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Background: Breast cancer remains a major global health challenge because of
limitations in early detection and therapeutic outcomes. This study employed
bulk and single-cell RNA sequencing to investigate SUMOylation-associated
molecular networks, aiming to identify prognostic biomarkers and potential
therapeutic applications.

Methods: Transcriptomic profiling was performed on 1,445 breast cancer and
113 normal samples to identify differentially expressed genes. Four hub genes,
NR3C2, CDCA8, AURKA, and PLK1, were prioritized using machine learning.
Consensus clustering stratified patients into molecular subtypes based on the
hub gene expression patterns. Differential immune infiltration analysis was used
to evaluate 28 immune cell populations between the subtypes. Hub gene-
immune cell interactions were visualized using bubble diagrams.
Pharmacogenomic sensitivity profiling was performed using subtype-specific
drug response data. Single-cell sequencing identified epithelial subclusters
enriched for hub genes, and transcription factor networks were analyzed using
SCENIC. Pan-cancer validation was performed to assess the oncogenic role of
hub genes in 21 malignancies. Statistical significance was determined using the
Student’s t-test (p < 0.0001).

Results: Tumor tissues exhibited significant upregulation of CDCA8, AURKA, and
PLK1, whereas NR3C2 was notably downregulated (p < 0.0001). Consensus
clustering identified two distinct molecular subtypes: Subtypel, characterized
by NR3C2 upregulation and poorer prognosis, and Subtype?2, distinguished by
enhanced expression of CDCA8, AURKA, and PLK1, correlating with favorable
outcomes. Notably, PIK3CA mutations were prevalent in Subtypel, whereas TP53
mutations dominated Subtype2. Immune infiltration profiles differed significantly
between the two subtypes for most immune cell types. Pharmacogenomic
assessments revealed distinct drug sensitivity profiles for each subtype in
response to various therapeutic agents. A pan-cancer analysis of the four hub
genes demonstrated consistent expression patterns, immune correlations, and
prognostic associations across malignancies.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675874/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1675874&domain=pdf&date_stamp=2025-11-20
mailto:dluldm@126.com
mailto:yutenghua0107@sina.cn
https://doi.org/10.3389/fimmu.2025.1675874
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1675874
https://www.frontiersin.org/journals/immunology

He et al.

10.3389/fimmu.2025.1675874

Conclusion: Our findings reveal that SUMOylation subtypes in breast cancer
exhibit distinct prognostic, immunological and pharmacogenomic profiles.
These insights may provide candidate biomarkers for future personalized
treatment strategies for breast cancer and potentially for other malignancies.

breast cancer, SUMOylation, biomarkers, immune infiltration, scRNA

1 Introduction

Breast cancer (BRCA) is a major malignancy affecting women
globally, imposing substantial multifaceted challenges, including
physical and psychological distress and socioeconomic challenges,
particularly concerning healthcare expenditures and long-term care
costs (1). Epidemiological data reveal that BRCA is the most
prevalent form of cancer among women, accounting for 11.7% of
all cancer cases and serving as the leading cause of cancer-related
mortality in this population (2). Current clinical interventions for
BRCA include surgical resection, radiation therapy, and systemic
pharmacological regimens (chemotherapy and targeted therapies).
However, these approaches have persistent limitations in terms of
early detection precision, therapeutic personalization, and drug
resistance management (3, 4). This study addresses the critical
unmet needs by systematically exploring novel molecular
biomarkers and therapeutic targets to enhance diagnostic
accuracy and optimize treatment paradigms in breast oncology.

In this study, we investigated the role of SUMOylation (small
ubiquitin-like modifier) in breast carcinogenesis. As a crucial post-
translational modification, SUMOylation modulates the expression
of both oncogenic and tumor suppressor genes, thereby regulating
fundamental cellular activities, including gene expression, cell cycle
progression, stress responses (5), and epithelial-mesenchymal
transition (EMT) (6-8). SUMOylation is pivotal in tumor EMT,
metastasis, and resistance to therapy (9). Emerging data implicate
SUMOylation in immune evasion mechanisms by influencing
immune cell functionality within the tumor microenvironment
(TME) (10-12). Its specific roles in mitotic regulation,
transcriptional control, and DNA damage response make it a
high-value focus for breast cancer research (13-15).

Despite this progress, the integrated bulk and single-cell RNA
sequencing characterization of SUMOylation networks, their
clinical relevance to BRCA heterogeneity, and their translational
potential for immune microenvironment modulation remain
underexplored. Therefore, further study of SUMOylation in
BRCA will not only elucidate the molecular mechanisms but may
also offer new targets and strategies for the diagnosis and
management of BRCA. To address these challenges, this study
focused on a specific molecular process, SUMOylation. We
employed an integrative bioinformatics framework combining
bulk transcriptomic profiling (16), single-cell RNA sequencing
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(scRNA-seq) (17), and weighted gene co-expression network
analysis (WGCNA) (18) with machine learning models (19) to
decode SUMOylation-associated molecular networks. The strength
of this study lies in the integration of bulk and single-cell RNA
sequencing data, combined with computational approaches, to
investigate breast carcinogenesis with a focus on SUMOylation.
Our primary objective was to identify hub genes associated with
SUMOylation and their roles in mammary tumorigenesis, laying
the groundwork for early diagnostic biomarkers and personalized
therapies for BRCA. The flowchart of this study is shown
in Figure 1.

2 Materials and methods

2.1 Acquisition and analysis of routine
transcriptome data

All datasets employed in this study were publicly available and
obtained from the Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas
(TCGA; https://portal.gdc.cancer.gov/) databases. Initially, the
datasets GSE20685 and GSE42568 were acquired from the GEO
database using the R package “GEOquery” (v2.62.2). GSE20685,
sequenced on the Affymetrix U133 Plus 2.0 platform (HG-
U133_Plus_2 array, GPL570), comprised 327 BRCA samples with
complete survival information. GSE42568, also sequenced on the
GPL570 platform, contained 121 samples, including 17 normal
breast tissue controls and 104 BRCA samples. Additionally, whole-
genome expression profile data in TPM format and clinical data for
BRCA tissues were retrieved from TCGA using the bioinformatics
toolkit TCGAbiolinks (v2.25.0) in the R environment (16). The
TCGA-BRCA dataset encompassed 1231 samples, with 1118 tumor
samples (BRCA) and 113 control samples (Control).

Various analytical sets were constructed from these data to
satisfy specific requirements. Particularly, 1118 BRCA samples with
complete clinical information and 113 control samples from
TCGA-BRCA (n = 1231) were merged with 327 BRCA samples
with complete clinical information from GSE20685 (n = 327),
resulting in a training set of 1445 BRCA samples and 113 control
samples. This dataset was used for all analyses except single-cell
analysis (where only the 1445 BRCA samples were used for
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FIGURE 1

Research flowchart. BRCA, Breast cancer; ceRNAs, competing endogenous RNAs; DEGs, differentially expressed genes; DGIdb, the Drug-Gene
Interaction Database; GSEA, Gene Set Enrichment Analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TIDE, Tumor
Immune Dysfunction and Exclusion; RBP, RNA binding protein; SCENIC, Single-Cell Regulatory Network Inference and Clustering; TF, transcription

factor; TMB, tumor mutation burden.

consensus clustering analysis). The 104 BRCA samples and 17
control samples from GSE42568 (n = 121) were used for external
validation to assess the generalizability of the results. The ComBat
method from the R package “sva” (v3.42.0) was utilized to correct
for batch effects induced by non-biological technical variations (20)
(Supplementary Figure S1). The correction efficacy was examined
using principal component analysis (PCA). This study followed all
relevant data usage protocols established by the respective
repositories. From the GeneCards database (https://
www.genecards.org/), 511 SUMOylation-related genes were
identified (Supplementary Table S1).

2.2 Acquisition and computational analysis
of single-cell sequencing datasets

The GEO functions as a primary repository for the deposition
and retrieval of single-cell sequencing data, encompassing various
experimental designs and tissue-specific profiles. We retrieved the
scRNA-seq dataset GSE161529 from the NCBI GEO database to
investigate BRCA heterogeneity at the single-cell resolution. The
GSE161529 dataset, sequenced on the GPL18573 Illumina NextSeq
500 (Homo sapiens) platform, comprised 13 samples annotated as
normal controls and 38 tumor samples from patients with
adenocarcinoma as disease samples, all of which were included in
this study. Initially, low-quality cells and genes were excluded based
on the following specific criteria: (1) cells with a gene expression
range between 200 and 7,000; (2) cells with unique molecular
identifier counts below 75,000; (3) cells with a mitochondrial gene
percentage of less than 25%; and (4) cells with a gene-to-read count
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ratio exceeding 0.7. Data normalization was conducted using the
“normalizedata” function found within the Seurat R package.
Following this normalization, highly variable genes within single
cells were identified by evaluating the balance between the average
expression levels and their corresponding dispersion. Subsequently,
PCA was performed, with significant principal components (PCs)
serving as the basis for graph-based clustering. The Harmony
method was applied to address and mitigate batch effects present
across the various samples. For clustering, we used the FindClusters
function, which is based on a clustering algorithm optimized for
shared nearest neighbor modularity, generating 27 clusters on 15
PCs with a resolution of 0.6. Uniform Manifold Approximation and
Projection (UMAP) was implemented using the “RunUMAP”
algorithm. UMAP-1 and UMAP-2 were used to demonstrate the
cell clustering. To identify differentially expressed genes (DEGs)
across distinct cellular subpopulations, we performed a
computational analysis using the default parameters set by Seurat
on normalized transcriptomic datasets. Following the identification
of cellular clusters using type-specific molecular markers (21), a
quantitative assessment of cellular subtype distribution
was conducted.

2.3 Analysis of regulatory networks at the
single-cell level (transcription factors)

We conducted a cis-regulatory analysis using pySCENIC
(v0.11.2) to identify the key transcription factors (TFs) across
various cell types (22). This tool infers gene regulatory networks
by examining co-expression patterns and performing DNA motif
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analysis. Subsequently, the network activity for each cell type was
evaluated by calculating the area under the curve (AUC).

Briefly, we used GENIES3 to identify TFs and assemble them into
modules (rules), followed by gene-motif enrichment analysis using
RcisTarget, focusing on the regions 500 base pairs upstream to 100
base pairs downstream of the transcription start site. Subsequently,
we assessed the activity of the rules for each individual cell within
the dataset using AUCell. Ultimately, we visualized the activity of
the binarized regulatory subnetwork using a tSNE plot. TFs
corrected by the Benjamini-Hochberg false discovery rate (FDR)
< 0.05 were considered for further investigation. Subsequently, we
applied Pearson’s correlation analysis to quantify the association
between the rules and IFN-I scores.

2.4 Network-based co-expression profiling
using weighted correlation and functional
module detection

Based on the training set, a co-expression network was
established using WGCNA, employing V1.70-3 of the
corresponding R package (18). To construct a biologically
meaningful scale-free network, pairwise gene expression
similarities were quantified using Pearson’s correlation analysis.
This was followed by a power function transformation of the
resulting correlation coefficients for the network edge weighting.
The weighted adjacency matrix was constructed by applying a
power transformation (B = 5) to the co-expression similarity
measures using the R package “PickSoftThreshold.” Gene
modules, representing highly interconnected clusters of genes
with coordinated expression patterns, were identified through
hierarchical clustering in WGCNA, with color coding used for
visual differentiation of the modules. The dynamic tree cut
algorithm was implemented for module detection in network
analysis. During the module identification phase, the adjacency
matrix (which quantifies topological similarity) was transformed
into a topological overlap matrix). Subsequent module recognition
was achieved using hierarchical clustering analysis. Pearson
correlations between module eigengenes (MEs, the first PCs) and
SUMOylation-related genes were analyzed to identify module-
SUMOylation associations. Modules significantly associated with
senescence-related genes were identified using network analysis.
Gene co-expression patterns were illustrated using topological
overlap heatmaps to characterize network architecture. Module
interactions were subsequently analyzed by generating two
complementary representations: a hierarchical dendrogram of
eigengene relationships and corresponding correlation heatmap.

2.5 Consensus clustering analysis

The BRCA samples (n = 1,445) in the training cohort were
stratified into molecular subtypes through consensus clustering
analysis of SUMOylation-associated gene expression patterns,
performed using the R package ConsensusClusterPlus (v1.58.0)
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(23). The clustering procedure was iterated 1000 times with k = 6
to ensure robust stability in pattern identification.

2.6 Machine learning

Feature selection and model optimization were performed using
three complementary methods. The Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) algorithm, implemented
via the el071 R package, systematically reduced feature
dimensionality through recursive elimination of low-weight features
using a linear kernel, with 10-fold cross-validation. Linear model
optimization with variable retention was conducted through Least
Absolute Shrinkage and Selection Operator (LASSO) regression via
the glmnet package (v4.1-4), applying L1 regularization under a
binomial distribution. The optimal regularization parameter A was
selected as A.min through 10-fold cross-validation. Random forest
analysis was carried out using the randomForest package, with ntree
set to 500 and mtry tuned to minimize out-of-bag error. The mtry
value, which represents the number of variables randomly sampled as
candidates at each split, was determined using the minimum error.
Additionally, the ntree value, which indicates the number of trees to
be cultivated within the forest, was selected based on the image value
that exhibited stability. Using mean decrease in accuracy (MDA) and
mean decrease in Gini index (MDG) as feature importance criteria,
we identified the top 10 DEGs through random forest analysis.
Subsequently, by integrating the results from SVM-RFE, LASSO,
and random forest, the intersection of genes identified by all three
algorithms was taken, yielding the robust hub genes for
further investigation.

2.7 Differential analysis

We utilized the FindAllMarkers function from the “Seurat” R
package with default settings, specifically |log,Fold Change
(log,FC)| > 0.25 and an adjusted p-value (adjp) < 0.05, to
identify DEGs between key cell types and other cell groups. To
identify DEGs between BRCA tissues and their corresponding
healthy control samples, as well as among various disease
subtypes, we used the “limma” R package (v3.50.0) with screening
criteria of [log,FC| > 1 and adj.p < 0.05.

2.8 Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
pathway enrichment analyses

The Gene Ontology (GO) (24) enrichment analysis
systematically evaluates three principal ontological domains:
biological processes (BP), molecular functions (MF), and cellular
components (CC). Kyoto Encyclopedia of Genes and Genomes
(KEGG) (25), a widely recognized biological database, enables
systematic identification of dysregulated metabolic pathways
associated with specific gene clusters. The overlapping gene set
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underwent GO and KEGG pathway enrichment analyses using the
clusterProfiler R package (v4.2.2) (26), with statistical significance
set at p < 0.05.

2.9 Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) (27), a computational
methodology, evaluates whether predefined gene sets demonstrate
statistically significant and concordant variations between distinct
biological states. The R package “limma” (v3.50.0) (28) was used to
conduct differential expression analysis comparing gene expression
among subtypes identified through consensus clustering, resulting
in subtype-specific fold change (FC) values. GSEA was performed
with the clusterProfiler package (v4.2.2) using genes ranked by
log,FC values.All statistical evaluations employed 1000 stochastic
rearrangements of genetic clusters. The c2.cp.kegg. v7. 5.1. symbols
gene set from the Molecular Signatures Database (MSigDB) served
as the reference gene set (28-30). Gene sets exhibiting p-values
below the 0.05 threshold were defined as statistically enriched.

2.10 Immune microenvironment profiling

The single-sample Gene Set Enrichment Analysis (ssGSEA),
derived from the conventional GSEA methodology, was used to
calculate individual enrichment scores for specific gene sets across
separate biological samples (31). This method quantifies the level of
coordinated activation or suppression of defined gene sets within
individual samples, assigning specific scores to each sample-
pathway combination.

Immune cell marker gene datasets were obtained from the
Tumor-Immune System Interaction Database. The comprehensive
collection encompassed major lymphocyte subsets and myeloid
populations: (1) T cell subsets: activated, central memory, and
effector memory populations in both CD8+ and CD4+ lineages,
along with specialized T helper cells (follicular, Y3, Thl, Th2, and
Th17) and regulatory T cells; (2) B cell lineages: activated, immature,
and memory phenotypes; (3) natural killer populations: CD56bright,
CD56dim, and NKT cells; (4) dendritic cell subsets: activated,
plasmacytoid, and immature variants; and (5) innate immune
components: macrophages, monocytes, neutrophils, eosinophils,
mast cells, and myeloid-derived suppressor cells (32).

The gene expression profiles of individual samples were
analyzed to obtain relative enrichment scores for distinct immune
cell populations. To compare immune infiltration patterns across
molecular subtypes, graphical representations were generated using
the ggplot2 package (v3.3.6) in R (33).

2.11 Tumor Immune Dysfunction and
Exclusion

The Tumor Immune Dysfunction and Exclusion (TIDE)

computational framework (http://tide.dfci.harvard.edu) was used
to evaluate immunotherapy responsiveness in clinical cohorts (34).
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2.12 Immune checkpoints

A comparative analysis of key immune checkpoint genes was
performed across the cohorts. These regulatory molecules modulate
signaling modulators in immune cells, maintaining a balance of
immune activation thresholds by preventing hyperimmune responses.

2.13 Tumor mutational burden
quantification

Genomic variations were analyzed using the mutation data
from 991 BRCA tissue samples. The MAF-compliant
bioinformatics toolkit (v2.10.05) was used to characterize somatic
alterations, including single nucleotide polymorphisms, insertions/
deletions, tumor mutation burden (TMB), and mutation
frequencies across different clusters (35). The 20 most frequently
mutated genes (FMGs) were identified as key oncogenic drivers of
malignancy progression (36).

2.14 Pharmacological responsiveness
profiling

Therapeutic drug sensitivity across BRCA subtypes was
evaluated using half-maximal inhibitory concentration (IC50)
values and gene expression profiles from the Genomics of Drug
Sensitivity in Cancer database (release 2022) (37). The oncoPredict
algorithm (v0.2) was used for the computational modeling (38).

2.15 Chemogenomic interplay investigation

Prognostic genes were screened against the Drug-Gene
Interaction Database (DGIdb; https://www.dgidb.org) (39) to
identify existing agonists or inhibitors with the aim of
repurposing approved BRCA therapeutics.

2.16 Pan-cancer data analysis

We conducted a comprehensive pan-cancer analysis of these
key genes, assessing their transcriptional profiles in malignant
tumors, prognostic implications, and their relationship with the
characteristics of the immune microenvironment. Whole-genome
expression and clinical data for 33 cancer types were retrieved from
TCGA using the TCGAbiolinks package (v2.25.0) in R. We
calculated the differences in gene expression between tumor and
normal samples across the 33 cancer datasets from the TCGA
database using the Wilcoxon test. For survival analysis, we used a
univariate Cox regression model to evaluate the effect of prognostic
gene expression on cancer prognosis. Finally, we computed the
immune infiltration scores for all tumor samples using the ssGSEA
algorithm and assessed the correlation between the immune
infiltration scores and the expression levels of the prognostic genes.
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2.17 RNA-binding protein—-mRNA
interactome modeling

This study explored ncRNA interactions via the StarBase platform
(https://starbase.sysu.edu.cn/tutorial APT.php#RBPTarget) using CLIP-
seq, degradome-seq, and RNA-RNA interaction data to investigate
the correlations between mRNA and RNA-binding protein (RBP)
expression. In BRCA studies, we established significance thresholds
(p < 0.05) and minimum cluster/clip-exposure thresholds (both >5)
to identify biologically significant mRNA-RBP interactions. These
validated pairs were subsequently visualized as interaction networks
using Cytoscape software(v3.9.1).

2.18 TF interconnectivity profiling

TFs regulate gene expression by binding to DNA in a sequence-
specific manner, thereby coordinating various cellular processes
and developmental pathways. The TRRUST database (http://
www.grnpedia.org/trrust/) provides curated transcriptional
regulation data encompassing 8444 human TF-target interactions
(800 TFs) and 6552 murine entries (828 TFs). This resource allows
for the systematic identification of shared transcriptional regulators
in functionally related gene clusters.

2.19 ceRNA network construction

To address the incomplete understanding of competing
endogenous RNA (ceRNA) mechanisms in BRCA pathogenesis,
we conducted reverse miRNA prediction for key genes using three
validated databases: miRTarBase (https://mirtarbase.cuhk.edu.cn/-
miRTarBase/miRTarBase_2022/php/index.php) (40), starBase 2.0
(https://starbase.sysu.edu.cn/starbase2/index.php) (41), and
miRDB (https://mirdb.org/index.html). This endeavor sought to
predict the IncRNAs that share miRNAs with these crucial genes,
ultimately facilitating the construction of a ceRNA network.

2.20 Statistical analysis

Statistical analyses were conducted using R software (v4.1.2).
We used Spearman’s rank correlation to evaluate the association
between variables. Statistical comparisons between groups were
performed using the Wilcoxon rank-sum test. Survival differences
between molecular subtypes were compared using the Kaplan-
Meier method and assessed with the log-rank test. Hazard ratios
(HR) and 95% confidence intervals (CI) were calculated to quantify
the magnitude of prognostic differences. Statistical significance was
defined as a two-tailed p-value of < 0.05.
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3 Results

3.1 Screening of the module most relevant
to SUMOylation using WGCNA

A comparative transcriptome analysis between BRCA and
control samples revealed 1738 DEGs meeting statistical thresholds
(|logoEC| > 1; FDR-adj.p < 0.05). In BRCA samples, 669 genes were
upregulated and 1069 were downregulated compared to those in the
controls (Supplementary Table S2).The differential expression
profile is illustrated in a volcano plot (Figure 2A).Additionally, a
heatmap was used to display the top five upregulated genes
(MMPI11, NEK2, COL10A1, PAFAHIB3, and ASFIB) and the five
most significantly downregulated genes (CA4, CD300LG, GLYAT,
TSLP, and SCARAS5) ranked by p-value (Figure 2B). Subsequently,
WGCNA identified the SUMOylation-associated gene modules.
Scale independence and mean connectivity analyses demonstrated
that a soft thresholding power of 5 (Figure 2C) achieved optimal
network properties, with a mean connectivity approaching 0 and
scale independence exceeding 0.85. Eleven co-expression modules
were identified, excluding unrelated genes clustered in the gray
module (Figure 2D). A heatmap depicting the eigengene network
was used to examine inter-module connections and identify
associated features (Figure 2E). To investigate the functional
relevance of module-associated genes, we correlated the 11 MEs
with SUMOylation phenotype genes and identified the key
associations. The module-trait correlation heatmap (Figure 2F)
revealed that the blue module (containing 639 genes) most
accurately reflected SUMOylated protein modifications. A scatter
plot of SUMOylation-related genes versus blue module
membership values indicated a strong positive correlation (cor =
0.69, p < 0.05) (Figure 2G), suggesting that the key hub components
within the blue module were strongly associated with
SUMOylation-related gene characteristics. Subsequently, we
identified 20 genes at the intersection of DEGs between the
BRCA and control groups, blue module genes, and SUMOylation
phenotype genes, and plotted a Venn diagram. These genes are
potentially involved in BRCA pathogenesis and progression and
their association with SUMOylation is illustrated in Figure 2H.

To explore the biological roles of the 20 overlapping genes, we
performed Gene Ontology (GO) term enrichment (Supplementary
Table S3) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses (Supplementary Table S4). GO analysis revealed
significant enrichment in biological processes (BP), including
nuclear division, G2/M phase transition, and mitotic cycle phase
transitions; cellular components (CC), including chromosomal
regions, condensed chromosomes, and spindle microtubules; and
molecular functions (MF), including histone kinase, protein serine
kinase, and ATP-dependent DNA-binding activities (Figure 2I).

KEGG pathway analysis (Supplementary Table S4) identified
enrichment in cellular processes, including the cell cycle, oocyte
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meiosis, and cellular senescence; genetic information processing,
including homologous recombination, the Fanconi anemia
pathway, and polycomb repressive complex; human diseases,
including platinum drug resistance and pancreatic cancer; and
organismal systems, including progesterone-mediated oocyte
maturation (Figure 2J).

3.2 Hub gene selection using machine
learning algorithms

To identify the most significant genes among the 20 overlapping
genes, we applied LASSO regression, random forest, and SVM-RFE.
LASSO regression identified 19 candidate genes (Figures 3A, B).
The random forest method, using MDA and MDG feature weights,
highlighted four key genetic markers from the top 5 candidate genes
(Figures 3C, D). Using SVM-RFE analysis, we identified 10 key
biomarkers (Figures 3E, F). The intersection of results from these
three selection methods identified four central genes (NR3C2,
CDCAS8, AURKA, and PLKI) for further investigation
(Figure 3G). Protein interaction analysis using GeneMANIA
(https://genemania.org/) revealed functional associations between
these core genes and 20 associated partners (Figure 3H).

Next, we evaluated the differences in hub gene expression
between the BRCA and control groups. The four hub genes
demonstrated significant differential expression between groups.
The expression levels of pivotal regulatory genes (CDCAS8, AURKA,
and PLKI) were significantly higher in tumor samples than in
control samples, whereas NR3C2 was significantly downregulated in
cancerous tissues (Figure 3I). Validation using the external dataset
GSE42568 confirmed the consistent differential expression of these
genes, which aligned with the training set findings. These findings
underscore the potential role of these hub genes in BRCA
pathogenesis and their possible therapeutic relevance (Figure 3J).

3.3 Hub gene-based subtyping analysis

First, based on the four hub genes, we applied consensus
clustering to categorize the BRCA samples (n = 1445) into
distinct subtypes (Figures 4A, B). For clustering, we selected k = 2
and used the pearson_pam algorithm, resulting in two groups:
Subtypel and Subtype2. We then examined the expression of hub
genes across the subtypes. Subtypel showed significantly elevated
expression of the critical regulatory gene NR3C2, whereas three
pivotal cell cycle regulators (CDCA8, AURKA, and PLKI) were
markedly overexpressed in Subtype2. These genes showed
significant differential expression between the groups (Figure 4C).
Furthermore, prognostic analysis revealed that there were
differences in patient outcomes between the two subtypes,
specifically with Subtype2 demonstrating a better prognosis
compared to Subtypel (p = 0.026; Figure 4D).
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3.4 Immune infiltration profiling across
subtypes

Using ssGSEA, we quantified the immune infiltration of 28 cell
types in 1445 BRCA samples (Figure 5A, Supplementary Table S5).
Particularly, we analyzed the differences in the immune infiltration
profiles of 28 cell types between Subtypel and Subtype2. Most
immune cells demonstrated significant differences in infiltration
between the subtypes, except for activated B cells, CD56bright
natural killer cells, central memory CD8+ T cells, effector
memory CD8+ T cells, immature dendritic cells, and neutrophils
(p < 0.05; Figure 5B).

Furthermore, we generated a bubble diagram illustrating the
interactions between hub genes and immune cell populations
(Figure 5C). Notably, the four hub genes demonstrated significant
associations with 26 of the 28 immune cell types analyzed,
indicating their potential regulatory roles in BRCA prognosis
through immune modulation.

3.5 Inter-subtype GSEA

To investigate the molecular basis of gene expression differences
between Subtypel and Subtype2 and to identify the primary
contributors to varying patient risks, we conducted GSEA
between these two subtypes. Using pathway data from the
MSigDB with a significance threshold of p < 0.05, we identified
the most significantly enriched pathways based on the Normalized
Enrichment Score (NES) ranking (Supplementary Table S6). GSEA
revealed significant pathway enrichment in Subtype2, with notable
activation in the following pathways: cell cycle (NES = 2.8349),
DNA replication (NES = 2.4403), and proteasome (NES = 2.2513).
All three pathways showed statistical significance (adj.p = 0.0172;
FDR = 0.0119), as illustrated in Figures 6A-C. Conversely,
complement and coagulation cascades (NES = -2.0074, adj.p =
0.0172, FDR = 0.0119; Figure 6D), ECM receptor interaction (NES
= -2.1226, adj.p = 0.0172, FDR = 0.0119; Figure 6E), and focal
adhesion (NES = -2.1391, adj.p = 0.0172, FDR = 0.0119; Figure 6F)
were significantly enriched in the Subtypel than in the Subtype2.
Negative NES values indicated relative enrichment in Subtypel
compared to Subtype2.

3.6 Regulatory architecture modeling and
protein interplay profiling

To explore the interactions between RBPs and mRNAs, we used
the StarBase database to identify and download mRNA/RBP pairs
associated with the four hub genes. Using target gene interaction
data from the dataset, we established an RBP-mRNA regulatory
network (Supplementary Figure S2A). This comprehensive network
architecture comprised 73 nodes (69 RBPs and 4 mRNAs)
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connected by 156 regulatory edges, demonstrating intricate post-
transcriptional regulation patterns.

To investigate the molecular mechanisms mediated by hub
genes in BRCA, we established a tripartite RNA interaction
network encompassing mRNAs, miRNAs, and IncRNAs. The data
revealed only three hub genes (NR3C2, CDCAS, and AURKA) as
target mRNAs. The constructed mRNA-miRNA-IncRNA network
consisted of 29 nodes, including 9 miRNAs, 3 mRNAs, and 17
IncRNAs, and 116 edges (Supplementary Figure S2B).

Using the TRRUST database, we screened TFs interacting with
key genes and mapped regulatory networks involving two hub genes
(AURKA and PLK1) and six TFs. These interactions were visualized
using Cytoscape software (Supplementary Figure S2C).

To investigate the potential functional associations between the
identified hub genes, we performed protein-protein interaction
(PPI) analysis using the STRING database (https://cn.string-
db.org/). Bioinformatics analysis revealed direct PPIs among three
cell cycle regulators: CDCA8, AURKA, and PLKI (Supplementary
Figure S2D).
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In summary, our network analyses revealed extensive post-
transcriptional interactions focused on the hub genes,
encompassing RBP regulation with 69 proteins, a ceRNA network
of 29 nodes, transcriptional modulation by 6 transcription factors,
and direct protein interactions among CDCAS8, AURKA and PLK1,
highlighting their central roles in BRCA regulatory pathways.

3.7 Analysis of TMB, TIDE, immune
checkpoints, and drug sensitivity between
subtypes

To evaluate specific gene mutations in BRCA, we conducted a
TMB analysis between Subtypel and Subtype2, highlighting the 20
most FMGs. Within these groups, PIK3CA exhibited the highest
mutation rates in Subtypel, whereas TP53 had the greatest
mutational prevalence in Subtype2 (Figures 7A, B).The TIDE
analysis results comparing the two molecular subtypes are
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Comparative immune cell infiltration between subtypel and subtype2. (A) Comparative visualization of immune cell distribution in subtypel versus
subtype?2 breast carcinoma specimens using segmented columns. (B) Boxplot of immune cell proportions between subtypes 1 and 2. (C) Bubble plot
of the correlation between hub genes and immune cells. Statistical significance levels are denoted as follows: ****p < 0.0001, ***p < 0.001, **p <

0.01, *p < 0.05.

presented in Figures 7C, D. Subtype2 exhibited significantly lower
TIDE scores (Tumor Immune Dysfunction and Exclusion scores)
and exclusion scores compared to Subtypel. Conversely, Subtypel
demonstrated elevated dysfunction scores compared to Subtype2.
This differential pattern implies that Subtypel may possess greater
potential for immune evasion mechanisms, as evidenced by its
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distinct TIDE profile characteristics. Comparative analysis of
immune checkpoint expression revealed significant differences
between Subtypel and Subtype2. All evaluated genes, except
CD28, demonstrated statistically significant differential expression
across the groups (Figure 7E), suggesting distinct immunotherapy
response potentials between the molecular subtypes.
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We further assessed the predictive accuracy of molecular
subtypes for chemotherapy response in patients with BRCA. The
clinical efficacies of several chemotherapeutic drugs in BRCA
treatment were investigated (Supplementary Table S7). The
findings suggest that patients with Subtypel might be more
responsive to chemotherapy with AZD7762_1022 (Figure 7F),
Bortezomib_1191 (Figure 7G), MG-132_1862 (Figure 7H), and
Sepantronium bromide_1941 (Figure 7I). Conversely, patients
with Subtype2 might respond more sensitively to chemotherapy
with AZD8055_1059 (Figure 7]), BMS-754807_2171 (Figure 7K),
GNE-317_1926 (Figure 7L), PD0325901_1060 (Figure 7M), and
Trametinib_ 1372 (Figure 7N). These results suggest the potential
regulatory effects of chemotherapeutic drugs on SUMOylation.

3.8 Drug-gene interaction analysis

A search of the DGIdb for drugs targeting the four BRCA-
related hub genes revealed three significant interactions: AURKA
with the Aurora A kinase inhibitor MK5108, NR3C2 with
Finerenone, and PLKI1 with MK-1496, which exhibited the
strongest binding affinities (Table 1). This pharmacological
analysis identified specific drug-gene pairs with maximal
interaction scores within the database.
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3.9 Pan-cancer molecular signatures with
prognostic implications

The expression profiles of the four hub genes across various
cancers are illustrated using boxplots. Focusing on the prognostic
gene AURKA as an example (results for other prognostic genes are
shown in Supplementary Figures S3-S5), AURKA expression
differed significantly between the two groups. AURKA was
significantly upregulated in multiple malignancies, including
bladder urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma/endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), and
gastrointestinal cancers (COAD, ESCA, STAD, and READ),
compared to normal tissues, along with notable increases in
glioblastoma (GBM), head-neck squamous carcinoma (HNSC),
renal neoplasms (KICH, KIRC, and KIRP), hepatic carcinoma
(LTHC), pulmonary malignancies (LUAD and LUSC), pancreatic
adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD),
sarcoma (SARC), and endometrial carcinoma (UCEC).
Conversely, thyroid carcinoma (THCA) demonstrated significant
downregulation (Figure 8A). Subsequent pan-cancer analysis
revealed correlations between AURKA expression patterns and 28
immune cell subtypes across 33 malignancies (Figure 8B).
Prognostic evaluation using Cox regression modeling revealed
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FIGURE 7

Differential analysis of TMB, TIDE, immune checkpoints, and drug response in molecular subtypes. (A) Top-ranked 20 mutational hotspots identified in
subtypel population. (B) Leading 20 genes demonstrating predominant mutational rates within subtype2. (C) Boxplot of TIDE analysis between subtypel and
subtype?2 subtypes. (D) Sankey diagram of TIDE analysis between subtypel and subtype2 subtypes. (E) Boxplot showing the expression of immune
checkpoints between subtypel and subtype2 subtypes. Differential drug sensitivity between subtypel and subtype?2 subtypes for (F) AZD7762_1022, (G)
AZD8055_1059, (H) BMS-754807_2171, (I) Bortezomib_1191, (J) GNE-317_1926, (K) MG-132_1862, (L) PD0325901_1060, (M) Sepantronium bromide_1941,
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TABLE 1 Drug prediction.

Gene Drug Interaction score
AURKA Aurora A kinase inhibitor 18
MKS5108
NR3C2 ‘ Finerenone 4.12
PLK1 ‘ MK-1496 0.58

significant associations between AURKA expression levels and
overall survival in 16 cancer types. Elevated expression correlated
with poorer outcomes in LIHC, BLCA, adrenocortical carcinoma
(ACC), PAAD, mesothelioma (MESO), KIRP, uveal melanoma
(UVM), KICH, lower-grade glioma (LGG), SARC, LUAD, KIRC,
cutaneous melanoma (SKCM), and UCEC, while demonstrating
protective effects in LUSC and thymoma (THYM) (Figure 8C).

woun B ool B tumor

10.3389/fimmu.2025.1675874

3.10 Dimensionality reduction in single-cell
data

To investigate cellular heterogeneity in BRCA, we analyzed the
single-cell sequencing dataset GSE161529. After rigorous quality
control and pre-processing steps, 357,292 high-quality cells were
identified through transcriptomic profiling. Cells were partitioned
into 27 distinct subpopulations using unsupervised clustering
analysis (Figure 9A). Cellular identities were subsequently
determined by analyzing the transcriptional profiles of individual
clusters, supplemented with the known lineage markers (Figures 9B,
C, Supplementary Table S8). Figure 9B delineates eight principal
cellular populations: T and B lymphocytes, macrophages,
endothelial and epithelial lineages, fibroblasts, pericytes, and
smooth muscle cells.

Finally, comparative analysis revealed distinct variations in
cellular composition between the BRCA and control groups, with
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Pan-cancer biomarker prognostication. (A) Boxplot showing the expression of AURKA across multiple tumor types. (B) Thermal map depicting
AURKA-immunocyte associations across cancers. (C) Pan-cancer forest graph illustrating univariate Cox analysis of AURKA expression. Statistical
significance levels are denoted as follows: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.

Frontiers in Immunology

14

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1675874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

He et al. 10.3389/fimmu.2025.1675874
B Endothelial .
Q‘Ma'c phage
g o1
el oes ;
.2 16
® 3 e 17 N 2 - * Epithelial
i o1 o Toels
I ] Epithelial M
e 7 o2 © Nacrophage
* 8 22 * Endothelial
e g 23
o 10 o 24 Bcells
o1 25
o120
13
| Fibroblast
-
wap_; ap_7
et Tols [ T BT P e 1,004
Bosls .« . e e e e e .o
. Epithelial
Pericyte °* s o o . 0.75 . T cells
. Fibroblast
Endothelal . . o o . e Jass o
Emedion [}
20 £ . smc
15 5 0.50
Macrophage . . . 4 . Macrophage
00 o
o8 . Endothelial
suc| o e ° . . % cetectea
o 0.25+ Pericytes
°w
® 50 B cells
Forodiast |+ e e o+ - e - e o o
0.00 -
Tl |+ e e : §
& &
e"@ S
Epithelal . . . o o
FEE FES I T TS S ST S
FIGURE 9

Annotation and visualization of the cellular microenvironment in breast cancer. (A) UMAP visualization delineating cellular subset segregation
between tumor and normal cohorts; (B) UMAP visualization of cellular cluster annotations between malignant and benign specimens; (C)
Transcriptomic signatures characterizing eight distinct cellular lineages; (D) Cumulative histogram illustrating cellular composition variations in

neoplastic versus healthy cohorts.

detailed population ratios depicted in Figure 9D. Notably, the
proportion of fibroblasts showed significant changes before and
after the onset of BRCA.

3.11 Screening of key cell types

To identify the critical cellular subtypes involved in BRCA
pathogenesis, we spatially mapped the four central regulators
within the single-cell transcriptional profiles. The findings
revealed that most of these hub genes were clustered within the
epithelial cell population, identifying epithelial cells as the key cell
group (Figure 10A). We subsequently re-clustered the epithelial
cells (resolution = 0.2) and identified six subclusters, which were
labeled as four cell types: Epithelial_cluster1, Epithelial_cluster2,
Epithelial_cluster3, and Epithelial_cluster4 (Figures 10B, C).
Mapping the four hub genes onto these four cell subclusters
indicated that the majority were clustered within the
Epithelial_cluster4 (Figure 10D). Therefore, we analyzed the
differential genes between the key cell subcluster
Epithelial _cluster4 and the other three subclusters, identifying 830
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difterential genes (logFC = 0.25, p < 0.05; Supplementary Table S9).
Enrichment analyses were performed for GO categories
(Supplementary Table S10) and KEGG pathways based on the
DEGs (Supplementary Table S11). Functional annotation revealed
significant enrichment in key biological processes, such as
chromosome segregation and mitotic nuclear division (BP), with
predominant cellular localization observed in chromosomal
domains, including centromeric regions and condensed
chromosomes (CC). Molecular characterization revealed
enhanced functionality in single-stranded DNA binding and
oxidoreductase-driven transmembrane transport activities
(MF) (Figure 10E).

KEGG pathway analysis revealed significantly enriched
pathways in various categories: (1) cellular processes: cell cycle,
oocyte meiosis, and cellular senescence; (2) human diseases:
Parkinson’s disease, Huntington’s disease, and prion disease; (3)
genetic information processing: DNA replication, spliceosome, and
proteasome; (4) metabolism: oxidative phosphorylation, carbon
metabolism, and cysteine and methionine metabolism; and (5)
organismal systems: thermogenesis and progesterone-mediated
oocyte maturation (Figure 10F).
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subclusters.

3.12 Analysis of TFs in cell subclusters

To investigate the transcriptional regulation of BRCA
pathogenesis, we first analyzed the specific TFs in the four cell
subclusters (Figure 11A). A total of 30 TFs with cell-specific
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expression were identified, among which E2F8, MYBL2, GATA3,

MYB, NRL, NFATCI, FOXF1, and BHLHE4I exhibited strong

16

specificity for their respective cell types. Analysis of the
enrichment levels of these eight TFs in the four cell subclusters
revealed that GATA3 and MYB were enriched in Epithelial_clusterl
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Transcription factor analysis of epithelial cells. (A) Bubble plot showing specific transcription factors in cell types. The bubble size represents the RSS
(Regulon Specificity Score) value of the TF in a specific cell type. Elevated RSS values correlate with both increased bubble size and enhanced
transcription factor specificity within the respective cell type. The color represents the Z-score, where a higher score indicates that the TF
expression level in the specific cell type is significantly higher than in other cell types. (B-1) UMAP plots displaying the enrichment of eight
transcription factors across four Epithelial cell subclusters. TFs, transcription factors.

cells; NFATCI and NRL were enriched in Epithelial_cluster2 cells;
BHLHE41 and FOXFI were enriched in Epithelial_cluster3 cells;
and E2F8, GATA3, MYB, and MYBL2 were enriched in
Epithelial_cluster4 cells (Figures 11B-I). These findings suggest
that these TFs may play pivotal roles in breast carcinogenesis.

3.13 Prediction of drugs targeting key TFs

We analyzed eight key TFs using the DGIdb (https://
www.dgidb.org/), sorting the results in descending order based on
interaction score and selecting the small-molecule drugs with the
highest scores as the final predictions. Ultimately, only five TFs,
namely NFATCI, GATA3, FOXFI, E2F8, and MYB, successfully
predicted small-molecule drugs: Mycophenolate (for NFATCI),
Merimepodib (for GATA3), Bevacizumab (for FOXFI),
Edifoligide (for E2F8), Edifoligide Sodium (for E2F8), and
Retinoic Acid Agent (for MYB) (Table 2).
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4 Discussion

BRCA is the most prevalent malignancy globally, with
approximately 2.3 million new cases and 684,996 deaths annually
(2). Despite advancements in chemotherapy and targeted therapies,
many patients still experience drug resistance and metastasis (3),
highlighting the limitations of current treatment approaches.
Recent research has emphasized the regulatory functions of
SUMOylation in BRCA, particularly in maintaining genome
stability and modulating TFs (42). However, the specific roles of
SUMOylation-associated hub genes in tumorigenesis and
heterogeneity remain poorly understood. Significant research gaps
exist in mapping the dynamic SUMOylation networks across BRCA
subtypes and developing subtype-specific therapeutic strategies
targeting this pathway.

We systematically identified CDCA8, AURKA and PLKI as hub
regulators in BRCA-specific cell cycle networks, with integrated
bulk and single-cell RNA sequencing data confirming their
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TABLE 2 Small molecule drug screening.

Transcription Interaction
Drug
factor score

NFATC1 Mycophenolate 1.19

GATA3 Merimepodib 1.37

FOXF1 Bevacizumab 1.31

E2F8 Edlfollglde,-Edlfohglde 126
Sodium

MYB Retinoic Acid Agent 0.56

prognostic significance (Figures 3G, I, 10A). This integration of
established mechanisms and novel discoveries enhances
insights into potential therapeutic targets, while validating
methodological robustness.

Integrated transcriptomic and single-cell profiling identified a
pivotal regulatory network centered on NR3C2, CDCAS, AURKA,
and PLKI in breast carcinogenesis. NR3C2 displayed complex,
context-dependent functionality: although it was significantly
downregulated in tumors overall—suggesting a potential tumor-
suppressive role (Figures 3I, J) (43)—its elevated expression in
Subtypel correlated with poorer outcomes (Figures 4C, D). In
contrast, CDCA8, AURKA, and PLKI were consistently
overexpressed (44) and exhibited direct protein interactions
(Supplementary Figure S2D). Intriguingly, the collective high
expression of these three regulators defined Subtype2, which was
associated with a favorable prognosis despite their established pro-
oncogenic functions (Figures 31, J, 4C, D) (45). This functional
paradox underscores their context-dependent activity (46-48),
further illustrated by Subtype2’s enhanced sensitivity to targeted
therapies such as Trametinib (Figure 7N) (49). These molecular
subtypes also displayed distinct immune landscapes (Figures 5A, B)
and mutational spectra (Figures 7A, B). Single-cell resolution
further pinpointed hub gene enrichment within specific epithelial
subpopulations (Figures 10A-D). Collectively, our findings
establish a novel molecular taxonomy grounded in SUMOylation-
associated networks, linking transcriptional patterns with
therapeutic vulnerabilities to advance precision oncology.

In this study, we utilized GO and KEGG enrichment analyses to
identify the key pathways associated with hub genes in BRCA
development. The results highlighted the cell cycle regulation,
DNA replication, and senescence mechanisms drive tumor
progression (Supplementary Table S4; Figures 2I, J). As a
fundamental biological process controlling cellular division, the
pathological disruption of cell cycle control emerges as a critical
oncogenic feature in BRCA. The observed enrichment of cell cycle-
related genes suggests that these regulatory networks may
significantly influence abnormal proliferation patterns in
cancerous growths (Figures 21, J).

The DNA replication pathway maintains genomic stability, and
its dysregulation may drive cancer-associated genomic instability
(Figure 6B; Supplementary Table S6). The hub genes identified in
this study potentially promote BRCA progression by abnormally
regulating these pathways. Although cellular senescence typically
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suppresses tumor formation, the accumulation of senescent cells
paradoxically stimulates cancer growth through the persistent
secretion of inflammatory factors that establish pro-tumorigenic
microenvironments via paracrine signaling (Figure 2J;
Supplementary Table S4). These pathway discoveries deepen our
understanding of BRCA biology and reveal potential therapeutic
targets for it. Intervention strategies focusing on these pathways
could address current treatment limitations and improve the
clinical outcomes. This study underscores the critical involvement
of these pathways in breast carcinogenesis and their translational
potential for developing targeted therapies and contributing to the
understanding of molecular features of breast cancer.

Our analysis revealed subtype-specific immune signatures
(Subtypel vs. Subtype2), consistent with previous findings on the
bidirectional role of the TME in tumor progression (50)
(Figures 5A, B). Increased infiltration of activated CD8+ T cells
and macrophages correlated with improved survival outcomes,
highlighting the prognostic significance of anti-tumor immunity
(51) (Figures 4D, 5B). Critically, we identified hub genes that serve
as dual biomarkers, predicting both prognosis and immunotherapy
response—a functional extension of existing studies (Figures 4D,
7C). Our study significantly expands the understanding of these
hub genes by revealing their pivotal role in reprogramming the
tumor immune microenvironment. These findings advance
precision therapeutics by integrating subtype-specific immune
profiles with gene networks, facilitating strategies to boost
treatment efficacy through microenvironmental targeting and
addressing unmet clinical needs in BRCA management (52).

In the current investigation, we successfully identified 357,292
cells using scRNA-seq and categorized them into 27 distinct cell
clusters (Figure 9A), primarily comprising T cells, B cells, and
macrophages (Figures 9B, C). This comprehensive cellular profiling
highlights the significant heterogeneity within the BRCA
microenvironment, which is crucial for understanding tumor
biology and therapeutic responses. The identification of these cell
types and their respective clusters provides a foundational dataset
for future investigations into the molecular pathways underlying
tumor evolution and therapeutic resistance in mammary
carcinoma. The role of T cells in mediating anti-tumor immunity
and the involvement of macrophages in promoting tumor growth
and immune evasion are well documented (53, 54). Furthermore,
the heterogeneity within neoplastic microenvironments,
characterized by interactions among various immune cells
(Figure 9D), highlights the necessity for targeted therapeutic
strategies that can modulate these interactions for improved
therapeutic outcomes.

Although our findings provide crucial insights into the cellular
heterogeneity within BRCA tumors, several limitations should be
acknowledged. For instance, reliance on scRNA-seq data may not
fully capture the spatial organization and functional states of cells
within the TME. Moreover, the analysis does not account for
temporal changes in cell populations during disease progression
or treatment. Future studies that integrate spatial transcriptomics
and longitudinal sampling could greatly enhance our understanding
of TME dynamics.
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Our results reveal the intricate cellular landscape of BRCA,
emphasizing the importance of integrated analysis of bulk RNA
sequencing data in elucidating the mechanisms underlying tumor
heterogeneity and guiding the development of personalized
therapeutic strategies. A deeper understanding of the immune
microenvironment may open avenues for novel treatments aimed
at improving clinical outcomes and overcoming therapy resistance
(55). Based on transcriptomic correlation analysis, the conclusions
drawn from this study require further validation through
proteomics and functional experiments to elucidate the
underlying mechanisms.
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