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Significance of SUMOylation in
breast cancer progression:
a comprehensive investigation
using single-cell analysis
and bioinformatics
Wenxing He1, Zhengkui Sun1, Dongmei Li2* and Tenghua Yu1*

1Breast Cancer Center, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical
College), Nanchang, China, 2Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi
Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, China
Background: Breast cancer remains a major global health challenge because of

limitations in early detection and therapeutic outcomes. This study employed

bulk and single-cell RNA sequencing to investigate SUMOylation-associated

molecular networks, aiming to identify prognostic biomarkers and potential

therapeutic applications.

Methods: Transcriptomic profiling was performed on 1,445 breast cancer and

113 normal samples to identify differentially expressed genes. Four hub genes,

NR3C2, CDCA8, AURKA, and PLK1, were prioritized using machine learning.

Consensus clustering stratified patients into molecular subtypes based on the

hub gene expression patterns. Differential immune infiltration analysis was used

to evaluate 28 immune cell populations between the subtypes. Hub gene-

immune cell interactions were visualized using bubble diagrams.

Pharmacogenomic sensitivity profiling was performed using subtype-specific

drug response data. Single-cell sequencing identified epithelial subclusters

enriched for hub genes, and transcription factor networks were analyzed using

SCENIC. Pan-cancer validation was performed to assess the oncogenic role of

hub genes in 21 malignancies. Statistical significance was determined using the

Student’s t-test (p < 0.0001).

Results: Tumor tissues exhibited significant upregulation of CDCA8, AURKA, and

PLK1, whereas NR3C2 was notably downregulated (p < 0.0001). Consensus

clustering identified two distinct molecular subtypes: Subtype1, characterized

by NR3C2 upregulation and poorer prognosis, and Subtype2, distinguished by

enhanced expression of CDCA8, AURKA, and PLK1, correlating with favorable

outcomes. Notably, PIK3CAmutations were prevalent in Subtype1, whereas TP53

mutations dominated Subtype2. Immune infiltration profiles differed significantly

between the two subtypes for most immune cell types. Pharmacogenomic

assessments revealed distinct drug sensitivity profiles for each subtype in

response to various therapeutic agents. A pan-cancer analysis of the four hub

genes demonstrated consistent expression patterns, immune correlations, and

prognostic associations across malignancies.
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Conclusion: Our findings reveal that SUMOylation subtypes in breast cancer

exhibit distinct prognostic, immunological and pharmacogenomic profiles.

These insights may provide candidate biomarkers for future personalized

treatment strategies for breast cancer and potentially for other malignancies.
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1 Introduction

Breast cancer (BRCA) is a major malignancy affecting women

globally, imposing substantial multifaceted challenges, including

physical and psychological distress and socioeconomic challenges,

particularly concerning healthcare expenditures and long-term care

costs (1). Epidemiological data reveal that BRCA is the most

prevalent form of cancer among women, accounting for 11.7% of

all cancer cases and serving as the leading cause of cancer-related

mortality in this population (2). Current clinical interventions for

BRCA include surgical resection, radiation therapy, and systemic

pharmacological regimens (chemotherapy and targeted therapies).

However, these approaches have persistent limitations in terms of

early detection precision, therapeutic personalization, and drug

resistance management (3, 4). This study addresses the critical

unmet needs by systematically exploring novel molecular

biomarkers and therapeutic targets to enhance diagnostic

accuracy and optimize treatment paradigms in breast oncology.

In this study, we investigated the role of SUMOylation (small

ubiquitin-like modifier) in breast carcinogenesis. As a crucial post-

translational modification, SUMOylation modulates the expression

of both oncogenic and tumor suppressor genes, thereby regulating

fundamental cellular activities, including gene expression, cell cycle

progression, stress responses (5), and epithelial–mesenchymal

transition (EMT) (6–8). SUMOylation is pivotal in tumor EMT,

metastasis, and resistance to therapy (9). Emerging data implicate

SUMOylation in immune evasion mechanisms by influencing

immune cell functionality within the tumor microenvironment

(TME) (10–12). Its specific roles in mitotic regulation,

transcriptional control, and DNA damage response make it a

high-value focus for breast cancer research (13–15).

Despite this progress, the integrated bulk and single-cell RNA

sequencing characterization of SUMOylation networks, their

clinical relevance to BRCA heterogeneity, and their translational

potential for immune microenvironment modulation remain

underexplored. Therefore, further study of SUMOylation in

BRCA will not only elucidate the molecular mechanisms but may

also offer new targets and strategies for the diagnosis and

management of BRCA. To address these challenges, this study

focused on a specific molecular process, SUMOylation. We

employed an integrative bioinformatics framework combining

bulk transcriptomic profiling (16), single-cell RNA sequencing
02
(scRNA-seq) (17), and weighted gene co-expression network

analysis (WGCNA) (18) with machine learning models (19) to

decode SUMOylation-associated molecular networks. The strength

of this study lies in the integration of bulk and single-cell RNA

sequencing data, combined with computational approaches, to

investigate breast carcinogenesis with a focus on SUMOylation.

Our primary objective was to identify hub genes associated with

SUMOylation and their roles in mammary tumorigenesis, laying

the groundwork for early diagnostic biomarkers and personalized

therapies for BRCA. The flowchart of this study is shown

in Figure 1.
2 Materials and methods

2.1 Acquisition and analysis of routine
transcriptome data

All datasets employed in this study were publicly available and

obtained from the Gene Expression Omnibus (GEO; https://

www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas

(TCGA; https://portal.gdc.cancer.gov/) databases. Initially, the

datasets GSE20685 and GSE42568 were acquired from the GEO

database using the R package “GEOquery” (v2.62.2). GSE20685,

sequenced on the Affymetrix U133 Plus 2.0 platform (HG-

U133_Plus_2 array, GPL570), comprised 327 BRCA samples with

complete survival information. GSE42568, also sequenced on the

GPL570 platform, contained 121 samples, including 17 normal

breast tissue controls and 104 BRCA samples. Additionally, whole-

genome expression profile data in TPM format and clinical data for

BRCA tissues were retrieved from TCGA using the bioinformatics

toolkit TCGAbiolinks (v2.25.0) in the R environment (16). The

TCGA-BRCA dataset encompassed 1231 samples, with 1118 tumor

samples (BRCA) and 113 control samples (Control).

Various analytical sets were constructed from these data to

satisfy specific requirements. Particularly, 1118 BRCA samples with

complete clinical information and 113 control samples from

TCGA-BRCA (n = 1231) were merged with 327 BRCA samples

with complete clinical information from GSE20685 (n = 327),

resulting in a training set of 1445 BRCA samples and 113 control

samples. This dataset was used for all analyses except single-cell

analysis (where only the 1445 BRCA samples were used for
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consensus clustering analysis). The 104 BRCA samples and 17

control samples from GSE42568 (n = 121) were used for external

validation to assess the generalizability of the results. The ComBat

method from the R package “sva” (v3.42.0) was utilized to correct

for batch effects induced by non-biological technical variations (20)

(Supplementary Figure S1). The correction efficacy was examined

using principal component analysis (PCA). This study followed all

relevant data usage protocols established by the respective

reposi tor ies . From the GeneCards database (https : / /

www.genecards.org/), 511 SUMOylation-related genes were

identified (Supplementary Table S1).
2.2 Acquisition and computational analysis
of single-cell sequencing datasets

The GEO functions as a primary repository for the deposition

and retrieval of single-cell sequencing data, encompassing various

experimental designs and tissue-specific profiles. We retrieved the

scRNA-seq dataset GSE161529 from the NCBI GEO database to

investigate BRCA heterogeneity at the single-cell resolution. The

GSE161529 dataset, sequenced on the GPL18573 Illumina NextSeq

500 (Homo sapiens) platform, comprised 13 samples annotated as

normal controls and 38 tumor samples from patients with

adenocarcinoma as disease samples, all of which were included in

this study. Initially, low-quality cells and genes were excluded based

on the following specific criteria: (1) cells with a gene expression

range between 200 and 7,000; (2) cells with unique molecular

identifier counts below 75,000; (3) cells with a mitochondrial gene

percentage of less than 25%; and (4) cells with a gene-to-read count
Frontiers in Immunology 03
ratio exceeding 0.7. Data normalization was conducted using the

“normalizedata” function found within the Seurat R package.

Following this normalization, highly variable genes within single

cells were identified by evaluating the balance between the average

expression levels and their corresponding dispersion. Subsequently,

PCA was performed, with significant principal components (PCs)

serving as the basis for graph-based clustering. The Harmony

method was applied to address and mitigate batch effects present

across the various samples. For clustering, we used the FindClusters

function, which is based on a clustering algorithm optimized for

shared nearest neighbor modularity, generating 27 clusters on 15

PCs with a resolution of 0.6. UniformManifold Approximation and

Projection (UMAP) was implemented using the “RunUMAP”

algorithm. UMAP-1 and UMAP-2 were used to demonstrate the

cell clustering. To identify differentially expressed genes (DEGs)

across distinct cellular subpopulations, we performed a

computational analysis using the default parameters set by Seurat

on normalized transcriptomic datasets. Following the identification

of cellular clusters using type-specific molecular markers (21), a

quantitative assessment of cellular subtype distribution

was conducted.
2.3 Analysis of regulatory networks at the
single-cell level (transcription factors)

We conducted a cis-regulatory analysis using pySCENIC

(v0.11.2) to identify the key transcription factors (TFs) across

various cell types (22). This tool infers gene regulatory networks

by examining co-expression patterns and performing DNA motif
FIGURE 1

Research flowchart. BRCA, Breast cancer; ceRNAs, competing endogenous RNAs; DEGs, differentially expressed genes; DGIdb, the Drug-Gene
Interaction Database; GSEA, Gene Set Enrichment Analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TIDE, Tumor
Immune Dysfunction and Exclusion; RBP, RNA binding protein; SCENIC, Single-Cell Regulatory Network Inference and Clustering; TF, transcription
factor; TMB, tumor mutation burden.
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analysis. Subsequently, the network activity for each cell type was

evaluated by calculating the area under the curve (AUC).

Briefly, we used GENIE3 to identify TFs and assemble them into

modules (rules), followed by gene-motif enrichment analysis using

RcisTarget, focusing on the regions 500 base pairs upstream to 100

base pairs downstream of the transcription start site. Subsequently,

we assessed the activity of the rules for each individual cell within

the dataset using AUCell. Ultimately, we visualized the activity of

the binarized regulatory subnetwork using a tSNE plot. TFs

corrected by the Benjamini–Hochberg false discovery rate (FDR)

< 0.05 were considered for further investigation. Subsequently, we

applied Pearson’s correlation analysis to quantify the association

between the rules and IFN-I scores.
2.4 Network-based co-expression profiling
using weighted correlation and functional
module detection

Based on the training set, a co-expression network was

established using WGCNA, employing V1.70–3 of the

corresponding R package (18). To construct a biologically

meaningful scale-free network, pairwise gene expression

similarities were quantified using Pearson’s correlation analysis.

This was followed by a power function transformation of the

resulting correlation coefficients for the network edge weighting.

The weighted adjacency matrix was constructed by applying a

power transformation (b = 5) to the co-expression similarity

measures using the R package “PickSoftThreshold.” Gene

modules, representing highly interconnected clusters of genes

with coordinated expression patterns, were identified through

hierarchical clustering in WGCNA, with color coding used for

visual differentiation of the modules. The dynamic tree cut

algorithm was implemented for module detection in network

analysis. During the module identification phase, the adjacency

matrix (which quantifies topological similarity) was transformed

into a topological overlap matrix). Subsequent module recognition

was achieved using hierarchical clustering analysis. Pearson

correlations between module eigengenes (MEs, the first PCs) and

SUMOylation-related genes were analyzed to identify module–

SUMOylation associations. Modules significantly associated with

senescence-related genes were identified using network analysis.

Gene co-expression patterns were illustrated using topological

overlap heatmaps to characterize network architecture. Module

interactions were subsequently analyzed by generating two

complementary representations: a hierarchical dendrogram of

eigengene relationships and corresponding correlation heatmap.
2.5 Consensus clustering analysis

The BRCA samples (n = 1,445) in the training cohort were

stratified into molecular subtypes through consensus clustering

analysis of SUMOylation-associated gene expression patterns,

performed using the R package ConsensusClusterPlus (v1.58.0)
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(23). The clustering procedure was iterated 1000 times with k = 6

to ensure robust stability in pattern identification.
2.6 Machine learning

Feature selection and model optimization were performed using

three complementary methods. The Support Vector Machine–

Recursive Feature Elimination (SVM-RFE) algorithm, implemented

via the e1071 R package, systematically reduced feature

dimensionality through recursive elimination of low-weight features

using a linear kernel, with 10-fold cross-validation. Linear model

optimization with variable retention was conducted through Least

Absolute Shrinkage and Selection Operator (LASSO) regression via

the glmnet package (v4.1-4), applying L1 regularization under a

binomial distribution. The optimal regularization parameter l was

selected as l.min through 10-fold cross-validation. Random forest

analysis was carried out using the randomForest package, with ntree

set to 500 and mtry tuned to minimize out-of-bag error. The mtry

value, which represents the number of variables randomly sampled as

candidates at each split, was determined using the minimum error.

Additionally, the ntree value, which indicates the number of trees to

be cultivated within the forest, was selected based on the image value

that exhibited stability. Using mean decrease in accuracy (MDA) and

mean decrease in Gini index (MDG) as feature importance criteria,

we identified the top 10 DEGs through random forest analysis.

Subsequently, by integrating the results from SVM-RFE, LASSO,

and random forest, the intersection of genes identified by all three

algorithms was taken, yielding the robust hub genes for

further investigation.
2.7 Differential analysis

We utilized the FindAllMarkers function from the “Seurat” R

package with default settings, specifically |log2Fold Change

(log2FC)| > 0.25 and an adjusted p-value (adj.p) < 0.05, to

identify DEGs between key cell types and other cell groups. To

identify DEGs between BRCA tissues and their corresponding

healthy control samples, as well as among various disease

subtypes, we used the “limma” R package (v3.50.0) with screening

criteria of |log2FC| > 1 and adj.p < 0.05.
2.8 Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
pathway enrichment analyses

The Gene Ontology (GO) (24) enrichment analysis

systematically evaluates three principal ontological domains:

biological processes (BP), molecular functions (MF), and cellular

components (CC). Kyoto Encyclopedia of Genes and Genomes

(KEGG) (25), a widely recognized biological database, enables

systematic identification of dysregulated metabolic pathways

associated with specific gene clusters. The overlapping gene set
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underwent GO and KEGG pathway enrichment analyses using the

clusterProfiler R package (v4.2.2) (26), with statistical significance

set at p < 0.05.
2.9 Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) (27), a computational

methodology, evaluates whether predefined gene sets demonstrate

statistically significant and concordant variations between distinct

biological states. The R package “limma” (v3.50.0) (28) was used to

conduct differential expression analysis comparing gene expression

among subtypes identified through consensus clustering, resulting

in subtype-specific fold change (FC) values. GSEA was performed

with the clusterProfiler package (v4.2.2) using genes ranked by

log2FC values.All statistical evaluations employed 1000 stochastic

rearrangements of genetic clusters. The c2.cp.kegg. v7. 5.1. symbols

gene set from the Molecular Signatures Database (MSigDB) served

as the reference gene set (28–30). Gene sets exhibiting p-values

below the 0.05 threshold were defined as statistically enriched.
2.10 Immune microenvironment profiling

The single-sample Gene Set Enrichment Analysis (ssGSEA),

derived from the conventional GSEA methodology, was used to

calculate individual enrichment scores for specific gene sets across

separate biological samples (31). This method quantifies the level of

coordinated activation or suppression of defined gene sets within

individual samples, assigning specific scores to each sample–

pathway combination.

Immune cell marker gene datasets were obtained from the

Tumor–Immune System Interaction Database. The comprehensive

collection encompassed major lymphocyte subsets and myeloid

populations: (1) T cell subsets: activated, central memory, and

effector memory populations in both CD8+ and CD4+ lineages,

along with specialized T helper cells (follicular, gd, Th1, Th2, and
Th17) and regulatory T cells; (2) B cell lineages: activated, immature,

and memory phenotypes; (3) natural killer populations: CD56bright,

CD56dim, and NKT cells; (4) dendritic cell subsets: activated,

plasmacytoid, and immature variants; and (5) innate immune

components: macrophages, monocytes, neutrophils, eosinophils,

mast cells, and myeloid-derived suppressor cells (32).

The gene expression profiles of individual samples were

analyzed to obtain relative enrichment scores for distinct immune

cell populations. To compare immune infiltration patterns across

molecular subtypes, graphical representations were generated using

the ggplot2 package (v3.3.6) in R (33).
2.11 Tumor Immune Dysfunction and
Exclusion

The Tumor Immune Dysfunction and Exclusion (TIDE)

computational framework (http://tide.dfci.harvard.edu) was used

to evaluate immunotherapy responsiveness in clinical cohorts (34).
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2.12 Immune checkpoints

A comparative analysis of key immune checkpoint genes was

performed across the cohorts. These regulatory molecules modulate

signaling modulators in immune cells, maintaining a balance of

immune activation thresholds by preventing hyperimmune responses.
2.13 Tumor mutational burden
quantification

Genomic variations were analyzed using the mutation data

from 991 BRCA tissue samples . The MAF-compliant

bioinformatics toolkit (v2.10.05) was used to characterize somatic

alterations, including single nucleotide polymorphisms, insertions/

deletions, tumor mutation burden (TMB), and mutation

frequencies across different clusters (35). The 20 most frequently

mutated genes (FMGs) were identified as key oncogenic drivers of

malignancy progression (36).
2.14 Pharmacological responsiveness
profiling

Therapeutic drug sensitivity across BRCA subtypes was

evaluated using half-maximal inhibitory concentration (IC50)

values and gene expression profiles from the Genomics of Drug

Sensitivity in Cancer database (release 2022) (37). The oncoPredict

algorithm (v0.2) was used for the computational modeling (38).
2.15 Chemogenomic interplay investigation

Prognostic genes were screened against the Drug–Gene

Interaction Database (DGIdb; https://www.dgidb.org) (39) to

identify existing agonists or inhibitors with the aim of

repurposing approved BRCA therapeutics.
2.16 Pan-cancer data analysis

We conducted a comprehensive pan-cancer analysis of these

key genes, assessing their transcriptional profiles in malignant

tumors, prognostic implications, and their relationship with the

characteristics of the immune microenvironment. Whole-genome

expression and clinical data for 33 cancer types were retrieved from

TCGA using the TCGAbiolinks package (v2.25.0) in R. We

calculated the differences in gene expression between tumor and

normal samples across the 33 cancer datasets from the TCGA

database using the Wilcoxon test. For survival analysis, we used a

univariate Cox regression model to evaluate the effect of prognostic

gene expression on cancer prognosis. Finally, we computed the

immune infiltration scores for all tumor samples using the ssGSEA

algorithm and assessed the correlation between the immune

infiltration scores and the expression levels of the prognostic genes.
frontiersin.org

http://tide.dfci.harvard.edu
https://www.dgidb.org
https://doi.org/10.3389/fimmu.2025.1675874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2025.1675874
2.17 RNA-binding protein–mRNA
interactome modeling

This study explored ncRNA interactions via the StarBase platform

(https://starbase.sysu.edu.cn/tutorialAPI.php#RBPTarget) using CLIP-

seq, degradome-seq, and RNA–RNA interaction data to investigate

the correlations between mRNA and RNA-binding protein (RBP)

expression. In BRCA studies, we established significance thresholds

(p < 0.05) and minimum cluster/clip-exposure thresholds (both ≥5)

to identify biologically significant mRNA–RBP interactions. These

validated pairs were subsequently visualized as interaction networks

using Cytoscape software(v3.9.1).
2.18 TF interconnectivity profiling

TFs regulate gene expression by binding to DNA in a sequence-

specific manner, thereby coordinating various cellular processes

and developmental pathways. The TRRUST database (http://

www.grnpedia.org/trrust/) provides curated transcriptional

regulation data encompassing 8444 human TF–target interactions

(800 TFs) and 6552 murine entries (828 TFs). This resource allows

for the systematic identification of shared transcriptional regulators

in functionally related gene clusters.
2.19 ceRNA network construction

To address the incomplete understanding of competing

endogenous RNA (ceRNA) mechanisms in BRCA pathogenesis,

we conducted reverse miRNA prediction for key genes using three

validated databases: miRTarBase (https://mirtarbase.cuhk.edu.cn/-

miRTarBase/miRTarBase_2022/php/index.php) (40), starBase 2.0

(https://starbase.sysu.edu.cn/starbase2/index.php) (41), and

miRDB (https://mirdb.org/index.html). This endeavor sought to

predict the lncRNAs that share miRNAs with these crucial genes,

ultimately facilitating the construction of a ceRNA network.
2.20 Statistical analysis

Statistical analyses were conducted using R software (v4.1.2).

We used Spearman’s rank correlation to evaluate the association

between variables. Statistical comparisons between groups were

performed using the Wilcoxon rank-sum test. Survival differences

between molecular subtypes were compared using the Kaplan–

Meier method and assessed with the log-rank test. Hazard ratios

(HR) and 95% confidence intervals (CI) were calculated to quantify

the magnitude of prognostic differences. Statistical significance was

defined as a two-tailed p-value of < 0.05.
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3 Results

3.1 Screening of the module most relevant
to SUMOylation using WGCNA

A comparative transcriptome analysis between BRCA and

control samples revealed 1738 DEGs meeting statistical thresholds

(|log2FC| > 1; FDR-adj.p < 0.05). In BRCA samples, 669 genes were

upregulated and 1069 were downregulated compared to those in the

controls (Supplementary Table S2).The differential expression

profile is illustrated in a volcano plot (Figure 2A).Additionally, a

heatmap was used to display the top five upregulated genes

(MMP11, NEK2, COL10A1, PAFAH1B3, and ASF1B) and the five

most significantly downregulated genes (CA4, CD300LG, GLYAT,

TSLP, and SCARA5) ranked by p-value (Figure 2B). Subsequently,

WGCNA identified the SUMOylation-associated gene modules.

Scale independence and mean connectivity analyses demonstrated

that a soft thresholding power of 5 (Figure 2C) achieved optimal

network properties, with a mean connectivity approaching 0 and

scale independence exceeding 0.85. Eleven co-expression modules

were identified, excluding unrelated genes clustered in the gray

module (Figure 2D). A heatmap depicting the eigengene network

was used to examine inter-module connections and identify

associated features (Figure 2E). To investigate the functional

relevance of module-associated genes, we correlated the 11 MEs

with SUMOylation phenotype genes and identified the key

associations. The module–trait correlation heatmap (Figure 2F)

revealed that the blue module (containing 639 genes) most

accurately reflected SUMOylated protein modifications. A scatter

plot of SUMOylation-related genes versus blue module

membership values indicated a strong positive correlation (cor =

0.69, p < 0.05) (Figure 2G), suggesting that the key hub components

within the blue module were strongly associated with

SUMOylation-related gene characteristics. Subsequently, we

identified 20 genes at the intersection of DEGs between the

BRCA and control groups, blue module genes, and SUMOylation

phenotype genes, and plotted a Venn diagram. These genes are

potentially involved in BRCA pathogenesis and progression and

their association with SUMOylation is illustrated in Figure 2H.

To explore the biological roles of the 20 overlapping genes, we

performed Gene Ontology (GO) term enrichment (Supplementary

Table S3) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analyses (Supplementary Table S4). GO analysis revealed

significant enrichment in biological processes (BP), including

nuclear division, G2/M phase transition, and mitotic cycle phase

transitions; cellular components (CC), including chromosomal

regions, condensed chromosomes, and spindle microtubules; and

molecular functions (MF), including histone kinase, protein serine

kinase, and ATP-dependent DNA-binding activities (Figure 2I).

KEGG pathway analysis (Supplementary Table S4) identified

enrichment in cellular processes, including the cell cycle, oocyte
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FIGURE 2

WGCNA-based characterization of co-expression modules correlated with SUMOylation modification. (A) Volcano plot illustrating DEGs in BRCA
versus control specimens. (B) Heatmap displaying the five most significantly upregulated and downregulated DEGs across study cohorts. (C) Soft
thresholding power plot showing the scale-free topology model fit index (R²) at b=5. (D) WGCNA revealing distinct modules of co-expressed data.
(E) Module eigengene interaction heatmap with chromatic representation of inter-module correlations (red: high, blue: low), diagonal elements
denoting meta-module relationships. (F) Consensus module-trait association matrix quantifying correlations between eigengenes and SUMOylation
status, with color-coded coefficients and corresponding p-values. (G) Scatterplot demonstrating concordance between gene significance for
SUMOylation and intramodular connectivity within the blue module (Cor = Pearson correlation coefficient). (H) Three-way Venn diagram depicting
overlapping gene sets from differential expression analysis, SUMOylation-associated genes, and network modules. (I) GO enrichment analysis
visualization using lollipop plot of the intersection genes. (J) KEGG pathway enrichment profile presented in lollipop plot format.
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meiosis, and cellular senescence; genetic information processing,

including homologous recombination, the Fanconi anemia

pathway, and polycomb repressive complex; human diseases,

including platinum drug resistance and pancreatic cancer; and

organismal systems, including progesterone-mediated oocyte

maturation (Figure 2J).
3.2 Hub gene selection using machine
learning algorithms

To identify the most significant genes among the 20 overlapping

genes, we applied LASSO regression, random forest, and SVM-RFE.

LASSO regression identified 19 candidate genes (Figures 3A, B).

The random forest method, using MDA and MDG feature weights,

highlighted four key genetic markers from the top 5 candidate genes

(Figures 3C, D). Using SVM-RFE analysis, we identified 10 key

biomarkers (Figures 3E, F). The intersection of results from these

three selection methods identified four central genes (NR3C2,

CDCA8 , AURKA , and PLK1) for further investigation

(Figure 3G). Protein interaction analysis using GeneMANIA

(https://genemania.org/) revealed functional associations between

these core genes and 20 associated partners (Figure 3H).

Next, we evaluated the differences in hub gene expression

between the BRCA and control groups. The four hub genes

demonstrated significant differential expression between groups.

The expression levels of pivotal regulatory genes (CDCA8, AURKA,

and PLK1) were significantly higher in tumor samples than in

control samples, whereas NR3C2 was significantly downregulated in

cancerous tissues (Figure 3I). Validation using the external dataset

GSE42568 confirmed the consistent differential expression of these

genes, which aligned with the training set findings. These findings

underscore the potential role of these hub genes in BRCA

pathogenesis and their possible therapeutic relevance (Figure 3J).
3.3 Hub gene-based subtyping analysis

First, based on the four hub genes, we applied consensus

clustering to categorize the BRCA samples (n = 1445) into

distinct subtypes (Figures 4A, B). For clustering, we selected k = 2

and used the pearson_pam algorithm, resulting in two groups:

Subtype1 and Subtype2. We then examined the expression of hub

genes across the subtypes. Subtype1 showed significantly elevated

expression of the critical regulatory gene NR3C2, whereas three

pivotal cell cycle regulators (CDCA8, AURKA, and PLK1) were

markedly overexpressed in Subtype2. These genes showed

significant differential expression between the groups (Figure 4C).

Furthermore, prognostic analysis revealed that there were

differences in patient outcomes between the two subtypes,

specifically with Subtype2 demonstrating a better prognosis

compared to Subtype1 (p = 0.026; Figure 4D).
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3.4 Immune infiltration profiling across
subtypes

Using ssGSEA, we quantified the immune infiltration of 28 cell

types in 1445 BRCA samples (Figure 5A, Supplementary Table S5).

Particularly, we analyzed the differences in the immune infiltration

profiles of 28 cell types between Subtype1 and Subtype2. Most

immune cells demonstrated significant differences in infiltration

between the subtypes, except for activated B cells, CD56bright

natural killer cells, central memory CD8+ T cells, effector

memory CD8+ T cells, immature dendritic cells, and neutrophils

(p < 0.05; Figure 5B).

Furthermore, we generated a bubble diagram illustrating the

interactions between hub genes and immune cell populations

(Figure 5C). Notably, the four hub genes demonstrated significant

associations with 26 of the 28 immune cell types analyzed,

indicating their potential regulatory roles in BRCA prognosis

through immune modulation.
3.5 Inter-subtype GSEA

To investigate the molecular basis of gene expression differences

between Subtype1 and Subtype2 and to identify the primary

contributors to varying patient risks, we conducted GSEA

between these two subtypes. Using pathway data from the

MSigDB with a significance threshold of p < 0.05, we identified

the most significantly enriched pathways based on the Normalized

Enrichment Score (NES) ranking (Supplementary Table S6). GSEA

revealed significant pathway enrichment in Subtype2, with notable

activation in the following pathways: cell cycle (NES = 2.8349),

DNA replication (NES = 2.4403), and proteasome (NES = 2.2513).

All three pathways showed statistical significance (adj.p = 0.0172;

FDR = 0.0119), as illustrated in Figures 6A–C. Conversely,

complement and coagulation cascades (NES = −2.0074, adj.p =

0.0172, FDR = 0.0119; Figure 6D), ECM receptor interaction (NES

= −2.1226, adj.p = 0.0172, FDR = 0.0119; Figure 6E), and focal

adhesion (NES = −2.1391, adj.p = 0.0172, FDR = 0.0119; Figure 6F)

were significantly enriched in the Subtype1 than in the Subtype2.

Negative NES values indicated relative enrichment in Subtype1

compared to Subtype2.
3.6 Regulatory architecture modeling and
protein interplay profiling

To explore the interactions between RBPs and mRNAs, we used

the StarBase database to identify and download mRNA/RBP pairs

associated with the four hub genes. Using target gene interaction

data from the dataset, we established an RBP–mRNA regulatory

network (Supplementary Figure S2A). This comprehensive network

architecture comprised 73 nodes (69 RBPs and 4 mRNAs)
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FIGURE 3

Screening of hub genes using machine learning methods. (A) The trace plot of the LASSO regression coefficients as a function of log(lambda), where
the horizontal axis displays lambda’s logarithmic tuning parameter values while the vertical axis shows coefficients derived through independent
calculations. (B) LASSO regression cross-validation curves for each lambda. (C) Comparison of the error rate of the Random Forest algorithm with
the number of trees in the forest. (D) The top five phenotype-related DEGs ranked by two types of importance measures in the Random Forest
algorithm. (E) Accuracy curve of the Support Vector Machine (SVM). (F) Error rate curve of the SVM. (G) Venn diagram showing the identification of
hub genes. (H) Protein interaction network among hub genes. (I) Boxplot illustrating hub gene expression levels (BRCA vs. controls). (J) Box plots
assessing hub gene expression profiles in BRCA vs. control cohorts using GSE42568. Statistical significance levels are denoted as follows: ****p <
0.0001, *p < 0.05.
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connected by 156 regulatory edges, demonstrating intricate post-

transcriptional regulation patterns.

To investigate the molecular mechanisms mediated by hub

genes in BRCA, we established a tripartite RNA interaction

network encompassing mRNAs, miRNAs, and lncRNAs. The data

revealed only three hub genes (NR3C2, CDCA8, and AURKA) as

target mRNAs. The constructed mRNA–miRNA–lncRNA network

consisted of 29 nodes, including 9 miRNAs, 3 mRNAs, and 17

lncRNAs, and 116 edges (Supplementary Figure S2B).

Using the TRRUST database, we screened TFs interacting with

key genes and mapped regulatory networks involving two hub genes

(AURKA and PLK1) and six TFs. These interactions were visualized

using Cytoscape software (Supplementary Figure S2C).

To investigate the potential functional associations between the

identified hub genes, we performed protein–protein interaction

(PPI) analysis using the STRING database (https://cn.string-

db.org/). Bioinformatics analysis revealed direct PPIs among three

cell cycle regulators: CDCA8, AURKA, and PLK1 (Supplementary

Figure S2D).
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In summary, our network analyses revealed extensive post-

transcriptional interactions focused on the hub genes,

encompassing RBP regulation with 69 proteins, a ceRNA network

of 29 nodes, transcriptional modulation by 6 transcription factors,

and direct protein interactions among CDCA8, AURKA and PLK1,

highlighting their central roles in BRCA regulatory pathways.
3.7 Analysis of TMB, TIDE, immune
checkpoints, and drug sensitivity between
subtypes

To evaluate specific gene mutations in BRCA, we conducted a

TMB analysis between Subtype1 and Subtype2, highlighting the 20

most FMGs. Within these groups, PIK3CA exhibited the highest

mutation rates in Subtype1, whereas TP53 had the greatest

mutational prevalence in Subtype2 (Figures 7A, B).The TIDE

analysis results comparing the two molecular subtypes are
FIGURE 4

Subtype analysis of BRCA samples using hub genes. (A) Clustering heatmap. (B) Cumulative distribution function plot. (C) Boxplot illustrating hub
gene expression across subtype1 and subtype2. (D) Survival analysis curve between subtype1 and subtype2. Statistical significance levels are denoted
as follows: ****p < 0.0001.
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presented in Figures 7C, D. Subtype2 exhibited significantly lower

TIDE scores (Tumor Immune Dysfunction and Exclusion scores)

and exclusion scores compared to Subtype1. Conversely, Subtype1

demonstrated elevated dysfunction scores compared to Subtype2.

This differential pattern implies that Subtype1 may possess greater

potential for immune evasion mechanisms, as evidenced by its
Frontiers in Immunology 11
distinct TIDE profile characteristics. Comparative analysis of

immune checkpoint expression revealed significant differences

between Subtype1 and Subtype2. All evaluated genes, except

CD28, demonstrated statistically significant differential expression

across the groups (Figure 7E), suggesting distinct immunotherapy

response potentials between the molecular subtypes.
FIGURE 5

Comparative immune cell infiltration between subtype1 and subtype2. (A) Comparative visualization of immune cell distribution in subtype1 versus
subtype2 breast carcinoma specimens using segmented columns. (B) Boxplot of immune cell proportions between subtypes 1 and 2. (C) Bubble plot
of the correlation between hub genes and immune cells. Statistical significance levels are denoted as follows: ****p < 0.0001, ***p < 0.001, **p <
0.01, *p < 0.05.
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We further assessed the predictive accuracy of molecular

subtypes for chemotherapy response in patients with BRCA. The

clinical efficacies of several chemotherapeutic drugs in BRCA

treatment were investigated (Supplementary Table S7). The

findings suggest that patients with Subtype1 might be more

responsive to chemotherapy with AZD7762_1022 (Figure 7F),

Bortezomib_1191 (Figure 7G), MG-132_1862 (Figure 7H), and

Sepantronium bromide_1941 (Figure 7I). Conversely, patients

with Subtype2 might respond more sensitively to chemotherapy

with AZD8055_1059 (Figure 7J), BMS-754807_2171 (Figure 7K),

GNE-317_1926 (Figure 7L), PD0325901_1060 (Figure 7M), and

Trametinib_ 1372 (Figure 7N). These results suggest the potential

regulatory effects of chemotherapeutic drugs on SUMOylation.
3.8 Drug-gene interaction analysis

A search of the DGIdb for drugs targeting the four BRCA-

related hub genes revealed three significant interactions: AURKA

with the Aurora A kinase inhibitor MK5108, NR3C2 with

Finerenone, and PLK1 with MK-1496, which exhibited the

strongest binding affinities (Table 1). This pharmacological

analysis identified specific drug-gene pairs with maximal

interaction scores within the database.
Frontiers in Immunology 12
3.9 Pan-cancer molecular signatures with
prognostic implications

The expression profiles of the four hub genes across various

cancers are illustrated using boxplots. Focusing on the prognostic

gene AURKA as an example (results for other prognostic genes are

shown in Supplementary Figures S3–S5), AURKA expression

differed significantly between the two groups. AURKA was

significantly upregulated in multiple malignancies, including

bladder urothelial carcinoma (BLCA), breast invasive carcinoma

(BRCA), cervical squamous cell carcinoma/endocervical

adenocarcinoma (CESC), cholangiocarcinoma (CHOL), and

gastrointestinal cancers (COAD, ESCA, STAD, and READ),

compared to normal tissues, along with notable increases in

glioblastoma (GBM), head–neck squamous carcinoma (HNSC),

renal neoplasms (KICH, KIRC, and KIRP), hepatic carcinoma

(LIHC), pulmonary malignancies (LUAD and LUSC), pancreatic

adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD),

sarcoma (SARC), and endometrial carcinoma (UCEC).

Conversely, thyroid carcinoma (THCA) demonstrated significant

downregulation (Figure 8A). Subsequent pan-cancer analysis

revealed correlations between AURKA expression patterns and 28

immune cell subtypes across 33 malignancies (Figure 8B).

Prognostic evaluation using Cox regression modeling revealed
FIGURE 6

GSEA analysis between subtype1 and subtype2 subtypes. GSEA analysis revealed significant enrichment of (A) cell cycle, (B) DNA replication,
(C) proteasome, (D) complement and coagulation cascades, (E) ECM receptor interaction, and (F) focal adhesion.
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FIGURE 7

Differential analysis of TMB, TIDE, immune checkpoints, and drug response in molecular subtypes. (A) Top-ranked 20 mutational hotspots identified in
subtype1 population. (B) Leading 20 genes demonstrating predominant mutational rates within subtype2. (C) Boxplot of TIDE analysis between subtype1 and
subtype2 subtypes. (D) Sankey diagram of TIDE analysis between subtype1 and subtype2 subtypes. (E) Boxplot showing the expression of immune
checkpoints between subtype1 and subtype2 subtypes. Differential drug sensitivity between subtype1 and subtype2 subtypes for (F) AZD7762_1022, (G)
AZD8055_1059, (H) BMS-754807_2171, (I) Bortezomib_1191, (J) GNE-317_1926, (K) MG-132_1862, (L) PD0325901_1060, (M) Sepantronium bromide_1941,
(N) Trametinib_1372. Statistical significance levels are denoted as follows: ****p < 0.0001, ***p < 0.001.
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significant associations between AURKA expression levels and

overall survival in 16 cancer types. Elevated expression correlated

with poorer outcomes in LIHC, BLCA, adrenocortical carcinoma

(ACC), PAAD, mesothelioma (MESO), KIRP, uveal melanoma

(UVM), KICH, lower-grade glioma (LGG), SARC, LUAD, KIRC,

cutaneous melanoma (SKCM), and UCEC, while demonstrating

protective effects in LUSC and thymoma (THYM) (Figure 8C).
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3.10 Dimensionality reduction in single-cell
data

To investigate cellular heterogeneity in BRCA, we analyzed the

single-cell sequencing dataset GSE161529. After rigorous quality

control and pre-processing steps, 357,292 high-quality cells were

identified through transcriptomic profiling. Cells were partitioned

into 27 distinct subpopulations using unsupervised clustering

analysis (Figure 9A). Cellular identities were subsequently

determined by analyzing the transcriptional profiles of individual

clusters, supplemented with the known lineage markers (Figures 9B,

C, Supplementary Table S8). Figure 9B delineates eight principal

cellular populations: T and B lymphocytes, macrophages,

endothelial and epithelial lineages, fibroblasts, pericytes, and

smooth muscle cells.

Finally, comparative analysis revealed distinct variations in

cellular composition between the BRCA and control groups, with
FIGURE 8

Pan-cancer biomarker prognostication. (A) Boxplot showing the expression of AURKA across multiple tumor types. (B) Thermal map depicting
AURKA-immunocyte associations across cancers. (C) Pan-cancer forest graph illustrating univariate Cox analysis of AURKA expression. Statistical
significance levels are denoted as follows: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
TABLE 1 Drug prediction.

Gene Drug Interaction score

AURKA
Aurora A kinase inhibitor

MK5108
1.8

NR3C2 Finerenone 4.12

PLK1 MK-1496 0.58
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detailed population ratios depicted in Figure 9D. Notably, the

proportion of fibroblasts showed significant changes before and

after the onset of BRCA.
3.11 Screening of key cell types

To identify the critical cellular subtypes involved in BRCA

pathogenesis, we spatially mapped the four central regulators

within the single-cell transcriptional profiles. The findings

revealed that most of these hub genes were clustered within the

epithelial cell population, identifying epithelial cells as the key cell

group (Figure 10A). We subsequently re-clustered the epithelial

cells (resolution = 0.2) and identified six subclusters, which were

labeled as four cell types: Epithelial_cluster1, Epithelial_cluster2,

Epithelial_cluster3, and Epithelial_cluster4 (Figures 10B, C).

Mapping the four hub genes onto these four cell subclusters

indicated that the majority were clustered within the

Epithelial_cluster4 (Figure 10D). Therefore, we analyzed the

d i ff e r en t i a l g enes be tween the key ce l l subc lu s t e r

Epithelial_cluster4 and the other three subclusters, identifying 830
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differential genes (logFC = 0.25, p < 0.05; Supplementary Table S9).

Enrichment analyses were performed for GO categories

(Supplementary Table S10) and KEGG pathways based on the

DEGs (Supplementary Table S11). Functional annotation revealed

significant enrichment in key biological processes, such as

chromosome segregation and mitotic nuclear division (BP), with

predominant cellular localization observed in chromosomal

domains, including centromeric regions and condensed

chromosomes (CC). Molecular characterization revealed

enhanced functionality in single-stranded DNA binding and

oxidoreductase-driven transmembrane transport activities

(MF) (Figure 10E).

KEGG pathway analysis revealed significantly enriched

pathways in various categories: (1) cellular processes: cell cycle,

oocyte meiosis, and cellular senescence; (2) human diseases:

Parkinson’s disease, Huntington’s disease, and prion disease; (3)

genetic information processing: DNA replication, spliceosome, and

proteasome; (4) metabolism: oxidative phosphorylation, carbon

metabolism, and cysteine and methionine metabolism; and (5)

organismal systems: thermogenesis and progesterone-mediated

oocyte maturation (Figure 10F).
FIGURE 9

Annotation and visualization of the cellular microenvironment in breast cancer. (A) UMAP visualization delineating cellular subset segregation
between tumor and normal cohorts; (B) UMAP visualization of cellular cluster annotations between malignant and benign specimens; (C)
Transcriptomic signatures characterizing eight distinct cellular lineages; (D) Cumulative histogram illustrating cellular composition variations in
neoplastic versus healthy cohorts.
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3.12 Analysis of TFs in cell subclusters

To investigate the transcriptional regulation of BRCA

pathogenesis, we first analyzed the specific TFs in the four cell

subclusters (Figure 11A). A total of 30 TFs with cell-specific
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expression were identified, among which E2F8, MYBL2, GATA3,

MYB, NRL, NFATC1, FOXF1, and BHLHE41 exhibited strong

specificity for their respective cell types. Analysis of the

enrichment levels of these eight TFs in the four cell subclusters

revealed that GATA3 andMYB were enriched in Epithelial_cluster1
FIGURE 10

Identification and exploration of key cell populations based on hub genes. (A) UMAP plot showing the distribution of hub genes across cell
subpopulations. (B, C) Re-clustered and annotated UMAP plot of Epithelial cells. (D) UMAP plot displaying the distribution of hub genes across four
Epithelial cell subclusters. (E) Lollipop plot of GO enrichment analysis for differential genes between Epithelial_cluster4 and the other three Epithelial
cell subclusters. (F) Lollipop plot of KEGG enrichment analysis for differential genes between Epithelial_cluster4 and the other three Epithelial cell
subclusters.
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cells; NFATC1 and NRL were enriched in Epithelial_cluster2 cells;

BHLHE41 and FOXF1 were enriched in Epithelial_cluster3 cells;

and E2F8, GATA3, MYB, and MYBL2 were enriched in

Epithelial_cluster4 cells (Figures 11B–I). These findings suggest

that these TFs may play pivotal roles in breast carcinogenesis.
3.13 Prediction of drugs targeting key TFs

We analyzed eight key TFs using the DGIdb (https://

www.dgidb.org/), sorting the results in descending order based on

interaction score and selecting the small-molecule drugs with the

highest scores as the final predictions. Ultimately, only five TFs,

namely NFATC1, GATA3, FOXF1, E2F8, and MYB, successfully

predicted small-molecule drugs: Mycophenolate (for NFATC1),

Merimepodib (for GATA3), Bevacizumab (for FOXF1),

Edifoligide (for E2F8), Edifoligide Sodium (for E2F8), and

Retinoic Acid Agent (for MYB) (Table 2).
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4 Discussion

BRCA is the most prevalent malignancy globally, with

approximately 2.3 million new cases and 684,996 deaths annually

(2). Despite advancements in chemotherapy and targeted therapies,

many patients still experience drug resistance and metastasis (3),

highlighting the limitations of current treatment approaches.

Recent research has emphasized the regulatory functions of

SUMOylation in BRCA, particularly in maintaining genome

stability and modulating TFs (42). However, the specific roles of

SUMOylation-associated hub genes in tumorigenesis and

heterogeneity remain poorly understood. Significant research gaps

exist in mapping the dynamic SUMOylation networks across BRCA

subtypes and developing subtype-specific therapeutic strategies

targeting this pathway.

We systematically identified CDCA8, AURKA and PLK1 as hub

regulators in BRCA-specific cell cycle networks, with integrated

bulk and single-cell RNA sequencing data confirming their
FIGURE 11

Transcription factor analysis of epithelial cells. (A) Bubble plot showing specific transcription factors in cell types. The bubble size represents the RSS
(Regulon Specificity Score) value of the TF in a specific cell type. Elevated RSS values correlate with both increased bubble size and enhanced
transcription factor specificity within the respective cell type. The color represents the Z-score, where a higher score indicates that the TF
expression level in the specific cell type is significantly higher than in other cell types. (B-I) UMAP plots displaying the enrichment of eight
transcription factors across four Epithelial cell subclusters. TFs, transcription factors.
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prognostic significance (Figures 3G, I, 10A). This integration of

established mechanisms and novel discoveries enhances

insights into potential therapeutic targets, while validating

methodological robustness.

Integrated transcriptomic and single-cell profiling identified a

pivotal regulatory network centered on NR3C2, CDCA8, AURKA,

and PLK1 in breast carcinogenesis. NR3C2 displayed complex,

context-dependent functionality: although it was significantly

downregulated in tumors overall—suggesting a potential tumor-

suppressive role (Figures 3I, J) (43)—its elevated expression in

Subtype1 correlated with poorer outcomes (Figures 4C, D). In

contrast, CDCA8 , AURKA , and PLK1 were consistently

overexpressed (44) and exhibited direct protein interactions

(Supplementary Figure S2D). Intriguingly, the collective high

expression of these three regulators defined Subtype2, which was

associated with a favorable prognosis despite their established pro-

oncogenic functions (Figures 3I, J, 4C, D) (45). This functional

paradox underscores their context-dependent activity (46–48),

further illustrated by Subtype2’s enhanced sensitivity to targeted

therapies such as Trametinib (Figure 7N) (49). These molecular

subtypes also displayed distinct immune landscapes (Figures 5A, B)

and mutational spectra (Figures 7A, B). Single-cell resolution

further pinpointed hub gene enrichment within specific epithelial

subpopulations (Figures 10A–D). Collectively, our findings

establish a novel molecular taxonomy grounded in SUMOylation-

associated networks, linking transcriptional patterns with

therapeutic vulnerabilities to advance precision oncology.

In this study, we utilized GO and KEGG enrichment analyses to

identify the key pathways associated with hub genes in BRCA

development. The results highlighted the cell cycle regulation,

DNA replication, and senescence mechanisms drive tumor

progression (Supplementary Table S4; Figures 2I, J). As a

fundamental biological process controlling cellular division, the

pathological disruption of cell cycle control emerges as a critical

oncogenic feature in BRCA. The observed enrichment of cell cycle-

related genes suggests that these regulatory networks may

significantly influence abnormal proliferation patterns in

cancerous growths (Figures 2I, J).

The DNA replication pathway maintains genomic stability, and

its dysregulation may drive cancer-associated genomic instability

(Figure 6B; Supplementary Table S6). The hub genes identified in

this study potentially promote BRCA progression by abnormally

regulating these pathways. Although cellular senescence typically
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suppresses tumor formation, the accumulation of senescent cells

paradoxically stimulates cancer growth through the persistent

secretion of inflammatory factors that establish pro-tumorigenic

microenvironments via paracrine signaling (Figure 2J;

Supplementary Table S4). These pathway discoveries deepen our

understanding of BRCA biology and reveal potential therapeutic

targets for it. Intervention strategies focusing on these pathways

could address current treatment limitations and improve the

clinical outcomes. This study underscores the critical involvement

of these pathways in breast carcinogenesis and their translational

potential for developing targeted therapies and contributing to the

understanding of molecular features of breast cancer.

Our analysis revealed subtype-specific immune signatures

(Subtype1 vs. Subtype2), consistent with previous findings on the

bidirectional role of the TME in tumor progression (50)

(Figures 5A, B). Increased infiltration of activated CD8+ T cells

and macrophages correlated with improved survival outcomes,

highlighting the prognostic significance of anti-tumor immunity

(51) (Figures 4D, 5B). Critically, we identified hub genes that serve

as dual biomarkers, predicting both prognosis and immunotherapy

response—a functional extension of existing studies (Figures 4D,

7C). Our study significantly expands the understanding of these

hub genes by revealing their pivotal role in reprogramming the

tumor immune microenvironment. These findings advance

precision therapeutics by integrating subtype-specific immune

profiles with gene networks, facilitating strategies to boost

treatment efficacy through microenvironmental targeting and

addressing unmet clinical needs in BRCA management (52).

In the current investigation, we successfully identified 357,292

cells using scRNA-seq and categorized them into 27 distinct cell

clusters (Figure 9A), primarily comprising T cells, B cells, and

macrophages (Figures 9B, C). This comprehensive cellular profiling

highlights the significant heterogeneity within the BRCA

microenvironment, which is crucial for understanding tumor

biology and therapeutic responses. The identification of these cell

types and their respective clusters provides a foundational dataset

for future investigations into the molecular pathways underlying

tumor evolution and therapeutic resistance in mammary

carcinoma. The role of T cells in mediating anti-tumor immunity

and the involvement of macrophages in promoting tumor growth

and immune evasion are well documented (53, 54). Furthermore,

the heterogeneity within neoplastic microenvironments,

characterized by interactions among various immune cells

(Figure 9D), highlights the necessity for targeted therapeutic

strategies that can modulate these interactions for improved

therapeutic outcomes.

Although our findings provide crucial insights into the cellular

heterogeneity within BRCA tumors, several limitations should be

acknowledged. For instance, reliance on scRNA-seq data may not

fully capture the spatial organization and functional states of cells

within the TME. Moreover, the analysis does not account for

temporal changes in cell populations during disease progression

or treatment. Future studies that integrate spatial transcriptomics

and longitudinal sampling could greatly enhance our understanding

of TME dynamics.
TABLE 2 Small molecule drug screening.

Transcription
factor

Drug
Interaction

score

NFATC1 Mycophenolate 1.19

GATA3 Merimepodib 1.37

FOXF1 Bevacizumab 1.31

E2F8
Edifoligide, Edifoligide

Sodium
3.26

MYB Retinoic Acid Agent 0.56
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Our results reveal the intricate cellular landscape of BRCA,

emphasizing the importance of integrated analysis of bulk RNA

sequencing data in elucidating the mechanisms underlying tumor

heterogeneity and guiding the development of personalized

therapeutic strategies. A deeper understanding of the immune

microenvironment may open avenues for novel treatments aimed

at improving clinical outcomes and overcoming therapy resistance

(55). Based on transcriptomic correlation analysis, the conclusions

drawn from this study require further validation through

proteomics and functional experiments to elucidate the

underlying mechanisms.
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