
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Donald O. Natvig,
University of New Mexico, United States

REVIEWED BY

Kaiser Jamil,
Bhagwan Mahavir Medical Research Centre,
India
Dorota Pastuszak-Lewandoska,
Medical University of Lodz, Poland

*CORRESPONDENCE

Minghua Huang

huangminhua@zju.edu.cn

Zhiming Xiang

xiangzhiming@pyhospital.com.cn

†These authors have contributed equally to
this work

RECEIVED 30 July 2025
REVISED 05 November 2025

ACCEPTED 10 November 2025

PUBLISHED 28 November 2025

CITATION

Wang P, Ge C, Jing X, Han Q, Wang M,
Huang M and Xiang Z (2025) Respiratory
microbiome-host interaction on
lung carcinogenesis, immunity,
and immunotherapy.
Front. Immunol. 16:1676302.
doi: 10.3389/fimmu.2025.1676302

COPYRIGHT

© 2025 Wang, Ge, Jing, Han, Wang, Huang
and Xiang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 28 November 2025

DOI 10.3389/fimmu.2025.1676302
Respiratory microbiome-host
interaction on lung
carcinogenesis, immunity,
and immunotherapy
Peng Wang1,2†, Cuihong Ge1,2†, Xinru Jing3, Qijia Han2,
Mingzhu Wang4, Minghua Huang2* and Zhiming Xiang2*

1Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital,
Guangzhou, Guangdong, China, 2Department of Radiology, The Affiliated Panyu Central Hospital,
Guangzhou Medical University, Guangzhou, Guangdong, China, 3School of Life Sciences, South China
Normal University, Guangzhou, Guangdong, China, 4Department of Gynecology, The Affiliated Panyu
Central Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
The respiratory microbiome, as an integral component of the lung cancer

microenvironment, exerts pivotal influences on tumorigenesis, immune

homeostasis, and therapeutic response through intricate crosstalk with host

immunity. Despite advancements, current limitations in lung cancer

immunotherapy persist, including heterogeneous therapeutic responses,

immune-related adverse events, and the lack of predictive biomarkers. These

unmet clinical needs underscore the imperative to delineate the complex

immune landscape of respiratory microbiome in lung cancer pathogenesis.

This review systematically analyzes the hallmarks of respiratory dysbiosis

(reduced a-diversity and enrichment of Streptococcus and Veillonella) and

their associations with lung cancer staging, histological subtypes, and

prognosis. We further elucidate how these microbial alterations influence

tumor progression via metabolic-epigenetic-immune pathways. Additionally,

we establish clinical correlations between microbiome signatures and both

immune checkpoint inhibitor therapeutic efficacy/toxicity profiles, while

examining the paradoxical effects of antibiot ic exposure during

immunotherapy. Emerging intervention strategies targeting the respiratory

microbiome, such as aerosolized probiotics, engineered bacteria (e.g.,

Escherichia coli), and microbiota-derived nanomaterials, showcase potential in

remodeling antitumor immunity and improving therapeutic outcomes. Our

findings highlight the double-edged sword effect of the respiratory microbiota

as biomarkers and therapeutic targets in lung cancer management, providing

critical insights for clinical translation.
KEYWORDS

respiratory microbiome, non-small cell lung cancer, immunity, immunotherapy,
antibiotics
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1 Introduction

Lung cancer represents the leading cause of cancer-related

mortality worldwide, accounting for 18.7% of all deaths across all

cancer types. Its pathogenesis is complex, involving genetic

predisposition, environmental exposures, and microbiome

dysbiosis (1). Due to the insidious nature of early-stage

symptoms, approximately 60% of lung cancer patients are

diagnosed at advanced stages (2). Immune checkpoint inhibitors

(ICIs), which disrupt inhibitory pathways such as cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4), programmed cell

death-1 (PD-1) protein, and its ligand PD-L1 to potentiate

antitumor immunity, have become a cornerstone of treatment for

advanced non-small cell lung cancer(NSCLC), substantially

improving 5-year survival rates (3, 4). Nevertheless, three

unresolved scientific issues hinder progress (1): Heterogeneous

therapeutic responses limit durable clinical benefits to 20–50% of

patients (5) (2); Immune-related adverse events (irAEs) affect nearly

half of the treated individuals (incidence: 43%) (6) (3); Existing

predictive biomarkers, including PD-L1 expression and tumor

mutational burden, exhibit suboptimal specificity for identifying

true responders (7). Therefore, advancing systematic biomarker

identification and optimizing clinical therapeutic efficacy remain

critical scientific challenges requiring breakthroughs in lung cancer

immunotherapy research.

In recent years, the synergistic development of multi-omics

technologies—including metagenomic sequencing, single-cell

transcriptomics, and spatial transcriptomics—has overcome the

spatiotemporal resolution limitations of traditional microbiome

research. These advances have not only confirmed the existence of

low-biomass dynamic microbial communities in the respiratory tract

under physiological conditions but also revealed their dynamic

interactions with the lung cancer immune microenvironment (8).

Clinically, lung cancer patients exhibit marked shifts in commensal

microbial diversity and taxonomic abundance, where relative

abundance of signature taxa (e.g., Streptococcus) correlates with

disease trajectory and survival outcomes (9). Emerging preclinical

evidence highlights beneficial microbiota transplantation and

metabolic intervention (e.g., short-chain fatty acids and tryptophan

derivatives) as potent adjuvants to PD-1/PD-L1 blockade, achieving
Abbreviations: AKK, Akkermansia muciniphila; BALF, Bronchoalveolar Lavage

Fluid; CRC, Colorectal Cancer; CTLA-4, Cytotoxic T Lymphocyte-Associated

Antigen 4; DCs, Dendritic Cells; DOX-OMV, Doxorubicin-Loaded Outer

Membrane Vesicles; EcN, Escherichia coli Nissle 1917; ERK, Extracellular

Signal-Regulated Kinase; HDAC3, Histone Deacetylase 3; ICIs, Immune

Checkpoint Inhibitors; irAEs, Immune-Related Adverse Events; LUSC, Lung

Squamous Cell Carcinoma; MDSCs, Myeloid-Derived Suppressor Cells; NK cells,

Natural Killer Cells; NSCLC, Non-Small Cell Lung Cancer; OMVs, Outer

Membrane Vesicles; OS, Overall Survival; PD-1, Programmed Cell Death-1;

PD-L1, Programmed Death-Ligand 1; PFS, Progression-Free Survival; PI3K,

Phosphoinositide 3-Kinase; ROS, Reactive Oxygen Species; SCFA, Short-Chain

Fatty Acid; Th17, T Helper 17; Treg, Regulatory T Cell; TMB, Tumor Mutational

Burden; IME, Tumor Immune Microenvironment
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near-abrogation of tumor growth inmurinemodels (10, 11). Notably,

microbiome dysbiosis may conversely exacerbate tumor progression

and diminish therapeutic responses, particularly to immunotherapy

(12). Mechanistically, commensal microbiota can influence

immunotherapy efficacy by modulating immune cell activity and

remodeling the tumor immune microenvironment (TIME)

(including fostering an immunosuppressive environment or

enhancing immune surveillance) (13). Consequently, restoring

microbial homeostasis through probiotics, prebiotics, and

postbiotics has emerged as a novel research paradigm in

comprehensive cancer care, providing critical insights into the

heterogeneity of immunotherapy outcomes and guiding

personalized treatment strategies (14).

In this review, we systematically explore the multidimensional

interaction network between the respiratory microbiome and lung

cancer pathogenesis and immunotherapy efficacy, with a focus on

the molecular mechanisms underlying microbiome-mediated

modulation of immunotherapy outcomes and its translational

clinical value. Finally, through critical evaluation of current

preclinical limitations, we propose targeted future research

directions and optimization strategies for leveraging the

respiratory microbiome in precision lung cancer therapy.
2 Relationship between respiratory
microbiome and clinical features of
lung cancer

The pathogenesis of lung cancer constitutes a multifactorial,

multistage process wherein microbiome-tumor microenvironment

interactions play a critical regulatory role. Emerging evidence

highlights that the compositional and functional heterogeneity of

microbial communities across distinct anatomical regions of the

respiratory tract may hold unique biological significance in lung

carcinogenesis (15). Salivary microbiota is postulated as a primary

source for pulmonary microbial colonization (16). The dysbiosis of

salivary microbiota, which is characterized by diminished alpha

diversity(95% CI 0.84-0.96) and Streptococcus-dominant enrichment

(95% CI 1.06-1.22), correlates with heightened malignancy risk (17).

Notably, lung cancer patients demonstrate markedly lower salivary

microbial diversity and richness compared to healthy controls, while

specific microbial taxa such as Capnocytophaga, Veillonella,

Sphingomonas, and Blastomonas display significant enrichment (8,

18), implicating salivary microbiota as potential biomarkers for lung

cancer. Sputum-derived microbial profiles provide more direct insights

into lower respiratory tract ecology. Leng et al. (19) revealed that the

abundance of Acidovorax and Veillonella was significantly increased in

sputum of NSCLC patients by Droplet digital PCR, underscoring their

biomarker potential for early detection and tumor classification.

Metagenomic signatures further implicate Streptococcus viridans

overabundance in sputum as a progression-associated indicator of

lung cancer (20). Bronchoalveolar lavage fluid (BALF), the

gold standard for detecting the lung microbiome in clinical

settings, enables precise characterization of the peritumoral

microenvironment. BALF microbial alterations not only associate
frontiersin.org
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closely with lung cancer development, progression, and histological

subtypes (21), but also offer novel approaches for early detection (22).

Multiple studies demonstrate reduced species diversity and richness in

BALF microbiota from lung cancer patients compared to healthy

controls, dominated by Bacillota, Pseudomonadota, Bacteroidota,

Actinomycetota, and Fusobacteriota, with additional enrichment of

Cyanobacteriota, Saccharibacteria, and genera including Prevotella,

Streptococcus, Veillonella, Neisseria, Haemophilus, Clostridium, and

Actinobacillus (23, 24). Wang et al. report diminished microbial

diversity in both saliva and BALF samples from lung cancer patients,

identifying Treponema and Filifactor in BALF as potential diagnostic

biomarkers (25). Furthermore, significant differences in BALF

microbiota exist between lung squamous cell carcinoma(LUSC) and

adenocarcinoma, with Pseudomonadota enrichment in LUSC patients

—particularly among males and heavy smokers—potentially linked to

tumor invasiveness and metastatic potential (26).

Lung cancer exhibits significant spatial heterogeneity in microbial

composition between intratumoral and peritumoral tissues. Bingula

et al. (27) characterized unique microbiome signatures in saliva,

BALF, peritumoral lung tissues, and tumor tissues, which showed

associations with tumor localization, histological subtype, and

immune activation. Notably, compared to peritumoral tissue

microbiomes, the intratumoral microbiome is least influenced by

anatomical location. Furthermore, Peters et al. (28) revealed that the

microbial diversity in peritumoral tissues is significantly associated

with the prognosis of NSCLC patients. Subsequent investigations

have delineated specific relationships between intratumoral microbial

diversity, abundance shifts of particular taxa, and oncogenesis. For

instance, Yu et al. (29) reported increased Thermus abundance in

advanced-stage patients and Legionella enrichment in metastatic

cases. Li et al. (30) identified marked microbiome differences

between malignant and non-malignant lung tissues in advanced

NSCLC, part icular ly enrichment of Pseudomonadota

(predominantly Acinetobacter and Acidovorax), Bacillota, and

Actinomycetota. Smoking-related lung cancer tissues showed a

correlation between Acidovorax enrichment and TP53 mutations

(31), while Apopa et al. (32) detected Cyanobacteriota prevalence

in lung adenocarcinomas with microcystin levels linked to PARP1

overexpression. Collectively, these findings support the existence of

tumor-associated microbiome patterns in lung carcinogenesis and

progression. Prognostically, intratumoral microbiota features show

significant associations with recurrence and metastasis. Zhou et al.

(33) demonstrated the predictive value of intratumoral microbiota for

recurrence/metastasis risk in LUSC, with microbial risk scores

correlating with survival outcomes. Patnaik et al. (34) established

associations between preoperative lower respiratory tract microbiota

and early NSCLC recurrence. Deng et al. (35) developed a

translational prognostic model integrating 18 microbial taxa with a

19-gene glycolysis-lactate signature. Ma et al. (36) identified butyrate-

producing bacteria (e.g., Roseburia) enrichment in recurrent cases,

mechanistically linking butyrate-mediated HDAC2 inhibition to

H3K27 hyperacetylation, upregulation of H19 expression, and M2

macrophage polarization-driven metastasis. These advancements

underscore the diagnostic and prognostic potential of respiratory

microbiota in lung cancer management (Table 1).
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3 Possible mechanisms of the
microbiome on lung cancer
pathogenesis

The dual role of the respiratory microbiome in lung cancer

progression: Maintaining immune homeostasis versus driving

inflammation during dysbiosis. As a pivotal regulator of the

TIME, the respiratory microbiota exerts significant influence on

pulmonary immune equilibrium and oncogenesis through

multidimensional modulation of innate and adaptive immune

networks (37). These biological effects appear contingent upon

the immunogenicity and colonization patterns of specific

microbial species (38). Within the adaptive immune system, a

sophisticated regulatory network emerges through the Treg/Th17

cell balance. Research reveals intricate connections between

neonatal lung microbial colonization, reduced airway

hyperresponsiveness, and Treg cell subset (39). Healthy lower

airways exhibit a characteristic microbial profile dominated by

stable colonization of oropharyngeal commensals, including

Prevotella, Veillonella, and Streptococcus (40). This colonization

primarily occurs through microaspiration pathways, establishing a

dynamic equilibrium with the respiratory epithelium (41). These

commensal communities demonstrate significant interactions with

Th17-mediated mucosal immunity, crucially modulating the

balance between pulmonary immune surveil lance and

pathological inflammatory responses (42). The pulmonary innate

immune defense comprises alveolar macrophages and gdT cell

populations. Through BALF multi-omics analysis, Zheng’s team

revealed that altered lung microbiota in NSCLC patients associates

with suppressed tumor growth via M2 macrophage reduction and

enhanced CD3+/CD8+T cell infiltration (43). Mechanistic

investigations further demonstrate that lung commensals sustain

gdT cell-mediated antitumor responses through alveolar

macrophage regulation of CCL24 chemokine production (44).

Crucially, pulmonary microbiota orchestrates tumor immune

surveillance through gdT17-dependent mechanisms, playing

indispensable roles in immune cell regulation, barrier

maintenance, and host antitumor immunity coordination (45, 46).

Emerging evidence establishes that respiratory microbiome

dysbiosis promotes lung carcinogenesis through multifactorial

immunomodulatory pathways, which can be systematically

categorized into three principal biological mechanisms (1):

chronic inflammation secondary to immune homeostasis

disruption (2), epigenetic modulation via microbial metabolites,

and (3) genetic mutation/signaling pathway activation

through host-microbe interactions (47) (Figure 1). At the

immunomodulatory level, pulmonary dysbiosis directly drives

tumorigenesis by inducing Th17/gd T cell-mediated inflammatory

responses (48). Clinical studies have demonstrated an association

between pulmonary dysbiosis in NSCLC patients and Th17-

mediated pulmonary inflammation, where IL-17 secretion by

these cells perpetuates chronic inflammation and accelerates

malignant progression (49). Preclinical investigations further

reveal that lung commensal bacteria activate gd T cells to initiate
frontiersin.org
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TABLE 1 Studies investigating the composition of the microbiome in different sample types obtained from patients with NSCLC.

Sample
type

Author
year
[ref]

Sample
size

Analytic
method

Microbiome findings Major findings

Saliva,
BAL, nasal,
gastric

Bassis et al.,
2015 (16)

28 patients
16S rRNA
sequencing,

qPCR

The lungs selectively eliminate Prevotella bacteria
from the upper airways.

Microaspiration likely common; lung microbiome
overlaps with oral but not nasal microbiota

Saliva
Vogtmann
et al., 2022

(17)

1306
patients

16S rRNA
sequencing

Higher alpha diversity associated with lower lung
cancer risk; Streptococcus implicated

Oral microbiota linked to lung cancer risk;
associations vary by smoking history and
histologic subtype

Saliva
Yan et al.,
2015 (18)

86 patients
16S rRNA
sequencing

Capnocytophaga, Veillonella, and Neisseria were
elevated in lung cancer

Capnocytophaga and Veillonella as biomarkers for
SCC and ADC

Sputum
Leng et al.,
2021 (19)

107
patients

Droplet digital
PCR

Acidovorax, Veillonella, and Capnocytophaga as
diagnostic biomarkers for NSCLC

Sputum microbiome might provide noninvasive
biomarkers for the early detection and
classification of NSCLC.

Sputum
Cameron
et al., 2017

(20)
10 patients

Metagenomic
sequencing

Streptococcus viridans and Granulicatella adiacens as
potential biomarkers for Lung cancer

G. adiacens abundance could be related to Lung
cancer stage.

BALF,
sputum

Huang
et al., 2019

(21)

40 BALF,
52 sputum

16S rRNA
sequencing

Pseudomonadota higher in BALF; Veillonella,
Megasphaera, Capnocytophaga differential between
SCC and ADC

BALF better reflects lung cancer microbiome;
microbial differences between metastatic states
and histologic types

BALF
Marshall
et al., 2022

(22)
72 patients

16S rRNA
sequencing

Veillonella, Streptococcus, Prevotella, and
Paenibacillus

Microbiome changes precede clinical lung cancer
diagnosis, offering potential for early detection

BALF
Jin et al.,
2019 (23)

150
discovery,

85
validation

Metagenomics
analysis

Bradyrhizobium japonicum unique to cancer; reduced
richness in lung cancer

The lower respiratory tract microbiome richness
is diminished in lung cancer patients compared
with that in healthy subjects.

BALF
Liu et al.,
2018 (24)

24 patients,
18 controls

16S rRNA
sequencing

Streptococcus more abundant in cancer; alpha
diversity decreased in cancer

Lung cancer-associated microbiota profile distinct
from healthy controls; Streptococcus as a potential
biomarker

Saliva,
BALF

Wang et al.,
2019 (25)

51 patients,
15 controls

16S rRNA
sequencing

Treponema, Filifactor identified as potential
biomarkers; reduced diversity in cancer

Lung cancer patients have a distinct, less diverse
microbial community compared to healthy
individuals. Specific bacterial groups may be
linked to lung cancer, with the exact species
varying by sampling location and cancer type.

BALF
Gomes

et al., 2019
(26)

23 patients
16S rRNA
sequencing

Lung cancer microbiota is enriched in
Pseudomonadota and more diverse in SCC than
ADC; specific taxa linked to survival

Microbial diversity and composition correlate
with lung cancer subtype and patient survival

Saliva,
BALF, lung

tissue

Bingula
et al., 2020

(27)
28 patients

16S rRNA
sequencing

Pseudomonadota dominated tissue samples, while
Bacillota was more abundant in BALF and saliva.

Microbiome composition varies by sample type,
suggesting BAL may not fully represent lung
microbiome

Lung tissue
Peters

et al., 2019
(28)

19 patients
16S rRNA
sequencing

Higher abundance of family Koribacteraceae,
Bacteroidaceae, Lachnospiraceae, and
Ruminococcaceae in normal tissue linked to survival

Normal lung microbiota may influence lung
cancer prognosis

Lung tissue
Yu et al.,
2016 (29)

165
patients

16S rRNA
sequencing

Thermus is more abundant in tissue from advanced-
stage patients, while Legionella is higher in patients
who develop metastases.

Smoking and environmental exposures
significantly impact lung microbiome diversity

Lung tissue
Li et al.,
2023 (30)

67 patients
Metagenomic

shotgun
Enriched Pseudomonadota, Bacillota, and
Actinomycetota in NSCLC tumors

Lower microbiota diversity in tumors;
upregulation of proinflammatory cytokines

Lung tissue
Greathouse
et al., 2018

(31)

143
patients

16S rRNA
sequencing

Acidovorax enriched in TP53-mutated squamous cell
carcinoma

TP53 mutations interact with microbiome in SCC

Lung tissue
Apopa

et al., 2018
(32)

40 patients
16S rRNA
sequencing

Cyanobacteriota enriched in ADC; PARP1 up-
regulated in microcystin-exposed cells

Microcystin from Cyanobacteriota promotes lung
carcinogenesis

(Continued)
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inflammation linked to adenocarcinoma. Notably, germ-free or

antibiotic-treated mice exhibit significant protection against Kras

mutation- and p53 deletion-driven lung carcinogenesis (38),

suggesting gd T cell hyperactivation as a critical microbiome-
Frontiers in Immunology 05
dependent mechanism in inflammation-driven malignancy.

Microbial metabolites exhibit dual regulatory roles in epigenetic

modulation (50). Reduced microbial diversity and increased

Streptococcus abundance characterize the lower respiratory tract
TABLE 1 Continued

Sample
type

Author
year
[ref]

Sample
size

Analytic
method

Microbiome findings Major findings

Lung tissue
Zhou et al.,
2023 (33)

Multi-
omics data

16S rRNA
sequencing,

RNA
sequencing

In SCC, Shigella, Staphylococcaceae, Staphylococcus,
Pseudogulbenkiania, and Chromobacteriaceae were
enriched in RM, while Leuconostocaceae, Acidovorax,
Shewanellaceae, Shewanella, and Comamonadaceae
were enriched in the non-RM group

The microbial diversity of SCC recurrence and
metastasis groups was low, and a prediction
model was constructed (AUC = 0.81), predicting
risk was significantly associated with patient
survival

Lung
tissues,

BALF and
saliva

Patnaik
et al., 2021

(34)
47 patients

16S rRNA
sequencing

Staphylococcus, Bacillus, Anaerobacillus differ
between recurrent and non-recurrent cases

Presurgery composition of lower airway
microbiome may be associated with recurrence of
early NSCLC.

Lung tissue
Deng et al.,
2023 (35)

TCGA-
LUAD
dataset

16S rRNA
sequencing,

RNA
sequencing

18-microbe prognostic score; glycolysis-lactate
signature predicts prognosis

Microbiome and glycolysis-lactate pathways are
linked to ADC prognosis and immunotherapy
response

Lung tissue
Ma et al.,
2024 (36)

150
discovery,

85
validation

16S rRNA
sequencing,

RNA
sequencing

Butyrate-producing bacteria (Roseburia) enriched in
recurrent cases

Butyrate promotes metastasis via H19 expression;
microbial signature predicts recurrence
ADC, adenocarcinoma; BALF, Bronchoalveolar Lavage Fluid; NSCLC, non-small cell lung cancer; RM, recurrence and metastasis; SCC, squamous cell carcinoma.
FIGURE 1

Interactions among the Respiratory Microbiota, Immune Homeostasis, and Lung Cancer. Under physiological conditions, commensal microbiota
establishes multi-tiered immunoregulatory mechanisms by dynamically coordinating innate immunity (via Treg/Th17 balance regulation) and
adaptive immunity (through alveolar macrophage polarization and gdT cell functional differentiation). This synergistic interaction prevents excessive
inflammation while maintaining pulmonary immune homeostasis (Left panel). Respiratory dysbiosis may promote lung carcinogenesis through three
interconnected mechanisms: chronic inflammation triggered by immune dysregulation, microbiota-derived metabolite-mediated epigenetic
modifications, and host-microbe interaction-associated genetic mutations coupled with aberrant activation of oncogenic signaling pathways (Right
panel).
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microbiome in lung cancer patients. Streptococcus pneumoniae-

derived pneumolysin and pyruvate oxidase may promote

carcinogenesis by disrupting host cell metabolism and apoptosis

(24, 51). Cyanobacteriota-derived microcystins correlate with

reduced CD36 and elevated PARP1 levels, suggesting therapeutic

potential through microcystin transport inhibition or PARP1

targeting (32). Conversely, beneficial metabolites like butyrate

(a short-chain fatty acid) and indole-3-aldehyde (I3A)

demonstrate anticancer properties. Butyrate modulates miRNA

expression in NSCLC A549 cells to suppress proliferation (52)

and inhibits HDAC3 to drive monocyte-to-macrophage

differentiation, thereby reducing inflammatory mediators and

enhancing antimicrobial activity (53). The interaction between

probiotic-derived I3A and tumor-infiltrating CD8+ T cells further

enhances antitumor immunity (54). Aspects of genetic mutations

and signaling pathways, microbiome-smoking interactions

correlate with TP53 mutations in LUSC, particularly the

enrichment of polycyclic aromatic hydrocarbon-degrading genera

(Acidovorax, Massilia) in smokers’ tumor microbiota (31). Lower

airway enrichment of Streptococcus and Veillonella in lung cancer

patients associates with ERK/PI3K pathway activation, potentially

fostering tumor progression (55). Intriguingly, these bidirectional

regulatory mechanisms may extend to immunotherapy responses,

though mechanistic details remain to be elucidated.
4 Microbiota and lung cancer
immunotherapy

4.1 Microbiota and efficacy of
immunotherapy in lung cancer

The microbiome exerts dual regulatory effects on immunotherapy

efficacy through distinct immunomodulatory pathways mediated by

respiratory and gut microbiota (56). First, respiratory microbiota

(particularly the abundance of specific bacteria) directly

interact with the tumor immune microenvironment through local

immunomodulation (57). For instance, Jang et al. (58) demonstrated

that elevated Veillonella dispar abundance positively correlates with

PD-L1 upregulation and enhanced immunotherapy responsiveness,

whereas Gammapseudomonadota predominance associates with PD-

L1 suppression and unfavorable prognosis. Furthermore, Zapata et al.

(59) identified Gemella abundance in respiratory microbiota as a

potential predictor of ICI resistance, while Lachnoanaerobaculum

abundance shows potential as a biomarker for favorable ICI

response. Notably, intratumoral microbial heterogeneity in lung

cancer, particularly Fusobacterium enrichment, has been linked to

immunotherapy resistance (60). Second, gut microbiota mediates

systemic immunomodulation through the gut-lung axis, significantly

impacting treatment outcomes (61). Substantial evidence reveals that

ICI-responsive NSCLC patients typically exhibit enriched populations

of Bifidobacterium (9), Akkermansia muciniphila(AKK) (62),

Bacteroides (63), and Ruminococcus (64) in gut microbiota, with

these microbial profiles correlating with improved PFS following ICI

therapy (65).
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With the widespread application of ICIs in lung cancer treatment,

approximately 40% of patients experience irAEs affecting multiple

organ systems, including the skin, gastrointestinal tract, and

cardiopulmonary systems (66). Notably, irAEs exhibit a complex

double-edged sword effect of clinical efficacy: while their occurrence

correlates with improved patient survival (6), severe immune

toxicities induced by ICIs may lead to treatment discontinuation or

life-threatening complications (67). Consequently, identifying early

predictive biomarkers for severe irAEs has become a priority in ICI

patient management (68). In recent years, the microbiome has gained

attention as a potential biomarker for predicting ICI efficacy and

toxicity. The MITRE trial pioneered the evaluation of microbiome

signatures as biomarkers to assess treatment response and toxicity in

cancer patients receiving ICIs, aiming to elucidate dynamic

associations between microbial features and clinical outcomes (69).

Chau et al. (70) investigated correlations among nasal, oral, and gut

microbiomes, treatment response, and irAEs in lung cancer patients

undergoing ICI therapy, revealing significantly reduced gut

microbiome alpha-diversity in these patients, which was strongly

associated with both therapeutic response and irAEs. The Liu team

further demonstrated that gut microbiota alterations in anti-PD-1-

treated lung cancer patients were linked to immune-related diarrhea

(71). Regarding microbial intervention strategies, clinical studies

indicate that NSCLC patients receiving probiotics during

immunotherapy exhibit significantly prolonged progression-free

survival (PFS) and overall survival (OS), correlating with favorable

clinical outcomes (72). Shaikh et al. (73) proposed that modulating

the microbiome during treatment or applying microbiota

transplantation might optimize therapeutic effects and mitigate

irAEs. Mechanistic studies suggest that Clostridium butyricum

supplementation enhances survival rates and ICI responsiveness in

lung cancer patients (74), while AKK potentiates the anti-tumor

efficacy of IL-2 immunotherapy (75). Additionally, Lactobacillus

rhamnosus Probio-M9 has been shown to reverse antibiotic-

induced dysbiosis and improve ICI efficacy (76). Chen et al. (77)

reported that the postbiotic JK5G alleviates irAEs in advanced

NSCLC patients receiving ICIs, demonstrating potential to enhance

treatment outcomes while reducing adverse events. Collectively, these

findings position the lung cancer microbiome as a promising

diagnostic and predictive biomarker platform, potentially enabling

patient stratification and treatment optimization.
4.2 Influence of antibiotics on
immunotherapy efficacy in patients with
lung cancer

The impact of antibiotic use on ICI efficacy in NSCLC has

garnered significant attention in recent years. While current

research generally suggests that antibiotics may compromise

immunotherapy outcomes by disrupting commensal microbiota,

current findings demonstrate notable heterogeneity. Substantial

clinical evidence indicates that antibiotic exposure correlates with

adverse prognostic outcomes and reduced ICI efficacy, with dose-

dependent effects (59). Notably, Derosa et al. (78) documented a
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5.5-month reduction in median PFS and 14.3-month decrease in OS

among NSCLC patients receiving b-lactams or quinolones versus

controls (P < 0.05). These findings gain support from a

comprehensive meta-analysis by Abdelhamid et al. (79) (19

studies, n=2,932), demonstrating significant associations between

antibiotic use and inferior survival outcomes (PFS HR = 1.64, OS

HR = 1.67) in ICI-treated cohorts. Notably, antibiotic

administration within ±60 days of treatment initiation correlates

with diminished survival outcomes (80). Castello et al. (81)

identified correlations between antibiotic exposure, elevated

tumor metabolic burden, and accelerated disease progression.

Beyond therapeutic efficacy, antibiotics may exacerbate irAEs.

Jing et al. (82) reported a 1.39-fold higher risk of irAEs (95% CI

1.21-1.59) in antibiotic-exposed NSCLC patients, particularly

evident in those receiving anti-PD-1/PD-L1 therapies. Preclinical

models reinforce these clinical patterns: Antibiotic-treated mice

exhibited enhanced Lewis lung carcinoma progression with reduced

survival and increased pulmonary tumor burden (46). Routy et al.

(83) revealed that oral antibiotics impair ICI efficacy, while fecal

microbiota transplantation from ICI-responsive patients (enriched

with AKK) restored anti-tumor responses to PD-1 blockade in

germ-free or antibiotic-pretreated mice. Furthermore, Tan et al.

(84) observed that although antibiotics aggravated ICI-associated

colitis in murine models, specific probiotic supplementation

mitigated these effects. Recent mechanistic insights highlight the

microbiota-immune axis as a critical therapeutic determinant. An

intact gut microbiome facilitates optimal treatment responses by

modulating myeloid-derived cell functions within the tumor

microenvironment (85). Conversely, antibiotic-induced dysbiosis

promotes the migration of immunosuppressive intestinal Treg/

Th17 cells to tumors via the MAdCAM-1-a4b7 axis, establishing

an immunoinhibitory microenvironment that compromises PD-1

blockade efficacy (86).

However, other studies have failed to establish statistically

significant associations between antibiotic exposure and survival

outcomes in lung cancer patients. While Hakozaki et al. (87)

reported a potential association between antibiotic use and reduced

PFS in NSCLC patients through univariate analysis (P = 0.04), this

finding lost statistical significance in multivariate models. Similarly,

Nyein et al. (88) identified a non-significant trend toward worse OS

in antibiotic-exposed NSCLC patients receiving immunotherapy (HR

= 1.35, P = 0.145). In epidemiological investigations, Zhang et al. (89)

observed an attenuated association between frequent antibiotic

prescriptions (≥10 courses) and lung cancer risk after covariate

adjustment (RR = 2.52 vs 1.31), concluding insufficient evidence

for antibiotic-induced carcinogenesis. Preclinical findings by Noci

et al. (90) revealed that aerosolized antibiotic treatment reduced

pulmonary bacterial load in mice, decreased Treg cell populations,

and enhanced T-cell/NK cell activity, thereby significantly inhibiting

B16 melanoma lung metastasis and potentiating antitumor

immunity. The divergent outcomes between aerosolized and oral

antibiotic administration may stem from their distinct microbial

targets: Systemic oral antibiotics primarily disrupt gut microbiota,
Frontiers in Immunology 07
potentially impairing the gut-lung axis and systemic antitumor

immunity, whereas localized aerosol therapy selectively modulates

respiratory microbiota to reshape the immunosuppressive

pulmonary microenvironment. These findings underscore the need

for judicious consideration of infection management strategies and

anatomical site-specific microbiome modulation in lung

cancer therapeutics.
5 The translational medical value of
respiratory microbiota modulation in
lung cancer immunotherapy

5.1 Aerosolized probiotics

Targeted drug delivery strategies leveraging respiratory

tract anatomy have revolutionized lung cancer therapy.

Aerosolized inhalation systems, distinguished by their favorable

pharmacokinetic profiles, enable non-invasive, site-specific delivery

of therapeutics across the air-blood barrier. This approach enhances

localized drug deposition in tumor microenvironments while

mitigating systemic toxicity (91). Notably, the Le Noci

team demonstrated that aerosolized immunostimulants enable

repeatable dosing in metastatic lung cancer patients, curtailing M2

macrophage polarization and boosting anti-tumor effects (92).

Subsequent work established that aerosolized antibiotics/probiotics

remodel pulmonary niches to foster anti-metastatic immunity (90).

Further investigations showed that aerosolized live or inactivated

Lactobacillus rhamnosus impeded murine lung tumorigenesis,

marked by decreased tumor burden, reduced Treg infiltration, and

elevated IgA titers (93). Aerosolized probiotic formulations may

reverse immunosuppressive pulmonary microenvironments

through dual mechanisms of microbial community restoration and

immune tolerance modulation, thereby enhancing antitumor efficacy

in lung cancer (94). Supporting evidence includes Zheng et al.’s

findings (43) showing that inhalation of NSCLC patients’ lung

microbiota induces significant compositional shifts in murine

pulmonary microbiomes (with Pasteurella replacing Delftia as the

dominant genus), subsequently inhibiting lung cancer cell

proliferation. Youn et al. (95) revealed that the intranasal

administration of viable Lactobacillus conferred stronger protection

against murine influenza infection than oral delivery, with live

bacteria exhibiting superior efficacy to inactivated counterparts.
5.2 Engineered bacteria

Engineered bacterial systems utilizing synthetic biology

have emerged as a promising frontier in lung cancer

therapeutics, particularly excelling in targeted drug delivery and

immunomodulation (96). Current research bifurcates into two

primary strategies: engineering bacterial outer membrane vesicles
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(OMVs) and developing programmable live bacteria. Distinct from

conventional treatments, this technology platform combines three

fundamental advantages: 1) Coordinated activation of innate and

adaptive immunity to enhance therapeutic efficacy while reducing

off-target toxicity; 2) Tumor-specific colonization through

bacteria’s inherent immunogenicity; 3) Implementation of tumor

microenvironment-responsive drug release through genetic

engineering (97). Notably, engineered OMVs demonstrate

enhanced immunotherapeutic specificity (98). Chen et al. (99)

innovatively integrated OMV-coated drug-loaded polymeric

micelles, where OMVs activate immune responses while micellar

components simultaneously execute chemotherapy and immune

sensitization of cancer cells to cytotoxic T lymphocytes. Kuerban

et al. (100) developed attenuated Klebsiella pneumoniae-derived

OMVs loaded with doxorubicin (DOX-OMV), demonstrating

superior cell targeting and cytotoxicity in A549 lung

adenocarcinoma models, coupled with potent tumor suppression

in vivo. Parallel advancements include Gurbatri et al. ‘s probiotic

system for localized PD-L1/CTLA-4 nanobody delivery (101) and

Chowdhury et al.’s tumor microenvironment-responsive E. coli

strain releasing CD47-blocking nanobodies, which collectively
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enhance T cell infiltration, induce tumor regression, and inhibit

metastasis in preclinical models (102).

Specific engineered bacterial strains have demonstrated dual

functionality as both delivery vectors for antitumor drugs and active

modulators of tumor immunity. These strains stimulate the host

immune system, enhance the presentation of tumor-associated

antigens, and amplify effector T cell activity to achieve therapeutic

effects (102). For example, engineered commensal microbes show

promise in preventing cancer initiation and inducing regression in

colorectal cancer (CRC) (103). Among these, Escherichia coli Nissle

1917 (EcN) is the most extensively studied engineered strain.

Leveraging its intrinsic tumor-colonizing capability and well-

established safety profile in humans, EcN has become a premier

platform for synthetic biology applications (104). The Canale

research team developed metabolically engineered EcN strains

that continuously convert ammonia to L-arginine within the

tumor microenvironment. This metabolic reprogramming

markedly improved mitochondrial function and survival of CD8+

T cells, enhanced tumor infiltration depth and cytotoxic activity of

effector T cells, and ultimately elevated therapeutic response rates to

ICIs (105). To optimize EcN’s bioavailability, Xie et al. engineered a
FIGURE 2

Schematic overview of probiotic-based strategies for modulating host immunity in lung cancer immunotherapy. Probiotic interventions, delivered via
aerosolization, nanomaterial platforms, or bacterial engineering, offer novel avenues for enhancing antitumor immune responses in lung cancer.
Aerosol delivery enables localized immune modulation by recalibrating immune tolerance and promoting the maturation of antigen-presenting cells
(APCs), thereby mitigating the immunosuppressive tumor microenvironment within the lung. Nanomaterials can be tailored for targeted delivery,
tumor-selective cytotoxicity, and immune-regulatory functions to potentiate host antitumor immunity. Advances in synthetic biology have enabled
the engineering of bacterial outer membrane vesicles (OMVs) and programmable live microorganisms, such as Escherichia coli Nissle 1917 (EcN),
further augmenting the efficacy and precision of lung cancer immunotherapeutic strategies.
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prebiotic-based “barrier” system that not only increased EcN’s

survival in simulated gastric acid but also extended its intestinal

retention time. Mechanistic investigations revealed that this

prebiotic-EcN synergy reshapes gut microbiota composition and

stimulates the production of SCFAs, particularly butyrate, offering

an innovative strategy for managing inflammation-associated CRC

(106). Further studies combining probiotics with prebiotics

demonstrated that orally administered prebiotic-coated probiotic

spores (spores-dex) modulate the gut microbiome, enrich SCFA-

producing bacteria (e.g., Eubacterium and Roseburia), and

significantly boost overall microbial diversity. Notably, these

spores exhibited specific enrichment within CRC cells, where they

locally produced anticancer SCFAs, effectively suppressing tumor

growth (107).
5.3 Microbiota-derived nanomaterials

Advances in nanotechnology have positioned probiotic-derived

nanomaterials as promising agents for personalized medicine. In

drug delivery systems, these materials enable precision-targeted

tumor therapies. For instance, Li et al. (108) employed the

anaerobic probiotic Bifidobacterium infantis as a pre-implanted

carrier to recruit bacteria, achieving localized enrichment of

nano-drug missiles in hypoxic tumor regions of lung cancer. This

approach enhances probiotic stability and bioavailability while

amplifying therapeutic outcomes and minimizing adverse effects

(109). In selective anti-tumor research, metabolite-driven

nanosynthesis techniques offer distinct advantages. The Repotente

group engineered gold nanoparticles using Lactobacillus acidophilus

metabolites, which selectively targeted breast cancer MCF7 and

lung cancer A549 cells (IC50: 0.075 mM and 0.07 mM, respectively)

in vitro but remained nontoxic to normal cells and myoblasts (110).

Shehata et al. (111) synthesized exopolysaccharide-coated selenium

nanoparticles, demonstrating their antioxidant and anti-lung

cancer potential. However, the IC50 against A549 cells (5.324 µg/

mL) highlighted efficacy disparities across nanomaterial systems.

Nanomaterials can also enhance the host immune response by

modulating the microbiome (112). Zheng et al. (113) further

showed that silver nanoparticle-embedded mucoadhesive

hydrogels, by modulating oral microbiota (Peptostreptococcus),

potentiated PD-1 blockade efficacy in a mouse model of oral

squamous cell carcinoma (Figure 2).
6 Conclusion

This review synthesizes current evidence on the interplay between

the pulmonary microbiome and lung carcinogenesis, highlighting its

therapeutic relevance in immunotherapy. Nevertheless, existing

research exhibits critical limitations (1): Predominantly cross-

sectional designs restrict insights into microbial dynamic evolution

(2); Methodological variability in sampling sites (e.g., sputum, BALF,
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tissue biopsies) and sequencing protocols compromises

reproducibility and cross-study comparability (3); While correlative

evidence underscores associations between lung microbiota

composition/diversity and cancer outcomes, causative mechanisms

remain poorly characterized (4); Greater attention must be paid to the

interaction between airway microbiota and the host, as well as the

potentially distinct effects and mechanisms of antibiotics in the gut

versus the lungs; Moving forward, multidisciplinary approaches

integrating single-cell spatial transcriptomics, metabolomics, and

multi-omics are imperative to decode the microbiome-tumor-

immune axis. Rigorous multi-center trials are needed to validate

microbial biomarkers for clinical translation, alongside innovative

therapies to enhance efficacy and minimize toxicity (46). Additionally,

the safety and ethical implications of microbiome modulation

demand thorough consideration to ensure clinical feasibility

and safety.
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