? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Subhadip Das,
TCG Lifesciences (India), India

REVIEWED BY
Anuraag Shrivastav,

University of Winnipeg, Canada

Saeed Khodayari,

Tehran University of Medical Science, Iran
Renwang Liu,

Tianjin Medical University General Hospital,
China

*CORRESPONDENCE
Zhirong Shen
zhirong.shen@beonemed.com

"These authors have contributed equally to
this work

RECEIVED 30 July 2025
ACCEPTED 21 October 2025
PUBLISHED 14 November 2025

CITATION

Wang J, Jiang B, Deng M, Yan H, Zhang P,
Jin W and Shen Z (2025) Single-cell atlas of
the tumor immune microenvironment across
syngeneic murine models.

Front. Immunol. 16:1676581.

doi: 10.3389/fimmu.2025.1676581

COPYRIGHT

© 2025 Wang, Jiang, Deng, Yan, Zhang, Jin
and Shen. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TvPE Original Research
PUBLISHED 14 November 2025
po110.3389/fimmu.2025.1676581

Single-cell atlas of the tumor
Immune microenvironment
across syngeneic murine models

Jia Wang', Bin Jiang', Minjuan Deng, Han Yan, Pei Zhang,
Wei Jin and Zhirong Shen*

Translational Discovery, Research and Medicine, BeOne Medicines, Beijing, China

The tumor immune microenvironment plays a critical role in tumor progression
and responses to immunotherapy. Nevertheless, its cellular complexity and
heterogeneity remain incompletely understood. In this study, we employed
high-resolution single-cell RNA sequencing on CD45+ immune cells isolated
from ten syngeneic murine tumor models, representing seven distinct cancer
types under treatment-naive conditions, thereby enabling a comprehensive
profiling of tumor-infiltrating immune cells. We identified seven principal
immune cell populations and provided an in-depth characterization of T cells,
NK/innate lymphoid cells, dendritic cells, monocytes/macrophages, and
neutrophils. Cross-species analyses further delineated conserved immune cell
states and transcriptomic features within the T cell and monocyte/macrophage
compartments that are shared across syngeneic models and human tumors. To
investigate the functional relevance of the predominant monocyte/macrophage
compartment and the notable presence of neutrophils in syngeneic tumors, we
evaluated responses to anti-PD-1 therapy across various models and analyzed
the enrichment of monocyte/macrophage subsets in tumors that responded to
treatment. Furthermore, we conducted neutrophil depletion experiments using
anti-Ly6G antibodies, administered both as monotherapy and in combination
with PD-1 blockade. Remarkably, an interferon-stimulated gene-high (ISG™")
monocyte subset was significantly enriched in models responsive to anti-PD-1
therapy. Neutrophil depletion resulted in variable antitumor effects across
models but failed to enhance the efficacy of PD-1 blockade. In summary, our
single-cell profiling offered a detailed atlas of the immune microenvironment
across multiple syngeneic mouse tumor models, thereby enabling rational model
selection for immuno-oncology studies. We uncovered an I1SG™" monocyte
subset enriched in anti-PD-1 responsive models, and showed the context-
dependent effects of neutrophil depletion on tumor immunity and
immunotherapy, underscoring the heterogeneity and functional divergence of
immune cell sublineages.
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Introduction

The tumor microenvironment (TME) is a complex and
heterogeneous ecosystem, comprising the extracellular matrix,
non-immune cells (such as endothelial and stromal cells), and a
diverse array of immune cells that collectively constitute the tumor
immune microenvironment (TIME). Mounting evidence highlights
the critical role of the TIME in tumor progression, recurrence,
metastasis, and, notably, in modulating responses to
immunotherapies (1).

Accordingly, immunotherapies that target the inhibitory
receptors expressed by immune cells have yielded remarkable
therapeutic benefits in clinical practice. However, even the most
successful immune checkpoint blockade (ICB) strategies encounter
significant challenges related to treatment resistance. For example,
anti-PD-1/PD-L1 therapies only demonstrate an average durable
objective response rate of merely 25% in solid malignancies. In
melanoma, the most responsive cancer type, approximately 1/4 to
1/3 responders experience relapse after a period of treatment (2).
Retrospective studies have identified the characteristics of the TIME
as key determinants of therapeutic response and resistance,
underscoring the imperative for a more profound understanding
of its cellular composition and molecular features (1-3).

Murine syngeneic tumor models, established by implanting
tumor cell lines into genetically identical mouse strains, are
widely used in preclinical cancer immunology due to their
immunocompetence and intact immune systems. Previous studies
have characterized the TIME in various syngeneic models, revealing
differences in gene expression, immune composition, and the
functional roles of specific immune cell populations (see
Discussion) (4-12). However, a comprehensive cross-model
analysis of the TIME - particularly of less abundant or less well-
characterized immune subsets - remains limited.

Here, we utilized high-resolution single-cell RNA sequencing
(scRNA-seq) to systematically characterize the baseline immune
landscape across ten commonly used murine syngeneic tumor
models, providing detailed insights into immune cell infiltration
and heterogeneity. We delineated features conserved across human
and mouse TIMEs and resolved the discrete contributions of
macrophage and neutrophil subpopulations to antitumor
immunity and responsiveness to anti-PD-1 therapy, thereby
underscoring the translational value of this atlas.

Materials and methods
Animal models

Three immunocompetent mouse strains - Balb/C, C57BL/6N
and FVB - were utilized in this study. All animals were female, aged
6 to 8 weeks, and sourced from Beijing Vital River Laboratory
Animal Technology Co., Ltd. Mice were housed in a vivarium under
specific pathogen-free conditions, with up to five animals per cage.
All procedures involving animals were carried out with the approval
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of the Institutional Animal Care and Use Committee (IACUC) of
BeOne Medicines.

Cell lines

Ten distinct murine tumor cell lines were used to establish
syngeneic models. The origins and culture conditions of these cell
lines were detailed in Table 1. The conditions for cell implantation
in mice were summarized in Table 2.

Single-cell sorting and library preparation

Tumors were harvested when they reached a volume of
approximately 250-300 mm?>. For each model, three tumors were
collected, mechanically dissociated, and resuspended in 2.35 mL of
RPMI 1640 medium supplemented with 100 pL of Enzyme D, 50 pL
of Enzyme R, and 12.5 uL of Enzyme A (Miltenyi Biotec, Cat# 130-
096-730). Tissue dissociation was performed using the
gentleMACSTM Octo Dissociator with Heaters (Miltenyi Biotec,
Cat# 130-096-427) according to the manufacturer’s
program (37C_m_TDK_1).

Following dissociation, cell suspensions were filtered through a
70 um mesh and washed with fluorescence-activated cell sorting
(FACS) buffer (1% FBS in PBS). Cells were centrifuged at 500 x g for
5 minutes and resuspended in 500 UL of FACS buffer. For flow
cytometry analysis, cells were stained with PerCP-Cy5.5 anti-mouse
CD45 (BD Biosciences, clone 30-F11, Cat# 550994) and Fixable
Viability Stain 450 (BD Biosciences, Cat# 562247). Following
staining, viable CD45+ cells were isolated via FACS using a BD
FACSAria ™" SORP cell sorter (BD Biosciences, configured with 5
lasers (355nm, 405 nm, 488 nm, 561nm, and 640 nm) and 16
fluorescence detectors). Post-sorting reanalysis confirmed that
>80% of cells used for downstream scRNA-seq were viable, as
determined by the exclusion of Fixable Viability Stain 450-positive
(non-viable) cells. CD45+ viable cells were washed in PBS and
resuspended at a concentration of 1 x 10° cells/mL. Single-cell
suspensions were subsequently loaded onto a Chromium Controller
(10x Genomics, Pleasanton, CA) using the Single Cell 3’ Library and
Gel Bead Kit v3 (10x Genomics) for droplet-based encapsulation
and library preparation.

Efficacy evaluation in syngeneic mouse
models

Anti-PD-1 response

To assess the efficacy of anti-PD-1 treatment in each model,
mice bearing tumors were randomly assigned to treatment groups
based on tumor volume or body weight. Mice received
intraperitoneal (i.p.) injections of either an anti-mouse PD-1
antibody (clone Chl5mt, 3 mpk, produced by BIODURO on
behalf of BeOne Medicines) or vehicle control (PBS solvent) once
a week as monotherapy, initiated when tumor size reached 100-200
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TABLE 1 Information about the murine tumor cell lines used in this study.

Cell line Source Culture medium
4T1 ATCC
(CRL-2539)
CT26WT ATCC RPMI-1640 medium (Gibco, Cat# 22400-105) supplemented with 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-141) and
(CRL-2638) 100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)
GL261 NCI (E-172-2015)
Pan02 NCI (E-050-2016)
LL2 ATCC
(CRL-1642) DMEM (Gibco, Cat# 11965092) supplemented with 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-141) and 100 ug/ml of
B16F10 ATCC penicillin and streptomycin (Gibco, Cat# 15140-122)
(CRL-6475)
EMT6 ATCC Waymouth medium (Gibco, Cat# 11220035) supplemented with 15% (v/v) fetal bovine serum (Gibco, Cat# 10099-141) and
(CRL-2755) 100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)
MMTV-PyMT DMEM/F12 medium (Gibco, Cat# 11320-082) supplemented with 1X Insulin-Transferrin-Selenium (ITS) (Gibco, Cat# 51500-
JAX mice (#002374) 056), 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-141), and 100 ug/ml of penicillin and streptomycin (Gibco, Cat#
15140-122)
MC38 DMEM (Gibco, Cat# 11965092) supplemented with 10 mM HEPES (Gibco, Cat# 15630-080), 50 pg/mL gentamicin
Kerafast (ENH204) (PhytoTechnology, G3350-10ML), 0.1 mM NEAA (Gibco, Cat# 11140-050), 10% (v/v) fetal bovine serum (Gibco, Cat# 10099-
141), and 100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)
Renca ATCC RPMI-1640 medium (Gibco, Cat# 22400-105) supplemented with 1 mM sodium pyruvate (Corning, Cat# R25-000-Cl), 2 mM
(CRL-2947) L-glutamine (Gibco, Cat# 25030-081), 0.1 mM NEAA (Gibco, Cat# 11140-050), 10% (v/v) fetal bovine serum (Gibco, Cat#
10099-141), and 100 ug/ml of penicillin and streptomycin (Gibco, Cat# 15140-122)

mm®. Body weight and tumor volume were measured biweekly.
Tumor volume (mm?®) was calculated using the formula: V = 0.5 (a x
b?), where a and b represent the tumor’s long and short diameters,
respectively. Mice were euthanized via carbon dioxide inhalation if
tumor volume exceeded 2000 mm?®, tumors became ulcerated, or
body weight loss exceeded 20%. All outcome assessments and data
analysis were performed by researchers blinded to

group assignments.

TABLE 2 Implantation parameters for syngeneic tumor models.

Cell line Moqse Cell Imp_la_nted
strain number position

4T1 Balb/C 3X1075 mammary fat pad
EMT6 Balb/C 5X1074 mammary fat pad
gﬁz‘v_ FVB 1X1076 mammary fat pad
CT26.WT Balb/C 1X10A5 rear right flank
MC38 C57BL/6N 1X1076 rear right flank
GL261 C57BL/6N 1X1077 rear right flank
Renca Balb/C 1X10/76 rear right flank
LL2 C57BL/6N 3X1015 rear right flank
B16F10 C57BL/6N 3X1015 rear right flank
Pan02 C57BL/6N 1X10A7 rear right flank
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In vivo neutrophil depletion

To evaluate the role of neutrophils in antitumor efficacy, mice
were administered intraperitoneal (i.p.) injections of an anti-mouse
Ly6G antibody (Bio X Cell, clone 1A8, Cat# BE0075-1) at a dose of
50 ug in 100 UL PBS or an isotype control once daily, starting on
Dayl after grouping. Mice were euthanized using carbon dioxide
once their tumor volume reaches >2000 mm?, the tumor became
ulcerated, or body weight loss exceeds 20%. Neutrophil depletion
efficiency was assessed by flow cytometry after 2 days of treatment
with the anti-Ly6G antibody. For combination therapy studies, the
anti-PD-1 antibody was administered as described above, starting
on Day]1 after grouping. Group sizes for each model were as follows:
CT26.WT (n = 10), and EMT6 (n = 10) per group.

Flow cytometry for neutrophil
quantification

Neutrophil abundance was assessed by flow cytometry using the
same protocol described for single-cell sorting. Cells were stained
with eFluor ™ 506 (eBioscience, Cat# 65-0866-18, diluted 1:1000),
BV786-CD45 (Biolegend, clone 30-F11, Cat# 103149, diluted 1:800,
final concentration 0.25 ug/mL), FITC-CD19 (BD Biosciences,
clone 1D3, Cat# 553785, diluted 1:200, final concentration 2.5 ug/
mL), FITC-CD3e (BD Biosciences, clone 145-2C11, Cat# 553062,
diluted 1:200, final concentration 2.5 ug/mL), FITC-CD335 (BD
Biosciences, clone 29A1.4, Cat# 560756, diluted 1:200, final
concentration 2.5 pg/mL), APC-CD11b (BD Biosciences, clone
M1/70, Cat# 561690, diluted 1:400, final concentration 0.5 pg/
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mL), PerCP-Cy5.5-Ly6G and Ly6C (BD Biosciences, clone RB6-
8C5, Cat# 552093, diluted 1:400, final concentration 0.5 pg/mL) and
PE/Cy7-CD115 (Biolegend, clone AFS98, Cat# 135524, diluted
1:200, final concentration 1 pg/mL) to identify neutrophil
populations. The samples were incubated in the dark at 4 °C for
30 minutes, washed twice with PBS, and then resuspended in 200
UL of PBS. Each sample was analyzed on a Cytek Aurora full
spectrum flow cytometer (Cytek Biosciences, configured with 3
lasers (405 nm, 488 nm, and 640 nm) and 38 fluorescence channels
(16V-14B-8R)), with acquisition of no fewer than 10,000 live CD45
+ cell events per sample. Data were analyzed using SpectroFlo
software (version 3.0.3). Group sizes for each model were as follows:
CT26.WT (n = 5) and EMT6 (n = 4).

scRNA-seq data processing and cell type
annotation

scRNA-seq was performed on CD45+ immune cells isolated
from 30 tumor samples representing 10 syngeneic murine tumor
models, with each model replicated in triplicate using individual
animals. Raw sequencing data were processed using the Cell Ranger
Single-Cell Software Suite v3.1.0 and aligned to the mm10 mouse
reference genome.

The resulting gene expression matrices were imported into
Seurat (version 5.1.0) (13) for downstream analysis. Quality
control filtering excluded cells with <500 UMIs, <250 detected
genes, or a gene-to-UMI ratio < 1070.8. Cells with >10%
mitochondrial gene content, potential doublets (identified via
DoubletFinder (14) with optimized pK), or extreme values
(>40,000 UMIs or >6,000 genes) were also removed. Genes
expressed in fewer than 10 cells were excluded from
further analysis.

Remaining cells were normalized using Seurat’s “Log
Transform” function. The top 2,000 highly variable genes were
selected for canonical correlation analysis (CCA)-based data
integration (15) and principal component analysis. Clustering was
performed using the “FindNeighbours” and “FindClusters”
functions and visualized via uniform manifold approximation and
projection (UMAP).

Major immune cell clusters emerged during unsupervised
clustering at a resolution of 0.1. We assessed canonical immune
marker gene expression across clusters and merged those with
highly similar expression patterns. The final seven principal
immune cell populations were annotated based on the following
markers: Cd3e (T cells), Nerl (NK cells), Cd68 (monocytes/
macrophages), Csf3r (neutrophils), Siglech (plasmacytoid dendritic
cells), Fscnl, Cd209a, and H2-DMb2 (conventional dendritic cells),
Ms4a2 (mast cells), and Ms4al (B cells). For T cells, NK cells,
dendritic cells, monocytes/macrophages, and neutrophils, we
refined initial lineage assignments by iteratively increasing
clustering resolution to reveal heterogeneous substructures. For
each subcluster, we performed differential expression analysis
with Seurat’s FindMarkers function (Wilcoxon rank-sum test)
and single-cell gene set enrichment analysis with RunScGSEA
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function (category C5, GO: BP). Subclusters that exhibited at least
three significantly differentially expressed genes relative to other
subclusters (Benjamini-Hochberg-adjusted p-value < 0.05; average
log2 fold-change > 0.5) were retained as separate clusters. As
reference panels, we additionally applied automated annotation
with SingleR against two mouse immune-relevant reference
atlases (ImmGenData and MouseRNAseqData). Final
assignments were further supported by clustering tree analysis
and biologically relevant marker genes and pathways.

Developmental trajectory analysis

To infer cellular state transitions and lineage relationships, we
applied the Monocle2 (16) algorithm. The RNA expression matrix
derived from the cluster-annotated Seurat object was normalized
and converted into a CellDataSet object. Differentially expressed
genes with a false discovery rate (g-value) < 0.01 from each cluster
were used to order cells along pseudotime. Cellular trajectories were
reconstructed using Monocle2’s default dimensionality reduction
and cell ordering parameters, enabling the inference of potential
differentiation pathways and transitional states within immune
cell populations.

Signature scoring

Gene signature scores were computed using the
“AddModuleScore” function in Seurat. For each cell, the average
expression of genes within a defined signature was calculated, and
the aggregated expression of matched control gene sets was
subtracted to yield the final module score. Signatures originally
derived from human datasets were mapped to murine homologs
based on gene symbol concordance. Genes lacking direct murine
counterparts were excluded from analysis.

T cell-related gene signatures (17):

* Cytotoxicity: Gzmb, Prfl, Fasl
* Exhaustion: Pdcdl, Haver2, Tigit, Lag3, Ctla4
» Stemness: Tcf7, Sell, 1l7r, Lefl

NK cell and ILCI-related gene signatures (18-20):

* NK (Robinette2015): Kilra3, Klral0, Klra9, Irf8, Eomes,
Kirgl, Scimp, Itgam, Cym, Serpinb9b, Klral, Car5b,
Cmklrl, Zeb2, Khdcla

» ILC1 (Robinette2015): Trgv3, Trgv2, Il7r, Tmem176b, I2ra,
Cxcr6, Socs2, Ckb, Gprll4, Tmeml76a, Podnll, Gpr97,
Stégalnac3, Tmem154, Cdon, Atp8a2, Slc27a6

* NK (Bjorklund2016): Gzmb, Nkg7, Klrdl, Eomes, Itgax,
Fcgr3a, Prfl, Gzma, Irf8, Slamf7, Ccl4, Fam49a, Gzmk,
Aoah, Gzmec, Zmat4, Cd160, 1700025G04Rik, Ccrl,
Stykl, Cdhrl

e ILCI (Bjorklund2016): Sitl, Cd3d, Cd3g, Cd4, Cd6, Travl3-
1, Cd5, Cd27, Cd8a, Trav4-1, Gemk, Trbvs, Adtrp, Trav9-2

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1676581
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

* Intratumoral NK: Itgal, Eeflg, Serbpl, Top2a, Pa2g¢4, Aldoa,
Plac8, Gzmb, Irf8, Gm5559, Pgkl, Ldha, Mif, Pkm2, Tpil,
Gzme, Xcll, Lgalsi

e NK activation: Bcl2, Ccl3, Ccl4, Ccr5, Cd69, Cxcll0, Foxkl,
Gbp4, Gzmb, Icaml, Ifihl, Ifng, I112rbl, 1112rb2, 112ra, Irfl,
Irf7, Irf8, Kifi1, KIf13, Klrgl, Myd88, Nfil3, Nfkbib, Nfkbiz,
Notchl, Nrdal, Nr4a2, Nr4a3, Socsl, Socs3, Statl, Stat2,
Statd, Tbx21

Mo/Mq-related gene signatures (21, 22):

e IFN-TAMs: Ccl2, Ccl7, Ccl8, Cd274, Cxcl9, Cxcll0, Cxclll,
Ifitl, Ifit2, Ifit3, Ifitml, Ifitm3, II7r, Isgl5, Nos2, Rsad2,
Tnfsf10, Statl

e Inflam-TAM: Cxcll, Cxcl2, Cxcl3, Cxcl5, Cxcl8, Ccl20,
Ccl3l1, Ilirn, I11b, G0s2, Inhba, Sppl

* Angio-TAMs: Argl, Adam8, Bnip3, Mif, Slc2al

* LA-TAMs: Acp5, Apocl, Apoe, Clqa, Clgb, Clqc, Ccll8,
Ccl8, Cd163, Cd206, Cd36, Cd63, Ctsb, Ctsd, Ctsl, Cxcl9,
Fabp5, Folr2, Gpnmb, Lgals3, Macro, Mrcl, Trem2

* Reg-TAMs: Apoe, Argl, Clqa, Ccl2, Cd63, Clec4d, Cx3crl,
Gpnmb, Hilpda, Hmoxl, 1I7r, Mrcl, Pf4, Sppl, Trem2,
Vegfa, Itga4

*  Prolif-TAM: Cdkl, Mki67, Stmnl, Top2a, Tubb

e Classical TIMs: Ccl2, Ccl9, Ccr2, Cdl4, Cd300lf, Cxcll0,
Fl3al, Fenl, Fnl, Ifi205, Ifit2, Ifit3, 11172, Isg20, Itga4, Ly6c2,
Lyz, Mgstl, Plaur, S100a8, S100a9, S100a12, Sell, Tgm?2,
Thbsl, Tlr2, Vcan

* Nonclassical Monocytes: Ace, Adgre4, Cd300a, Cdknlic,
Ceacaml, Ear2, 1l17ra, Itgal, Lilrb2, Lrpl, Spn, Stkl0,
Tnfrsflb, Treml4

* M1 Macrophages: Orecchioni 2019, In Vitro
Classically Activated

* M2 Macrophages: Orecchioni 2019, In Vitro
Alternatively Activated

Neutrophil-Related Gene Signatures (23):

* T1: Ltcds, Mmp8, Mmp9, Ppia, Prrl13, Ptma, Retnlg

e T2: Cxcr2, Cd300ld, Duspl, Gbp2, Ifitml, Il1b, Isgl5, Jaml,
Junb, Msrbl, Osm, S100a6, Selplg, Slpi

o T3: Atf3, Ccl3, Ccl4, Cd274, Cstb, Cxcl3, Hcar2, Hilpda, Hk2,
Hmoxl, Ier3, Jun, Ldha, Mif, Plin2, Sppl, Tgifl, Tnfrsf23,
Vegfa, Zeb2

* Mature: Retnlg, Ccl6, S100a6, Clec4d, Prr13, Cebpb, Slpi,
S100all, Btgl, Cxcr2, Fthl, Grina, Mmp8, Fxyd5, Msrbl,
H2-D1, Gm5483, Anxa2, Mmp9, Ftll, Mapllc3b, Tmeccl,
Satl, Cyp4f18, Junb, Mxdl, Stk17b, Ypel3, Selplg, II1f9,
Duspl, Slc16a3, Ccrl, Ifitml, Rdhi2, Clecde, Arg2,
Cd300ld, Amical, Ctsd, Gda, Hacd4, Timp2, Fprl,
Ifi2712a, Slc7all, Stfa2ll, I11b, Asprvl, Cxcl2
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Cluster similarity analysis

To evaluate transcriptional congruence across immune cell
clusters derived from distinct tumor models, we implemented a
logistic regression model with elastic net regularization, as described
by Cheng et al. (24). Clusters were downsampled to mitigate bias
from unequal cell numbers. Cross-validation was used for model
fitting, and predicted logits from test datasets were averaged and
converted to probabilities to assess cluster similarity.

Human scRNA-seq data collection and
processing

To comprehensively profile human TIMEs, we leveraged the
TISCH2 (25) public scRNA-seq database, which provides uniformly
processed datasets via the MAESTRO workflow (26). We curated
treatment-naive primary tumor samples (Source/Tissue = Tumor)
from breast invasive carcinoma (BRCA), colorectal cancer (CRC),
and non-small cell lung cancer (NSCLC), restricting inclusion to
studies with >2 patients and datasets with >10,000 cells, and
encompassing both CD45+-enriched and unsorted preparations.
All datasets were generated using 10x Genomics chemistry, with the
exception of two that employed the inDrop platform (Azizi et al.,
2018; Zilionis et al., 2019). We restricted analysis to immune-
lineage cells (Celltype_malignancy = immune cells). Samples
contributing fewer than 50 immune cells were excluded to
mitigate low-yield noise. Study metadata were manually curated
against the original publications, and cells with inconsistent lineage
labels between TISCH2 and the source papers were removed when
author-provided labels were available. To mirror the compartments
analyzed in the syngeneic models, we extracted T cells, NK cells,
dendritic cells, monocytes/macrophages, neutrophils, and mast cells
from each human dataset. After filtering, 2,252,095 immune cells
from 14 studies were retained and subsequently subjected to cross-
study integration, unsupervised clustering, and systematic re-
annotation using the same methods and criteria applied to the
syngeneic datasets.

Mouse—human comparisons

We compared cell states across species by restricting analyses to
high-confidence one-to-one mouse-human orthologous gene pairs
downloaded from the MGI database. Unsupervised cross-species
comparisons were performed by hierarchical clustering of genes
(rows) and cell states (columns) independently, using Ward’s
linkage on Pearson correlation distance. For each species, we
generated pseudobulk expression profiles for each annotated cell
state by averaging single-cell expression values across all cells
assigned to that state (Seurat AverageExpression). To mitigate
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dataset-specific effects, pseudobulk profiles were normalized within
each dataset by scaling each profile to the median expression level
across genes. Human and mouse pseudobulk matrices were then
concatenated on the intersecting set of one-to-one orthologs and log
transformed. For clustering, we restricted the gene set to positive
markers for the focal cell population relative to other cell
populations within each species, identified using Seurat
FindMarkers (Wilcoxon rank-sum test). Genes were required to
meet all of the following criteria: detected in at least 30% of cells in
the focal population, Benjamini-Hochberg-adjusted p-value < 0.05,
and log2 fold change > 0.5.

To evaluate cross-species correlations in gene expression
patterns for clusters of interest, we used marker genes from
differential expression analyses performed separately in each
species (Seurat FindMarkers). Differential expression analyses
were conducted between the following groups: (i) Treg cells
(human: Treg; mouse: CD4+T-C13) versus other T cells; (i) CD8
+ Tex cells (human: CD8_Tex_GZMB; mouse: aggregated CD8+T-
C03, CD8+T-C05, and CD8+T-C06) versus other T cells; (iii) M-
SPP1 (human: aggregated M¢@_SPP1 and M@_PPARG; mouse: M-
C10) versus other Mo/M@s; and (iv) Mo-ISG (human: Macro_C4;
mouse: Mo-C04) versus other Mo/M@s. Marker genes were defined
as those detected in at least 5% of cells in the focal population, with
log2 fold change > 1, and Benjamini-Hochberg-adjusted p-value <
0.05. For each contrast, we intersected the human and mouse
marker genes using the one-to-one ortholog map.

Immunohistochemistry analysis

Five tumor samples from each model were harvested and fixed
in 10% neutral buffered formalin for 24 hours, followed by
embedding in paraffin. The paraffin blocks were sectioned into 4
pm slices and subjected to deparaffinization. Antigen retrieval was
performed by immersing the slides in citrate buffer, followed by
microwave treatment at high power for 2.5 minutes and incubation
in a water bath at 95 °C for 30 minutes. Endogenous peroxidase
activity was quenched by treating the slides with 3% hydrogen
peroxide (H202) for 10 minutes at room temperature. The sections
were then blocked with 10% goat serum for 1 hour. Post-blocking,
the sections were incubated with anti-CD45 antibody (Cell
Signaling Technology, Danvers, MA, USA, Cat# 70257S, 1:200) in
a humidified chamber at 4 °C overnight. Following PBS washes, the
slides were incubated with the secondary antibody (Cell Signaling
Technology, Danvers, MA, USA, Cat# 8114L) for 1 hour at room
temperature. Visualization was achieved using diaminobenzidine
(DAB) as the chromogen. The slides were counterstained with
hematoxylin and scanned using a Leica AT2 scanner.

Digital whole slide images were uploaded to the HALO Image
Analysis platform (Indica Labs). Image analysis algorithms were
developed using the Indica Labs Multiplex IHC module to detect
CD45-positive cells by setting a positive threshold. The accuracy of
the algorithms was validated through visual inspection by at least
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one pathologist. High infiltration was defined as CD45 positivity
greater than 30%. A pathologist reviewed the slides to evaluate the
differentiation status of the tumor (Supplementary Table 1).

Somatic mutations and tumor mutational
burden

Somatic mutations in syngeneic models were called from cell
line whole-exome sequencing using Sentieon in tumor-only mode.
For downstream analyses, we retained only nonsynonymous
variants (missense, nonsense, and frameshift indels) that did not
overlap dbSNP entries for the corresponding genetic background.
Genes that are common drivers in human cancers were reported as
representative examples. Tumor mutational burden (TMB) was
calculated as the number of mutations per megabase (Mb),
considering variants with a variant allele frequency greater than
1% (Supplementary Table 1).

Bulk RNA-seq and immune deconvolution

RNA-seq libraries were prepared using NEBNext® UltraTM
RNA Library Prep Kit for Tlumina® (NEB, USA), following the
manufacturer’s protocol. Libraries quality was assessed prior to
sequencing on the Illumina NovaSeq 6000 platform. Sequencing
read quality was assessed using FastQC. Reads were aligned to the
mouse reference genome (mm10, Ensembl release 98) using STAR
(v.2.5. 4b), and gene-level quantification was performed with RSEM
(v.1.3.1). Normalized expression data were subjected to immune cell
deconvolution using the quanTIseq (27) algorithm, with all
immune-related components aggregated under the
“quanTIseq_immune” category.

Statistical analysis

Tumor volume differences among groups were analyzed using
one-way analysis of variance (ANOVA) in GraphPad Prism
(version 10.1.2), with groupings defined by a single independent
variable. Data are presented as mean * standard error of the mean
(SEM) from independent experiments. Statistical significance was
set at p < 0.05. Models were classified as anti-PD-1 responsive if the
treatment group exhibited a statistically significant reduction in
tumor volume compared to the control group at the study endpoint;
otherwise, they were considered anti-PD-1 resistant.

Data availability

The data generated in this study are available at Gene
Expression Omnibus (GEO) accession no. GSE307143.
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Results

Immune cell composition landscapes
across ten syngeneic tumor models

To elucidate the high-resolution landscapes of tumor-
infiltrating immune cells (TIICs) within murine syngeneic tumor
models, we performed scRNA-seq on CD45+ immune cells isolated
from ten treatment-naive models, encompassing seven prevalent
cancer types: breast mammary carcinoma (4T1, EMT6, MMTV-
PyMT), colon carcinoma (CT26.WT, MC38), glioma (GL261),
renal adenocarcinoma (Renca), lung carcinoma (LL2), melanoma
(B16F10), and pancreatic adenocarcinoma (Pan02) (Figures 1A, D).
After stringent quality control, 166,861 immune cells were retained,
with a median of 3,096 genes and 12,705 unique molecular
identifiers (UMIs) per cell (Supplementary Figures S1A, B).
Unsupervised clustering revealed seven major immune cell
populations, each distinguished by the expression of canonical
markers: T cells, natural killer (NK) cells, and B cells, monocytes/
macrophages (Mo/Mes), neutrophils, dendritic cells (DCs), and
mast cells (Figures 1B, C, Supplementary Figure S1E,
Supplementary Table 2).

Mo/M¢@s constituted the dominant immune population,
accounting for 60.58% of TIICs across models, with proportions
ranging from 34.61% in GL261 to 76.49% in Renca. Notably,
neutrophils were significantly represented in our dataset,
comprising 9.66% of TIICs, with their presence varying from
0.41% in GL261 to 26.90% in Pan02. The distribution of

10.3389/fimmu.2025.1676581

lymphoid cells also exhibited considerable variability, with T cells
accounting for 11.99% and NK cells comprising 9.10% of TIICs.
Specifically, GL261 and CT26.WT exhibited the highest proportions
of T and NK cells in their TIICs at 57.60% and 45.56%, respectively.
Conversely, LL2 and Renca presented the lowest proportions, at
4.75% and 4.91%, respectively (Figure 1D).

Transcriptomic diversity among T cell
populations

T cells are pivotal in orchestrating antitumor immunity. To
elucidate the intricate role of T cells within syngeneic tumors, we
identified seventeen distinct T cell subpopulations, comprising ten
CD8+ subsets (C01-C10), three CD4+ subsets (C11-C13), and four
double-negative (CD8-CD4-) subsets (C14-C17). Each subset
exhibited unique signatures (17) associated with cytotoxicity,
exhaustion, and stemness, alongside the expression of key marker
genes (Figures 2A-C, Supplementary Table 3). Our dataset
demonstrated a high degree of consistency with T cells in the
MC38 syngeneic model that were previous extensively characterized
(9) in terms of both component abundance and transcriptional
profiles (Figure 2D, Supplementary Figure S2).

The CD8+ compartment comprised two effector memory (EM;
CO01, C02), one central memory-like (CM; C04), and three
exhausted (EX; C03, C05, C06) subsets (Figures 2A, C upper
panel). T-EM cells were characterized by elevated expression of
Tcf7, KIf2, and S1prl, along with EM-like predicted markers Ly6c2
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FIGURE 1

High-resolution profiling of TIICs across murine syngeneic tumor models. (A) Schematic representation of the experimental workflow for isolating
and processing Cd45+ immune cells from 10 murine tumor models: breast mammary carcinoma (4T1, EMT6, MMTV-PyMT), colon carcinoma
(CT26.WT, MC38), glioma (GL261), renal adenocarcinoma (Renca), lung carcinoma (LL2), melanoma (B16F10), and pancreatic adenocarcinoma
(Pan02), with three biological replicates per model. (B) UMAP visualization of CCA integrated data depicting 7 major immune cell populations. (C)
Expression patterns of canonical marker genes utilized to identify lymphoid (T cells, NK cells, B cells) and myeloid (DCs, Mo/Megs, neutrophils, mast
cells) lineages. (D) Percentages of major immune cell types in TIICs for each model.
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FIGURE 2

Identification and characterization of T cell subpopulations. (A) UMAP projection illustrating 17 distinct T cell subpopulations: 10 CD8+ subsets (CO1-
C10), 3 CD4+ subsets (C11-C13), and 4 double-negative (CD8-CD4-) subsets (C14-C17). (B) Expression profiles of canonical markers Cd8a, Cd4,
Foxp3 and Mki67, along with gene signatures associated with cytotoxicity, exhaustion, and stemness. (C) Transcriptomic characterization of CD8+
(top) and CD4+ (bottom) T cells, revealing effector memory, central memory, and exhausted phenotypes in CD8+ T cells, and Thl helper, EM-like,
and Treg phenotypes in CD4+ T cells; dot color and size represent the proportion of expressing cells and average expression level, respectively. (D)
Comparative analysis of T cells showing the similarity between the transcriptional profiles obtained in this study and those documented in the
published mouse model data (GSE168944). (E) Proportional distribution of each T subset within the total T cell compartment.

and Cxcr3 (17). Cluster C02 exhibited further enrichment for
interferon-stimulated genes (ISGs; Ifit1/3, Isgl5). T-CM cells were
distinguished by the presence of canonical CM cell markers (Cd44,
Sell, Ccr7), chemokines (Ccl3, Ccl4, XclI), and Myb, which signifies
their stemness status (28). T-EX cells exhibited increased expression
of genes (Pdcdl, Havcr2, Ctla4, Lag3, Havcr2) and signatures
associated with exhaustion. Among them, cluster C03 exhibited
lower expression of Havcr2 and Cd244, reduced levels of effector
molecules (Gzmb, Prfl) and increased expression of Ccr7, indicating
a less exhausted or pre-dysfunctional state. Cluster C05 expressed
elevated levels of the CD8 T cell activation marker Cx3crl, along
with granzyme molecules (e.g. Gzmb) and Prfl, indicating potential
effector function in action. Additionally, our dataset revealed one
cluster (C07) displaying high levels of heat shock proteins (HSPs),
including Hspala/b (Hsp72/70) and Hsp90aal/Hspabl (Hsp90), as
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well as other markers indicative of cellular stress, such as Dnajbl/
Dnajal (29). Furthermore, numerous proliferative subpopulations
(C08-C10) were identified based on the expression of MCM
(Mcm2-7), Mki67, and E2F.

Within the CD4+ compartment (Figures 2A, C lower panel), we
identified two conventional CD4+ T cell clusters (C11 and C12) and
one regulatory T cell (Treg) cluster (C13). Cluster C11 exhibited a
Th1-like transcriptional profile, marked by elevated expression of
Tbx21, Ifng, and Bhlhe40, alongside exhaustion-associated genes
such as Pdcdl and Lag3. Cluster C12 displayed high levels of Tcf7,
Lefl, S1prl, and II7r, with low expression of Ccr7 and Sell, indicative
of an EM-like phenotype.

The CD8-CD4- compartment included one y3 T cell population
(C14) and three NKT cell populations (C15-C17) (Figures 2A, C
lower panel). Cluster C14 was defined by a prominent TCR Y8
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repertoire and elevated expression of IlI17a. The 4T1 model
exhibited a markedly higher proportion of ¥ T cells compared to
other models (Figure 2E). Clusters C15-C17 were classified as NKT
cells based on co-expression of conventional T cell markers (Cd3e,
Cd28), and NK cell-associated genes, including Zbtb16 (PLZF),
KlrbIc (NK1.1/Cd161), Kirkl (Nkg2d), and Nkg7. These cells also
displayed a restricted TCRo repertoire. Cluster C15 exhibited high
expression of Tcf7, Lefl, Sell, and Ccr7 but low levels of Cd44 and
effector molecules, indicative of a naive phenotype. Cluster C16,
enriched for Zbtbl6 and Thl7-associated genes (Rorc (RORt),
1l17a, I1I123r, Pxdcl), was annotated as NKT17 cells. Cluster C17,
which constituted the majority (69.3%, 2,974 cells) of CD8-CD4- T
cells, expressed elevated levels of Ccl5 and Ly6c2, exhibiting an EM-
like phenotype.

Diversification of NK cells

To investigate the heterogeneity of intratumoral NK cells, we re-
clustered Ncrl1+Cd3e- cells, identifying six distinct NK cell subsets
(C1-Cé6) and two group 1 innate lymphoid cell (ILC) subsets (C7-
C8) (Figure 3A, Supplementary Table 4).

10.3389/fimmu.2025.1676581

Clusters C1 and C2 were defined by high expression of perforin
and granzyme, with C1 specifically identified as a proliferating NK
cell population. Clusters C3-C5 exhibited distinct cytokine and
chemokine profiles: C3 was enriched for Ccl5, C4 for Ifng, and C5
for ISGs (Isgl5, Ifit1, Ifi203) (Figure 3D). Cluster C6 was notable for
its elevated expression of Klrc2 (encoding NKG2C) and Klrbl1bl/c,
but reduced expression of Ncrl and Klrkl (encoding NKG2D)
(Figure 3D). It also expressed major histocompatibility complex
(MHC) class II molecules and associated genes (H2-Aa, Cd74),
consistent with an adaptive NK phenotype (30). These cells
exhibited a high NK activation signature score (20) (Figure 3B),
and demonstrated the highest expression level of Itga2 (Cd49b)
while showing a low level of the intratumoral NK signature score
(20), indicating a conventional NK cell phenotype (CD49b+) rather
than a tissue-resident profile marked by Itgal (CD49a). Cluster C6
was predominantly enriched in the GL261 model (Figure 3E).

Consistently, cluster C6 was positioned at one end of the
pseudotime trajectory (Figure 3C), followed by cluster C3, which
exhibited moderate Itga2 expression, restricted Itgal expression, a
high NK activation signature score, and a low intratumoral NK
signature. In contrast, two KLRG1+ NK cell populations, clusters
Cl and C2, were positioned at the terminal intratumoral
pseudotime state and accordingly displayed a diminished NK
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FIGURE 3

Characterization of intratumoral NK cell and ILC clusters. (A) UMAP plot showing NK and ILC subpopulations. (B) UMAP projection of signature
scores for NK cells, ILCs, NK cell activation and intratumoral NK identity. (C) Pseudotime trajectory analysis illustrating the developmental
progression of NK cell clusters (C1-C6). (D) Bubble heatmap displaying expression of genes linked to lineage, cytotoxicity, transcription factors (TFs),
integrins, chemokine receptors (CCRs), and cytokines/chemokines across NK and ILC subsets. (E) Proportional distribution of NK and ILC subset

within the total NK population (refer to Figure 1D).
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activation signature score alongside an elevated intratumoral NK
signature score. This aligns with previous reports indicating that
NK cells rapidly lose their effector functions within the TME (20).
The ILCI clusters (C7 and C8) were defined by high expression
of Rora, Il7r (CD127/IL-7Ra), and Itgal, absence of Eomes, and
reduced levels of cytotoxic molecules, distinguishing them from
bona fide NK cells. Their identities were further validated using
established ILC1-specific signatures (18, 19) (Figures 3B, D).

Distinct subsets of DCs

DCs within the TME are a heterogeneous population critical for
initiating and modulating both innate and adaptive immune
responses. Based on canonical markers and functional gene
expression profiles, we classified DCs into four distinct subtypes:
one plasmacytoid DC subset (pDC, marked by Siglech), two
conventional DC subsets (cDC1 and ¢DC2, marked by Itgax
(CD11c)), and one Ccr7+ DC subset (DC3) (Figures 4A, B, D,
Supplementary Table 5).
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pDCs, typically associated with type I interferon production and
antitumor activity, exhibited elevated Lag3 and Cd37 expression,
corroborating previous findings (31) that suggests their inhibitor
roles in modulating the local immune response. The cDC1 subset,
defined by Xcrl and Clec9a, specializes in antigen cross-
presentation and activation of cytotoxic CD8+ T cells. This
population includes both CD8a+ and CD103+ (encoded by Itgae)
cells, with CD103+ c¢DCls predominating in our dataset
(Figures 4B, D).

The ¢DC2 subset, marked by Itgam (CD11b) and Sirpa
(CD172a), also expressed high levels of Cd14, identifying them as
Itgax+Itgam+CdIl4+ monocyte-derived dendritic cells (MoDCs)
(Figure 4F). Unlike ¢DC1, ¢cDC2 primarily activate CD4+ T
helper cells. Transcriptome analysis revealed substantial
heterogeneity within ¢DC2s, with two peaks in pseudotime
trajectories (Figure 4C) and multiple compartments in the marker
gene heatmap (Figure 4D). We further resolved cDC2s into six
subclusters: C1 (Mgl2 (CD301b)), C2 (ISGs), C3 (Tbcld4), C4
(Clec10a), C5 (Selp, Abhd17b, Fcgrt), and C6 (Ccnb2, Birc5, Stmnl
(proliferation/differentiation)) (Figures 4E-G).
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FIGURE 4

Transcriptional heterogeneity of DCs. (A) UMAP plot identifying 4 DC subtypes. (B) Expression of canonical DC markers overlaid on UMAP plots. (C)
Developmental trajectory of cDC1, cDC2 and DC3 subsets inferred by Monocle?2. (D) Heatmap showing the expression of selected differential
expressed genes across clusters. (E) UMAP visualization of cDC2 subclusters. (F) UMAP plot showing the expression of /tgax, [tgam, and Cd14 in
cDC2 cells. (G) Bubble heatmap showing selected differential expressed genes across 6 cDC2 subclusters.
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The DC3 subset was identified by its elevated expression of
Ccr7, Cd83, and Fscnl, despite lacking conventional DC markers.
Both Ccr7 and Cd83 are well-established indicators of DC
maturation, while Fscnl supports migratory capacity toward
lymph nodes (32) (Figures 4B, D).

Functional characterization of Mo/M¢g
populations

Tumor-associated macrophages (TAMs) are key regulators of
tumor progression and represent promising targets for
immunotherapy. Given their abundance, we conducted a detailed
transcriptional and functional analysis, identifying twelve distinct
subclusters: three monocyte subsets (Mo, C01-C02, C04), one
monocyte and DC subset (MonoDC, C03), and eight macrophage
subsets (M@, C05-C12). By aligning these subpopulations with
canonical M1 (proinflammatory/antitumor) and M2 (anti-
inflammatory/protumor) phenotypes (22), we determined that
clusters C01-C05 displayed M1-like characteristics based on their
expression of M1-associated markers and signatures. Conversely,
clusters C06-C12 were classified as M2-like due to their
upregulation of M2-associated markers and signatures
(Figures 5A-C, Supplementary Table 6).

Clusters C01 and C02 exhibited the lowest expression of Adgrel
(F4/80), Apoe, and Clga/c, and were classified as Ly6Chi and
Ly6Clo monocytes, respectively, based on differential expression
of Ly6c2, Ccr2, Cdl4, and Vcan (CO1) and Nr4al, Ace, and Itgal
(C02). Cluster C03 represented the MonoDC subset, characterized
by high expression of DC-associated genes, including MHC class II
molecules and Cd74. Cluster C04, marked by elevated expression of
ISGs, showed moderate expression of macrophage markers and
high levels of Ly6c2 and Tgfbi, suggesting an intermediate state
between monocytes and macrophages.

Among macrophage subsets, C05 was the only M1-like
population, distinguished by high Cxcl9 expression and linked to
favorable responses to anti-PD-L1 therapy (11). Clusters C06 and
CO07 represented proliferative macrophages, while C08 showed
increased expression of Ccr2 and Kif4. Clusters C09-C12
displayed transcriptional profiles resembling previously described
SPP1+ and C1Q+ TAMs (10, 24). Specifically, C09 and C10
upregulated Sppl and Argl, while C11 and CI12 exhibited high
levels of C1Q complement components. C12 also expressed Pf4,
Folr2, Crb2, Cd163, and Lyvel, markers characteristic of tissue-
resident macrophages.

It is important to note that the M1 and M2 gene signatures are
not entirely mutually exclusive, as the M1/M2 dichotomy was
established in the pregenomic era based largely on in vitro
stimulation studies with type 1 or type 2 cytokines. To better
capture the functional and molecular diversity of tumor-
infiltrated Mo/Me@s, we applied a nomenclature informed by
single-cell omics data (21) (Figure 5D). Consistent with marker-
based annotation, clusters C01 and C04 exhibited strong classical
tumor-infiltrating monocyte (TIM) signature, while C02 aligned
with a nonclassical monocyte signature. C04 also showed the
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highest signature score of interferon-primed TAMs (IFN-TAMs).
Among macrophage subsets, C09 and C10 were enriched for
inflammatory cytokine-enriched TAMs (Inflam-TAMs), whereas
C12 showed the strongest lipid-associated TAMs (LA-TAMs)
signature, linked to immunosuppressive and tolerance-
related functions.

To assess the role of Mo/M@ subsets in immunotherapy
response, we quantified the M1/M2 ratio across models. Notably,
MC38 tumors, despite low T and NK cell infiltration, harbored
abundant Mo/M¢s with a relatively high M1/M2 ratio (Figures 1D,
5E, F), potentially explaining their sensitivity to anti-PD-1 therapy
(Figure 5G). To further investigate the involvement of Mo/M@
subsets in anti-PD-1 response, we assessed their enrichment in
responsive tumor models. Initial efficacy testing across syngeneic
models identified MC38, GL261, and CT26 as responsive to anti-
PD-1 therapy, while others were resistant (Supplementary Figure
S3). We then estimated the absolute abundance of Mo/M¢@
subpopulation by integrating their proportions within TIICs and
the overall immune cell content in tumors, inferred from bulk
RNA-seq via deconvolution (Supplementary Figures S4A-C).
Stratification by anti-PD-1 sensitivity revealed that Cluster C04
(ISG"€" monocytes) was significantly enriched in responsive
models (Figure 5H, Supplementary Figure S4D). Notably, a recent
study demonstrated that inflammatory/ISG-enriched monocytes
promoted the expansion of tumor-specific CD8+ T cells and
amplify antitumor immunity; transcriptionally, these monocytes
were highly congruent with our ISG"®" subset (33).

Multifaceted roles of neutrophils in the
TME

Neutrophils are often underrepresented in scRNA-seq studies
due to their short lifespan and low RNA content. A considerable
population of neutrophils was detected across various models in our
dataset, as corroborated by flow cytometric analysis (CD11b
+CD115-Ly6G+) (Figure 6F), in close concordance with the
proportions depicted in Figure 1E. We delineated six distinct
neutrophil subsets, each defined by discrete gene expression
profiles and functional attributes. Cluster C1 was enriched for
SiglecF, while Clusters C2, C4, and C6 exhibited elevated levels of
Cxcl3. Clusters C3 and C5 were distinguished by high levels of Sell.
SiglecF-high and Cxcl3-high neutrophils were previously reported
exclusively in tumor-bearing tissues (34, 35) (Figures 6A-E,
Supplementary Table 7).

Analogous to the M1/M2 paradigm in macrophages, tumor-
associated neutrophils (TANs) adopt either N1 (antitumor) or N2
(protumor) phenotypes (36). Cluster C6 displayed transcriptional
features consistent with an N2-like state, including upregulation of
Argl, Ccl2, and Cxcll, as well as genes related to angiogenesis such
as Thbsl and Lagls3 (Figure 6B), suggesting a pronounced pro-
tumoral role. This subset was predominantly observed in LL2
models (Figure 6C). Cluster Cl, characterized by high SiglecF
expression, has also been implicated in protumor activities.
Cluster C2, marked by elevated Cstb and Ccl3, closely resembled
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FIGURE 5
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showing expression of Mo/M¢ markers, along with M1- and M2-associated gene signatures across clusters. (C) Bubble heatmap of representative
signature genes across 12 Mo/Mg subsets. (D) Expression of signature gene sets superimposed on the UMAP plot. (E) Proportional representation of
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models based on established marker genes, indicating Mo/M¢
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between anti-PD-1-responsive and —resistant tumor models.
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models, alone or in combination with anti-PD-1 therapy.

the mN5 populations described by Zilionis et al. (34), and exhibited
the highest T3 signature score (23), indicating a terminally
differentiated, pro-tumor neutrophil subset (Figure 6B). Cluster
C3 had the highest neutrophil maturation score and was
significantly associated with migration (Supplementary Figures
S5A, B), suggesting it represented newly infiltrating mature
neutrophils. In contract, cluster C5 expressed high levels of type I
ISGs (Ifitl, Irfl, Rsad2, Isgl5, and Cxcl10), aligning with the mN2
subset known to expand during effective immunotherapy (e.g., anti-
PD-1 treatment) (34, 35, 37) (Supplementary Figure S5C).

To further investigate the functional relevance of TANs, we
performed in vivo depletion experiments using anti-Ly6G
antibodies (Figure 6G; Supplementary Figure S5D). Consistent
with previous studies (38), neutrophil depletion significantly
reduced tumor burden in CT26.WT models, whereas EMT6
tumors remained unresponsive. Notably, neutrophil depletion
failed to enhance the efficacy of PD-1 blockade in both CT26.WT
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(anti-PD-1 responsive) and EMT6 (anti-PD-1 non-responsive)
models (Figure 6G). Comparative profiling of neutrophil subsets
and effector molecule expression across CT26.WT and EMT6
revealed that, although EMT6 harbored a greater total neutrophil
burden (Figure 1D), it contained a significantly lower proportion of
the C1/SiglecF"'8" subset, only modest, non-significant increase in
C2 and C5, and reduced expression of protumor mediators such as
Argl and Tgfbl, relative to CT26.WT (Supplementary Figures S5E,
F). These features indicated that CT26.WT exhibited a more
protumor-skewed neutrophil program, rendering neutrophil
depletion measurably efficacious, whereas in EMT6, where
neutrophils were comparatively less protumor, depletion
conferred limited benefit. The ablation of the C5/ISG"®" subset in
both models may therefore underlie the lack of synergy between
neutrophil depletion and PD-1 blockade (35, 37). Together, these
findings underscored the phenotypic diversity and functional
complexity of neutrophils within the TME, highlighting their
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multifaceted roles in modulating antitumor immunity and
therapeutic response.

Comparison of human and mouse TIME

To assess the translational relevance of TIICs across species, we
integrated 14 treatment-naive human scRNA-seq datasets spanning
BRCA, CRC, and SCLC, processed with a uniform pipeline
(Materials and Methods, Table 3).

Within human tumors, T cells constituted a majority of TIICs
(58.3% overall; BRCA 53.0%, CRC 47.3%, NSCLC 68.4%),
exceeding the proportional T-cell representation in syngeneic
mouse models. We resolved four CD8+ subsets
(CD8_Teff GZMK, CD8_Tem_XCL1, CD8_Tex_GZMB,
CD8_ISG), four conventional CD4+ subsets (CD4_Tn_CCR7,
CD4_Tn_CXCL13, CD4_Tcm_IL7R, CD4_Trm_CXCL13), one
Treg subset, one proliferating subset (T_MKI67), and one NKT
subset (Figure 7A), supported by canonical memory/exhaustion
markers and distinct transcriptional programs (Supplementary
Figure S6A). In human tumors, Treg cells comprised 22.9% of
CD4+ T cells and exhausted CD8+ T cells 21.9% of CD8+ T cells;
proliferating T cells and NKT cells represented 3.6% and 3.3% of
total T cells, respectively. In contrast, syngeneic models displayed
elevated frequencies of exhausted CD8+ T cells (40.8% of CD8+),
Treg cells (60.4% of CD4+), proliferating T cells (20.6% of total T
cells across CD8_MCM and CD8_MKki67 clusters), and NKT cells
(11.1% across three clusters; Figure 7B).

At the level of major T-cell lineages (CD8+, CD4+, Treg, NKT),
cell states were conserved across species, as evidenced by
concordant expression of orthologous marker genes

TABLE 3 Summary of dataset sources, patient numbers, and cell counts.

10.3389/fimmu.2025.1676581

(Supplementary Figure S6B). By contrast, integrative profiling of
subtype-discriminating markers in human and mouse T cells
revealed only modest concordance of cell states across species,
with subpopulations partitioning primarily by species rather than
by presumed functional equivalence (Figure 7C). However,
differential expression analyses focusing on Treg and exhausted
CD8+ T cells identified shared transcriptional features across
species. In Tregs, FOXP3 and IL2RA showed robust conservation,
with additional overlap in TNFRSF4, ILIR2, and EBI3. Notably,
some genes demonstrated opposing patterns: ILIRA was enriched
in human Tregs but diminished in mouse Tregs, whereas KLRGI
was elevated in mouse Tregs but low in humans. In exhausted CD8
+ T cells, conserved markers included HAVCR2, TNFSF4, and
cytotoxic effectors from the granzyme and perforin families,
supporting a shared exhaustion/cytotoxic module. Together, these
findings indicated that despite fine-grained T-cell subsets exhibited
only modest conservation of cellular states across species,
therapeutically relevant Tregs and CD8+ Tex cells displayed
conserved marker profiles and preserved functional programs
(Figure 7G, Supplementary Table 14).

Myeloid lineages likewise displayed conserved cell states across
species, both at the level of major lineages and within Mo/M¢@
sublineages (Supplementary Figure S6B, Figure 7F). In human
tumors, Mo/M@ cells constituted 18.4% of TIICs overall (BRCA
25.3%, CRC 14.8%, NSCLC 13.6%), lower than in syngeneic models.
We delineated ten Mo/M¢ states: four monocyte subsets
(Mo_CD14, Mo_CD16, Mo_ISG, and a Mo/T mixed population)
and six macrophage subsets (M¢@_FOLR2, M¢@_PPARG, M¢_SPP1,
Me@_MMP9, M@_TIMP3, and a proliferating Me_MKI67 state),
each defined by distinct transcriptomes (Figure 7D, Supplementary
Figures S6F, G). Monocytes accounted for 45.9% of the human Mo/

Cancer Type Dataset Name Patients Cells PMID
Azizi, Cell, 2018 8 7,413 29961579
Qian, Cell Res, 2020 14 18,525 32561858
BRCA Gao, Nat Biotechnol, 2021 5 3,049 33462507
Pal, EMBO J, 2021 31 46,978 33950524
‘Wu, Nat Genet, 2021 20 3,0052 34493872
Qian, Cell Res, 2020 7 12,075 32561858
Wu, Nature, 2020 2 6,862 32103181
CRC
Zhang, Cell, 2020 9 10,693 32302573
Uhlitz, EMBO Mol Med, 2021 12 21,636 34409732
Lambrechts, Nat Med, 2018 5 21,543 29988129
Song, Cancer Med, 2019 4 2,906 31033233
NSCLC Zilionis, Immunity, 2019 6 17,737 30979687
Kim, Nat Commun, 2020 7 19,750 32385277
Wu, Nature, 2020 6 32,876 32103181
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FIGURE 7

Cross-species profiling of intratumoral immune subsets in public human datasets and syngeneic tumors in this study. (A, D) UMAP embeddings of T/
NK cells (A) and Mo/Mg (D), annotated into transcriptional subpopulations using canonical markers after batch integration. (B, E) Compositional
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M¢ compartment (BRCA 45.2%, CRC 53.4%, NSCLC 43.8%),
exceeding the corresponding fraction in syngeneic
models (Figure 7E).

In the macrophage compartment, a high SPP1+ and low C1QC+
TAM gene-signature combination has been reported to associate with
poorer prognosis in CRC patients (10). In human tumors, M@_SPP1
and M@_PPARG displayed elevated M2-signature scores and high
SPP1 expression, mirroring phenotypic features of mouse
Mo_Spp1_C10 and suggesting functional analogy (Figure 7F).
Conserved markers included FABP4, MMP12, ATP6V0D2, and
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metallothionein genes (e.g, MT1H). ISG™®" monocyte subsets were
detected in both species with strong cross-species concordance; along
with IFIT1/2 and ISG20, these cells consistently expressed TNFSFI0,
RSAD2, and CMPK2, underscoring their translational relevance
(Figure 7G, Supplementary Table 14).

Collectively, the cross-species conservation of immune cell
states and transcriptional features underscored the utility of
syngeneic models for mechanistic inference and biomarker
development, reinforcing the translational importance of our
comprehensive TIME profiling.
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Discussion
Prior research and the novelty of this study

Murine syngeneic tumor models, which preserve intact immune
systems, serve as foundational platforms for preclinical
immunotherapy research. Their molecular and immunologic
characteristics have been extensively characterized using
conventional approaches, including flow cytometry, microarray
profiling, and bulk RNA sequencing, to quantify immune cell
populations and examine gene expression in immunoregulatory
pathways during tumor progression or therapeutic intervention
(4-7). More recently, scRNA-seq has enabled deeper resolution of
cellular heterogeneity within these models. For instance, Kumar
et al. explored ligand-receptor interactions across cell types,
particularly tumor and stromal cells, in six models (LL2, B16F10,
EMT6, CT26, MC38, SalN) (8). Bhatt et al. focused on T cells in
CT26 and MC38 (9), while Zhang et al. profiled myeloid cells in
MC38 and Renca (10). Qu et al. employed a bilateral tumor model
with scRNA-seq to identify immune cell types predictive of
response to avelumab in CT26 (11). Carpen et al. characterized
the immune landscape of two triple-negative breast cancer (TNBC)
models (4T1, EMT6) under baseline conditions and following
chemotherapy, immunotherapy, or their combination (12).
Building upon these foundational studies, we isolated immune
cells to generate a high-resolution map of the TIME across a
panel of widely used syngeneic models. Our study provides the
first comprehensive, cross-model characterization of immune cell
populations in murine syngeneic tumor models.

In this study, we validated previously reported immunologic
patterns, such as the enrichment of NK cells in CT26 tumors and
the predominance of Mo/M@s in MC38 tumors, while uncovering
novel molecular and phenotypic distinctions among immune cell
subtypes across models. Our dataset enabled the identification and
characterization of underexplored immune populations, offering
deeper insight into the cellular complexity of tumor-infiltrating
immune cells. Among these, ¥ T cells expressing high levels of
Il17a, were notably abundant in the 4T1 model. This subset may
promote tumor progression by recruiting pro-inflammatory or
immunosuppressive myeloid cells (39). Across NK cell
populations, functional profiling revealed substantial
heterogeneity, with GL261 tumors harboring a significantly
higher fraction of activated NK cells. Of particular interest were
adaptive NK cells (NKG2C"NKG2A~), known for their augmented
cytokine responses and resilience to immunosuppression (30),
which were predominantly found in GL261 tumors. Our analysis
also expanded the understanding of DC diversity within syngeneic
TIME. We identified a Ccr7+ DC population, previously shown to
enhance antitumor CD8+ T cell responses through interleukin-12
secretion (40). Within the ¢DC2 compartment, transcriptional
profiling revealed substantial functional heterogeneity. Subsets
such as Mgl2+ cDC2s, associated with Th2 polarization and Tth
suppression (41, 42), and T-bet+ c¢DC2s, marked by high Tbcld4
expression and attenuated inflammatory potential (43), underscore
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the nuanced roles of DCs in orchestrating immune responses within
the TME.

Our study further illuminated the functional complexity of Mo/
Mo and neutrophil populations in the context of immunotherapy.
To investigate their roles in modulating antitumor responses, we
first stratified Mo/M¢ subsets using canonical M1/M2 signatures
and evaluated their association with PD-1 blockade efficacy across
models. In MC38 tumors, which are characterized by limited T and
NK cell infiltration, we observed an increased proportion of M1-like
macrophages. This immunologic profile may underlie the model’s
sensitivity to PD-1 inhibition. Although prior studies have linked
Cxcl9-expressing macrophages to a favorable anti-PD-L1 response
in CT26 (11), our data did not reveal consistent enrichment of this
subset in responsive models. Instead, we identified a baseline
elevation of an ISG"®" monocyte population in models that
responded to anti-PD-1 therapy. This observation aligned with a
recent report demonstrating that inflammatory, ISG-enriched
monocytes promote the expansion of tumor-specific CD8+ T cells
and augment antitumor immunity, at the transcriptomic level, these
monocytes were near-identical to our ISG"®" subset (33). Debate
regarding the role of TANs remains ongoing. For instance,
neutrophils with elevated SiglecF expression are linked to tumor
progression, and specific subsets, such as CCL4+ TANs and PD-L1
+ TANS, recruit macrophages and suppress T cell cytotoxicity,
respectively (38). Ng et al. demonstrated that diverse neutrophil
populations infiltrate tumors but converge toward a pro-tumoral
state (23). By contrast, ISG™8" neutrophils accumulate during
effective immunotherapy (35, 37). Notably, contrary to previous
findings, such as those from Alb-Cre/Trp53fl/fl mouse models
where neutrophil depletion reduced tumor progression (38), we
observed model-specific effects. Neutrophil depletion exhibited a
clear antitumor effect in the CT26.WT model but had no impact in
the EMT6 model. Comprehensive profiling of neutrophil subsets
and effector-molecule expression revealed model-specific
polarization toward pro- or anti- tumor states. Moreover, the
failure of neutrophil depletion to synergize with PD-1 blockade in
either model, presumably owing to collateral ablation of the ISG™&"
neutrophil subset, further delineated functionally distinct
neutrophil populations differentially contributing to
immunotherapy-mediated tumor control. These findings
underscore the importance of characterizing immune cell subsets
and their functional states across tumor models, which is crucial for
understanding the immune landscape of tumors and identifying
targets to enhance cancer immunotherapy efficacy.

Rational model selection and translational
relevance

Our single-cell atlas of the TIME across widely used syngeneic
models provided a comprehensive resource to support rational
model selection and principled combination design. Models
whose immune-cell composition and functional states most
faithfully recapitulate the context of interest could be selected for
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immune-oncology studies. For instance, MC38 was enriched for
inflammatory monocytes, whereas Renca and LL2 exhibited M2
polarization (LL2 dominated by SPP1+/ARG1+ TAMs and Renca
by C1Q+ TAMs) (Supplementary Figure S7A, Supplementary
Table 15). These distinct myeloid states, with clear therapeutic
implications, could guide the rational deployment of agents in
contexts most likely to reveal pharmacodynamic modulation. The
atlas further delineated model-specific constraints on antitumor
immunity, thereby informing the rational design and evaluation of
combination strategies. For example, B16F10 exhibited sparse
overall infiltration yet a disproportionately high fraction of CD8+
T cells, suggesting that bolstering T-cell abundance, preferably by
driving proliferation rather than merely further attenuating
inhibitory signaling in intratumoral T cells, could enhance
responsiveness to anti-PD-1 therapy. As 4-1BB co-stimulation
preferentially expands CD8+ T cells (44), our data were
consistent with reports that 4-1BB plus PD-1, rather than LAG-3
plus PD-1, exhibited synergy in BI6F10 melanoma (45).

Moreover, robust translational alignment in target and
biomarker development is achievable through systematic
interrogation of our murine single-cell profiles against human
datasets. We curated and integrated human scRNA-seq data from
treatment-naive TIICs across 14 studies spanning diverse
malignancies and benchmarked these against the murine TIME.
In the human datasets, T cells constituted the predominant fraction
of infiltrates, whereas Mo/M¢ were comparatively enriched in mice.
Within the T-cell compartment, despite interspecies differences in
subset composition and cell state, Tregs and CD8+ T cells exhibited
conserved marker repertoires and functional programs. Across the
myeloid compartment, orthologous marker genes were strongly
concordant at the level of major lineages and across most Mo/M¢
sublineages. Conserved molecular signatures identified in SPP1+
TAMs and ISG™®" monocytes further attested to the translational
utility of syngeneic models. Collectively, these findings positioned
our atlas as a preclinical analogue closely aligned with the human
immune landscape, enabling rigorous prioritization of therapeutic
targets and biomarker discovery in translational studies.

Limitations and confounders

scRNA-seq is highly effective at resolving intra-compartmental
heterogeneity and discriminating closely related subsets. However,
RNA and protein abundance do not always exhibit a linear
relationship at single-cell resolution, owing to both biological
regulation and technical constraints. This discordance complicates
the alignment of scRNA-seq-defined clusters with functional cell
populations traditionally delineated by surface markers. Canonical
markers such as CD3 for T cells, CD19 for B cells, and NKp46 for
NK cells are robustly detected at the transcriptomic level, whereas
others such as Ly6G for neutrophils are sparsely captured in
scRNA-seq datasets. At the sublineage level, even within well-
characterized T cell subsets, in which combinations such as
CD62L and CD44 are routinely used to infer naive, memory, or
effector states, the transcript abundance of CD62L (Sell) does not
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consistently recapitulate its surface expression. To ensure reliable
subpopulation delineation and functional annotation, we favored
combinatorial marker schemes over single-gene readouts,
integrating lineage-defining transcription factors with gene
signatures anchored to established phenotypes. To further resolve
the biological processes operative within each cell type, we
conducted pathway enrichment analyses (Supplementary
Tables 8-12) and applied automated annotation (Supplementary
Table 13) to map transcriptional programs onto functional states.
Nevertheless, multimodal experimental validation is required to
ensure that the inferred states faithfully reflect biological reality.

It is important to acknowledge the variability between studies and
datasets when evaluating immune-cell composition and ICB
responses across syngeneic tumor models. For example, in our
study, 4T1 and EMT6 were resistant to anti-PD-1 therapy, while
MC38 was responsive. In contrast, Benguigui et al. reported a response
in 4T1 (37), Jin et al., observed a response in EMT6 (46), and Mosely
et al. found both 4T1 and MC38 to be non-responsive (4) to anti-PD-
L1 therapy. These discrepancies may stem from differences in
mutagenized clones (37), ICB agents, dosing regimens, treatment
initiation time, or endpoint measurements (4, 46). Additionally,
variations in implantation sites (subcutaneous vs. orthotopic), tumor
inoculation volume and tumor-intrinsic features (Supplementary
Table 1) can significantly influence immune landscape and,
consequently, therapeutic outcomes. For example, the orthotopic
4T1 model exhibited an immune landscape similar to subcutaneous
tumors but with greater variability in immune cell abundances (47).
The number of cells used to establish tumors affects tumor latency,
immune infiltration, and ICB responsiveness (48). In our scRNA-seq
profiling, tumors were harvested at an average volume of 250-300
mm?®, whereas some studies collected tumors at ~150 mm?,
corresponding to the typical treatment initiation point in their
efficacy studies (4). Despite these differences, our dataset exhibited
strong concordance with previous datasets (Figure 2D, Supplementary
Figure S2C), and each model displayed a reproducible, model-specific
immune fingerprint across biological replicates, underscoring the
robustness of the observed immune states. It is also worth noting
that some prior scRNA-seq studies were conducted in genetically
engineered mouse models, which may account for differences in
immune composition. While our neutrophil subsets shared
consistent marker gene expression with Zilionis’s study (34), their
overall transcriptomic profiles were less congruent, potentially
reflecting model-specific or technical variations.

In addition, interpreting the function of any immune-cell subset
requires situating the evidence within the complex TME, where
multicellular crosstalk and spatial architecture calibrate immune
tone and responses to ICB. In our study, INe monocytes were
enriched in models responsive to anti-PD-1 therapy, and recent
work has provided mechanistic insights into antitumor immunity
(33), nominating them as putative predictive biomarkers and
therapeutically actionable subpopulations. Nevertheless, ISG
programs reflect a coordinated, multi-lineage activation. Given
the extensive intercellular communication within the TME
(Supplementary Figures S7B, C), ISG"®" monocytes are more
likely to act as components of the broader ecosystem rather than
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in isolation. As a consequence, confounding influences from other
cell types cannot be readily excluded. For example, ISG"" CD8+ T
cells may dampen the efficacy of anti-PD-1 therapy (49, 50),
whereas ISG™#" neutrophils have been associated with favorable
responses to immunotherapy (35, 37). Caution is likewise
warranted when inferring the contributions of individual cellular
subsets from lineage-depletion experiments. For example, Ly6G-
mediated neutrophil depletion not only eliminated protumor
neutrophil subsets but also incidentally ablated I1SG"'&"
neutrophils associated with effective immunotherapy, thereby
producing model-specific anti-tumor effects while precluding
synergy with ICB. Consistent with these observations, previous
studies have documented model-specific variation, revealed by
systematic in vivo depletion of CD8+ T cells, CD4+ T cells, Tregs,
NK cells, and macrophages, alone or in combination with anti-PD-1
(46). Taken together, across heterogeneous tumor models,
antitumor activity and responses to anti-PD-1 vary, reflecting
model-specific tumor-immune ecosystems and determinants of
checkpoint sensitivity. Lineage-targeted and depletion strategies
cannot assign causality to single populations due to extensive
interactions among immune, malignant, and stromal
compartments. The lack of selective tools for discrete subtypes
further limits rigorous functional attribution. Additional
mechanistic studies are needed to define intercellular crosstalk
during immunotherapy.
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SUPPLEMENTARY FIGURE 1

Quality control and data integration. (A) Number of cells harvested from each
tumor model. (B) Boxplots illustrating the number of UMIs (left), genes
(middle), and the proportion of mitochondrial DNA in cells (right) across
various tumor models. (C) UMAP visualization of cell clustering categorized
by models (left) or cell types (right) without the integration of CCA data. (D)
Expression of hallmark genes utilized for the identification of major immune
cell lineages, color-coded on UMAP without CCA data integration. (E) Bubble
heatmap showing the expression levels of selected top signature genes in
each cell type, as illustrated in Figure 1B. Dot size indicates the fraction of
expressing cells, colored based on normalized expression levels.
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SUPPLEMENTARY FIGURE 2

Cross-validation with published mouse model data. (A) UMAP plots of the
reference dataset (GSE168944) with original annotations (left), projection of this
study’s data onto the reference UMAP structure with transferred annotations
(middle), and annotations from this study (right). (B) Projection of key T cell
marker gene expression from this study onto the reference UMAP structure. (C)
Heatmap showing the similarity between the reference data (GSE168944) and
data from this study, annotated with transferred labels. (D) Proportions of T cell
subtypes across datasets, based on GSE168944 annotations.

SUPPLEMENTARY FIGURE 3
Assessment of anti-PD-1 therapeutic efficacy across diverse syngeneic
tumor models.

SUPPLEMENTARY FIGURE 4

Absolute fraction of Mo/M¢ subsets in syngeneic tumors. (A) Representative
images of Immunohistochemistry (IHC) staining for CD45 in synthetic tumor
samples. Brown color indicates positive staining. (Scale bar = 2 mm). (B)
Correlation between Cd45 expression levels and immune cell fractions
estimated via quanTlseq from bulk RNA-seq data. (C) Boxplots of estimated
immune cell fractions across tumor models. (D) Fraction of each Mo/Me
subset in anti-PD-1 responsive or resistant tumors, with mean values used for
each model.

SUPPLEMENTARY FIGURE 5

Functional characterization of tumor-infiltrating neutrophils. (A) Gene
Ontology (GO) enrichment analysis of differentially expressed genes for
each neutrophil subtype, shown as a dot plot (x-axis: enrichment score; y-
axis: GO terms). (B) Violin plot illustrating signature scores for neutrophil
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