAseqData) . Final

assignments were further supported by clustering tree analysis

and biologically relevant marker genes and pathways.
Developmental trajectory analysis

To infer cellular state transitions and lineage relationships, we

applied the Monocle2 (16) algorithm. The RNA expression matrix

derived from the cluster-annotated Seurat object was normalized

and converted into a CellDataSet object. Differentially expressed

genes with a false discovery rate (q-value) < 0.01 from each cluster

were used to order cells along pseudotime. Cellular trajectories were

reconstructed using Monocle2’s default dimensionality reduction

and cell ordering parameters, enabling the inference of potential

differentiation pathways and transitional states within immune

cell populations.
Signature scoring

Gene s ignature scores were computed us ing the

“AddModuleScore” function in Seurat. For each cell, the average

expression of genes within a defined signature was calculated, and

the aggregated expression of matched control gene sets was

subtracted to yield the final module score. Signatures originally

derived from human datasets were mapped to murine homologs

based on gene symbol concordance. Genes lacking direct murine

counterparts were excluded from analysis.

T cell-related gene signatures (17):
• Cytotoxicity: Gzmb, Prf1, Fasl

• Exhaustion: Pdcd1, Havcr2, Tigit, Lag3, Ctla4

• Stemness: Tcf7, Sell, Il7r, Lef1
NK cell and ILC1-related gene signatures (18–20):
• NK (Robinette2015): Klra3, Klra10, Klra9, Irf8, Eomes,

Klrg1, Scimp, Itgam, Cym, Serpinb9b, Klra1, Car5b,

Cmklr1, Zeb2, Khdc1a

• ILC1 (Robinette2015): Trgv3, Trgv2, Il7r, Tmem176b, Il2ra,

Cxcr6, Socs2, Ckb, Gpr114, Tmem176a, Podnl1, Gpr97,

St6galnac3, Tmem154, Cdon, Atp8a2, Slc27a6

• NK (Björklund2016): Gzmb, Nkg7, Klrd1, Eomes, Itgax,

Fcgr3a, Prf1, Gzma, Irf8, Slamf7, Ccl4, Fam49a, Gzmk,

Aoah, Gzmc, Zmat4, Cd160, 1700025G04Rik, Ccr1,

Styk1, Cdhr1

• ILC1 (Björklund2016): Sit1, Cd3d, Cd3g, Cd4, Cd6, Trav13-

1, Cd5, Cd27, Cd8a, Trav4-1, Gzmk, Trbv5, Adtrp, Trav9-2
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Fron
• Intratumoral NK: Itga1, Eef1g, Serbp1, Top2a, Pa2g4, Aldoa,

Plac8, Gzmb, Irf8, Gm5559, Pgk1, Ldha, Mif, Pkm2, Tpi1,

Gzmc, Xcl1, Lgals1

• NK activation: Bcl2, Ccl3, Ccl4, Ccr5, Cd69, Cxcl10, Foxk1,

Gbp4, Gzmb, Icam1, Ifih1, Ifng, Il12rb1, Il12rb2, Il2ra, Irf1,

Irf7, Irf8, Klf11, Klf13, Klrg1, Myd88, Nfil3, Nfkbib, Nfkbiz,

Notch1, Nr4a1, Nr4a2, Nr4a3, Socs1, Socs3, Stat1, Stat2,

Stat4, Tbx21
Mo/Mj-related gene signatures (21, 22):
• IFN-TAMs: Ccl2, Ccl7, Ccl8, Cd274, Cxcl9, Cxcl10, Cxcl11,

Ifit1, Ifit2, Ifit3, Ifitm1, Ifitm3, Il7r, Isg15, Nos2, Rsad2,

Tnfsf10, Stat1

• Inflam-TAM: Cxcl1, Cxcl2, Cxcl3, Cxcl5, Cxcl8, Ccl20,

Ccl3l1, Il1rn, Il1b, G0s2, Inhba, Spp1

• Angio-TAMs: Arg1, Adam8, Bnip3, Mif, Slc2a1

• LA-TAMs: Acp5, Apoc1, Apoe, C1qa, C1qb, C1qc, Ccl18,

Ccl8, Cd163, Cd206, Cd36, Cd63, Ctsb, Ctsd, Ctsl, Cxcl9,

Fabp5, Folr2, Gpnmb, Lgals3, Macro, Mrc1, Trem2

• Reg-TAMs: Apoe, Arg1, C1qa, Ccl2, Cd63, Clec4d, Cx3cr1,

Gpnmb, Hilpda, Hmox1, Il7r, Mrc1, Pf4, Spp1, Trem2,

Vegfa, Itga4

• Prolif-TAM: Cdk1, Mki67, Stmn1, Top2a, Tubb

• Classical TIMs: Ccl2, Ccl9, Ccr2, Cd14, Cd300lf, Cxcl10,

F13a1, Fcn1, Fn1, Ifi205, Ifit2, Ifit3, Il1r2, Isg20, Itga4, Ly6c2,

Lyz, Mgst1, Plaur, S100a8, S100a9, S100a12, Sell, Tgm2,

Thbs1, Tlr2, Vcan

• Nonclassical Monocytes: Ace, Adgre4, Cd300a, Cdkn1c,

Ceacam1, Ear2, Il17ra, Itgal, Lilrb2, Lrp1, Spn, Stk10,

Tnfrsf1b, Treml4

• M1 Macrophages : Orecch ion i 2019 , In Vi t ro

Classically Activated

• M2 Macrophages : Orecch ion i 2019 , In Vi t ro

Alternatively Activated
Neutrophil-Related Gene Signatures (23):
• T1: Ltc4s, Mmp8, Mmp9, Ppia, Prr13, Ptma, Retnlg

• T2: Cxcr2, Cd300ld, Dusp1, Gbp2, Ifitm1, Il1b, Isg15, Jaml,

Junb, Msrb1, Osm, S100a6, Selplg, Slpi

• T3: Atf3, Ccl3, Ccl4, Cd274, Cstb, Cxcl3, Hcar2, Hilpda, Hk2,

Hmox1, Ier3, Jun, Ldha, Mif, Plin2, Spp1, Tgif1, Tnfrsf23,

Vegfa, Zeb2

• Mature: Retnlg, Ccl6, S100a6, Clec4d, Prr13, Cebpb, Slpi,

S100a11, Btg1, Cxcr2, Fth1, Grina, Mmp8, Fxyd5, Msrb1,

H2-D1, Gm5483, Anxa2, Mmp9, Ftl1, Map1lc3b, Tmcc1,

Sat1, Cyp4f18, Junb, Mxd1, Stk17b, Ypel3, Selplg, Il1f9,

Dusp1, Slc16a3, Ccr1, Ifitm1, Rdh12, Clec4e, Arg2,

Cd300ld, Amica1, Ctsd, Gda, Hacd4, Timp2, Fpr1,

Ifi27l2a, Slc7a11, Stfa2l1, Il1b, Asprv1, Cxcl2
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Cluster similarity analysis

To evaluate transcriptional congruence across immune cell

clusters derived from distinct tumor models, we implemented a

logistic regression model with elastic net regularization, as described

by Cheng et al. (24). Clusters were downsampled to mitigate bias

from unequal cell numbers. Cross-validation was used for model

fitting, and predicted logits from test datasets were averaged and

converted to probabilities to assess cluster similarity.
Human scRNA-seq data collection and
processing

To comprehensively profile human TIMEs, we leveraged the

TISCH2 (25) public scRNA-seq database, which provides uniformly

processed datasets via the MAESTRO workflow (26). We curated

treatment-naïve primary tumor samples (Source/Tissue = Tumor)

from breast invasive carcinoma (BRCA), colorectal cancer (CRC),

and non-small cell lung cancer (NSCLC), restricting inclusion to

studies with ≥2 patients and datasets with ≥10,000 cells, and

encompassing both CD45+-enriched and unsorted preparations.

All datasets were generated using 10x Genomics chemistry, with the

exception of two that employed the inDrop platform (Azizi et al.,

2018; Zilionis et al., 2019). We restricted analysis to immune-

lineage cells (Celltype_malignancy = immune cells). Samples

contributing fewer than 50 immune cells were excluded to

mitigate low-yield noise. Study metadata were manually curated

against the original publications, and cells with inconsistent lineage

labels between TISCH2 and the source papers were removed when

author-provided labels were available. To mirror the compartments

analyzed in the syngeneic models, we extracted T cells, NK cells,

dendritic cells, monocytes/macrophages, neutrophils, and mast cells

from each human dataset. After filtering, 2,252,095 immune cells

from 14 studies were retained and subsequently subjected to cross-

study integration, unsupervised clustering, and systematic re-

annotation using the same methods and criteria applied to the

syngeneic datasets.
Mouse–human comparisons

We compared cell states across species by restricting analyses to

high-confidence one-to-one mouse–human orthologous gene pairs

downloaded from the MGI database. Unsupervised cross-species

comparisons were performed by hierarchical clustering of genes

(rows) and cell states (columns) independently, using Ward’s

linkage on Pearson correlation distance. For each species, we

generated pseudobulk expression profiles for each annotated cell

state by averaging single-cell expression values across all cells

assigned to that state (Seurat AverageExpression). To mitigate
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dataset-specific effects, pseudobulk profiles were normalized within

each dataset by scaling each profile to the median expression level

across genes. Human and mouse pseudobulk matrices were then

concatenated on the intersecting set of one-to-one orthologs and log

transformed. For clustering, we restricted the gene set to positive

markers for the focal cell population relative to other cell

populations within each species, identified using Seurat

FindMarkers (Wilcoxon rank-sum test). Genes were required to

meet all of the following criteria: detected in at least 30% of cells in

the focal population, Benjamini-Hochberg-adjusted p-value < 0.05,

and log2 fold change ≥ 0.5.

To evaluate cross-species correlations in gene expression

patterns for clusters of interest, we used marker genes from

differential expression analyses performed separately in each

species (Seurat FindMarkers). Differential expression analyses

were conducted between the following groups: (i) Treg cells

(human: Treg; mouse: CD4+T-C13) versus other T cells; (ii) CD8

+ Tex cells (human: CD8_Tex_GZMB; mouse: aggregated CD8+T-

C03, CD8+T-C05, and CD8+T-C06) versus other T cells; (iii) Mj-
SPP1 (human: aggregated Mj_SPP1 and Mj_PPARG; mouse: Mj-
C10) versus other Mo/Mjs; and (iv) Mo-ISG (human: Macro_C4;

mouse: Mo-C04) versus other Mo/Mjs. Marker genes were defined

as those detected in at least 5% of cells in the focal population, with

log2 fold change ≥ 1, and Benjamini-Hochberg-adjusted p-value <

0.05. For each contrast, we intersected the human and mouse

marker genes using the one-to-one ortholog map.
Immunohistochemistry analysis

Five tumor samples from each model were harvested and fixed

in 10% neutral buffered formalin for 24 hours, followed by

embedding in paraffin. The paraffin blocks were sectioned into 4

mm slices and subjected to deparaffinization. Antigen retrieval was

performed by immersing the slides in citrate buffer, followed by

microwave treatment at high power for 2.5 minutes and incubation

in a water bath at 95 °C for 30 minutes. Endogenous peroxidase

activity was quenched by treating the slides with 3% hydrogen

peroxide (H2O2) for 10 minutes at room temperature. The sections

were then blocked with 10% goat serum for 1 hour. Post-blocking,

the sections were incubated with anti-CD45 antibody (Cell

Signaling Technology, Danvers, MA, USA, Cat# 70257S, 1:200) in

a humidified chamber at 4 °C overnight. Following PBS washes, the

slides were incubated with the secondary antibody (Cell Signaling

Technology, Danvers, MA, USA, Cat# 8114L) for 1 hour at room

temperature. Visualization was achieved using diaminobenzidine

(DAB) as the chromogen. The slides were counterstained with

hematoxylin and scanned using a Leica AT2 scanner.

Digital whole slide images were uploaded to the HALO Image

Analysis platform (Indica Labs). Image analysis algorithms were

developed using the Indica Labs Multiplex IHC module to detect

CD45-positive cells by setting a positive threshold. The accuracy of

the algorithms was validated through visual inspection by at least
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one pathologist. High infiltration was defined as CD45 positivity

greater than 30%. A pathologist reviewed the slides to evaluate the

differentiation status of the tumor (Supplementary Table 1).
Somatic mutations and tumor mutational
burden

Somatic mutations in syngeneic models were called from cell

line whole-exome sequencing using Sentieon in tumor-only mode.

For downstream analyses, we retained only nonsynonymous

variants (missense, nonsense, and frameshift indels) that did not

overlap dbSNP entries for the corresponding genetic background.

Genes that are common drivers in human cancers were reported as

representative examples. Tumor mutational burden (TMB) was

calculated as the number of mutations per megabase (Mb),

considering variants with a variant allele frequency greater than

1% (Supplementary Table 1).
Bulk RNA-seq and immune deconvolution

RNA-seq libraries were prepared using NEBNext® UltraTM

RNA Library Prep Kit for Illumina® (NEB, USA), following the

manufacturer’s protocol. Libraries quality was assessed prior to

sequencing on the Illumina NovaSeq 6000 platform. Sequencing

read quality was assessed using FastQC. Reads were aligned to the

mouse reference genome (mm10, Ensembl release 98) using STAR

(v.2.5. 4b), and gene-level quantification was performed with RSEM

(v.1.3.1). Normalized expression data were subjected to immune cell

deconvolution using the quanTIseq (27) algorithm, with all

immune- r e l a t ed componen t s agg r ega t ed unde r the

“quanTIseq_immune” category.
Statistical analysis

Tumor volume differences among groups were analyzed using

one-way analysis of variance (ANOVA) in GraphPad Prism

(version 10.1.2), with groupings defined by a single independent

variable. Data are presented as mean ± standard error of the mean

(SEM) from independent experiments. Statistical significance was

set at p ≤ 0.05. Models were classified as anti-PD-1 responsive if the

treatment group exhibited a statistically significant reduction in

tumor volume compared to the control group at the study endpoint;

otherwise, they were considered anti-PD-1 resistant.
Data availability

The data generated in this study are available at Gene

Expression Omnibus (GEO) accession no. GSE307143.
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Results

Immune cell composition landscapes
across ten syngeneic tumor models

To elucidate the high-resolution landscapes of tumor-

infiltrating immune cells (TIICs) within murine syngeneic tumor

models, we performed scRNA-seq on CD45+ immune cells isolated

from ten treatment-naïve models, encompassing seven prevalent

cancer types: breast mammary carcinoma (4T1, EMT6, MMTV-

PyMT), colon carcinoma (CT26.WT, MC38), glioma (GL261),

renal adenocarcinoma (Renca), lung carcinoma (LL2), melanoma

(B16F10), and pancreatic adenocarcinoma (Pan02) (Figures 1A, D).

After stringent quality control, 166,861 immune cells were retained,

with a median of 3,096 genes and 12,705 unique molecular

identifiers (UMIs) per cell (Supplementary Figures S1A, B).

Unsupervised clustering revealed seven major immune cell

populations, each distinguished by the expression of canonical

markers: T cells, natural killer (NK) cells, and B cells, monocytes/

macrophages (Mo/Mjs), neutrophils, dendritic cells (DCs), and

mast cells (Figures 1B, C, Supplementary Figure S1E,

Supplementary Table 2).

Mo/Mjs constituted the dominant immune population,

accounting for 60.58% of TIICs across models, with proportions

ranging from 34.61% in GL261 to 76.49% in Renca. Notably,

neutrophils were significantly represented in our dataset,

comprising 9.66% of TIICs, with their presence varying from

0.41% in GL261 to 26.90% in Pan02. The distribution of
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lymphoid cells also exhibited considerable variability, with T cells

accounting for 11.99% and NK cells comprising 9.10% of TIICs.

Specifically, GL261 and CT26.WT exhibited the highest proportions

of T and NK cells in their TIICs at 57.60% and 45.56%, respectively.

Conversely, LL2 and Renca presented the lowest proportions, at

4.75% and 4.91%, respectively (Figure 1D).
Transcriptomic diversity among T cell
populations

T cells are pivotal in orchestrating antitumor immunity. To

elucidate the intricate role of T cells within syngeneic tumors, we

identified seventeen distinct T cell subpopulations, comprising ten

CD8+ subsets (C01-C10), three CD4+ subsets (C11-C13), and four

double-negative (CD8-CD4-) subsets (C14-C17). Each subset

exhibited unique signatures (17) associated with cytotoxicity,

exhaustion, and stemness, alongside the expression of key marker

genes (Figures 2A–C, Supplementary Table 3). Our dataset

demonstrated a high degree of consistency with T cells in the

MC38 syngeneic model that were previous extensively characterized

(9) in terms of both component abundance and transcriptional

profiles (Figure 2D, Supplementary Figure S2).

The CD8+ compartment comprised two effector memory (EM;

C01, C02), one central memory-like (CM; C04), and three

exhausted (EX; C03, C05, C06) subsets (Figures 2A, C upper

panel). T-EM cells were characterized by elevated expression of

Tcf7, Klf2, and S1pr1, along with EM-like predicted markers Ly6c2
FIGURE 1

High-resolution profiling of TIICs across murine syngeneic tumor models. (A) Schematic representation of the experimental workflow for isolating
and processing Cd45+ immune cells from 10 murine tumor models: breast mammary carcinoma (4T1, EMT6, MMTV-PyMT), colon carcinoma
(CT26.WT, MC38), glioma (GL261), renal adenocarcinoma (Renca), lung carcinoma (LL2), melanoma (B16F10), and pancreatic adenocarcinoma
(Pan02), with three biological replicates per model. (B) UMAP visualization of CCA integrated data depicting 7 major immune cell populations. (C)
Expression patterns of canonical marker genes utilized to identify lymphoid (T cells, NK cells, B cells) and myeloid (DCs, Mo/Mjs, neutrophils, mast
cells) lineages. (D) Percentages of major immune cell types in TIICs for each model.
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and Cxcr3 (17). Cluster C02 exhibited further enrichment for

interferon-stimulated genes (ISGs; Ifit1/3, Isg15). T-CM cells were

distinguished by the presence of canonical CM cell markers (Cd44,

Sell, Ccr7), chemokines (Ccl3, Ccl4, Xcl1), and Myb, which signifies

their stemness status (28). T-EX cells exhibited increased expression

of genes (Pdcd1, Havcr2, Ctla4, Lag3, Havcr2) and signatures

associated with exhaustion. Among them, cluster C03 exhibited

lower expression of Havcr2 and Cd244, reduced levels of effector

molecules (Gzmb, Prf1) and increased expression of Ccr7, indicating

a less exhausted or pre-dysfunctional state. Cluster C05 expressed

elevated levels of the CD8 T cell activation marker Cx3cr1, along

with granzyme molecules (e.g. Gzmb) and Prf1, indicating potential

effector function in action. Additionally, our dataset revealed one

cluster (C07) displaying high levels of heat shock proteins (HSPs),

including Hspa1a/b (Hsp72/70) and Hsp90aa1/Hspab1 (Hsp90), as
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well as other markers indicative of cellular stress, such as Dnajb1/

Dnaja1 (29). Furthermore, numerous proliferative subpopulations

(C08-C10) were identified based on the expression of MCM

(Mcm2-7), Mki67, and E2F.

Within the CD4+ compartment (Figures 2A, C lower panel), we

identified two conventional CD4+ T cell clusters (C11 and C12) and

one regulatory T cell (Treg) cluster (C13). Cluster C11 exhibited a

Th1-like transcriptional profile, marked by elevated expression of

Tbx21, Ifng, and Bhlhe40, alongside exhaustion-associated genes

such as Pdcd1 and Lag3. Cluster C12 displayed high levels of Tcf7,

Lef1, S1pr1, and Il7r, with low expression of Ccr7 and Sell, indicative

of an EM-like phenotype.

The CD8-CD4- compartment included one gd T cell population

(C14) and three NKT cell populations (C15-C17) (Figures 2A, C

lower panel). Cluster C14 was defined by a prominent TCR gd
FIGURE 2

Identification and characterization of T cell subpopulations. (A) UMAP projection illustrating 17 distinct T cell subpopulations: 10 CD8+ subsets (C01-
C10), 3 CD4+ subsets (C11-C13), and 4 double-negative (CD8-CD4-) subsets (C14-C17). (B) Expression profiles of canonical markers Cd8a, Cd4,
Foxp3 and Mki67, along with gene signatures associated with cytotoxicity, exhaustion, and stemness. (C) Transcriptomic characterization of CD8+
(top) and CD4+ (bottom) T cells, revealing effector memory, central memory, and exhausted phenotypes in CD8+ T cells, and Th1 helper, EM-like,
and Treg phenotypes in CD4+ T cells; dot color and size represent the proportion of expressing cells and average expression level, respectively. (D)
Comparative analysis of T cells showing the similarity between the transcriptional profiles obtained in this study and those documented in the
published mouse model data (GSE168944). (E) Proportional distribution of each T subset within the total T cell compartment.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1676581
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1676581
repertoire and elevated expression of Il17a. The 4T1 model

exhibited a markedly higher proportion of gd T cells compared to

other models (Figure 2E). Clusters C15-C17 were classified as NKT

cells based on co-expression of conventional T cell markers (Cd3e,

Cd28), and NK cell-associated genes, including Zbtb16 (PLZF),

Klrb1c (NK1.1/Cd161), Klrk1 (Nkg2d), and Nkg7. These cells also

displayed a restricted TCRab repertoire. Cluster C15 exhibited high

expression of Tcf7, Lef1, Sell, and Ccr7 but low levels of Cd44 and

effector molecules, indicative of a naïve phenotype. Cluster C16,

enriched for Zbtb16 and Th17-associated genes (Rorc (RORgt),
Il17a, Il23r, Pxdc1), was annotated as NKT17 cells. Cluster C17,

which constituted the majority (69.3%, 2,974 cells) of CD8-CD4- T

cells, expressed elevated levels of Ccl5 and Ly6c2, exhibiting an EM-

like phenotype.
Diversification of NK cells

To investigate the heterogeneity of intratumoral NK cells, we re-

clustered Ncr1+Cd3e- cells, identifying six distinct NK cell subsets

(C1-C6) and two group 1 innate lymphoid cell (ILC) subsets (C7-

C8) (Figure 3A, Supplementary Table 4).
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Clusters C1 and C2 were defined by high expression of perforin

and granzyme, with C1 specifically identified as a proliferating NK

cell population. Clusters C3-C5 exhibited distinct cytokine and

chemokine profiles: C3 was enriched for Ccl5, C4 for Ifng, and C5

for ISGs (Isg15, Ifit1, Ifi203) (Figure 3D). Cluster C6 was notable for

its elevated expression of Klrc2 (encoding NKG2C) and Klrb1b/c,

but reduced expression of Ncr1 and Klrk1 (encoding NKG2D)

(Figure 3D). It also expressed major histocompatibility complex

(MHC) class II molecules and associated genes (H2-Aa, Cd74),

consistent with an adaptive NK phenotype (30). These cells

exhibited a high NK activation signature score (20) (Figure 3B),

and demonstrated the highest expression level of Itga2 (Cd49b)

while showing a low level of the intratumoral NK signature score

(20), indicating a conventional NK cell phenotype (CD49b+) rather

than a tissue-resident profile marked by Itga1 (CD49a). Cluster C6

was predominantly enriched in the GL261 model (Figure 3E).

Consistently, cluster C6 was positioned at one end of the

pseudotime trajectory (Figure 3C), followed by cluster C3, which

exhibited moderate Itga2 expression, restricted Itga1 expression, a

high NK activation signature score, and a low intratumoral NK

signature. In contrast, two KLRG1+ NK cell populations, clusters

C1 and C2, were positioned at the terminal intratumoral

pseudotime state and accordingly displayed a diminished NK
FIGURE 3

Characterization of intratumoral NK cell and ILC clusters. (A) UMAP plot showing NK and ILC subpopulations. (B) UMAP projection of signature
scores for NK cells, ILCs, NK cell activation and intratumoral NK identity. (C) Pseudotime trajectory analysis illustrating the developmental
progression of NK cell clusters (C1-C6). (D) Bubble heatmap displaying expression of genes linked to lineage, cytotoxicity, transcription factors (TFs),
integrins, chemokine receptors (CCRs), and cytokines/chemokines across NK and ILC subsets. (E) Proportional distribution of NK and ILC subset
within the total NK population (refer to Figure 1D).
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activation signature score alongside an elevated intratumoral NK

signature score. This aligns with previous reports indicating that

NK cells rapidly lose their effector functions within the TME (20).

The ILC1 clusters (C7 and C8) were defined by high expression

of Rora, Il7r (CD127/IL-7Ra), and Itga1, absence of Eomes, and

reduced levels of cytotoxic molecules, distinguishing them from

bona fide NK cells. Their identities were further validated using

established ILC1-specific signatures (18, 19) (Figures 3B, D).
Distinct subsets of DCs

DCs within the TME are a heterogeneous population critical for

initiating and modulating both innate and adaptive immune

responses. Based on canonical markers and functional gene

expression profiles, we classified DCs into four distinct subtypes:

one plasmacytoid DC subset (pDC, marked by Siglech), two

conventional DC subsets (cDC1 and cDC2, marked by Itgax

(CD11c)), and one Ccr7+ DC subset (DC3) (Figures 4A, B, D,

Supplementary Table 5).
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pDCs, typically associated with type I interferon production and

antitumor activity, exhibited elevated Lag3 and Cd37 expression,

corroborating previous findings (31) that suggests their inhibitor

roles in modulating the local immune response. The cDC1 subset,

defined by Xcr1 and Clec9a, specializes in antigen cross-

presentation and activation of cytotoxic CD8+ T cells. This

population includes both CD8a+ and CD103+ (encoded by Itgae)

cells, with CD103+ cDC1s predominating in our dataset

(Figures 4B, D).

The cDC2 subset, marked by Itgam (CD11b) and Sirpa

(CD172a), also expressed high levels of Cd14, identifying them as

Itgax+Itgam+Cd14+ monocyte-derived dendritic cells (MoDCs)

(Figure 4F). Unlike cDC1, cDC2 primarily activate CD4+ T

helper cells. Transcriptome analysis revealed substantial

heterogeneity within cDC2s, with two peaks in pseudotime

trajectories (Figure 4C) and multiple compartments in the marker

gene heatmap (Figure 4D). We further resolved cDC2s into six

subclusters: C1 (Mgl2 (CD301b)), C2 (ISGs), C3 (Tbc1d4), C4

(Clec10a), C5 (Selp, Abhd17b, Fcgrt), and C6 (Ccnb2, Birc5, Stmn1

(proliferation/differentiation)) (Figures 4E–G).
FIGURE 4

Transcriptional heterogeneity of DCs. (A) UMAP plot identifying 4 DC subtypes. (B) Expression of canonical DC markers overlaid on UMAP plots. (C)
Developmental trajectory of cDC1, cDC2 and DC3 subsets inferred by Monocle2. (D) Heatmap showing the expression of selected differential
expressed genes across clusters. (E) UMAP visualization of cDC2 subclusters. (F) UMAP plot showing the expression of Itgax, Itgam, and Cd14 in
cDC2 cells. (G) Bubble heatmap showing selected differential expressed genes across 6 cDC2 subclusters.
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The DC3 subset was identified by its elevated expression of

Ccr7, Cd83, and Fscn1, despite lacking conventional DC markers.

Both Ccr7 and Cd83 are well-established indicators of DC

maturation, while Fscn1 supports migratory capacity toward

lymph nodes (32) (Figures 4B, D).
Functional characterization of Mo/Mj
populations

Tumor-associated macrophages (TAMs) are key regulators of

tumor progression and represent promising targets for

immunotherapy. Given their abundance, we conducted a detailed

transcriptional and functional analysis, identifying twelve distinct

subclusters: three monocyte subsets (Mo, C01-C02, C04), one

monocyte and DC subset (MonoDC, C03), and eight macrophage

subsets (Mj, C05-C12). By aligning these subpopulations with

canonical M1 (proinflammatory/antitumor) and M2 (anti-

inflammatory/protumor) phenotypes (22), we determined that

clusters C01-C05 displayed M1-like characteristics based on their

expression of M1-associated markers and signatures. Conversely,

clusters C06-C12 were classified as M2-like due to their

upregulation of M2-associated markers and signatures

(Figures 5A–C, Supplementary Table 6).

Clusters C01 and C02 exhibited the lowest expression of Adgre1

(F4/80), Apoe, and C1qa/c, and were classified as Ly6Chi and

Ly6Clo monocytes, respectively, based on differential expression

of Ly6c2, Ccr2, Cd14, and Vcan (C01) and Nr4a1, Ace, and Itgal

(C02). Cluster C03 represented the MonoDC subset, characterized

by high expression of DC-associated genes, including MHC class II

molecules and Cd74. Cluster C04, marked by elevated expression of

ISGs, showed moderate expression of macrophage markers and

high levels of Ly6c2 and Tgfbi, suggesting an intermediate state

between monocytes and macrophages.

Among macrophage subsets, C05 was the only M1-like

population, distinguished by high Cxcl9 expression and linked to

favorable responses to anti-PD-L1 therapy (11). Clusters C06 and

C07 represented proliferative macrophages, while C08 showed

increased expression of Ccr2 and Klf4. Clusters C09-C12

displayed transcriptional profiles resembling previously described

SPP1+ and C1Q+ TAMs (10, 24). Specifically, C09 and C10

upregulated Spp1 and Arg1, while C11 and C12 exhibited high

levels of C1Q complement components. C12 also expressed Pf4,

Folr2, Crb2, Cd163, and Lyve1, markers characteristic of tissue-

resident macrophages.

It is important to note that the M1 and M2 gene signatures are

not entirely mutually exclusive, as the M1/M2 dichotomy was

established in the pregenomic era based largely on in vitro

stimulation studies with type 1 or type 2 cytokines. To better

capture the functional and molecular diversity of tumor-

infiltrated Mo/Mjs, we applied a nomenclature informed by

single-cell omics data (21) (Figure 5D). Consistent with marker-

based annotation, clusters C01 and C04 exhibited strong classical

tumor-infiltrating monocyte (TIM) signature, while C02 aligned

with a nonclassical monocyte signature. C04 also showed the
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highest signature score of interferon-primed TAMs (IFN-TAMs).

Among macrophage subsets, C09 and C10 were enriched for

inflammatory cytokine-enriched TAMs (Inflam-TAMs), whereas

C12 showed the strongest lipid-associated TAMs (LA-TAMs)

signature, linked to immunosuppressive and tolerance-

related functions.

To assess the role of Mo/Mj subsets in immunotherapy

response, we quantified the M1/M2 ratio across models. Notably,

MC38 tumors, despite low T and NK cell infiltration, harbored

abundant Mo/Mjs with a relatively high M1/M2 ratio (Figures 1D,

5E, F), potentially explaining their sensitivity to anti-PD-1 therapy

(Figure 5G). To further investigate the involvement of Mo/Mj
subsets in anti-PD-1 response, we assessed their enrichment in

responsive tumor models. Initial efficacy testing across syngeneic

models identified MC38, GL261, and CT26 as responsive to anti-

PD-1 therapy, while others were resistant (Supplementary Figure

S3). We then estimated the absolute abundance of Mo/Mj
subpopulation by integrating their proportions within TIICs and

the overall immune cell content in tumors, inferred from bulk

RNA-seq via deconvolution (Supplementary Figures S4A–C).

Stratification by anti-PD-1 sensitivity revealed that Cluster C04

(ISGhigh monocytes) was significantly enriched in responsive

models (Figure 5H, Supplementary Figure S4D). Notably, a recent

study demonstrated that inflammatory/ISG-enriched monocytes

promoted the expansion of tumor-specific CD8+ T cells and

amplify antitumor immunity; transcriptionally, these monocytes

were highly congruent with our ISGhigh subset (33).
Multifaceted roles of neutrophils in the
TME

Neutrophils are often underrepresented in scRNA-seq studies

due to their short lifespan and low RNA content. A considerable

population of neutrophils was detected across various models in our

dataset, as corroborated by flow cytometric analysis (CD11b

+CD115-Ly6G+) (Figure 6F), in close concordance with the

proportions depicted in Figure 1E. We delineated six distinct

neutrophil subsets, each defined by discrete gene expression

profiles and functional attributes. Cluster C1 was enriched for

SiglecF, while Clusters C2, C4, and C6 exhibited elevated levels of

Cxcl3. Clusters C3 and C5 were distinguished by high levels of Sell.

SiglecF-high and Cxcl3-high neutrophils were previously reported

exclusively in tumor-bearing tissues (34, 35) (Figures 6A-E,

Supplementary Table 7).

Analogous to the M1/M2 paradigm in macrophages, tumor-

associated neutrophils (TANs) adopt either N1 (antitumor) or N2

(protumor) phenotypes (36). Cluster C6 displayed transcriptional

features consistent with an N2-like state, including upregulation of

Arg1, Ccl2, and Cxcl1, as well as genes related to angiogenesis such

as Thbs1 and Lagls3 (Figure 6B), suggesting a pronounced pro-

tumoral role. This subset was predominantly observed in LL2

models (Figure 6C). Cluster C1, characterized by high SiglecF

expression, has also been implicated in protumor activities.

Cluster C2, marked by elevated Cstb and Ccl3, closely resembled
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FIGURE 5

Molecular and functional diversity of tumor-infiltrating Mo/Mjs. (A) UMAP visualization of distinct Mo/Mj clusters within the TME. (B) Violin plots
showing expression of Mo/Mj markers, along with M1- and M2-associated gene signatures across clusters. (C) Bubble heatmap of representative
signature genes across 12 Mo/Mj subsets. (D) Expression of signature gene sets superimposed on the UMAP plot. (E) Proportional representation of
each Mo/Mj subset within the total Mo/Mj population. (F) Ranked M1/M2 ratio across models based on established marker genes, indicating Mo/Mj
polarization states. (G) Evaluation of anti-PD-1 treatment efficacy in MC38 tumor models. (H) Bar plots comparing the abundance of the cluster C04
between anti-PD-1–responsive and –resistant tumor models.
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the mN5 populations described by Zilionis et al. (34), and exhibited

the highest T3 signature score (23), indicating a terminally

differentiated, pro-tumor neutrophil subset (Figure 6B). Cluster

C3 had the highest neutrophil maturation score and was

significantly associated with migration (Supplementary Figures

S5A, B), suggesting it represented newly infiltrating mature

neutrophils. In contract, cluster C5 expressed high levels of type I

ISGs (Ifit1, Irf1, Rsad2, Isg15, and Cxcl10), aligning with the mN2

subset known to expand during effective immunotherapy (e.g., anti-

PD-1 treatment) (34, 35, 37) (Supplementary Figure S5C).

To further investigate the functional relevance of TANs, we

performed in vivo depletion experiments using anti-Ly6G

antibodies (Figure 6G; Supplementary Figure S5D). Consistent

with previous studies (38), neutrophil depletion significantly

reduced tumor burden in CT26.WT models, whereas EMT6

tumors remained unresponsive. Notably, neutrophil depletion

failed to enhance the efficacy of PD-1 blockade in both CT26.WT
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(anti-PD-1 responsive) and EMT6 (anti-PD-1 non-responsive)

models (Figure 6G). Comparative profiling of neutrophil subsets

and effector molecule expression across CT26.WT and EMT6

revealed that, although EMT6 harbored a greater total neutrophil

burden (Figure 1D), it contained a significantly lower proportion of

the C1/SiglecFhigh subset, only modest, non-significant increase in

C2 and C5, and reduced expression of protumor mediators such as

Arg1 and Tgfb1, relative to CT26.WT (Supplementary Figures S5E,

F). These features indicated that CT26.WT exhibited a more

protumor-skewed neutrophil program, rendering neutrophil

depletion measurably efficacious, whereas in EMT6, where

neutrophils were comparatively less protumor, depletion

conferred limited benefit. The ablation of the C5/ISGhigh subset in

both models may therefore underlie the lack of synergy between

neutrophil depletion and PD-1 blockade (35, 37). Together, these

findings underscored the phenotypic diversity and functional

complexity of neutrophils within the TME, highlighting their
FIGURE 6

Transcriptomic diversity of tumor-infiltrating neutrophils. (A) UMAP plot illustrating the landscape of tumor-infiltrating neutrophil subtypes. (B) Violin
plot showing expression of canonical N1 and N2 markers, along with terminal differentiation signatures across neutrophil subclusters. (C)
Proportional distribution of neutrophil subclusters within the total neutrophil population across different tumor models. (D) UMAP plots displaying
expression of key functional genes. (E) Bubble heatmap of selected differentially expressed genes across neutrophil subclusters. (F) Flow cytometry
validation of neutrophil abundance in four tumor models. (G) Effect of Ly6G-mediated neutrophil depletion on tumor growth in MC38 and EMT6
models, alone or in combination with anti-PD-1 therapy.
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multifaceted roles in modulating antitumor immunity and

therapeutic response.
Comparison of human and mouse TIME

To assess the translational relevance of TIICs across species, we

integrated 14 treatment-naive human scRNA-seq datasets spanning

BRCA, CRC, and SCLC, processed with a uniform pipeline

(Materials and Methods, Table 3).

Within human tumors, T cells constituted a majority of TIICs

(58.3% overall; BRCA 53.0%, CRC 47.3%, NSCLC 68.4%),

exceeding the proportional T-cell representation in syngeneic

mou s e mod e l s . W e r e s o l v e d f o u r CD8+ s u b s e t s

(CD8_Teff_GZMK, CD8_Tem_XCL1, CD8_Tex_GZMB,

CD8_ISG), four conventional CD4+ subsets (CD4_Tn_CCR7,

CD4_Tn_CXCL13, CD4_Tcm_IL7R, CD4_Trm_CXCL13), one

Treg subset, one proliferating subset (T_MKI67), and one NKT

subset (Figure 7A), supported by canonical memory/exhaustion

markers and distinct transcriptional programs (Supplementary

Figure S6A). In human tumors, Treg cells comprised 22.9% of

CD4+ T cells and exhausted CD8+ T cells 21.9% of CD8+ T cells;

proliferating T cells and NKT cells represented 3.6% and 3.3% of

total T cells, respectively. In contrast, syngeneic models displayed

elevated frequencies of exhausted CD8+ T cells (40.8% of CD8+),

Treg cells (60.4% of CD4+), proliferating T cells (20.6% of total T

cells across CD8_MCM and CD8_Mki67 clusters), and NKT cells

(11.1% across three clusters; Figure 7B).

At the level of major T-cell lineages (CD8+, CD4+, Treg, NKT),

cell states were conserved across species, as evidenced by

concordant express ion of orthologous marker genes
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(Supplementary Figure S6B). By contrast, integrative profiling of

subtype-discriminating markers in human and mouse T cells

revealed only modest concordance of cell states across species,

with subpopulations partitioning primarily by species rather than

by presumed functional equivalence (Figure 7C). However,

differential expression analyses focusing on Treg and exhausted

CD8+ T cells identified shared transcriptional features across

species. In Tregs, FOXP3 and IL2RA showed robust conservation,

with additional overlap in TNFRSF4, IL1R2, and EBI3. Notably,

some genes demonstrated opposing patterns: IL1RA was enriched

in human Tregs but diminished in mouse Tregs, whereas KLRG1

was elevated in mouse Tregs but low in humans. In exhausted CD8

+ T cells, conserved markers included HAVCR2, TNFSF4, and

cytotoxic effectors from the granzyme and perforin families,

supporting a shared exhaustion/cytotoxic module. Together, these

findings indicated that despite fine-grained T-cell subsets exhibited

only modest conservation of cellular states across species,

therapeutically relevant Tregs and CD8+ Tex cells displayed

conserved marker profiles and preserved functional programs

(Figure 7G, Supplementary Table 14).

Myeloid lineages likewise displayed conserved cell states across

species, both at the level of major lineages and within Mo/Mj
sublineages (Supplementary Figure S6B, Figure 7F). In human

tumors, Mo/Mj cells constituted 18.4% of TIICs overall (BRCA

25.3%, CRC 14.8%, NSCLC 13.6%), lower than in syngeneic models.

We delineated ten Mo/Mj states: four monocyte subsets

(Mo_CD14, Mo_CD16, Mo_ISG, and a Mo/T mixed population)

and six macrophage subsets (Mj_FOLR2, Mj_PPARG, Mj_SPP1,
Mj_MMP9, Mj_TIMP3, and a proliferating Mj_MKI67 state),

each defined by distinct transcriptomes (Figure 7D, Supplementary

Figures S6F, G). Monocytes accounted for 45.9% of the human Mo/
TABLE 3 Summary of dataset sources, patient numbers, and cell counts.

Cancer Type Dataset Name Patients Cells PMID

BRCA

Azizi, Cell, 2018 8 7,413 29961579

Qian, Cell Res, 2020 14 18,525 32561858

Gao, Nat Biotechnol, 2021 5 3,049 33462507

Pal, EMBO J, 2021 31 46,978 33950524

Wu, Nat Genet, 2021 20 3,0052 34493872

CRC

Qian, Cell Res, 2020 7 12,075 32561858

Wu, Nature, 2020 2 6,862 32103181

Zhang, Cell, 2020 9 10,693 32302573

Uhlitz, EMBO Mol Med, 2021 12 21,636 34409732

NSCLC

Lambrechts, Nat Med, 2018 5 21,543 29988129

Song, Cancer Med, 2019 4 2,906 31033233

Zilionis, Immunity, 2019 6 17,737 30979687

Kim, Nat Commun, 2020 7 19,750 32385277

Wu, Nature, 2020 6 32,876 32103181
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Mj compartment (BRCA 45.2%, CRC 53.4%, NSCLC 43.8%),

exceed ing the cor re spond ing f rac t ion in syngene i c

models (Figure 7E).

In the macrophage compartment, a high SPP1+ and low C1QC+

TAM gene-signature combination has been reported to associate with

poorer prognosis in CRC patients (10). In human tumors, Mj_SPP1
and Mj_PPARG displayed elevated M2-signature scores and high

SPP1 expression, mirroring phenotypic features of mouse

Mj_Spp1_C10 and suggesting functional analogy (Figure 7F).

Conserved markers included FABP4, MMP12, ATP6V0D2, and
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metallothionein genes (e.g., MT1H). ISGhigh monocyte subsets were

detected in both species with strong cross-species concordance; along

with IFIT1/2 and ISG20, these cells consistently expressed TNFSF10,

RSAD2, and CMPK2, underscoring their translational relevance

(Figure 7G, Supplementary Table 14).

Collectively, the cross-species conservation of immune cell

states and transcriptional features underscored the utility of

syngeneic models for mechanistic inference and biomarker

development, reinforcing the translational importance of our

comprehensive TIME profiling.
FIGURE 7

Cross-species profiling of intratumoral immune subsets in public human datasets and syngeneic tumors in this study. (A, D) UMAP embeddings of T/
NK cells (A) and Mo/Mj (D), annotated into transcriptional subpopulations using canonical markers after batch integration. (B, E) Compositional
profiles of T/NK (B) and Mo/Mj (E) compartments, shown as proportions within each corresponding parent compartment and summarized per
study. (C, F) Heatmaps of one-to-one orthologs with concordant enrichment in human and mouse T cell (C) and Mo/Mj (F) states, scaled by row Z-
score. (G) Correlation of marker genes across Treg, CD8+ Tex, Mj-SPP1, and Mo-ISG clusters in human and murine syngeneic datasets. For each
species, gene-level fold changes versus other clusters are plotted. Shared significant markers are highlighted in red; mouse-specific in blue; human-
specific in green.
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Discussion

Prior research and the novelty of this study

Murine syngeneic tumor models, which preserve intact immune

systems, serve as foundational platforms for preclinical

immunotherapy research. Their molecular and immunologic

characteristics have been extensively characterized using

conventional approaches, including flow cytometry, microarray

profiling, and bulk RNA sequencing, to quantify immune cell

populations and examine gene expression in immunoregulatory

pathways during tumor progression or therapeutic intervention

(4–7). More recently, scRNA-seq has enabled deeper resolution of

cellular heterogeneity within these models. For instance, Kumar

et al. explored ligand–receptor interactions across cell types,

particularly tumor and stromal cells, in six models (LL2, B16F10,

EMT6, CT26, MC38, Sa1N) (8). Bhatt et al. focused on T cells in

CT26 and MC38 (9), while Zhang et al. profiled myeloid cells in

MC38 and Renca (10). Qu et al. employed a bilateral tumor model

with scRNA-seq to identify immune cell types predictive of

response to avelumab in CT26 (11). Carpen et al. characterized

the immune landscape of two triple-negative breast cancer (TNBC)

models (4T1, EMT6) under baseline conditions and following

chemotherapy, immunotherapy, or their combination (12).

Building upon these foundational studies, we isolated immune

cells to generate a high-resolution map of the TIME across a

panel of widely used syngeneic models. Our study provides the

first comprehensive, cross-model characterization of immune cell

populations in murine syngeneic tumor models.

In this study, we validated previously reported immunologic

patterns, such as the enrichment of NK cells in CT26 tumors and

the predominance of Mo/Mjs in MC38 tumors, while uncovering

novel molecular and phenotypic distinctions among immune cell

subtypes across models. Our dataset enabled the identification and

characterization of underexplored immune populations, offering

deeper insight into the cellular complexity of tumor-infiltrating

immune cells. Among these, gd T cells expressing high levels of

Il17a, were notably abundant in the 4T1 model. This subset may

promote tumor progression by recruiting pro-inflammatory or

immunosuppressive myeloid cells (39). Across NK cell

populat ions, functional profi l ing revealed substantial

heterogeneity, with GL261 tumors harboring a significantly

higher fraction of activated NK cells. Of particular interest were

adaptive NK cells (NKG2C+NKG2A⁻), known for their augmented

cytokine responses and resilience to immunosuppression (30),

which were predominantly found in GL261 tumors. Our analysis

also expanded the understanding of DC diversity within syngeneic

TIME. We identified a Ccr7+ DC population, previously shown to

enhance antitumor CD8+ T cell responses through interleukin-12

secretion (40). Within the cDC2 compartment, transcriptional

profiling revealed substantial functional heterogeneity. Subsets

such as Mgl2+ cDC2s, associated with Th2 polarization and Tfh

suppression (41, 42), and T-bet+ cDC2s, marked by high Tbc1d4

expression and attenuated inflammatory potential (43), underscore
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the nuanced roles of DCs in orchestrating immune responses within

the TME.

Our study further illuminated the functional complexity of Mo/

Mj and neutrophil populations in the context of immunotherapy.

To investigate their roles in modulating antitumor responses, we

first stratified Mo/Mj subsets using canonical M1/M2 signatures

and evaluated their association with PD-1 blockade efficacy across

models. In MC38 tumors, which are characterized by limited T and

NK cell infiltration, we observed an increased proportion of M1-like

macrophages. This immunologic profile may underlie the model’s

sensitivity to PD-1 inhibition. Although prior studies have linked

Cxcl9-expressing macrophages to a favorable anti-PD-L1 response

in CT26 (11), our data did not reveal consistent enrichment of this

subset in responsive models. Instead, we identified a baseline

elevation of an ISGhigh monocyte population in models that

responded to anti-PD-1 therapy. This observation aligned with a

recent report demonstrating that inflammatory, ISG-enriched

monocytes promote the expansion of tumor-specific CD8+ T cells

and augment antitumor immunity, at the transcriptomic level, these

monocytes were near-identical to our ISGhigh subset (33). Debate

regarding the role of TANs remains ongoing. For instance,

neutrophils with elevated SiglecF expression are linked to tumor

progression, and specific subsets, such as CCL4+ TANs and PD-L1

+ TANs, recruit macrophages and suppress T cell cytotoxicity,

respectively (38). Ng et al. demonstrated that diverse neutrophil

populations infiltrate tumors but converge toward a pro-tumoral

state (23). By contrast, ISGhigh neutrophils accumulate during

effective immunotherapy (35, 37). Notably, contrary to previous

findings, such as those from Alb-Cre/Trp53fl/fl mouse models

where neutrophil depletion reduced tumor progression (38), we

observed model-specific effects. Neutrophil depletion exhibited a

clear antitumor effect in the CT26.WT model but had no impact in

the EMT6 model. Comprehensive profiling of neutrophil subsets

and effector-molecule expression revealed model-specific

polarization toward pro- or anti- tumor states. Moreover, the

failure of neutrophil depletion to synergize with PD-1 blockade in

either model, presumably owing to collateral ablation of the ISGhigh

neutrophil subset, further delineated functionally distinct

neutrophi l populat ions different ia l ly contr ibut ing to

immunotherapy-mediated tumor control. These findings

underscore the importance of characterizing immune cell subsets

and their functional states across tumor models, which is crucial for

understanding the immune landscape of tumors and identifying

targets to enhance cancer immunotherapy efficacy.
Rational model selection and translational
relevance

Our single-cell atlas of the TIME across widely used syngeneic

models provided a comprehensive resource to support rational

model selection and principled combination design. Models

whose immune-cell composition and functional states most

faithfully recapitulate the context of interest could be selected for
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immune-oncology studies. For instance, MC38 was enriched for

inflammatory monocytes, whereas Renca and LL2 exhibited M2

polarization (LL2 dominated by SPP1+/ARG1+ TAMs and Renca

by C1Q+ TAMs) (Supplementary Figure S7A, Supplementary

Table 15). These distinct myeloid states, with clear therapeutic

implications, could guide the rational deployment of agents in

contexts most likely to reveal pharmacodynamic modulation. The

atlas further delineated model-specific constraints on antitumor

immunity, thereby informing the rational design and evaluation of

combination strategies. For example, B16F10 exhibited sparse

overall infiltration yet a disproportionately high fraction of CD8+

T cells, suggesting that bolstering T-cell abundance, preferably by

driving proliferation rather than merely further attenuating

inhibitory signaling in intratumoral T cells, could enhance

responsiveness to anti-PD-1 therapy. As 4-1BB co-stimulation

preferentially expands CD8+ T cells (44), our data were

consistent with reports that 4-1BB plus PD-1, rather than LAG-3

plus PD-1, exhibited synergy in B16F10 melanoma (45).

Moreover, robust translational alignment in target and

biomarker development is achievable through systematic

interrogation of our murine single-cell profiles against human

datasets. We curated and integrated human scRNA-seq data from

treatment-naïve TIICs across 14 studies spanning diverse

malignancies and benchmarked these against the murine TIME.

In the human datasets, T cells constituted the predominant fraction

of infiltrates, whereas Mo/Mj were comparatively enriched in mice.

Within the T-cell compartment, despite interspecies differences in

subset composition and cell state, Tregs and CD8+ T cells exhibited

conserved marker repertoires and functional programs. Across the

myeloid compartment, orthologous marker genes were strongly

concordant at the level of major lineages and across most Mo/Mj
sublineages. Conserved molecular signatures identified in SPP1+

TAMs and ISGhigh monocytes further attested to the translational

utility of syngeneic models. Collectively, these findings positioned

our atlas as a preclinical analogue closely aligned with the human

immune landscape, enabling rigorous prioritization of therapeutic

targets and biomarker discovery in translational studies.
Limitations and confounders

scRNA-seq is highly effective at resolving intra-compartmental

heterogeneity and discriminating closely related subsets. However,

RNA and protein abundance do not always exhibit a linear

relationship at single-cell resolution, owing to both biological

regulation and technical constraints. This discordance complicates

the alignment of scRNA-seq-defined clusters with functional cell

populations traditionally delineated by surface markers. Canonical

markers such as CD3 for T cells, CD19 for B cells, and NKp46 for

NK cells are robustly detected at the transcriptomic level, whereas

others such as Ly6G for neutrophils are sparsely captured in

scRNA-seq datasets. At the sublineage level, even within well-

characterized T cell subsets, in which combinations such as

CD62L and CD44 are routinely used to infer naïve, memory, or

effector states, the transcript abundance of CD62L (Sell) does not
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consistently recapitulate its surface expression. To ensure reliable

subpopulation delineation and functional annotation, we favored

combinatorial marker schemes over single-gene readouts,

integrating lineage-defining transcription factors with gene

signatures anchored to established phenotypes. To further resolve

the biological processes operative within each cell type, we

conducted pathway enrichment analyses (Supplementary

Tables 8–12) and applied automated annotation (Supplementary

Table 13) to map transcriptional programs onto functional states.

Nevertheless, multimodal experimental validation is required to

ensure that the inferred states faithfully reflect biological reality.

It is important to acknowledge the variability between studies and

datasets when evaluating immune-cell composition and ICB

responses across syngeneic tumor models. For example, in our

study, 4T1 and EMT6 were resistant to anti-PD-1 therapy, while

MC38 was responsive. In contrast, Benguigui et al. reported a response

in 4T1 (37), Jin et al., observed a response in EMT6 (46), and Mosely

et al. found both 4T1 and MC38 to be non-responsive (4) to anti-PD-

L1 therapy. These discrepancies may stem from differences in

mutagenized clones (37), ICB agents, dosing regimens, treatment

initiation time, or endpoint measurements (4, 46). Additionally,

variations in implantation sites (subcutaneous vs. orthotopic), tumor

inoculation volume and tumor-intrinsic features (Supplementary

Table 1) can significantly influence immune landscape and,

consequently, therapeutic outcomes. For example, the orthotopic

4T1 model exhibited an immune landscape similar to subcutaneous

tumors but with greater variability in immune cell abundances (47).

The number of cells used to establish tumors affects tumor latency,

immune infiltration, and ICB responsiveness (48). In our scRNA-seq

profiling, tumors were harvested at an average volume of 250–300

mm³, whereas some studies collected tumors at ~150 mm³,

corresponding to the typical treatment initiation point in their

efficacy studies (4). Despite these differences, our dataset exhibited

strong concordance with previous datasets (Figure 2D, Supplementary

Figure S2C), and each model displayed a reproducible, model-specific

immune fingerprint across biological replicates, underscoring the

robustness of the observed immune states. It is also worth noting

that some prior scRNA-seq studies were conducted in genetically

engineered mouse models, which may account for differences in

immune composition. While our neutrophil subsets shared

consistent marker gene expression with Zilionis’s study (34), their

overall transcriptomic profiles were less congruent, potentially

reflecting model-specific or technical variations.

In addition, interpreting the function of any immune-cell subset

requires situating the evidence within the complex TME, where

multicellular crosstalk and spatial architecture calibrate immune

tone and responses to ICB. In our study, ISGhigh monocytes were

enriched in models responsive to anti-PD-1 therapy, and recent

work has provided mechanistic insights into antitumor immunity

(33), nominating them as putative predictive biomarkers and

therapeutically actionable subpopulations. Nevertheless, ISG

programs reflect a coordinated, multi-lineage activation. Given

the extensive intercellular communication within the TME

(Supplementary Figures S7B, C), ISGhigh monocytes are more

likely to act as components of the broader ecosystem rather than
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in isolation. As a consequence, confounding influences from other

cell types cannot be readily excluded. For example, ISGhigh CD8+ T

cells may dampen the efficacy of anti-PD-1 therapy (49, 50),

whereas ISGhigh neutrophils have been associated with favorable

responses to immunotherapy (35, 37). Caution is likewise

warranted when inferring the contributions of individual cellular

subsets from lineage-depletion experiments. For example, Ly6G-

mediated neutrophil depletion not only eliminated protumor

neutrophil subsets but also incidentally ablated ISGhigh

neutrophils associated with effective immunotherapy, thereby

producing model-specific anti-tumor effects while precluding

synergy with ICB. Consistent with these observations, previous

studies have documented model-specific variation, revealed by

systematic in vivo depletion of CD8+ T cells, CD4+ T cells, Tregs,

NK cells, and macrophages, alone or in combination with anti-PD-1

(46). Taken together, across heterogeneous tumor models,

antitumor activity and responses to anti-PD-1 vary, reflecting

model-specific tumor-immune ecosystems and determinants of

checkpoint sensitivity. Lineage-targeted and depletion strategies

cannot assign causality to single populations due to extensive

interact ions among immune, malignant , and stromal

compartments. The lack of selective tools for discrete subtypes

further limits rigorous functional attribution. Additional

mechanistic studies are needed to define intercellular crosstalk

during immunotherapy.
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SUPPLEMENTARY FIGURE 1

Quality control and data integration. (A) Number of cells harvested from each

tumor model. (B) Boxplots illustrating the number of UMIs (left), genes

(middle), and the proportion of mitochondrial DNA in cells (right) across
various tumor models. (C) UMAP visualization of cell clustering categorized

by models (left) or cell types (right) without the integration of CCA data. (D)
Expression of hallmark genes utilized for the identification of major immune

cell lineages, color-coded on UMAP without CCA data integration. (E) Bubble
heatmap showing the expression levels of selected top signature genes in

each cell type, as illustrated in Figure 1B. Dot size indicates the fraction of

expressing cells, colored based on normalized expression levels.
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SUPPLEMENTARY FIGURE 2

Cross-validation with published mouse model data. (A) UMAP plots of the
reference dataset (GSE168944) with original annotations (left), projection of this

study’s data onto the reference UMAP structure with transferred annotations
(middle), and annotations from this study (right). (B) Projection of key T cell

marker gene expression from this study onto the reference UMAP structure. (C)
Heatmap showing the similarity between the reference data (GSE168944) and
data from this study, annotated with transferred labels. (D) Proportions of T cell

subtypes across datasets, based on GSE168944 annotations.

SUPPLEMENTARY FIGURE 3

Assessment of anti-PD-1 therapeutic efficacy across diverse syngeneic

tumor models.

SUPPLEMENTARY FIGURE 4

Absolute fraction of Mo/Mj subsets in syngeneic tumors. (A) Representative
images of Immunohistochemistry (IHC) staining for CD45 in synthetic tumor

samples. Brown color indicates positive staining. (Scale bar = 2 mm). (B)
Correlation between Cd45 expression levels and immune cell fractions

estimated via quanTIseq from bulk RNA-seq data. (C) Boxplots of estimated

immune cell fractions across tumor models. (D) Fraction of each Mo/Mj
subset in anti-PD-1 responsive or resistant tumors, with mean values used for

each model.

SUPPLEMENTARY FIGURE 5

Functional characterization of tumor-infiltrating neutrophils. (A) Gene
Ontology (GO) enrichment analysis of differentially expressed genes for

each neutrophil subtype, shown as a dot plot (x-axis: enrichment score; y-
axis: GO terms). (B) Violin plot illustrating signature scores for neutrophil
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maturation and T1, T2 gene signatures as defined by Ng et al. (C) Comparative
transcriptomic analysis of neutrophils from this study and published data

(GSE127465). (D) Proportion of neutrophils among live CD45+ cells in
CT26.WT and EMT6 models following Ly6G-mediated depletion. (E)
Grouped box plots showing the percentage of each neutrophil subset

within the neutrophil compartment in CT26.WT and EMT6 models. (F)
Bubble heatmap displaying the expression of anti- and pro-tumor factors

across neutrophil subsets in CT26.WT and EMT6 models.

SUPPLEMENTARY FIGURE 6

Single-Cell Transcriptional Profiling of public Human datasets. (A) Bubble

heatmap of T/NK cell subsets and cluster-specificmarker genes. (B)Heatmap

showing cross-species concordance of marker gene expression patterns
across major T-cell and myeloid lineage states. (C) UMAP projection of

principal myeloid lineages from public human single-cell RNA-seq datasets.
(D) Bubble heatmap of genes marking principal myeloid populations. (E)
Compositional profiles of principal myeloid cell types, reported as fractions
within the myeloid compartment. (F, G) For Mo/Mj subsets, bubble heatmap

of selected top marker genes (F) and corresponding signature scores (G)
across subsets.

SUPPLEMENTARY FIGURE 7

Distinct Cellular and Chemokine Landscapes in Syngeneic Tumor Models (A)
Cellular architecture of the TIME across syngeneic models, delineated by
hierarchical clustering of cell subtype abundance. The color gradient reflects

the normalized relative abundance of each cell subtype within the TIME. (B, C)
Heatmaps illustrating RNA expression levels of chemokines and their
corresponding receptors in bulk tumor samples (B) and in single-cell TIIC

subpopulations (C).
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