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Interleukin-37 (IL-37) is a potent anti-inflammatory cytokine that plays a crucial
protective role in cancer, autoimmune diseases, and inflammatory diseases
though its unique dual intracellular and extracellular action pathways. This
review highlights the significance of IL-37 in common respiratory diseases.
Specifically, IL-37 can alleviate asthma by inhibiting Th2/Th17 immune
responses, inhibiting the release of epithelial-derived alarmins (TSLP and IL-33),
and attenuating airway remodeling. In pulmonary infections, IL-37 modulates
host responses by mitigating virus-induced hyperinflammation and inhibiting
viral replication, as observed in COVID-19 and influenza, while also regulating
immunopathology in Mycobacterium tuberculosis and fungal infections.
Moreover, in non-small cell lung cancer (NSCLC), IL-37 directly suppresses
tumor proliferation and migration, and restrains tumor progression through
immunomodulation and angiogenesis regulation. In pulmonary fibrosis, IL-37
reduces collagen deposition and promotes autophagy, thereby counteracting
interstitial fibrosis. Collectively, these findings demonstrate that IL-37 serves as a
crucial immunomodulator in respiratory diseases, and targeting IL-37 offers
novel insights and strategic opportunities for clinical intervention. This review
systematically summarizes the molecular mechanisms of IL-37 and discusses its
clinical therapeutic potential.
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1 Introduction

Asthma, lung tumors, pulmonary fibrosis, and lung infections caused by viruses and
bacteria, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are all
significant global health concerns that can result in substantial morbidity and mortality (1,
2). As the body’s bridge to the outside world, the lungs frequently experience external
insults that threaten host homeostasis. Inflammatory damage and immune dysregulation
are the main pathogenic mechanisms for respiratory diseases (3). Current drug therapy
focuses on lowering lung inflammation and airway obstruction to control symptoms and

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675791/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675791/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1675791/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1675791&domain=pdf&date_stamp=2025-11-10
mailto:15830996001@163.com
mailto:xi_xin_yan@126.com
mailto:superxuhaibo123@163.com
https://doi.org/10.3389/fimmu.2025.1675791
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1675791
https://www.frontiersin.org/journals/immunology

Cao et al.

slow disease progression (4). However, existing drugs suffer from
various side effects and lack adequate therapeutic efficacy.
Therefore, significant efforts have been undertaken to develop
new pharmacologic strategies for treating respiratory diseases (5).

IL-37 gene was first identified in 2000 by in silico studies of gene
databases (6). IL-37 is a new anti-inflammatory cytokine having
immunomodulatory properties, in contrast to the pro-
inflammatory cytokines of the IL-1 superfamily (7). The eleven
pro-inflammatory IL-1 family members are IL-367, IL-33, IL-36f3,
IL-18, IL-360,, IL-10., and IL-1PB. Although IL-37 and IL-38 are anti-
inflammatory factors, IL-1Ra and IL-36Ra are receptor antagonists
(8, 9). IL-37 and IL-1Ra possess a stable (-barrel structure that
binds to the extracellular immunoglobulin-like domains of IL-18Ro
and IL-1RI, respectively (2-6). Other cytokines in the IL-1 family
have different activities, although they all have the same B-trefoil
secondary structure (10-12). This is because signaling downstream
of this receptor is controlled in different ways.

Recent years have witnessed significant progress toward
comprehending IL-37 structure and its signaling pathways (13).
Unlike conventional cytokines, which typically operate through a
singular extracellular signaling paradigm—engaging cell-surface
receptors to initiate downstream cascades that either amplify or
suppress inflammation—IL-37 exerts its regulatory effects via a
bimodal signaling mechanism that encompasses both intracellular
and extracellular pathways. Several human diseases have been
associated with abnormal IL-37 expression. IL-37 is a potential
therapeutic target due to its protective function in the pathogenesis
and progression of metabolic disorders, cancer, and inflammatory
and autoimmune diseases (14-17). However, IL-37 can also act as a
common contributor to cancer and chronic infection
immunosuppression. It leads to abnormal cytokine proliferation
and aberrant immune responses, exacerbating infection and
inflammation (18, 19). These findings suggest that IL-37 may
help maintain immune system homeostasis.

This review summarizes the effects of IL-37 on respiratory
diseases, including bronchial asthma, coronavirus disease of 2019
(COVID-19), tuberculosis, fungus, lung cancer, and pulmonary
fibrosis. Furthermore, the advancement of IL-37 research in
respiratory diseases was assessed. Finally, the therapeutic potential
of IL-37 in respiratory illnesses was revealed.

2 Introduction to IL-37

2.1 Discovery and subunit composition of
IL-37

Three different research groups found IL-37 in 2000 after
analyzing the human EST (expressed sequence tag) database (20—
22). IL-37 was initially known as IL-1H, IL-1F7, IL-1RP1, and IL-
1H4. It wasn’t until 2010 that Nold et al. (6) consolidated the
nomenclature to IL-37, a designation that has persisted. The human
IL-37 gene is situated in the 2q12-13 region on the long arm of
chromosome 2, spanning 3.617kb, and is in close proximity to the
regulatory regions of the IL-1c and IL-1f genes (23), within a gene
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cluster that encompasses multiple IL-1 family members, excluding
IL-18 and IL-33. This unique genomic positioning may be
fundamental to its distinctive anti-inflammatory characteristics
(24, 25).

The IL-37 gene is composed of 6 exons, with exons 4, 5, and 6
encoding the B-trefoil structure that defines its extracellular
function (8). The gene’s alternative splicing yields five isoforms:
IL-37a,b, ¢, d, and e (7). IL-37a includes the N-terminus encoded by
exon 3 and forms the B-trefoil with exons 4 to 6; IL-37b is the full-
length, functionally rich isoform, with its B-trefoil encoded by exons
4 to 6; IL-37c and e lack exon 4 and are incapable of forming the [3-
trefoil, thus devoid of cytokine function; IL-37d possesses a
complete B-trefoil and retains cytokine activity. Current research
is primarily focused on IL-37b and d (23).

The IL-37b isoform can form homodimers, consisting of two
head-to-head symmetrical B-trefoil units (24, 25). However, this
dimeric form tends to diminish the anti-inflammatory efficacy of
IL-37, serving as a negative regulatory factor of its activity (18). In
contrast, the monomeric form of IL-37 is more effective in
suppressing innate immunity (25, 26), highlighting the potential
significance of developing an efficient monomeric IL-37b for the
treatment of inflammatory and immune-mediated diseases.

2.2 Distribution and expression of IL-37

IL-37 is extensively distributed across a variety of human tissues
and organs, with different isoforms exhibiting distinct expression
levels in various locations (27-29). IL-37a is predominantly found
in lymph nodes, placenta, colon, lungs, testes, and brain; IL-37b is
present in lymph nodes, blood, placenta, colon, lungs, and testes; IL-
37c is detected in lymph nodes, placenta, colon, lungs, testes, and
kidneys; IL-37d is specifically expressed in testes, blood monocytes,
bone marrow, umbilical cord mesenchymal stem cells, and adipose-
derived stromal cells; IL-37e is limited to testes and bone marrow
(30). IL-37 is produced by a diverse array of cell types, including
activated B cells, monocytes, keratinocytes, endothelial cells,
epithelial cells, dendritic cells (DCs), macrophages, CD4+ Treg
cells, and plasma cells, and can be identified in both normal and
malignant tissues (6, 31, 32).

Despite its broad distribution, IL-37 is expressed at low levels
under physiological conditions, a trait attributed to the presence of
unstable regions and a short half-life in IL-37 mRNA (33). Serum
IL-37 concentrations in healthy individuals are typically below 100
pg/mL (20), and IL-37 transgenic mice also exhibit very low or
undetectable constitutive expression levels (34). However, pro-
inflammatory cytokines such as TNFa, IFN-y, and IL-1B can
upregulate IL-37 expression (6), while IL-12, IL-32, and GM-CSF
can restrict IL-37 production (29, 33). Although basal IL-37
expression levels are low, its induced expression exerts significant
anti-inflammatory and immune-modulatory effects (35). Abnormal
IL-37 expression is observed in a variety of diseases, including
autoimmune diseases (36-38), cardiovascular diseases (39, 40),
neurological disorders (41, 42), liver disorders (43), skin diseases
(13), asthma (44-46), infections (47, 48), and cancer (49).
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2.3 Intranuclear actions of IL-37 and its
pathways

Upon inflammatory stimulation, the expression of IL-37
increases within cells (46). During this process, the immature
pro-IL-37 undergoes cleavage mediated by caspase-1,
transforming into its mature form (50). This transition is crucial
for IL-37’s translocation into the nucleus, as the use of caspase-1
inhibitors has been shown to significantly reduce IL-37’s ability to
enter the nucleus (51, 52). While caspase-1 plays a pivotal role in the
maturation of IL-37, other enzymes may also be involved in this
cleavage process, indicating that the processing of IL-37 may occur
through multiple pathways (53).

The mature IL-37 then forms a complex with the signal
transducer protein Smad3, known as the IL-37-Smad3 complex,
which can enter the cell nucleus and function as a transcription
factor, regulating the transcriptional activity of pro-inflammatory
genes (54). The nuclear translocation and functional execution of
IL-37 are regulated by cleavage sites; mutations in these sites can
impede the nuclear translocation of IL-37, subsequently reducing
the expression levels of inflammatory factors (52, 55).

Once the IL-37/Smad3 complex successfully enters the nucleus,
it can promote the production of protein tyrosine phosphatase non-
receptor type (PTPNs), an enzyme that inhibits the activity of
various inflammatory factors, such as Tumor Necrosis Factor-alpha
(INF-a)) and IL-6. Additionally, PTPNs can modulate multiple
inflammation-related signaling pathways, including MAPK
subfamilies (p38, INK, ERK), PI3K/Akt, NF-«B, and JAK-STAT
pathways (56, 57). Through these mechanisms, PTPNs contribute
to the suppression of inflammatory responses, thereby
demonstrating the anti-inflammatory characteristics of IL-37.

2.4 Extracellular actions of IL-37 and its
pathways

Secreted IL-37, acting as a ligand, binds to the interleukin-18
receptor alpha (IL-18Ro) (46). This interaction further recruits the
interleukin-1 receptor 8 (IL-1R8), forming an IL-37/IL-18Rat/IL-
1R8 complex (58). IL-1R8, as a negative regulatory factor, helps to
suppress inflammation induced by IL-1 and IL-18 (59).

The anti-inflammatory effects of IL-37 are partly dependent on
the presence of IL-1R8. Experiments have indicated that IL-1R8 is
necessary for IL-37 to exert its anti-inflammatory actions, as the
protective effects of IL-37 are diminished in the absence of IL-1R8.
Interestingly, a recent study found that high-dose of IL-37 instead
inhibit the recruitment of IL-1R8 and preferentially bind to IL-
18Ra, a mechanism that ultimately limits the anti-inflammatory
activity of IL-37 in macrophages (60). Furthermore, IL-37 can
induce the ubiquitination and degradation of IL-1R8 through
glycogen synthase kinase 3B (GSK3P), suggesting a complex
regulatory mechanism between IL-37 and IL-1R8 (61).

Although IL-37 shares sequence homology with IL-18, it does
not directly antagonize IL-18 (53). IL-18 binding protein (IL-18BP)
is an IL-18 antagonist. The affinity of IL-18BP (400 PM) for IL-18 is
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higher than that of IL-18Ro.. IL-18BP inhibits IL-18 binding to IL-
18RP and IL-18Ra, resulting in anti-inflammatory effects (62). IL-
37 indirectly regulates the activity of IL-18 by binding non-
competitively to IL-18Ro and interacting with the IL-18BP (63,
64). This interaction may affect the anti-inflammatory effects of IL-
37, as the binding of IL-18BP to IL-37 reduces its availability, thus
weakening its anti-inflammatory action (22, 53).

After binding to its receptor, IL-37 suppresses downstream
signaling hubs MyD88 (in TLR pathways) (65, 66) and TAKI1
kinase, leading to broad inhibition of downstream pro-
inflammatory components - including transcription factors (NF-
kB), kinase cascades (JNK, ERK, Fyn/Src), metabolic regulators
(mTOR), and inflammasomes (NLRP3) - which collectively reduce
pro-inflammatory effector molecules (IL-13, TNF-a, IL-6, IL-8, IL-
17) (41, 46, 57), thereby coordinately reducing the activation and
infiltration of inflammatory cells and alleviating inflammatory
responses. (Figure 1).

2.5 Biological functions of IL-37

No mouse or chimpanzee IL-37 homologs have been detected,
unlike other IL-1 family members (67). Thus, most IL-37 research
has focused on treating IL-37tg mice and rIL-37 protein in mouse
models. Compared with the research conducted using simulated
transgenic cells, the use of IL-37 transgenic mice can more
accurately reflect the role of this cytokine in the physiological
environment of the body in relation to diseases (68). As
mentioned earlier, IL-37 reduces pro-inflammatory chemokine
secretion and suppresses acquired and innate immune responses
via extracellular and intracellular pathways (46).

It effectively reduces the production of key pro-inflammatory
cytokines such as TNF-o, Interleukin-1 beta (IL-1B) and
Interleukin-6 (IL-6), thereby directly alleviating inflammatory
conditions (56, 69). This notion has been also supported by a
recent multi-omics study, which revealed that IL-37 levels are
negatively correlated with pro-inflammatory markers (such as IL-
6, IL-8, and CCL28) but positively correlated with the anti-
inflammatory marker TGF-B1 (69).

Additionally, IL-37 regulates polarization state of macrophages
and the function. In vitro experiments have shown that rIL-37
downregulates the expression of iNOS, CD11¢, MCP-1, CD86, and
IL-6 in M1 macrophages, while upregulating the expression of IL-10
and CD206 in M2 macrophages (60, 70, 71). The mechanism
involves inhibition of the Notchl and NF-xB pathways, thereby
suppressing macrophage polarization toward the M1 phenotype
(71). Therefore, IL-37 can shift macrophage polarization from the
pro-inflammatory M1 phenotype to the anti-inflammatory M2
phenotype. Furthermore, IL-37 exhibits significant anti-
inflammatory effects on macrophages by activating the PTEN/
STAT3/AMPK signaling pathway, while inhibiting the AKT/Erk/
NF-xB/mTOR pathway, and also suppressing the release of pro-
inflammatory cytokines such as TNF-a, IL-6, and IL-1P. However,
recent studies have revealed a dual role of IL-37 in macrophage
inflammatory responses: at low doses, it exerts anti-inflammatory
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The mechanism of action of IL-37. Inflammatory stimuli increase the production of the precursor form of IL-37. This precursor is processed into
mature IL-37 by caspasel. The mature IL-37 interacts with phosphorylated activated Smad3 in the cytoplasm, which contributes to nuclear
translocation and gene transcription regulation. Both the precursor and mature forms of IL-37 are released from cells via non-classical secretion
pathways. IL-37 binds to IL18Ra or IL18BP, which enhances the inhibition of IL18 and reduces the inflammatory response. IL-37 binds to IL-18Ra and

recruits IL-1R8. This complex mediates the extracellular function of IL-37.

effects, whereas at high doses, it preferentially binds to IL-18R,
inhibits the activation of PTEN, AMPK, and STAT3, and thereby
stimulates pro-inflammatory activity in macrophages (60). To date,
this phenomenon has only been observed in studies related to type 2
diabetes mellitus (T2DM). Therefore, further experiments are
needed to validate the appropriate dosage of IL-37 in the context
of specific diseases.

IL-37 also influences the maturation process of DCs, preventing
their maturation and fostering the generation of antigen-specific
regulatory T cells (Tregs), which are crucial for maintaining
immune tolerance and inhibiting excessive immune responses
(72-74). By reducing the expression of co-stimulatory molecules
on the surface of DCs, IL-37 further diminishes T cell-mediated
inflammatory reactions (17, 30). Furthermore, the
immunosuppressive function of IL-37 is also associated with the
regulation of cellular metabolism. Based on metabolomic analysis,
Teufel et al. found that IL-37 reduces immune cell activation by
modulating FGF-21, glutathione, glutamate metabolism, and
phospholipid metabolism, as well as regulating vascularization
(such as VEGFA) and ribosomal and protein translational activity
(69). Moreover, IL-37 enhances its anti-inflammatory effects by
increasing the expression of the anti-inflammatory cytokine IL-10,
achieving a balance between pro- and anti-inflammatory cytokines
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in immune responses (34, 75). These combined actions endow IL-
37 with significant therapeutic potential in the treatment of various
inflammatory diseases.

In addition to its well-documented anti-inflammatory effects,
emerging evidence indicates that IL-37 is also involved in the
regulation of autophagy and apoptosis. Cao et al. (76)
demonstrated that IL-37 not only ameliorates PM2.5-induced
acute lung injury through its anti-inflammatory properties, but
also significantly suppresses the upregulation of autophagy-related
proteins (such as Beclin-1, ATG5, and LC3BII) and apoptosis-
related proteins (including Bax and Cleaved Caspase-3) following
PM2.5 stimulation. Further mechanistic investigation suggested
that IL-37 may inhibit PM2.5-induced autophagy and apoptosis
by activating the AKT/mTOR signaling pathway, which is known to
suppress autophagy. Notably, Li et al. (77) previously reported that
in hepatocytes, IL-37 induces autophagy through inhibition of the
PI3K/AKT/mTOR pathway. Moreover, Zhang et al. (78) confirmed
that IL-37 alleviates high glucose-induced podocyte injury—
including inflammation, oxidative stress, and apoptosis—by
suppressing the activation of the STAT3/CypA signaling pathway.
These findings suggest that the regulatory effects of IL-37 on
autophagy and apoptosis may be tissue- or context-dependent.
The underlying molecular mechanisms warrant further in-depth
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and systematic investigation across various disease models, which
may provide new theoretical insights and potential therapeutic
targets for related diseases.

In addition to the above functions, IL-37 also plays a significant
role in regulating angiogenesis, with its effects demonstrating
complexity and duality. Sometimes it promotes angiogenesis,
while at other times it inhibits it. In vitro experiments have
shown that IL-37 can significantly promote the migration,
proliferation, and tube formation of human umbilical vein
endothelial cells. Further in vivo studies have also confirmed that
IL-37 can promote both pathological and physiological
angiogenesis in mouse models of ischemic retinopathy and
Matrigel plug models (79). The specific mechanism of its pro-
angiogenic effect may involve the transforming TGF-f signaling
pathway (80). On the other hand, IL-37 has also been shown to have
an inhibitory effect on angiogenesis, especially in the context of
tumor treatment. In mouse orthotopic models of hepatocellular
carcinoma (HCC) and diethylnitrosamine-induced HCC models,
IL-37 can inhibit the development of liver cancer by suppressing
tumor angiogenesis (81). In NSCLC, tumor cells transfected with
IL-37 show reduced CD34 expression and decreased microvessel
density (82). These results suggest that IL-37 may play an anti-
tumor angiogenic role, thereby blocking the nutrient supply to
tumors and inhibiting their growth and metastasis. This complex
role of IL-37 may be related to its microenvironment; it mainly
exerts an inhibitory effect in the tumor microenvironment, but
tends to promote angiogenesis under specific pathological
conditions such as hypoxia (79).

In the context of respiratory diseases, IL-37 plays a pivotal role,
utilizing its anti-inflammatory and immune-modulating
capabilities to effectively alleviate asthma symptoms (83, 84),
reduce inflammation caused by infections (85), inhibit the growth
of lung cancer (82), and mitigate the progression of pulmonary
fibrosis (86, 87). These attributes highlight the substantial promise
of IL-37 in the treatment of a range of respiratory conditions.

3 Association between IL-37 and
respiratory diseases

3.1 Asthma

A common, long-term, inflammatory, and allergic respiratory
condition, asthma is characterized by bronchospasm and reversible
airway blockage (88, 89). The heterogeneity of asthma is an
important aspect of the disease. Different asthmatic patients
exhibit multiple phenotypes due to differences in clinical features,
triggers, airway inflammation, and physiologic and pathologic
characteristics. Different airway inflammatory phenotypes
distinguish asthma classifications: type 2 inflammatory asthma
and non-type 2 inflammatory asthma (90). Asthma is considered
to be a classic type 2 inflammatory disease, characterized by the
activation of Th2 cells and type 2 intrinsic lymphoid cells (ILC2).
IgE, released by type 2 cytokines such as IL-4, IL-13, and IL-5 and
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plasma cell activation, stimulates basophils, mast cells, and
eosinophils, causing epithelial cell activation and airway smooth
muscle spasm (91, 92). Non-type 2 asthma is closely associated with
a neutrophilic airway inflammatory response. In non-type 2
asthma, pathogens and stimuli activate Th17 and Thl cells and
stimulate neutrophils by releasing IL-6, IL-17, IL-8, IFN-7y, and
TNF-0, resulting in inflammation (93). Current therapies primarily
focus on suppressing inflammation and relieving obstruction but
face limitations in efficacy and side effects, particularly concerning
the critical pathological feature of airway remodeling (4).

Numerous studies have revealed a close association between the
severity of asthma attacks and IL-37 levels. Lunding et al. (94) and
Gao et al. (95) confirmed lower IL-37 expression in peripheral blood
mononuclear cells (PBMCs) of pediatric and adult asthmatics
compared with healthy controls. This difference became more
pronounced following stimulation with CD3/CD28, which
mimics the activation of T cells by antigen-presenting cells,
suggesting that in asthma patients, the response of PBMCs to
stimulation may lead to the downregulation of IL-37 expression,
thereby exacerbating inflammatory responses (94). This reduction
in expression is not confined to the circulatory system but is also in
the local airway microenvironment: Charrad et al. (96) further
confirmed the reduced expression levels of IL-37 mRNA in induced
sputum and serum of asthma patients, and noted a significant
negative correlation between this expression level and the severity of
asthma. Additionally, a study from 2021 indicated that reduced
serum IL-37 levels were closely associated with worsening asthma
conditions, particularly during asthma exacerbations, where levels
were significantly lower than in healthy individuals and stable
asthma patients, and positively correlated with pulmonary
function indicators (FEV1) (97).These findings collectively
support the potential key role of IL-37 in the initiation,
progression, and persistence of asthma. Synthesizing these
findings, reduced IL-37 expression demonstrates a multi-tiered
pattern: baseline deficiency, dysregulated suppression upon
immune challenge, and dynamic declines in both local (airway)
and systemic (serum) levels. This pattern’s significant correlation
with asthma severity, exacerbations, and impaired lung function
indicates that IL-37 deficiency serves as a key biomarker throughout
asthma initiation, progression, and persistence, suggesting its
potential functional role in disease pathogenesis.

The core therapeutic potential of IL-37 in asthma stems from
its ability to intervene in the pathogenic mechanisms of asthma,
including the inhibition of pro-inflammatory cytokine production,
the reduction of cytokines that impair airway epithelial barrier
function, and the prevention of airway remodeling.

The impact of IL-37 on T cell subsets is particularly
noteworthy. It can inhibit the activation and proliferation of
Th2 and Th17 cells, which play a central role in the
inflammatory response of asthma (98). Th2 cells produce IL-4
and IL-13, key cytokines in asthma inflammation, while Th17 cells
produce IL-17, which is closely related to the pathogenesis of
neutrophilic and eosinophilic asthma (90). By reducing the
production of these pro-inflammatory cytokines, IL-37 helps
alleviate airway inflammation (98).
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As previously mentioned, the activation of Th2 cells leads to a
Th1/Th2 imbalance, resulting in increased production of Th2
cytokines such as IL-4, IL-13, and IL-5, which induce allergen-
specific IgE synthesis and the release of inflammatory
mediators (89).

In an ovalbumin (OVA)-induced asthma model, Lunding et al.
(94) found that intranasal administration of recombinant human
1L-37 (rhIL-37) reduced levels of IL-4, IL-5, IL-6, IL-12, and IL-13,
thereby attenuating Th2 cell responses. Huang et al. (99) also
discovered that rhIL-37 protein significantly lowered IL-4, IL-6,
and IL-13 levels, while increasing IFN-y expression in the OVA-
induced asthma model group. Additionally, Cui et al. (83) further
confirmed the anti-inflammatory effects of IL-37 in an OVA-
induced asthma model, showing that transgenic mice expressing
IL-37a and IL-37b had a significant reduction in eosinophils in the
lungs, with a minor increase in neutrophils and no significant
changes in lymphocyte and macrophage counts compared to wild-
type mice.

In a house dust mite (HDM)-induced asthma mouse model, IL-
37 has demonstrated significant anti-inflammatory effects. Meng
(100) and Zhu (101) found that administration of recombinant
human IL-37 protein, either via intranasal inhalation or
intravenous injection, effectively reduced levels of IL-4, IL-5, IL-6,
and IL-13 in a chronic HDM-induced asthma model. In the study by
Zhu et al. (101), NOD/SCID mice were specifically utilized as an
HDM-induced asthma model, where the mice were sensitized and
challenged with HDM to replicate the pathological processes of
allergic asthma. Following the administration of rhIL-37, a decrease
in the production of IL-17, CCL2, CCL17, CCL11, and CCL5 in the
lungs and bronchoalveolar lavage fluid (BALF) of these experimental
mice was observed. These findings underscore the potential of rhIL-
37 as a therapeutic agent to alleviate airway inflammation and
associated symptoms in asthma models. Although Lv et al. (102)
reported that IL-37 did not affect the production of Th2-associated
cytokines in an HDM-induced acute asthma model, they observed a
significant reduction in eosinophilia, CCL11 production, and airway
hyperresponsiveness (AHR) when IL-37 was administered during the
challenge phase. Collectively, these studies consistently indicate that
IL-37 possesses the potential to mitigate airway inflammation,
eosinophil infiltration, and AHR, highlighting its therapeutic
potential in the alleviation of asthma symptoms.

IL-17 is a cytokine produced by a specific subset of T cells,
namely Th17 cells. Th17 cells are a T cell subset in the immune
system that plays a significant role in inflammation and autoimmune
diseases. In the pathogenesis of asthma, the activation and
proliferation of Th17 cells, and their production of IL-17,
particularly IL-17A, are closely associated with the development of
neutrophilic and eosinophilic asthma. Charrad et al. (96) found that
IL-37 inhibits IL-17A production in CD4+ T cells from the sputum of
patients with asthma. IL-24 increased epithelial-derived IL-17A,
worsening neutrophilic airway inflammation. In 16-HBE cells, IL-
37 decreased IL-24-induced epithelial-derived IL-17A production by
modulating p-STAT3 and p-ERK1/2 pathways. In HDM/LPS-
sensitized asthmatic mice, in vivo rhIL-37 therapy reduced IL-17A
levels and Th1l7 immune response in the lungs (103). IL-37
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ameliorated CS-induced lung inflammation in mice and reduced
the production of pro-inflammatory cytokines such as IL-1{, IL-6, IL
-17, monocyte chemoattractant protein-1, and TNF-o (84). This
underscores the significant role of IL-37 in inhibiting Th17 cell-
mediated inflammation.

The involvement of the airway epithelium in the pathophysiology
of asthma is becoming more widely acknowledged. When the epithelial
barrier function is disrupted, the inflammatory response of the airway
epithelium to specific triggers (e.g., allergens) and nonspecific triggers
(e.g., viruses, or smoke) is exacerbated and is accompanied by an
increased release of TSLP, IL-33, and IL -25 (88, 104). Secretion of
these epithelial factors activates several immune cells, including Th2
and ILC2 cells. In addition, TSLP and IL-33 directly activate mast cells,
thereby establishing a direct link between airway epithelial and mast
cell activation without the involvement of T2 cells, leading to airway
inflammation and airway hyperresponsiveness (105). Thus, TSLP and
IL-33 play a key role in immune hyperresponsiveness that mediates
asthma attacks. According to Berraes et al. (106) in 2016, the
application of rhIL-37 inhibited the production of TSLP in sputum
cells from asthma patients, in which IL-37’s suppressive effect on TSLP
was similarly expressed in isolated bronchial epithelial cells. In 2019,
Meng et al. (100) found that IL-37 intranasally suppressed TSLP
expression in the airway epithelial cells of mice with chronic allergic
asthma caused by HDM. In vitro, IL-37 inhibited NF-xB and ERK1/2
activation in human bronchial epithelial cells to reduce HDM-induced
TSLP expression. In 2024, Wang et al. (107) further demonstrated that
rhIL-37 significantly decreased IL-33 levels in BALF of HDM-induced
asthmatic mice and diminished IL-33 secretion in HDM-stimulated
16HBE cells; the same study showed IL-37 preserves barrier function
by inhibiting store-operated calcium entry (SOCE). Thus, as an
upstream regulator, IL-37 represents an innovative and alternative
therapeutic strategy to reduce airway TSLP and IL-33 levels. Compared
with healthy controls, asthma patients exhibit a substantial increase in
IL-1B and IL-33 to IL-37 expression/production ratio. IL-37 alleviates
allergic airway inflammation by balancing the disease-amplifying
effects of IL-1 and IL-33 (45). Furthermore, because of its
regulatory role in allergic inflammation, IL-37 is a vital element in
maintaining local immunological homeostasis.

Airway remodeling is characterized by epithelial barrier failure,
goblet cell metaplasia, thickening of the airway smooth muscle
layer, and angiogenesis. All these characteristics promote steroid-
resistant asthma and acute exacerbations of asthma. Therefore, new
therapeutic strategies are needed to replace steroid hormones.
Huang et al. (99) discovered that IL-37 administration effectively
suppressed TGF-Bl-induced cell proliferation, migration,
epithelial-mesenchymal transition (EMT), and the inflammatory
response of airway smooth muscle cells in a mouse model of allergic
airway inflammation in asthma. Furthermore, by reducing NF-kB
STAT3 activation, IL-37 reduced airway inflammation and
reformed asthma. According to Feng et al. (103), IL-37 prevents
airway remodeling by reversing bronchial EMT in chronic asthma
via the IL-24 signaling pathway. Beyond these direct effects on core
remodeling mechanisms, IL-37 also shows potential in mitigating
the impact of environmental triggers. Wang et al. (108) discovered
that IL-37 reduced airway hyperresponsiveness in particulate
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matter 2.5 (PM2.5)-exposed mice and decreased aberrant cell
contraction, proliferation, and migration in human amniotic
mesenchymal stromal cells cultured with PM2.5. These findings
could pave the way for the development of IL-37 as a therapeutic
agent, as well as identifying pharmacological targets for preventing
and treating asthma airway remodeling (Figure 2).

IL-37, as an anti-inflammatory cytokine, shows great promise in
the treatment of asthma. It not only suppresses the production of
various pro-inflammatory cytokines to alleviate airway
inflammation but also regulates the function of airway epithelial
cells, inhibiting the release of epithelial factors such as TSLP. These
effects suggest that IL-37 could become an effective therapeutic
intervention for alleviating asthma symptoms, improving lung
function, and controlling disease progression, particularly in cases
involving steroid resistance and remodeling. Future research should
further explore the application of IL-37 in asthma treatment and
how to effectively integrate it into existing treatment plans to
provide better quality of life and disease control for asthma patients.

3.2 Pulmonary infection
3.2.1 Corona viruses

To date, three highly pathogenic human coronaviruses (CoVs)
have been identified: Severe Acute Respiratory Syndrome

10.3389/fimmu.2025.1675791

Coronavirus (SARS-CoV), Middle East Respiratory Syndrome
Coronavirus (MERS-CoV), and Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2). However, as no studies
have been reported on the association between IL-37 and SARS-
CoV, this section focuses on the role of IL-37 in infections caused by
MERS-CoV and SARS-CoV-2.

The COVID-19 pandemic induced by SARS-CoV-2 is a public
health crisis. More evidence links COVID-19 to cytokine release
syndrome, specifically elevated pro-inflammatory cytokines (IL-1(,
IL-6, TNF-0,, and IL-1at) in extreme cases (47, 107). Inflammation-
associated pro-inflammatory cytokines in COVID-19, particularly
the IL-1 family, may be suppressed by the anti-inflammatory
cytokine IL-37 (109). Li (110) discovered a link between elevated
plasma IL-37 response levels and clinical regression profiles such as
shorter length of hospitalization, faster viral nucleic acid negative
conversion, earlier CT imaging improvement, faster resolution of
cough symptoms, and better benign prognosis in patients with
early-stage COVID-19. Notably, higher IL-37 plasma levels lowered
IL-6, IL-8, and ultrasensitive C-reactive protein but did not affect
type I interferon plasma levels. As a result, IL-37 may not impair
type I interferon’s anti-viral activity while exerting its anti-
inflammatory function, which is a definite advantage over the
hormonal anti-inflammatory scheme now employed in clinical
practice. Following SARS-CoV-2 infection, IL-37 substantially
inhibited the inflammatory response of human angiotensin-
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The role of IL-37 in asthma. IL-37 indirectly enhances the levels of IFN-y by regulating the balance between Thl and Th2 cells, but does not directly
activate Thl cells. It inhibits the responses of Th2 and Th17 cells and suppresses the production of related cytokines (such as IL-4, IL-5, IL-17, etc.)
and eosinophil chemoattractant protein (CCL11). Additionally, IL-37 affects bronchial epithelial cells, airway smooth muscle cells, and fibroblasts,
modulating the secretion of related cytokines and chemokines, including TSLP and IL-33 produced by epithelial cells. IL-37 can also inhibit the
epithelial-mesenchymal transition (EMT) process, which is associated with the thickening of the airway wall and subepithelial fibrosis.
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converting enzyme 2 transgenic mice. Early IL-37 injection reduces
lung tissue injury and inflammatory cell infiltration, promoting
disease remission (110). For the Omicron variant, IL-37 specifically
inhibits macrophage-driven hyperinflammation by suppressing
NF-xB activation (111). A recent study found that IL-37
expression was reduced in the serum of individuals with severe
COVID-19 (112). This downregulation may be associated with an
increased risk of developing this disease. Furthermore, a strong
connection was found between IL-37 gene mutations and an
increased frequency of severe COVID-19 (113). Data demonstrate
that IL-37 may have a protective role in SARS-CoV-2-induced
inflammatory consequences. Thus, low IL-37 plasma levels can be
used to predict the severity of COVID-19 (Table 1).

Infection with the Middle East Respiratory Syndrome
Coronavirus (MERS-CoV) is associated with a mortality rate
exceeding 35% (114). This high fatality rate may be attributed to
rapid viral replication and excessive activation of pro-inflammatory
cytokines and chemokines. Similar to COVID-19, patients with
severe MERS exhibit not only elevated respiratory viral loads but
also significantly increased serum concentrations of cytokines such
as IL-6, interferon-o. (IFN-o), and IP-10 (115). Using an animal
model, Qi et al. (114) demonstrated that treatment with IL-37
resulted in reduced viral load, decreased levels of the pulmonary
chemokine MCP-1, and lower serum concentrations of MCP-1,
IFN-vy, IL-17A, IL-6, and IL-10 compared to the control group. In
contrast, mRNA expression of the anti-inflammatory cytokines IL-
10 and IL-20 was up-regulated in lung tissue. Consistent results
were obtained in cellular models, where 1L-37 treatment led to
reduced viral titers and significantly lower levels of inflammatory
factors, including IL-6 and TNF-o.

In summary, IL-37 exerts anti-inflammatory effects in both
MERS-CoV and SARS-CoV-2 infections by inhibiting the secretion
of pro-inflammatory cytokines. However, the underlying
mechanisms require further systematic and comprehensive
investigation. Future studies should explore whether IL-37 has
analogous anti-inflammatory roles in other respiratory viral
infections, thereby providing potential clinical strategies for
mitigating inflammation induced by respiratory viral infections.

3.2.2 Influenza

Influenza virus infection, particularly those caused by the
Influenza A virus (IAV), poses a significant global public health
challenge. TAV is known to cause acute upper respiratory tract
infections and can spread rapidly through airborne transmission,
leading to regional and seasonal epidemics and even global
pandemics. The activation of the host immune system during
influenza infection triggers a cascade of inflammatory responses
and complications, posing a severe threat to human health (116).

Expressed in a variety of cell types and tissues, IL-37 has
garnered considerable attention for its potential role in influenza
virus infection. Studies have shown that IAV infection induces a
significant upregulation of IL-37 expression in patient sera and
peripheral blood mononuclear cells (PBMCs) (85). This
upregulation may reflect a role for IL-37 in inhibiting TAV
replication, as demonstrated in vitro experimental studies.
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Increased expression of IL-37 in A549 cells and PBMCs infected
with TAV, along with the ability of recombinant human IL-37 to
suppress IAV RNA replication and reduce viral titers, highlight the
direct antiviral effects of IL-37. These findings provide a scientific
basis for considering IL-37 as a therapeutic strategy against IAV
infection. Compared to other anti-inflammatory cytokines such as
IL-10, IL-37 exhibits unique antiviral properties, particularly in its
ability to inhibit viral replication and mitigate inflammation. The
therapeutic potential of IL-37 extends beyond its antiviral effects to
its capacity to modulate immune responses. IL-37 has the potential
to alleviate inflammation caused by influenza infection, reduce
tissue damage, and improve outcomes by modulating macrophage
function and MAPK signaling pathways (117).

Translating IL-37 into clinical treatment for influenza involves
addressing challenges such as optimizing dosage, selecting
appropriate administration routes, and determining the best
timing for treatment. Additionally, it is necessary to ensure its
effectiveness against various strains of the flu and to confirm its
safety for patients with strong immune responses. IL-37 shows
promise in treating influenza by reducing inflammation and
regulating immune responses. However, further research is
needed to fully understand its mechanisms of action and
potential clinical applications. It has the potential to revolutionize
the treatment of influenza by aiding in viral control, potentially
enhancing the effects of vaccines, and contributing to the
development of new immunotherapy strategies(Table 1).

3.2.3 Tuberculosis

Tuberculosis (TB) is the leading cause of death from infectious
diseases globally, especially in developing and least-developed
countries. The most frequently afflicted organ in a TB infection is
the lung. Pulmonary TB (PTB) is correlated with higher rates of
mortality and morbidity. Early detection of PTB is critical for
lowering mortality (118). In patients with active tuberculosis
(ATB), serum levels of IL-37 are elevated. A 2015 study indicated
that prior to a six-month course of standard anti-TB drug therapy
with rifampicin, isoniazid, pyrazinamide, and ethambutol, ATB
patients had significantly higher serum IL-37 levels and mRNA
expression compared to post-treatment patients or healthy
individuals (119). Similarly, Zhang et al. (120) discovered that
individuals with ATB had significantly higher levels of IL-37
plasma than healthy controls and that IL-37 plasma levels were
lowered after antituberculosis medication. Several follow-up
investigations verified the considerable elevation of IL-37 levels in
patients with PTB. Wawrocki et al. (121) observed that co-
expression of serum IL-37 and IL-18BP was a more
discriminating biomarker for the diagnosis of active PTB than
serum IL-18BP alone. Furthermore, Yu et al. (122) observed
overexpressed IL-37, TNF-a, and miR-155 levels in elderly
patients with active PTB. The simultaneous assessment of serum
IL-37/TNF-a/miR-155 expression holds promise as a diagnostic
modality for identifying active PTB in older individuals. These data
imply that IL-37 plays an important role in the course of PTB. IL-37
levels are considered an indicator of recovery and a new biomarker
for the identification and diagnosis of ATB.
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TABLE 1 The role of IL-37 and its biological functions in pulmonary infectious diseases.

Disorder Mode Tissue/cell type Results/Role of IL-37 References
- Increased il-37 levels accompany a favorable prognosis (patients with COVID-
Human Plasma 19 presented significantly higher plasma IL-37 levels (mean [SEM], 196.2
[35.78] pg/mL)) (110)
- Reduce IL-6,IL-8 and CRP levels
Mouse lung tissue - attenuate lung inflammation and alleviate respiratory tissue damage
Human serum - IL-37 was down-regulated in serum of patients with severe COVID-19 (109.2 (112)
COVID-19 u u VS. 1254 ng/L; p <0.001)
- two variants of IL37 gene (rs3811046 and rs3811047) may be associated with
susceptibility to COVID-19 (TG genotype of SNP rs3811046 showed a
Human gene significantly increased frequency in patients compared to controls (61.0 VS. 117)
38.0%; OR = 2.55; 95% CI = 1.45-4.50; p = 0.002). GA genotype of SNP
rs3811047 also showed an increased frequency in patients compared to controls
(39.0 VS. 24.0%; OR = 2.02; 95% CI = 1.10-3.71; p = 0.033; pc = 0.165)
- The IL-37 levels in the sera and PBMCs of patients infected with IAV were
Human Serum higher than those of healthy subjects (324.4 + 43.17 pg/mL vs 129.2 + 19.23 pg/
Influenza A virus mL, P < 0.05) 117)
(IAV) - The expression of IL-37 mRNA and protein in IAV-infected A549 cells and
Vitro A549 cells PBMCs PBMCs was upregulated, and IL-37 protein was able to inhibit the replication of
TIAV RNA
(119)
Human serum - IL-37 was significantly elevated in patients with TB (122)
(120)
- Coexpression of serum IL-18BP and IL-37 is a more discriminative biomarker
Human serum . - . o (121)
for diagnostic active PTB than the single monitoring serum IL-18BP
- Stimulates IL-10 (p < 0.0001) and TGF-B poduction (p = 0.0011)
Human serum K (119)
- Downregulates IL-12 (p = 0.0116) and IFN-r (p < 0.01) production
Tuberculosis (TB)
Vitro macrophages - inducing macrophages towards an M2-like phenotype (119)
Human plasma - Inhibits IL-1B,IL-6 and TNF-a production (120)
(123)
Human gene - IL-37 gene polymorphisms associated with susceptibility of TB (124)
(125)
Mouse spleen - Regulated T cell responses, elevated TH1 cells, and decreased TH17 cells (123)
Streptococcus . - Decreases -1B,IL-6 and TNF-a production from RAW macrophages
. Mouse lung tissue e . (129)
pneumoniae - Inhibits kiling capacity of RAW macrophages
aspergillosis Mouse lung tissue - Reduces NLRP3 inftammasome actiwity (131)
perg 6 tissu - Inhibits IL-1f secretion
- reduce th duction of proinfl t ki
Candida infections Mouse lung tissue recuce the procuc l,on ° p.rom ammatory cytoiines (132)
- suppresse neutrophil recruitment

In addition to serum elevated IL-37 levels, the single nucleotide
polymorphisms (SNP) of the IL-37 gene may affect susceptibility to
TB or IL-37 levels. Liu et al. (123) discovered a correlation between
IL-37 gene polymorphisms and susceptibility to TB. The proportion
of C/C genotypes was significantly higher in Saudi patients with
ATB for rs2723176 (-6962 A/C), and this SNP’s C allele was
correlated with patients with TB (124). In addition, the C allele of
the rs2723176 SNP was associated with elevated levels of circulating
IL-37. Regardless of gender, age, or clinical disease type, IL-37 levels
were elevated in the serum of patients with TB, according to an Iraqi
study (125). SNPs in the promoter region of the IL-37 gene are
believed to influence susceptibility or resistance to TB infection.

Frontiers in Immunology

These findings suggest that IL-37 regulates the TB
inflammatory response.

The initial line of defense against Mycobacterium tuberculosis
entering the lungs is composed of macrophages, DCs, and
granulocytes. To regulate pathogen transmission, human
macrophages phagocytose M. tuberculosis and attract peripheral
blood lymphocytes, or monocytes, at the site of infection. M.
tuberculosis has evolved numerous strategies for manipulating
macrophage polarization (M1/M2) to evade the host’s
immunological response (126). In this context, IL-37 plays a
significant role. Huang et al. discovered that IL-37 inhibits the
phagocytic activity and NO production of macrophages after
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stimulation by iH37Rv, and promotes the differentiation of
macrophages towards an M2 phenotype. Regarding the source of
IL-37 in tuberculosis, Huang et al. (127) found that mannose-
encapsulated lipid arabinomannan (ManLAM, M. tuberculosis’s
primary cell wall component and virulence factor) promoted IL-37
production in human type II alveolar epithelial cells via the TLR2/
p38 or ERK1/2 pathways. In addition, M. tuberculosis induced the
production of IL-37 in macrophages, according to Liu et al. (123).
Meanwhile, IL-37 also has an impact on the inflammatory
environment produced by M. tuberculosis. Huang et al. (119)
discovered a negative correlation between serum IL-37 levels and
serum IFN-y and IL-12 concentrations and a positive correlation
between serum IL-10 and TGF-B1 levels in patients with ATB.
Zhang et al. (120) found IL-37 production is inversely correlated
with the immune response to pro-inflammatory cytokines such as
IL-1B, IL-6, and TNF-a and associated with prolonged or
complicated TB as well as greater TB burden. IL-37 production
not only lowered pro-inflammatory cytokines produced by M.
tuberculosis infection but also decreased Th17 cell responses to
control the growing inflammation. IL-37 also boosted adaptive
immunity and increased Th1 cells, both of which are required for
M. tuberculosis containment in an IFN y-dependent manner. Taken
together, the anti-inflammatory properties of IL-37 may represent a
unique molecular therapeutic target for the treatment of M.
tuberculosis (Table 1).

3.2.4 Streptococcus pneumoniae infection

Streptococcus pneumoniae (Spn), a Gram-positive coccus,
poses a significant threat to human health as a crucial respiratory
pathogen. In the course of pneumococcal pneumonia, excessive
immune activation and tissue damage can facilitate bacterial
invasion, a critical factor leading to severe complications.
Therefore, limiting proinflammatory cytokine responses and
leukocyte influx at appropriate times is crucial for ensuring the
proper resolution of inflammation (128).

However, the anti-inflammatory effect of IL-37 may also have
negative implications for the host’s immune defense. A study by
Schauer et al. (129) found that compared to RAW vector cells, RAW
macrophages stably transfected with human IL-37 exhibited a 70%
decrease in the production of cytokines such as IL-6, TNF-q, and
IL-1P, and a 2.2-fold reduction in intracellular killing ability against
Streptococcus pneumoniae. This suggests that while IL-37 has
significant anti-inflammatory effects, it may also affect the host’s
ability to clear pathogens.

In a mouse transgenic model expressing human IL-37b (IL-
37tg), researchers observed that IL-37 reduced the expression of
cytokines IL-6, TNF-o, and IL-1B during the early stages of
Streptococcus pneumoniae infection. However, in later stages, as
bacterial loads increased and bacteremia spread, the expression
levels of these cytokines in lung tissue rose, accompanied by a
significant increase in the recruitment of alveolar macrophages and
neutrophils. Additionally, TRAIL mRNA expression decreased by
three-fold (129). This altered immune response led to the
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development of necrotic pneumonia and increased mortality,
revealing that the anti-inflammatory properties of IL-37 may, to
some extent, weaken the mice’s ability to control Streptococcus
pneumoniae infection in the lungs.

The balance between pro- and anti-inflammatory cytokines
during Streptococcus pneumoniae infection is crucial for effective
pathogen clearance and preventing lung damage. Future therapies
should aim to enhance pathogen elimination while minimizing
tissue inflammation. Understanding IL-37 and immune regulation
is key to developing strategies that protect against excessive
inflammation during infection. This may include modulating IL-
37 expression and activity to ensure a host response that clears
pathogens without causing undue harm (Table 1).

3.2.5 Fungal infection

Fungal pneumonia occurs primarily in immunocompromised
individuals. Impairment of neutrophils and other myeloid cells is
critical for the development of invasive fungal infections
(Aspergillus, the causative agent of mucormycosis). In contrast,
impairment of T cell function and granulomatous inflammatory
processes is critical for susceptibility to Cryptococcus,
Pneumocystis, and type II fungi. Fungal infection induces
inflammatory chemical mediators, cytokines, and chemokines
released by mast cells (130). In a mouse model of aspergillosis,
IL-37 significantly reduced NLRP3-dependent neutrophil
recruitment and IL-1b secretion, attenuating lung inflammation
and injury. As a fundamental inhibitor of innate immunity, IL-37
protects against lung injury by inhibiting pro-inflammatory
cytokine production in mice with aspergillosis (131). However, in
a Candida albicans infection model (132), IL-37 significantly
reduced Candida-induced macrophage inflammatory cytokine
production and decreased neutrophil recruitment to Candida.
These processes lead to an impaired early innate immune
response, which is essential for limiting fungal transmission.
Thus, in a mouse model of disseminated candidiasis,
overexpression of IL-37 is detrimental to early host defenses
against Candida albicans. In patients with mycetoma, serum
levels of IL-1f3 and IL-12 positively correlate with lesion size and
disease duration, whereas IL-35 and IL-37 show a negative
correlation. Consistent with the Candida model, elevated IL-37 in
these patients suppresses macrophage-derived cytokines, including
IL-18 and IL-12, thereby dampening innate immunity and
facilitating disease progression (133). The differences in the anti-
inflammatory effects of IL-37 exhibited in these three different
disease models are primarily related to an imbalance in
inflammatory regulation. Therefore, the balance between effector
immune responses and tissue immune damage should be tightly
regulated to prevent clinical complications of the disease (Table 1).
Further studies are warranted to elucidate the mechanisms by which
IL-37 influences the outcomes of fungal infections. This will not
only enhance our understanding of its role in disease pathogenesis
but also potentially position IL-37 as a therapeutic target for
preventing disease onset and progression.
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3.3 Association between IL-37 and NSCLC

Globally, the incidence and mortality rates of cancer are on the
rise, with lung cancer being the most common and deadliest form,
imposing a significant burden on society and the economy. NSCLC
accounts for 80-85% of lung cancer cases and is the primary subtype
of the disease (134, 135). Recent interest in the role of interleukin-37
(IL-37) in NSCLC progression has emerged, with studies suggesting
its potential to exert protective effects through various mechanisms,
offering new avenues for lung cancer therapy (136).

IL-37 expression in NSCLC tissues is closely associated with the
progression of the tumor. Research by Ge et al. (82) has shown that
IL-37 mRNA and protein levels are significantly reduced in NSCLC
tissues compared to normal tissue, with low expression correlating
with advanced tumor stages and higher TNM stages. Jiang et al.
(137) further confirmed this phenomenon, finding that serum IL-37
levels in NSCLC patients are lower than those in healthy controls,
significantly associated with advanced TNM stages. These findings
suggest that low IL-37 expression may indicate the deterioration of
NSCLC, although its precise biological significance and clinical
implications warrant further investigation.

IL-37 has a direct inhibitory effect on NSCLC tumor cells.
Studies have demonstrated that exogenous IL-37 can induce
apoptosis in human lung adenocarcinoma A549 cells, while
inhibiting their proliferation, migration, and invasion (138).
Additionally, co-transfection of IL-37 with CCL22 can further
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reduce the proliferation rate of A549 cells and inhibit the
epithelial-mesenchymal transition (EMT) process (139). IL-37
also directly inhibits tumor cell invasion and migration by
suppressing the IL-6/STAT3 signaling pathway and its
downstream targets, including Bcl-2, NEDDY, and cyclin D1 (137).

In terms of immune regulation, 1L-37 enhances anti-tumor
immune responses by suppressing the chemotactic nature of Tregs.
Tumors frequently evade immune surveillance by elevating the local
Treg population, and IL-37 can attenuate the accumulation of Tregs
within the tumor microenvironment, thereby weakening their
protective shield for cancer cells (140). Chen et al. (139) validated
in vitro that IL-37 significantly curbs tumor growth in a
transplanted A549 lung adenocarcinoma model, and further
experiments demonstrated its capacity to diminish the
chemotactic properties of Tregs. Additionally, IL-37 indirectly
impedes tumor cell migration by modulating the Racl signaling
pathway. Racl, a member of the Rho GTPase family, plays a pivotal
role in the development of various malignancies. Recent findings
suggest that the intracellular mature form of IL-37 can block the
activation of Racl and its downstream signaling by binding to the
Racl CAAX motif, thus suppressing the migratory behavior of lung
cancer cells (141). Furthermore, reduced IL-37 expression in
human lung adenocarcinoma biopsy samples is associated with
tumor metastasis, indicating its potential crucial role in preventing
the dissemination of tumors. IL-37 also exerts anti-tumor effects by
regulating the m6A modification activity of lung cancer cells and
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The inhibitory effect of IL-37 on NSCLC. IL-37 suppresses tumor metastasis and invasion through multiple pathways. It inhibits Racl activation and
the IL-6/STAT3 pathway, reducing downstream targets Bcl-2, NEDD9, and Cyclin D1. Moreover, IL-37 influences tumor progression by modulating
RNA m6A methylation in T lymphocytes, while also inhibiting the Wnt5a/5b pathway and pro-apoptotic protein expression. Additionally, IL-37
contributes to the regulation of tumor angiogenesis by decreasing levels of CD34 and VEGF, which are associated with tumor angiogenesis. The
reduction in IL-37 expression correlates with high microvascular density (MVD), emphasizing its significance in tumor angiogenesis, metastasis, and

progression.
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inhibiting the Wnt5a/5b pathway. These mechanisms collectively
reshape gene expression patterns and signal transduction pathways,
hindering the malignant transformation of lung cancer cells (142).

Given the multiple protective effects displayed by IL-37 in
NSCLC, future research should delve into its molecular
mechanisms and expression and function across different types of
lung cancer, as well as consider its anti-tumor activity and potential
immunomodulatory effects in the development of novel therapeutic
strategies (Figure 3).

3.4 Pulmonary interstitial fibrosis

Pulmonary fibrosis is a chronic inflammatory disease
characterized by excessive collagen deposition. There are currently
no viable treatments for pulmonary fibrosis. IL-37 is a recently
identified anti-inflammatory cytokine. Topical IL-37 therapy
reduced bleomycin (BLM)-induced experimental lung inflammation
and fibrosis, according to Li et al. (86). In BLM-induced C57BL/6
mice, lentivirus-producing IL-37 was administered intranasally. IL-37
increased mouse survival and decreased the weight loss caused by
BLM. Additionally, in the lungs of the BLM-treated mice, IL-37
decreased hydroxyproline levels and collagen deposition as well as
inflammatory infiltrates. Finally, in lung tissue from BLM-stimulated
animals, IL-37 administration decreased the expression of monocyte
chemoattractant protein-1, IL-6, and TNF-a but enhanced the
expression of IFN-y. Similarly, a recent study found that patients
with idiopathic pulmonary fibrosis (IPF) have reduced lung IL-37
expression. In contrast, IL-37 inhibited BLM-induced fibrosis/lung
injury in experiments. Antifibrotic effects of IL-37 are achieved by
suppression of the TGF-P1 signaling pathway and promotion of
autophagy. According to research by Kim et al. (87), macrophages
and alveolar epithelial cells (AECs) in IPF patients exhibited
significantly less IL-37 protein than healthy controls. In mice, IL-37
dose-dependently reduced oxidative stress-induced primary AEC
mortality. However, inhibiting IL-37 significantly enhanced the
death of AEC (A549 cells) derived from human lung cancer. In
primary human lung fibroblasts, IL-37 suppressed the synthesis of
constitutive fibronectin and type I collagen mRNAs and proteins. IL-
37 inhibited TGF-Pl-induced lung fibroblast proliferation and
disrupted the TGF-B1 signaling pathway. Moreover, in IPF
fibroblasts, IL-37 enhanced beclin-1-dependent autophagy and
autophagy regulators. BLM injection-induced inflammation and
collagen deposition were dramatically decreased by IL-37. At the
moment, the precise regulation mechanism of IL-37 against interstitial
fibrosis is unknown. Nonetheless, these results imply that IL-37 may
be a viable therapeutic option for fibrotic lung disorders.

4 Conclusion

In summary, accumulating evidence suggests that aberrant
levels of Interleukin-37 (IL-37) are extensively involved in the
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pathogenesis of various respiratory diseases. As an anti-
inflammatory cytokine with immunomodulatory functions, IL-37
demonstrates broad application prospects in the treatment of
respiratory disorders. Specifically, IL-37 exerts protective effects in
diseases such as asthma, pulmonary infections, NSCLC, and
pulmonary fibrosis through core mechanisms including inhibition
of pro-inflammatory cytokine release, modulation of immune cell
functions, regulation of autophagy and apoptosis, as well as
suppression of fibrotic formation. However, this anti-
inflammatory property of IL-37 may, to a certain extent, weaken
the ability of mice to control pneumococcal infection in the lungs.
The expression level of IL-37 is closely associated with the severity
of respiratory diseases, indicating its potential as a biomarker for
diagnosis and prognostic evaluation. Furthermore, IL-37
significantly inhibits tumor cell proliferation, metastasis, and
angiogenesis, highlighting its value in NSCLC immunotherapy.

Although significant progress has been made, several important
questions remain to be explored in depth. Future research should
focus on systematically elucidating the precise molecular
mechanisms and signaling networks of IL-37 across different cell
types and disease models. Additionally, novel delivery strategies are
required to enhance the stability and efficacy of IL-37-based
therapeutic regimens. At the preclinical stage, as dose-effect
responses have emerged in the current research on IL-37 in type
2 diabetes, it is crucial to comprehensively evaluate the dose-
response relationship and safety of recombinant IL-37 under
various pathological conditions in the future. Moreover, large-
scale multicenter cohort studies are necessary to validate the
clinical utility of IL-37 as a diagnostic or prognostic biomarker.

In conclusion, IL-37 is not only a critical immunoregulatory
factor but also a promising diagnostic tool and therapeutic target in
the field of respiratory diseases. Integrating multidisciplinary
approaches from immunology, molecular biology, and clinical
medicine will facilitate the translation of IL-37-related discoveries
into clinical practice, providing novel strategies for the prevention
and treatment of respiratory diseases, and ultimately improving
patient outcomes.
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