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The respiratory microbiome, as an integral component of the lung cancer
microenvironment, exerts pivotal influences on tumorigenesis, immune
homeostasis, and therapeutic response through intricate crosstalk with host
immunity. Despite advancements, current limitations in lung cancer
immunotherapy persist, including heterogeneous therapeutic responses,
immune-related adverse events, and the lack of predictive biomarkers. These
unmet clinical needs underscore the imperative to delineate the complex
immune landscape of respiratory microbiome in lung cancer pathogenesis.
This review systematically analyzes the hallmarks of respiratory dysbiosis
(reduced o-diversity and enrichment of Streptococcus and Veillonella) and
their associations with lung cancer staging, histological subtypes, and
prognosis. We further elucidate how these microbial alterations influence
tumor progression via metabolic-epigenetic-immune pathways. Additionally,
we establish clinical correlations between microbiome signatures and both
immune checkpoint inhibitor therapeutic efficacy/toxicity profiles, while
examining the paradoxical effects of antibiotic exposure during
immunotherapy. Emerging intervention strategies targeting the respiratory
microbiome, such as aerosolized probiotics, engineered bacteria (e.g.,
Escherichia coli), and microbiota-derived nanomaterials, showcase potential in
remodeling antitumor immunity and improving therapeutic outcomes. Our
findings highlight the double-edged sword effect of the respiratory microbiota
as biomarkers and therapeutic targets in lung cancer management, providing
critical insights for clinical translation.
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1 Introduction

Lung cancer represents the leading cause of cancer-related
mortality worldwide, accounting for 18.7% of all deaths across all
cancer types. Its pathogenesis is complex, involving genetic
predisposition, environmental exposures, and microbiome
dysbiosis (1).
symptoms, approximately 60% of lung cancer patients are

Due to the insidious nature of early-stage

diagnosed at advanced stages (2). Immune checkpoint inhibitors
(ICIs), which disrupt inhibitory pathways such as cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), programmed cell
death-1 (PD-1) protein, and its ligand PD-L1 to potentiate
antitumor immunity, have become a cornerstone of treatment for
advanced non-small cell lung cancer(NSCLC), substantially
improving 5-year survival rates (3, 4). Nevertheless, three
unresolved scientific issues hinder progress (1): Heterogeneous
therapeutic responses limit durable clinical benefits to 20-50% of
patients (5) (2); Immune-related adverse events (irAEs) affect nearly
half of the treated individuals (incidence: 43%) (6) (3); Existing
predictive biomarkers, including PD-L1 expression and tumor
mutational burden, exhibit suboptimal specificity for identifying
true responders (7). Therefore, advancing systematic biomarker
identification and optimizing clinical therapeutic efficacy remain
critical scientific challenges requiring breakthroughs in lung cancer
immunotherapy research.

In recent years, the synergistic development of multi-omics
technologies—including metagenomic sequencing, single-cell
transcriptomics, and spatial transcriptomics—has overcome the
spatiotemporal resolution limitations of traditional microbiome
research. These advances have not only confirmed the existence of
low-biomass dynamic microbial communities in the respiratory tract
under physiological conditions but also revealed their dynamic
interactions with the lung cancer immune microenvironment (8).
Clinically, lung cancer patients exhibit marked shifts in commensal
microbial diversity and taxonomic abundance, where relative
abundance of signature taxa (e.g., Streptococcus) correlates with
disease trajectory and survival outcomes (9). Emerging preclinical
evidence highlights beneficial microbiota transplantation and
metabolic intervention (e.g., short-chain fatty acids and tryptophan
derivatives) as potent adjuvants to PD-1/PD-L1 blockade, achieving

Abbreviations: AKK, Akkermansia muciniphila; BALF, Bronchoalveolar Lavage
Fluid; CRC, Colorectal Cancer; CTLA-4, Cytotoxic T Lymphocyte-Associated
Antigen 4; DCs, Dendritic Cells; DOX-OMYV, Doxorubicin-Loaded Outer
Membrane Vesicles; EcN, Escherichia coli Nissle 1917; ERK, Extracellular
Signal-Regulated Kinase; HDAC3, Histone Deacetylase 3; ICIs, Immune
Checkpoint Inhibitors; irAEs, Immune-Related Adverse Events; LUSC, Lung
Squamous Cell Carcinoma; MDSCs, Myeloid-Derived Suppressor Cells; NK cells,
Natural Killer Cells; NSCLC, Non-Small Cell Lung Cancer; OMVs, Outer
Membrane Vesicles; OS, Overall Survival; PD-1, Programmed Cell Death-1;
PD-L1, Programmed Death-Ligand 1; PES, Progression-Free Survival; PI3K,
Phosphoinositide 3-Kinase; ROS, Reactive Oxygen Species; SCFA, Short-Chain
Fatty Acid; Th17, T Helper 17; Treg, Regulatory T Cell; TMB, Tumor Mutational

Burden; IME, Tumor Immune Microenvironment
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near-abrogation of tumor growth in murine models (10, 11). Notably,
microbiome dysbiosis may conversely exacerbate tumor progression
and diminish therapeutic responses, particularly to immunotherapy
(12). Mechanistically, commensal microbiota can influence
immunotherapy efficacy by modulating immune cell activity and
remodeling the tumor immune microenvironment (TIME)
(including fostering an immunosuppressive environment or
enhancing immune surveillance) (13). Consequently, restoring
microbial homeostasis through probiotics, prebiotics, and
postbiotics has emerged as a novel research paradigm in
comprehensive cancer care, providing critical insights into the
heterogeneity of immunotherapy outcomes and guiding
personalized treatment strategies (14).

In this review, we systematically explore the multidimensional
interaction network between the respiratory microbiome and lung
cancer pathogenesis and immunotherapy efficacy, with a focus on
the molecular mechanisms underlying microbiome-mediated
modulation of immunotherapy outcomes and its translational
clinical value. Finally, through critical evaluation of current
preclinical limitations, we propose targeted future research
directions and optimization strategies for leveraging the
respiratory microbiome in precision lung cancer therapy.

2 Relationship between respiratory
microbiome and clinical features of
lung cancer

The pathogenesis of lung cancer constitutes a multifactorial,
multistage process wherein microbiome-tumor microenvironment
interactions play a critical regulatory role. Emerging evidence
highlights that the compositional and functional heterogeneity of
microbial communities across distinct anatomical regions of the
respiratory tract may hold unique biological significance in lung
carcinogenesis (15). Salivary microbiota is postulated as a primary
source for pulmonary microbial colonization (16). The dysbiosis of
salivary microbiota, which is characterized by diminished alpha
diversity(95% CI 0.84-0.96) and Streptococcus-dominant enrichment
(95% CI 1.06-1.22), correlates with heightened malignancy risk (17).
Notably, lung cancer patients demonstrate markedly lower salivary
microbial diversity and richness compared to healthy controls, while
specific microbial taxa such as Capnocytophaga, Veillonella,
Sphingomonas, and Blastomonas display significant enrichment (8,
18), implicating salivary microbiota as potential biomarkers for lung
cancer. Sputum-derived microbial profiles provide more direct insights
into lower respiratory tract ecology. Leng et al. (19) revealed that the
abundance of Acidovorax and Veillonella was significantly increased in
sputum of NSCLC patients by Droplet digital PCR, underscoring their
biomarker potential for early detection and tumor classification.
Metagenomic signatures further implicate Streptococcus viridans
overabundance in sputum as a progression-associated indicator of
lung cancer (20). Bronchoalveolar lavage fluid (BALF), the
gold standard for detecting the lung microbiome in clinical
settings, enables precise characterization of the peritumoral
microenvironment. BALF microbial alterations not only associate
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closely with lung cancer development, progression, and histological
subtypes (21), but also offer novel approaches for early detection (22).
Multiple studies demonstrate reduced species diversity and richness in
BALF microbiota from lung cancer patients compared to healthy
controls, dominated by Bacillota, Pseudomonadota, Bacteroidota,
Actinomycetota, and Fusobacteriota, with additional enrichment of
Cyanobacteriota, Saccharibacteria, and genera including Prevotella,
Streptococcus, Veillonella, Neisseria, Haemophilus, Clostridium, and
Actinobacillus (23, 24). Wang et al. report diminished microbial
diversity in both saliva and BALF samples from lung cancer patients,
identifying Treponema and Filifactor in BALF as potential diagnostic
biomarkers (25). Furthermore, significant differences in BALF
microbiota exist between lung squamous cell carcinoma(LUSC) and
adenocarcinoma, with Pseudomonadota enrichment in LUSC patients
—particularly among males and heavy smokers—potentially linked to
tumor invasiveness and metastatic potential (26).

Lung cancer exhibits significant spatial heterogeneity in microbial
composition between intratumoral and peritumoral tissues. Bingula
et al. (27) characterized unique microbiome signatures in saliva,
BALF, peritumoral lung tissues, and tumor tissues, which showed
associations with tumor localization, histological subtype, and
immune activation. Notably, compared to peritumoral tissue
microbiomes, the intratumoral microbiome is least influenced by
anatomical location. Furthermore, Peters et al. (28) revealed that the
microbial diversity in peritumoral tissues is significantly associated
with the prognosis of NSCLC patients. Subsequent investigations
have delineated specific relationships between intratumoral microbial
diversity, abundance shifts of particular taxa, and oncogenesis. For
instance, Yu et al. (29) reported increased Thermus abundance in
advanced-stage patients and Legionella enrichment in metastatic
cases. Li et al. (30) identified marked microbiome differences
between malignant and non-malignant lung tissues in advanced
NSCLC, particularly enrichment of Pseudomonadota
(predominantly Acinetobacter and Acidovorax), Bacillota, and
Actinomycetota. Smoking-related lung cancer tissues showed a
correlation between Acidovorax enrichment and TP53 mutations
(31), while Apopa et al. (32) detected Cyanobacteriota prevalence
in lung adenocarcinomas with microcystin levels linked to PARP1
overexpression. Collectively, these findings support the existence of
tumor-associated microbiome patterns in lung carcinogenesis and
progression. Prognostically, intratumoral microbiota features show
significant associations with recurrence and metastasis. Zhou et al.
(33) demonstrated the predictive value of intratumoral microbiota for
recurrence/metastasis risk in LUSC, with microbial risk scores
correlating with survival outcomes. Patnaik et al. (34) established
associations between preoperative lower respiratory tract microbiota
and early NSCLC recurrence. Deng et al. (35) developed a
translational prognostic model integrating 18 microbial taxa with a
19-gene glycolysis-lactate signature. Ma et al. (36) identified butyrate-
producing bacteria (e.g., Roseburia) enrichment in recurrent cases,
mechanistically linking butyrate-mediated HDAC2 inhibition to
H3K27 hyperacetylation, upregulation of H19 expression, and M2
macrophage polarization-driven metastasis. These advancements
underscore the diagnostic and prognostic potential of respiratory
microbiota in lung cancer management (Table 1).
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3 Possible mechanisms of the
microbiome on lung cancer
pathogenesis

The dual role of the respiratory microbiome in lung cancer
progression: Maintaining immune homeostasis versus driving
inflammation during dysbiosis. As a pivotal regulator of the
TIME, the respiratory microbiota exerts significant influence on
pulmonary immune equilibrium and oncogenesis through
multidimensional modulation of innate and adaptive immune
networks (37). These biological effects appear contingent upon
the immunogenicity and colonization patterns of specific
microbial species (38). Within the adaptive immune system, a
sophisticated regulatory network emerges through the Treg/Th17
cell balance. Research reveals intricate connections between
neonatal lung microbial colonization, reduced airway
hyperresponsiveness, and Treg cell subset (39). Healthy lower
airways exhibit a characteristic microbial profile dominated by
stable colonization of oropharyngeal commensals, including
Prevotella, Veillonella, and Streptococcus (40). This colonization
primarily occurs through microaspiration pathways, establishing a
dynamic equilibrium with the respiratory epithelium (41). These
commensal communities demonstrate significant interactions with
Th17-mediated mucosal immunity, crucially modulating the
balance between pulmonary immune surveillance and
pathological inflammatory responses (42). The pulmonary innate
immune defense comprises alveolar macrophages and y0T cell
populations. Through BALF multi-omics analysis, Zheng’s team
revealed that altered lung microbiota in NSCLC patients associates
with suppressed tumor growth via M2 macrophage reduction and
enhanced CD3'/CD8'T cell infiltration (43).
investigations further demonstrate that lung commensals sustain

Mechanistic

vOT cell-mediated antitumor responses through alveolar
macrophage regulation of CCL24 chemokine production (44).
Crucially, pulmonary microbiota orchestrates tumor immune
surveillance through Y8T17-dependent mechanisms, playing
indispensable roles in immune cell regulation, barrier
maintenance, and host antitumor immunity coordination (45, 46).

Emerging evidence establishes that respiratory microbiome
dysbiosis promotes lung carcinogenesis through multifactorial
immunomodulatory pathways, which can be systematically
categorized into three principal biological mechanisms (1):
chronic inflammation secondary to immune homeostasis
disruption (2), epigenetic modulation via microbial metabolites,
and (3) genetic mutation/signaling pathway activation
through host-microbe interactions (47) (Figure 1). At the
immunomodulatory level, pulmonary dysbiosis directly drives
tumorigenesis by inducing Th17/y8 T cell-mediated inflammatory
responses (48). Clinical studies have demonstrated an association
between pulmonary dysbiosis in NSCLC patients and Th17-
mediated pulmonary inflammation, where IL-17 secretion by
these cells perpetuates chronic inflammation and accelerates
malignant progression (49). Preclinical investigations further
reveal that lung commensal bacteria activate Y3 T cells to initiate
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TABLE 1 Studies investigating the composition of the microbiome in different sample types obtained from patients with NSCLC.

Analytic 7 " - o
y Microbiome findings Major findings
method
Saliva, 16S rRNA
ava Bassis et al., . ! . The lungs selectively eliminate Prevotella bacteria Microaspiration likely common; lung microbiome
BAL, nasal, 28 patients sequencing, . ) . .
. 2015 (16) from the upper airways. overlaps with oral but not nasal microbiota
gastric qPCR
Vogt Oral microbiota linked to isk;
. ogtmann 1306 16S rRNA Higher alpha diversity associated with lower lung i .ml.cro tota fnked fo .ung f:ancer o
Saliva et al., 2022 K . K X X associations vary by smoking history and
patients sequencing cancer risk; Streptococcus implicated . .
(17) histologic subtype
Saliva Yan et al., 86 patients 16S rRNA Capnocytophaga, Veillonella, and Neisseria were Capnocytophaga and Veillonella as biomarkers for
2015 (18) P sequencing elevated in lung cancer SCC and ADC
L . . Sputum microbiome might provide noninvasive
Leng et al, 107 Droplet digital =~ Acidovorax, Veillonella, and Capnocytophaga as . .
Sputum 001 (19) atients PCR diagnostic biomarkers for NSCLC biomarkers for the early detection and
P & classification of NSCLC.
Cameron . . . i .
. Metagenomic  Streptococcus viridans and Granulicatella adiacens as G. adiacens abundance could be related to Lung
Sputum etal, 2017 10 patients . .
0) sequencing potential biomarkers for Lung cancer cancer stage.
BALF, Huang 40 BALF, 165 rRNA Pseudomonadota higher in BALl':; Veill('mella, BI'XLF b'ettelr reflects lung cancer micro?:)iome;
et al, 2019 ) Megasphaera, Capnocytophaga differential between microbial differences between metastatic states
sputum 52 sputum sequencing . .
(21) SCC and ADC and histologic types
Marshall . . . -
i 16S rRNA Veillonella, Streptococcus, Prevotella, and Microbiome changes precede clinical lung cancer
BALF et al., 2022 72 patients . o . X K . R
2) sequencing Paenibacillus diagnosis, offering potential for early detection
150 . . . .
. . . o . . The lower respiratory tract microbiome richness
Jin et al,, discovery, | Metagenomics  Bradyrhizobium japonicum unique to cancer; reduced = . ; )
BALF . . . is diminished in lung cancer patients compared
2019 (23) 85 analysis richness in lung cancer i i K
. with that in healthy subjects.
validation
Lung cancer-associated microbiota profile distinct
Liu et al, 24 patients, 16S rRNA Streptococcus more abundant in cancer; alpha ng ! ! P .
BALF . L . from healthy controls; Streptococcus as a potential
2018 (24) 18 controls sequencing diversity decreased in cancer .
biomarker
Lung cancer patients have a distinct, less diverse
microbial community compared to health;
Saliva, Wang et al, = 51 patients, 16S rRNA Treponema, Filifactor identified as potential . . v p ¥
) . L individuals. Specific bacterial groups may be
BALF 2019 (25) 15 controls sequencing biomarkers; reduced diversity in cancer i ) .
linked to lung cancer, with the exact species
varying by sampling location and cancer type.
Gomes Lung cancer microbiota is enriched in
16S rRNA Microbial diversity and composition correlate
BALF etal, 2019 | 23 patients sequencin Pseudomonadota and more diverse in SCC than with lune cancer syub . ans atient survival
(26) 4 & ADG; specific taxa linked to survival & P p
Saliva, Bingul Microbi iti ies b 1 3
Ve mgta . 16S rRNA Pseudomonadota dominated tissue samples, while ero .1ome composition varies by sample type
BALF, lung = etal, 2020 = 28 patients . . K . suggesting BAL may not fully represent lung
. sequencing Bacillota was more abundant in BALF and saliva. . .
tissue (27) microbiome
Pet Hi bund: f family Koribact 3
X eters X 16S rRNA igher 'a undance am.l Y Roribacteraceae Normal lung microbiota may influence lung
Lung tissue | et al, 2019 19 patients ) Bacteroidaceae, Lachnospiraceae, and .
sequencing . . . . . cancer prognosis
(28) Ruminococcaceae in normal tissue linked to survival
Thermus is more abundant in tissue from advanced-
. Yu et al,, 165 16S rRNA . . . ! L. . v . Smoking and environmental exposures
Lung tissue X . stage patients, while Legionella is higher in patients L i R . . .
2016 (29) patients sequencing significantly impact lung microbiome diversity
who develop metastases.
. Li et al., . Metagenomic Enriched Pseudomonadota, Bacillota, and Lower microbiota diversity in tumors;
Lung tissue 67 patients . . . . .
2023 (30) shotgun Actinomycetota in NSCLC tumors upregulation of proinflammatory cytokines
Greathouse
143 16S rRNA Acidovorax enriched in TP53-mutated squamous cell
Lung tissue et al,, 2018 . . . q TP53 mutations interact with microbiome in SCC
G1) patients sequencing carcinoma
Apopa . . . . . .
. . 16S rRNA Cyanobacteriota enriched in ADC; PARP1 up- Microcystin from Cyanobacteriota promotes lung
Lung tissue | et al, 2018 40 patients . . . . k .
32) sequencing regulated in microcystin-exposed cells carcinogenesis
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TABLE 1 Continued

Author
year
[ref]

Analytic
method

Microbiome findings

In SCC, Shigella, Staphylococcaceae, Staphylococcus,

10.3389/fimmu.2025.1676302

Major findings

The microbial diversity of SCC recurrence and

16S rRNA
. . Pseudogulbenkiania, and Chromobacteriaceae were metastasis groups was low, and a prediction
. Zhou et al., Multi- sequencing, . . . . -
Lung tissue ) enriched in RM, while Leuconostocaceae, Acidovorax, model was constructed (AUC = 0.81), predicting
2023 (33) omics data RNA X L. . . .
. Shewanellaceae, Shewanella, and Comamonadaceae risk was significantly associated with patient
sequencing . . ;
were enriched in the non-RM group survival
Lung Patnaik P ition of lower ai
nai resur; mposition wer airw.
tissues, ana X 16S rRNA Staphylococcus, Bacillus, Anaerobacillus differ ,e su g'ery compositio 0_ owe .a &y
et al,, 2021 47 patients . microbiome may be associated with recurrence of
BALF and sequencing between recurrent and non-recurrent cases
) (34) early NSCLC.
saliva
16S rRNA
TCGA- r R i i i Microbiome and glycolysis-lactate pathways are
. Deng et al., sequencing, 18-microbe prognostic score; glycolysis-lactate . . .
Lung tissue LUAD . . . linked to ADC prognosis and immunotherapy
2023 (35) RNA signature predicts prognosis
dataset ) response
sequencing
150 16S rRNA
Lung tisste Ma et al,, discovery, sequencing, Butyrate-producing bacteria (Roseburia) enriched in Butyrate promotes metastasis via H19 expression;
ung tissu
J 2024 (36) 85 RNA recurrent cases microbial signature predicts recurrence
validation sequencing

ADC, adenocarcinoma; BALF, Bronchoalveolar Lavage Fluid; NSCLC, non-small cell lung cancer; RM, recurrence and metastasis; SCC, squamous cell carcinoma.

inflammation linked to adenocarcinoma. Notably, germ-free or
antibiotic-treated mice exhibit significant protection against Kras
mutation- and p53 deletion-driven lung carcinogenesis (38),
suggesting ¥d T cell hyperactivation as a critical microbiome-

Healthy lung microenvironment
Low bacterial biomass at steady state

Prevotella
Streptococcus

Veillonella
Fusobacterium
Porphyromonas

Neisseria

yoT cell

)
°®

Macrophage | Th17 cell

Airway inflammation |
Pathogens|

Immune homeostasis

FIGURE 1

Interactions among the Respiratory Microbiota, Immune Homeostasis, and Lung Cancer. Under physiological conditions, commensal microbiota
establishes multi-tiered immunoregulatory mechanisms by dynamically coordinating innate immunity (via Treg/Th17 balance regulation) and

dependent mechanism in inflammation-driven malignancy.
Microbial metabolites exhibit dual regulatory roles in epigenetic
modulation (50). Reduced microbial diversity and increased
Streptococcus abundance characterize the lower respiratory tract

Lung microbial dysregulation
Dysbiosis with high bacterial biomass

Streptococcus pneumoniae
Mycobaterium tuberculosis

Granulicatella
Abiotrophila
Moraxella
Chronic Bacterial Gene
inflammation metabolites = mutation
Tcellt, IL? DNA TP53 loss
PD-L11 damage?  ERK/PI3K}
Carcinogenesis

adaptive immunity (through alveolar macrophage polarization and y3T cell functional differentiation). This synergistic interaction prevents excessive
inflammation while maintaining pulmonary immune homeostasis (Left panel). Respiratory dysbiosis may promote lung carcinogenesis through three
interconnected mechanisms: chronic inflammation triggered by immune dysregulation, microbiota-derived metabolite-mediated epigenetic
modifications, and host-microbe interaction-associated genetic mutations coupled with aberrant activation of oncogenic signaling pathways (Right
panel).
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microbiome in lung cancer patients. Streptococcus pneumoniae-
derived pneumolysin and pyruvate oxidase may promote
carcinogenesis by disrupting host cell metabolism and apoptosis
(24, 51). Cyanobacteriota-derived microcystins correlate with
reduced CD36 and elevated PARP1 levels, suggesting therapeutic
potential through microcystin transport inhibition or PARP1
targeting (32). Conversely, beneficial metabolites like butyrate
(a short-chain fatty acid) and indole-3-aldehyde (I3A)
demonstrate anticancer properties. Butyrate modulates miRNA
expression in NSCLC A549 cells to suppress proliferation (52)
and inhibits HDAC3 to drive monocyte-to-macrophage
differentiation, thereby reducing inflammatory mediators and
enhancing antimicrobial activity (53). The interaction between
probiotic-derived I3A and tumor-infiltrating CD8" T cells further
enhances antitumor immunity (54). Aspects of genetic mutations
and signaling pathways, microbiome-smoking interactions
correlate with TP53 mutations in LUSC, particularly the
enrichment of polycyclic aromatic hydrocarbon-degrading genera
(Acidovorax, Massilia) in smokers’ tumor microbiota (31). Lower
airway enrichment of Streptococcus and Veillonella in lung cancer
patients associates with ERK/PI3K pathway activation, potentially
fostering tumor progression (55). Intriguingly, these bidirectional
regulatory mechanisms may extend to immunotherapy responses,
though mechanistic details remain to be elucidated.

4 Microbiota and lung cancer
immunotherapy

4.1 Microbiota and efficacy of
immunotherapy in lung cancer

The microbiome exerts dual regulatory effects on immunotherapy
efficacy through distinct immunomodulatory pathways mediated by
respiratory and gut microbiota (56). First, respiratory microbiota
(particularly the abundance of specific bacteria) directly
interact with the tumor immune microenvironment through local
immunomodulation (57). For instance, Jang et al. (58) demonstrated
that elevated Veillonella dispar abundance positively correlates with
PD-L1 upregulation and enhanced immunotherapy responsiveness,
whereas Gammapseudomonadota predominance associates with PD-
L1 suppression and unfavorable prognosis. Furthermore, Zapata et al.
(59) identified Gemella abundance in respiratory microbiota as a
potential predictor of ICI resistance, while Lachnoanaerobaculum
abundance shows potential as a biomarker for favorable ICI
response. Notably, intratumoral microbial heterogeneity in lung
cancer, particularly Fusobacterium enrichment, has been linked to
immunotherapy resistance (60). Second, gut microbiota mediates
systemic immunomodulation through the gut-lung axis, significantly
impacting treatment outcomes (61). Substantial evidence reveals that
ICI-responsive NSCLC patients typically exhibit enriched populations
of Bifidobacterium (9), Akkermansia muciniphila(AKK) (62),
Bacteroides (63), and Ruminococcus (64) in gut microbiota, with
these microbial profiles correlating with improved PES following ICI
therapy (65).
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With the widespread application of ICIs in lung cancer treatment,
approximately 40% of patients experience irAEs affecting multiple
organ systems, including the skin, gastrointestinal tract, and
cardiopulmonary systems (66). Notably, irAEs exhibit a complex
double-edged sword effect of clinical efficacy: while their occurrence
correlates with improved patient survival (6), severe immune
toxicities induced by ICIs may lead to treatment discontinuation or
life-threatening complications (67). Consequently, identifying early
predictive biomarkers for severe irAEs has become a priority in ICI
patient management (68). In recent years, the microbiome has gained
attention as a potential biomarker for predicting ICI efficacy and
toxicity. The MITRE trial pioneered the evaluation of microbiome
signatures as biomarkers to assess treatment response and toxicity in
cancer patients receiving ICIs, aiming to elucidate dynamic
associations between microbial features and clinical outcomes (69).
Chau et al. (70) investigated correlations among nasal, oral, and gut
microbiomes, treatment response, and irAEs in lung cancer patients
undergoing ICI therapy, revealing significantly reduced gut
microbiome alpha-diversity in these patients, which was strongly
associated with both therapeutic response and irAEs. The Liu team
further demonstrated that gut microbiota alterations in anti-PD-1-
treated lung cancer patients were linked to immune-related diarrhea
(71). Regarding microbial intervention strategies, clinical studies
indicate that NSCLC patients receiving probiotics during
immunotherapy exhibit significantly prolonged progression-free
survival (PES) and overall survival (OS), correlating with favorable
clinical outcomes (72). Shaikh et al. (73) proposed that modulating
the microbiome during treatment or applying microbiota
transplantation might optimize therapeutic effects and mitigate
irAEs. Mechanistic studies suggest that Clostridium butyricum
supplementation enhances survival rates and ICI responsiveness in
lung cancer patients (74), while AKK potentiates the anti-tumor
efficacy of IL-2 immunotherapy (75). Additionally, Lactobacillus
rhamnosus Probio-M9 has been shown to reverse antibiotic-
induced dysbiosis and improve ICI efficacy (76). Chen et al. (77)
reported that the postbiotic JK5G alleviates irAEs in advanced
NSCLC patients receiving ICIs, demonstrating potential to enhance
treatment outcomes while reducing adverse events. Collectively, these
findings position the lung cancer microbiome as a promising
diagnostic and predictive biomarker platform, potentially enabling
patient stratification and treatment optimization.

4.2 Influence of antibiotics on
immunotherapy efficacy in patients with
lung cancer

The impact of antibiotic use on ICI efficacy in NSCLC has
garnered significant attention in recent years. While current
research generally suggests that antibiotics may compromise
immunotherapy outcomes by disrupting commensal microbiota,
current findings demonstrate notable heterogeneity. Substantial
clinical evidence indicates that antibiotic exposure correlates with
adverse prognostic outcomes and reduced ICI efficacy, with dose-
dependent effects (59). Notably, Derosa et al. (78) documented a
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5.5-month reduction in median PFS and 14.3-month decrease in OS
among NSCLC patients receiving B-lactams or quinolones versus
controls (P < 0.05). These findings gain support from a
comprehensive meta-analysis by Abdelhamid et al. (79) (19
studies, n=2,932), demonstrating significant associations between
antibiotic use and inferior survival outcomes (PFS HR = 1.64, OS
HR = 1.67) in ICI-treated cohorts. Notably, antibiotic
administration within +60 days of treatment initiation correlates
with diminished survival outcomes (80). Castello et al. (81)
identified correlations between antibiotic exposure, elevated
tumor metabolic burden, and accelerated disease progression.
Beyond therapeutic efficacy, antibiotics may exacerbate irAEs.
Jing et al. (82) reported a 1.39-fold higher risk of irAEs (95% CI
1.21-1.59) in antibiotic-exposed NSCLC patients, particularly
evident in those receiving anti-PD-1/PD-L1 therapies. Preclinical
models reinforce these clinical patterns: Antibiotic-treated mice
exhibited enhanced Lewis lung carcinoma progression with reduced
survival and increased pulmonary tumor burden (46). Routy et al.
(83) revealed that oral antibiotics impair ICI efficacy, while fecal
microbiota transplantation from ICI-responsive patients (enriched
with AKK) restored anti-tumor responses to PD-1 blockade in
germ-free or antibiotic-pretreated mice. Furthermore, Tan et al.
(84) observed that although antibiotics aggravated ICI-associated
colitis in murine models, specific probiotic supplementation
mitigated these effects. Recent mechanistic insights highlight the
microbiota-immune axis as a critical therapeutic determinant. An
intact gut microbiome facilitates optimal treatment responses by
modulating myeloid-derived cell functions within the tumor
microenvironment (85). Conversely, antibiotic-induced dysbiosis
promotes the migration of immunosuppressive intestinal Treg/
Th17 cells to tumors via the MAAdCAM-1-04fB7 axis, establishing
an immunoinhibitory microenvironment that compromises PD-1
blockade efficacy (86).

However, other studies have failed to establish statistically
significant associations between antibiotic exposure and survival
outcomes in lung cancer patients. While Hakozaki et al. (87)
reported a potential association between antibiotic use and reduced
PES in NSCLC patients through univariate analysis (P = 0.04), this
finding lost statistical significance in multivariate models. Similarly,
Nyein et al. (88) identified a non-significant trend toward worse OS
in antibiotic-exposed NSCLC patients receiving immunotherapy (HR
= 1.35, P = 0.145). In epidemiological investigations, Zhang et al. (89)
observed an attenuated association between frequent antibiotic
prescriptions (=10 courses) and lung cancer risk after covariate
adjustment (RR = 2.52 vs 1.31), concluding insufficient evidence
for antibiotic-induced carcinogenesis. Preclinical findings by Noci
et al. (90) revealed that aerosolized antibiotic treatment reduced
pulmonary bacterial load in mice, decreased Treg cell populations,
and enhanced T-cell/NK cell activity, thereby significantly inhibiting
B16 melanoma lung metastasis and potentiating antitumor
immunity. The divergent outcomes between aerosolized and oral
antibiotic administration may stem from their distinct microbial
targets: Systemic oral antibiotics primarily disrupt gut microbiota,
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potentially impairing the gut-lung axis and systemic antitumor
immunity, whereas localized aerosol therapy selectively modulates
respiratory microbiota to reshape the immunosuppressive
pulmonary microenvironment. These findings underscore the need
for judicious consideration of infection management strategies and
anatomical site-specific microbiome modulation in lung
cancer therapeutics.

5 The translational medical value of
respiratory microbiota modulation in
lung cancer immunotherapy

5.1 Aerosolized probiotics

Targeted drug delivery strategies leveraging respiratory
tract anatomy have revolutionized lung cancer therapy.
Aerosolized inhalation systems, distinguished by their favorable
pharmacokinetic profiles, enable non-invasive, site-specific delivery
of therapeutics across the air-blood barrier. This approach enhances
localized drug deposition in tumor microenvironments while
mitigating systemic toxicity (91). Notably, the Le Noci
team demonstrated that aerosolized immunostimulants enable
repeatable dosing in metastatic lung cancer patients, curtailing M2
macrophage polarization and boosting anti-tumor effects (92).
Subsequent work established that aerosolized antibiotics/probiotics
remodel pulmonary niches to foster anti-metastatic immunity (90).
Further investigations showed that aerosolized live or inactivated
Lactobacillus rhamnosus impeded murine lung tumorigenesis,
marked by decreased tumor burden, reduced Treg infiltration, and
elevated IgA titers (93). Aerosolized probiotic formulations may
reverse immunosuppressive pulmonary microenvironments
through dual mechanisms of microbial community restoration and
immune tolerance modulation, thereby enhancing antitumor efficacy
in lung cancer (94). Supporting evidence includes Zheng et al’s
findings (43) showing that inhalation of NSCLC patients’ lung
microbiota induces significant compositional shifts in murine
pulmonary microbiomes (with Pasteurella replacing Delftia as the
dominant genus), subsequently inhibiting lung cancer cell
proliferation. Youn et al. (95) revealed that the intranasal
administration of viable Lactobacillus conferred stronger protection
against murine influenza infection than oral delivery, with live
bacteria exhibiting superior efficacy to inactivated counterparts.

5.2 Engineered bacteria

Engineered bacterial systems utilizing synthetic biology
have emerged as a promising frontier in lung cancer
therapeutics, particularly excelling in targeted drug delivery and
immunomodulation (96). Current research bifurcates into two
primary strategies: engineering bacterial outer membrane vesicles
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(OMVs) and developing programmable live bacteria. Distinct from
conventional treatments, this technology platform combines three
fundamental advantages: 1) Coordinated activation of innate and
adaptive immunity to enhance therapeutic efficacy while reducing
off-target toxicity; 2) Tumor-specific colonization through
bacteria’s inherent immunogenicity; 3) Implementation of tumor
microenvironment-responsive drug release through genetic
engineering (97). Notably, engineered OMVs demonstrate
enhanced immunotherapeutic specificity (98). Chen et al. (99)
innovatively integrated OMV-coated drug-loaded polymeric
micelles, where OMVs activate immune responses while micellar
components simultaneously execute chemotherapy and immune
sensitization of cancer cells to cytotoxic T lymphocytes. Kuerban
et al. (100) developed attenuated Klebsiella pneumoniae-derived
OMVs loaded with doxorubicin (DOX-OMYV), demonstrating
superior cell targeting and cytotoxicity in A549 lung
adenocarcinoma models, coupled with potent tumor suppression
in vivo. Parallel advancements include Gurbatri et al. ‘s probiotic
system for localized PD-L1/CTLA-4 nanobody delivery (101) and
Chowdhury et al’s tumor microenvironment-responsive E. coli
strain releasing CD47-blocking nanobodies, which collectively

10.3389/fimmu.2025.1676302

enhance T cell infiltration, induce tumor regression, and inhibit
metastasis in preclinical models (102).

Specific engineered bacterial strains have demonstrated dual
functionality as both delivery vectors for antitumor drugs and active
modulators of tumor immunity. These strains stimulate the host
immune system, enhance the presentation of tumor-associated
antigens, and amplify effector T cell activity to achieve therapeutic
effects (102). For example, engineered commensal microbes show
promise in preventing cancer initiation and inducing regression in
colorectal cancer (CRC) (103). Among these, Escherichia coli Nissle
1917 (EcN) is the most extensively studied engineered strain.
Leveraging its intrinsic tumor-colonizing capability and well-
established safety profile in humans, EcN has become a premier
platform for synthetic biology applications (104). The Canale
research team developed metabolically engineered EcN strains
that continuously convert ammonia to L-arginine within the
tumor microenvironment. This metabolic reprogramming
markedly improved mitochondrial function and survival of CD8+
T cells, enhanced tumor infiltration depth and cytotoxic activity of
effector T cells, and ultimately elevated therapeutic response rates to
ICIs (105). To optimize EcN’s bioavailability, Xie et al. engineered a

Recalibrating

immune tolerance,

Driving APCs
maturation

Counteract lung
immunosuppression

FIGURE 2

Developing programmable live bacteria( Escherichia coli Nissle 1917 )

Delivery system
construction,
Cancer cell
selective toxicity,
Immune regulatory
function

Optimize host
immune responses

Schematic overview of probiotic-based strategies for modulating host immunity in lung cancer immunotherapy. Probiotic interventions, delivered via
aerosolization, nanomaterial platforms, or bacterial engineering, offer novel avenues for enhancing antitumor immune responses in lung cancer.
Aerosol delivery enables localized immune modulation by recalibrating immune tolerance and promoting the maturation of antigen-presenting cells
(APCs), thereby mitigating the immunosuppressive tumor microenvironment within the lung. Nanomaterials can be tailored for targeted delivery,
tumor-selective cytotoxicity, and immune-regulatory functions to potentiate host antitumor immunity. Advances in synthetic biology have enabled
the engineering of bacterial outer membrane vesicles (OMVs) and programmable live microorganisms, such as Escherichia coli Nissle 1917 (EcN),
further augmenting the efficacy and precision of lung cancer immunotherapeutic strategies.
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prebiotic-based “barrier” system that not only increased EcN’s
survival in simulated gastric acid but also extended its intestinal
retention time. Mechanistic investigations revealed that this
prebiotic-EcN synergy reshapes gut microbiota composition and
stimulates the production of SCFAs, particularly butyrate, offering
an innovative strategy for managing inflammation-associated CRC
(106). Further studies combining probiotics with prebiotics
demonstrated that orally administered prebiotic-coated probiotic
spores (spores-dex) modulate the gut microbiome, enrich SCFA-
producing bacteria (e.g., Eubacterium and Roseburia), and
significantly boost overall microbial diversity. Notably, these
spores exhibited specific enrichment within CRC cells, where they
locally produced anticancer SCFAs, effectively suppressing tumor
growth (107).

5.3 Microbiota-derived nanomaterials

Advances in nanotechnology have positioned probiotic-derived
nanomaterials as promising agents for personalized medicine. In
drug delivery systems, these materials enable precision-targeted
tumor therapies. For instance, Li et al. (108) employed the
anaerobic probiotic Bifidobacterium infantis as a pre-implanted
carrier to recruit bacteria, achieving localized enrichment of
nano-drug missiles in hypoxic tumor regions of lung cancer. This
approach enhances probiotic stability and bioavailability while
amplifying therapeutic outcomes and minimizing adverse effects
(109). In selective anti-tumor research, metabolite-driven
nanosynthesis techniques offer distinct advantages. The Repotente
group engineered gold nanoparticles using Lactobacillus acidophilus
metabolites, which selectively targeted breast cancer MCF7 and
lung cancer A549 cells (IC50: 0.075 mM and 0.07 mM, respectively)
in vitro but remained nontoxic to normal cells and myoblasts (110).
Shehata et al. (111) synthesized exopolysaccharide-coated selenium
nanoparticles, demonstrating their antioxidant and anti-lung
cancer potential. However, the IC50 against A549 cells (5.324 ug/
mL) highlighted efficacy disparities across nanomaterial systems.
Nanomaterials can also enhance the host immune response by
modulating the microbiome (112). Zheng et al. (113) further
showed that silver nanoparticle-embedded mucoadhesive
hydrogels, by modulating oral microbiota (Peptostreptococcus),
potentiated PD-1 blockade efficacy in a mouse model of oral
squamous cell carcinoma (Figure 2).

6 Conclusion

This review synthesizes current evidence on the interplay between
the pulmonary microbiome and lung carcinogenesis, highlighting its
therapeutic relevance in immunotherapy. Nevertheless, existing
research exhibits critical limitations (1): Predominantly cross-
sectional designs restrict insights into microbial dynamic evolution
(2); Methodological variability in sampling sites (e.g., sputum, BALF,
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tissue biopsies) and sequencing protocols compromises
reproducibility and cross-study comparability (3); While correlative
evidence underscores associations between lung microbiota
composition/diversity and cancer outcomes, causative mechanisms
remain poorly characterized (4); Greater attention must be paid to the
interaction between airway microbiota and the host, as well as the
potentially distinct effects and mechanisms of antibiotics in the gut
versus the lungs; Moving forward, multidisciplinary approaches
integrating single-cell spatial transcriptomics, metabolomics, and
multi-omics are imperative to decode the microbiome-tumor-
immune axis. Rigorous multi-center trials are needed to validate
microbial biomarkers for clinical translation, alongside innovative
therapies to enhance efficacy and minimize toxicity (46). Additionally,
the safety and ethical implications of microbiome modulation
demand thorough consideration to ensure clinical feasibility
and safety.
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