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Introduction: Cisplatin resistance is a major challenge in ovarian cancer therapy,
particularly for high-grade serous ovarian cancer (HGSOC). DNA topoisomerase
lloo (TOP2A) relates to cancer drug resistance, yet its role and molecular
mechanisms in ovarian cancer cisplatin resistance remain unclear.

Methods: TOP2A expression was detected in HGSOC tissues and cisplatin-
resistant cells (SKOV3-DDP, OVCAR3-DDP). Functional assays combined with
TOP2A knockdown evaluated cisplatin sensitivity and malignant phenotypes
(proliferation, invasion, migration) in resistant cells. RNA-seq and GEO cisplatin
resistance dataset (GSE214302) validated TOP2A's role in cisplatin resistance,
prognostic value, and associations with TP53, GPX4, SLC7All. Molecular
docking/Co-IP confirmed TOP2A-TP53 interaction. Fer-1 and TP53
knockdown clarified TP53/GPX4/SLC7A11 axis regulation of ferroptosis and
EMT, and an in vivo xenograft tumor model validated these findings.

Results: TOP2A is highly expressed in HGSOC tissues and cisplatin-resistant
cells, with high levels strongly associated with tumor progression (advanced
stage, high grade, lymph node metastasis) and poor prognosis. RNA-seq shows
TOP2A correlates with TP53, GPX4, SLC7A11.GEO dataset analysis confirms all
four associate with cisplatin resistance. SLC7A11 and TOP2A are effective
resistance biomarkers, and high TOP2A predicts shorter progression-free
survival. Molecular assays verify direct TOP2A-TP53 interaction. Functional
experiments reveal TOP2A knockdown enhances cisplatin sensitivity, inhibits
malignancy, activates ferroptosis, and suppresses EMT via the TP53/GPX4/
SLC7A11 axis. This effect is reversed by Fer-1 or TP53 knockdown, with
mechanisms validated in vivo.
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Conclusion: TOP2A represents a potential prognostic biomarker and therapeutic
target for cisplatin resistance in ovarian cancer (OC), as it regulates ferroptosis
and EMT via the TP53/GPX4/SLC7A1l axis, which is mediated by its direct
interaction with TP53. This thus provides a novel direction for treating
cisplatin-resistant OC.

TOP2A, cisplatin resistance, ovarian cancer, ferroptosis, EMT, TP53

Introduction

Ovarian cancer(OC) is the most lethal gynecological
malignancy, with approximately 70% of patients being diagnosed
at advanced stages (1). According to epidemiological predictions for
2025, the global burden of OC remains substantial, with
approximately 20,890 new cases and 12,730 deaths projected in
the United States alone (2). Cisplatin, a platinum-based
chemotherapeutic agent approved by the U.S.Food and Drug
Administration(FDA),is widely used in the treatment of OC (3).
However, 65% to 80% of patients develop disease recurrence, which
is accompanied by either primary or acquired cisplatin resistance
(4). Platinum resistance has emerged as a major barrier to the
effective treatment of OC (5). For patients with cisplatin-resistant
ovarian cancer, the objective response rate (ORR) to platinum-free
single-agent chemotherapy, such as paclitaxel and etoposide, is only
20-28%, accompanied by significant toxicity and side effects
(6).Therefore, identifying novel drug resistance drivers and
elucidating their targetable mechanisms represent the key to
overcoming the bottleneck in ovarian cancer treatment.

TOP2A, a DNA topoisomerase encoded by a gene on
chromosome 17q21.2 with 36 exons, induces DNA double-strand
breaks and rejoining, playing a role in DNA transcription,
replication, chromatin condensation, and chromatid separation
(7). Over the past three decades, TOP2A has garnered substantial
research attention due to its functional role in human malignancies.
TOP2A is highly expressed in proliferating cells, and its
upregulation is closely associated with a broad range of cancers
(8), including OC (6, 9). Clinically used TOP2A inhibitors
commonly include etoposide and doxorubicin (10). Studies have
demonstrated that TOP2A mRNA expression is significantly
elevated in platinum-resistant patients. In recurrent OC patients
who have previously received platinum-based combination
chemotherapy, weekly cisplatin administration combined with
daily etoposide treatment is threefold more effective than
conventional therapeutic regimens (11). TOP2A holds promise as
a potential biomarker for predicting resistance to pegylated
liposomal doxorubicin (PLD) and for prognosticating patient
clinical outcomes (12-14). However, current studies on the
specific functional role and molecular mechanisms of TOP2A in
cisplatin resistance of ovarian cancer remain in the preliminary
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exploration stage. Whether its regulatory effects involve core
pathways associated with drug resistance has not yet been clarified.

With the in-depth investigation of drug resistance mechanisms,
ferroptosis and epithelial-mesenchymal transition (EMT) have been
identified as key biological processes underlying platinum resistance in
ovarian cancer (15-18). Among these, ferroptosis is driven by
intracellular iron accumulation and lipid peroxidation, and is
precisely regulated by antioxidant enzymes such as glutathione
peroxidase 4 (GPX4) (19-23). EMT, on the other hand, is a core
program that enables tumor cells to acquire invasive and metastatic
capabilities. It drives the transition of cells from an epithelial to a
mesenchymal phenotype via signaling axes such as transforming
growth factor- (TGF-f), hypoxia-inducible factor-1c. (HIF-1ct), and
Notch, thereby directly impairing the cytotoxic effect of cisplatin on
tumor cells (17, 18). Current functional studies have mostly focused on
downstream nodes. For instance, the SLC7A11 inhibitor sulfasalazine
restores tumor cell sensitivity to platinum-based drugs by increasing
lipid peroxidation levels in colorectal cancer (24). Similarly, TPI1 gene
silencing exerts the same effect in oral squamous cell carcinoma (25),
and downregulation of MPC1 expression achieves this outcome in
head and neck cancer (26, 27). Notably, cross-cancer studies have
provided clues regarding the association between TOP2A and drug
resistance pathways. In cutaneous squamous cell carcinoma, TOP2A
expression is positively correlated with ferroptosis sensitivity (28).In
hepatocellular carcinoma, the small molecule Phillyrin can specifically
inhibit TOP2A, block the JAK2/STAT3 signaling axis, and
downregulate GPX4 expression, thereby enhancing ferroptosis
(29).Additionally, bioinformatics analyses have identified TOP2A as
a ferroptosis-resistance regulatory hub (30).However, these studies only
focus on the single pathway of ferroptosis and do not involve EMT.
Furthermore, none of them have been validated in ovarian cancer,
which makes it impossible to clarify the role of TOP2A in cisplatin
resistance of ovarian cancer (31, 32), suggesting functional crosstalk
between the two pathways.However, in OC, direct evidence is still
lacking regarding whether targeting a single key factor can
simultaneously activate ferroptosis and block EMT, thereby reversing
cisplatin resistance.More importantly, whether TOP2A is involved in
the aforementioned crosstalk constitutes a critical gap in the current
research field.

Based on the aforementioned research status, this study
conducted a systematic investigation focusing on “TOP2A-
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mediated regulation of cisplatin resistance in OC”. First, it verified
that TOP2A is highly expressed in ovarian cancer tissues and
cisplatin-resistant OC cell lines, and this high expression is
associated with poor prognosis in patients.Second, via RNA
sequencing(RNA-seq) and mechanistic validation, this study is
the first to identify the “TOP2A/TP53/GPX4/SLC7A11”
regulatory axis, defining its role in coupling ferroptosis induction
with (EMT inhibition. Third, analysis of public ovarian cancer
genomic data from the Gene Expression Omnibus (GEO) database
demonstrated that TOP2A, TP53, GPX4, and SLC7A11 exhibit
differential expression between cisplatin-resistant and cisplatin-
sensitive OC cohorts. This analysis further confirmed that high
TOP2A expression is associated with shorter patient progression-
free survival, while receiver operating characteristic (ROC) curve
analysis showed that TOP2A possesses moderate diagnostic
efficacy. Finally, functional experiments demonstrated that
TOP2A binds directly to TP53.TOP2A knockdown restores
cisplatin sensitivity by activating TP53-dependent ferroptosis and
reversing EMT.

Materials and methods
Tissue specimens

The tissue samples in this study were obtained from 75 patients
with primary HGSOCadmitted to Shanxi Provincial People’s
Hospital Affiliated to Shanxi Medical University between 2021
and 2024, as well as 15 patients who underwent bilateral
salpingo-oophorectomy due to non-ovarian diseases
(adenomyosis and uterine fibroids).Among these HGSOC
patients, the mean age was 55.32 + 9.6 years (range: 35-68 years).
According to the International Federation of Gynecology and
Obstetrics (FIGO) staging system, 22 patients were at stage I-II
and 53 at stage ITI-IV. For histological grading, 25 cases were grade
G1, and 50 cases were grades G2-G3 (samples of grades G2 and G3
were combined for statistical analysis).All ovarian cancer tissues
were collected at the time of surgical resection.The inclusion criteria
for HGSOC patients were as follows: (1) Confirmed diagnosis of
HGSOC by pathological examination of surgical specimens; (2)
Postoperative receipt of standardized platinum-based combination
chemotherapy (cisplatin plus paclitaxel regimen, 4-6 cycles in total)
in accordance with clinical guidelines.The inclusion criteria for
HGSOC patients were as follows: (1) Confirmed diagnosis of
HGSOC by pathological examination of surgical specimens; (2)
Postoperative receipt of standardized platinum-based combination
chemotherapy (cisplatin plus paclitaxel regimen, 4-6 cycles in total)
in accordance with clinical guidelines.All tissues were processed
into sections for immunohistochemical (IHC) staining, which was
performed to evaluate the expression level of TOP2A. Staining
results were then assessed by two experienced pathologists using a
standardized scoring system.This study collected complete
pathological and clinical data of all patients, and all participants
signed written informed consent forms prior to the study.The study
protocol strictly adhered to the Declaration of Helsinki and was
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approved by the Ethics Committee of Shanxi Provincial People’s
Hospital Affiliated to Shanxi Medical University (Approval
No.: 776).

Immunohistochemistry

Immunohistochemical (IHC) staining was performed using the
streptavidin-peroxidase method to detect the expression of TOP2A
and TP53 in ovarian tissue and xenografts. Paraffin-embedded
tissue sections (4 pm) were deparaffinized, rehydrated, and
subjected to antigen retrieval with citrate buffer. Sections were
incubated with a primary antibody against TOP2A (1:200,
T55008,Abmart) or TP53(1:200,TA0879,Abmart)overnight at 4 °
C, followed by incubation with a secondary antibody (PV9001,
ABGH-Bio) for 15 min at room temperature. Sections were then
stained with DAB (C-0003, Bioss) and mounted. A semi-
quantitative scoring system was used to evaluate the sections:
intensity (0-3 points) x area percentage (0-0.9 points). A total
score of 20.6 was considered high expression, and <0.45 was
considered low expression.

Cell culture and cell transfection

Epithelial OC cell lines SKOV3, A2780, and OVCAR3, as well
as their cisplatin-resistant counterparts SKOV3/DDP, A2780/DDP,
and OVCAR3/DDP, were purchased from Shanghai Jinyuan Co.,
Ltd., a company specializing in human cell products. The human
ovarian surface epithelial cell line OSE was provided by the
Laboratory of Experimental Gynecologic Oncology, Chinese
Academy of Medical Sciences. Prior to use, all human cell lines
underwent standard mycoplasma contamination screenings and
were authenticated using STR profiles. Culture conditions for the
cell lines included 37 °C, 5% CO2, and DMEM medium with 10%
fetal bovine serum (FBS) from Cell-box in China. To maintain drug
resistance, the culture medium of resistant strains was
supplemented with 0.5 pg/ml cisplatin (HY-17394, MCE). The
incubator was disinfected daily with ultraviolet light for at least
30 minutes. The culture medium was changed regularly, and cells
were passaged when confluence reached 80%. Traditional methods
were employed to stably transduce cells with packaged NC vectors
and lentiviral GV493 vectors carrying shRNA-TOP2A and shRNA-
TP53. siRNA and The RNA lentivirus was obtained from Shanghai
Bioson Biotechnology Co., Ltd. and Haixing Biotechnology Co.,
Ltd. (Sequences are listed in Supplementary Table S1). One week
prior to transfection, the culture medium was replaced with one
devoid of cisplatin. For transient transfection, 5 pL of
LipofectamineTM 3000 (L3000015, Thermo Fisher Scientific) was
used per well in a 6-well plate. NC and siRNA(shRNA) groups were
established by seeding SKOV3/DDP and OVCAR3/DDP cells in 6-
well plates and culturing them at 37 °C for 24 hours. The working
concentration of siRNA was 50 nM.The volumes of NC and shRNA
lentivirus were calculated based on cell numbers and added to the
cells (SKOV3/DDP: MOI = 10; OVCAR3/DDP: MOI = 10).
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Subsequently, the cells were incubated at 37 °C for 24 hours, after
which the medium was replaced with fresh complete medium.
Fluorescence microscopy was used to assess successful cell
transduction 48 to 72 hours post-transduction, indicated by green
fluorescence. Stable transductants were selected using 2ug/ml
puromycin(ST551, Beyotime). Subsequently, knockdown
effectiveness was determined by Real-Time PCR and western blot
(WB) analysis.

Cell counting kit-8 assay

The CCK-8 assay was used to measure cell viability. Cells in
logarithmic growth phase were collected and seeded at a density of
8x10° cells per well in a 96-well plate (100uL per well) and cultured
overnight. Each group was replicated three times and treated with
various concentrations of cisplatin (0, 1, 2, 4, 8, 10 ug/ml) or
ferrostatin-1(fer-1; HY-100579, MCE) for 48 hours. Ten microliters
of CCK8 solution (100-106, GOONIEBIO) was added to each well
at pre-arranged intervals, and two hours after that, the absorbance
at 450 nm was measured with a multi-scan spectrophotometer.

Colony formation assay

A 6-well plate containing 700 transfected cells was cultured for
around 10 days in a medium containing 10% FBS for this test.
Staining the colonies with 0.1% crystal violet for an additional 30
minutes followed 30 minutes of fixing in 4% paraformaldehyde. We
used Image]J to examine high-resolution photos of the colonies.

Transwell assays

To measure the OC cells’ ability to invade, these tests made use
of transwell membranes that were covered with Matrigel (Corning
3422, 8 um pore size). At first, 200 ul of DMEM without FBS was
added to the upper chamber, where 2-4 x 104 cells were inserted,
and 500 pl of DMEM with 10% FBS was added to the lower
chamber. The chambers were incubated at 37 °C for 24 or 48 hours,
then rinsed with PBS. After that, they were fixed with 4%
paraformaldehyde for approximately 30 minutes. The cells on the
upper side of the membrane were then removed using a cotton
swab. Following a 30-minute staining period, the cells were washed
with double-distilled water and allowed to dry before imaging. The
membranes were subsequently rinsed with crystal violet.

Wound healing assay

The purpose of this experiment was to measure the OC cells’
migratory capabilities. A sterile 10 ul pipette tip was used to make a
scratch when the cells in a 6-well plate had attained 100%
confluence. The cells were subsequently cultured in DMEM
devoid of FBS and their migration inside the wound was tracked
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by taking electron microscopy pictures at 0 and 48 hours.
Measuring the change in wound area allowed us to quantify the
degree of cell migration.

Real-time PCR

Cells were cultured in 6-well plates. Total RNA extraction and
concentration measurement were performed for each group as per
the kit’s protocol (AG21023, SteadyPure). Reverse transcription was
conducted using an oligo(dT) primer at 42 °C for 60 minutes,
followed by 70 °C for 5 minutes. For qPCR with SYBR Green dye,
the thermal cycling conditions included an initial denaturation at
95 °C for 30 seconds, then 40 cycles of 95 °C for 15 seconds and 60 °
C for 30 seconds. A melting curve analysis was used to verify the
specificity of the PCR products. The cycle threshold (Ct) values of
the genes were recorded, and relative mRNA expression levels were
determined using the 2-AACt method. First-strand cDNA synthesis
kit (No. g592) and BlasTaq 2X qPCR MasterMix (No. g891) were
purchased from Applied Biological Materials. The qPCR primers
used are listed in Supplementary Table S2.

Western blot

Cells were lysed using RIPA buffer (P0O013B, Beyotime)
supplemented with phenylmethylsulfonyl fluoride (PMSF) and
kinase inhibitors (P1005, Beyotime) to extract proteins. Protein
concentrations were measured using a BCA protein assay kit
(2102, EPIZYME BIOTECH. 20 ug Proteins were separated
using 10% SDS-PAGE(SW243-02,SEVEN BIOTECH) and then
transferred onto 0.45um PVDF membranes(Millipore). Following
a 2-hour blocking step with 5% skim milk, the membranes were
incubated with primary antibodies at 4 °C overnight and
HRP-conjugated secondary antibodies for 1 hour. The
binding of antibodies was visualized using ECL (enhanced
chemiluminescence) reagents (G2074 and G2014, Servicebio). The
primary and secondary antibodies used are detailed in
Supplementary Table S3.

RNA-sequencing

Total RNA was isolated from transfected cells with silenced and
NC cells using TRIzol reagent (Hyclone), and sent to Biotree
Technology Company (Shanghai, China) for RNA-seq analysis
according to the standard Illumina protocol. Double-stranded
cDNA (250-300 bp) was size-selected using AMPure XP beads,
followed by PCR amplification, purification, and library
construction. Library quantification was performed using Qubit, and
insert size was assessed by Agilent 5400. After confirming the insert
size met expectations, the effective library concentration was
accurately quantified by qPCR (library concentration >2 nM) to
meet high-quality library standards.Libraries with different index
sequences were pooled in proportion, followed by Illumina Novaseq
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PE150 sequencing. Data analysis was performed in the R
programming environment. Differential expression analysis was
conducted using the DESeq2 package, with the threshold for
significantly differentially expressed genes set at |log2FoldChange| >
1.0 and padj < 0.05. Subsequently, DAVID was used to perform Gene
Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses on differentially expressed
genes (DEGs).

Bioinformatics analysis

Sequencing data from the GSE214302 microarray were
downloaded from the GEO database. Gene expression profiles of
two sample groups (cisplatin-sensitive and cisplatin-resistant) were
examined, and differential genes were analyzed using the limma
package. The volcano plots were generated with the screening
criteria of | log,FC|>1 and adjusted P<0.05).The Heatmap
package was used to generate standardized expression heatmaps
for TOP2A and other drug resistance-related genes. For the genes
TOP2A, TP53, GPX4, and SLC7A11, box plots combined with the
Wilcoxon rank-sum test were applied to analyze intergroup
differences in expression. ROC curves (with area under the curve
[AUC] values) were used to evaluate the diagnostic efficacy of these
four genes. Patients were stratified based on TOP2A expression
levels, and differences in progression-free survival (follow-up unit:
months) were analyzed using the Kaplan-Meier method (Log-
rank test).

Molecular docking analysis

Protein-protein rigid docking was performed using GRAMM
software (conformations of ligand and receptor molecules remained
unchanged, with only the optimal binding sites searched on the
protein surface). Based on the names of target genes, the amino acid
sequences of TOP2A and TP53 were retrieved from the UniProtKB
database. These sequences were input into the SWISS-MODEL
server for homology modeling, and the Protein Data Bank (PDB)
file of the optimal protein structure was screened and downloaded.
The PDB file was then imported into GRAMM software for
molecular docking calculations. The top 10 docking results were
collected, and the result with the highest score (ranked first) was
selected as the optimal binding mode for subsequent analyses.

Co-immunoprecipitation

Co-IP assay was performed to verify the binding properties
between proteins. Cisplatin-resistant ovarian cancer cell lines
(SKOV3-DDP and OVCAR3-DDP) were selected and cultured to
80-90% confluency. Cells were lysed on ice using RIPA lysis buffer
(HYP103, HYCEZMBIO) supplemented with protease/phosphatase
inhibitors. After shaking at 4 °C for 30 minutes, the lysate was
centrifuged at 12,000 rpm for 20 minutes to collect the supernatant.
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A portion of the supernatant was mixed with rabbit anti-human
TOP2A primary antibody, with normal rabbit IgG (B30011,
Abmart) as the negative control, and incubated overnight at 4 °C.
The IP complex was then incubated with Protein A/G Plus agarose
beads (Santa Cruz) on a multi-functional rotary shaker at 4 °C for 5
hours, followed by centrifugation. The resulting bead-antibody-
antigen complex was washed three times with lysis buffer
containing a mixture of protease and phosphatase inhibitors, and
the supernatant was collected after centrifugation. Finally, the
complex was mixed with an equal volume of 1x loading buffer,
boiled at 95 °C for 5 minutes, and analyzed by WB.

Mitochondrial membrane potential,
reactive oxygen species and lipid
peroxidation assays

To evaluate the levels of MMP, ROS and LPO in cells, we used
the JC-1 Mitochondrial Membrane Potential Detection Kit (G1515,
Servicebio), DCFH-DA (HY-D0940, MCE), and BODIPY 581/591
C11 (G1733, Servicebio). Briefly, cells in 6-cm dishes were
incubated with JC-1 fluorescent probe, 10 uM DCFH-DA, and 10
uM BODIPY 581/591 Cl11 for 30 minutes. Finally, fluorescence
microscopy(Mateo FL, Leica)was used to analyze the levels of ROS,
MMP and LPO in cells.

Transmission electron microscopy

For TEM analysis, cell samples were initially fixed with 2.5%
glutaraldehyde and subsequently post-fixed with 1% osmium
tetroxide. They were then dehydrated with a graded series of
acetone (30%, 50%, 70%, 80%, 90%, 95%, 100%), with the 100%
concentration changed three times, for 15 minutes each. Following
this, samples were infiltrated with a mixture of the dehydrating
agent and Epon-812 embedding medium in ratios of 3:1, 1:1, and
1:3, respectively, before being embedded in pure Epon-812.
Ultrathin sections (60-90 nm) were cut using an ultramicrotome
and mounted on copper grids. Sections were stained with uranyl
acetate for 10-15 minutes, followed by lead citrate for 1-2 minutes,
both at room temperature, before being examined by TEM (JEM-
1400FLASH, JEOL).

Superoxide dismutase, glutathione, lactate
dehydrogenase and lipid peroxidation
malondialdehyde assays

To measure the levels of SOD, GSH, LDH, and MDA in cells, we
used the Total SOD Assay Kit with WST-8 (S0101S, Beyotime),
GSH Detection Kit (G4305, Servicebio), LDH Cytotoxicity Assay
Kit with WST-8 (C0018S, Beyotime), and MDA Assay Kit (A003-1-
2, Nanjing Jiancheng Bioengineering). Briefly, cells in 6-cm dishes
were processed according to the manufacturer’s protocol, and
absorbance was measured at 450 nm,412nm or 532 nm.
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In vivo studies

This study has received the necessary ethical approvals from
Shanxi Medical University’s Fifth Clinical Medical College’s
Ethics Committee (Approval No. 776). A subcutaneous
xenograft tumor model was established in 5-week-old female
BALB/c nude mice using 5000000 SKOV3/ddp cells (mice
provided by Sibeifu (Suzhou) Biotechnology Co., Ltd.,
Production License No. SKXK (Su) 2022-0006). The mice were
divided into four groups (n = 6 per group): shNC, shTOP2A,
shTP53, and shTOP2A+shTP53. All xenografted mice were
intraperitoneally injected with DDP (4 mg/kg) every 6 days (1).
After 28 days, the mice were euthanized by cervical dislocation,
and tumors were collected for analysis. Tumor volume was
calculated using the formula (length x width?®)/2, and tumor
diameter was monitored throughout the experiment to ensure it
remained below 15 mm.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 10.1.2,
with data derived from at least three independent experiments. Results
were presented as mean + standard deviation (SD). Differences
between groups were evaluated using Student’s t-test and chi-square
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(x*) test. A two-tailed P value < 0.05 was considered statistically
significant.(*p < 0.05, **p < 0.01,***p < 0.001).

Results

TOP2A in OC is elevated and associated
with prognosis

We conducted immunohistochemical staining on 75
pathological sections from EOC patients at various stages and 15
normal ovarian tissue samples, followed by clinical data
analysis.Findings revealed that TOP2A was highly expressed in
EOC tissues, predominantly exhibiting granular or diffuse nuclear
distribution (Figure 1). In the sample cohort, 32 cases exhibited low
TOP2A expression, while 43 cases showed high expression. TOP2A
high expression rate in primary EOC tissues was 85.3% (64/75),
significantly higher than that in normal ovarian tissues [20.00% (3/
15), ***p < 0.001].TOP2A expression levels were positively
correlated with tumor stage (*p = 0.018), histological grade (**p =
0.002), and lymph node metastasis (*p = 0.035).Increased TOP2A
expression was associated with advanced tumor stage, higher
histological grade, and increased lymph node metastasis
incidence.However, no significant correlation was observed
between TOP2A expression and patient age (p = 0.365) (Table 1).
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FIGURE 1

TOP2A is upregulated in OC (A) TOP2A was negative in normal ovarian tissues. (B-E) TOP2A is differentially expressed in EOC across different FIGO

stages (I-1V)(x100, 200pm;x200, 100pum).
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TOP2A is highly expressed in cisplatin-
resistant OC

To explore the association between TOP2A and the malignant
behaviors as well as chemoresistance of OC, WB was used to detect
TOP2A expression in EOC cells, their cisplatin-resistant derivatives
(OVCAR3/OVCAR3-DDP, A2780/A2780-DDP, SKOV3/SKOV3-
DDP), and normal ovarian epithelial cells (OSE).As shown in
Figures 2A, B, TOP2A exhibited high expression in EOC cells
compared with OSE cells. Furthermore, TOP2A was significantly
overexpressed in SKOV3-DDP and OVCAR3-DDP cells compared
with their respective cisplatin-sensitive parental cell lines. However,
there was no significant difference in the protein expression level of
TOP2A between A2780-DDP cells and their cisplatin-sensitive
counterparts (Figures 2A, B). The CCK-8 assay was employed to
determine the optimal cisplatin concentration for cell culture and
verify the chemoresistance of ovarian cancer cells. After 48 hours
exposure to gradient cisplatin concentrations (0, 2, 4, 6, 8, 10 ug/
ml), the viability of SKOV3 and OVCAR3 cells was significantly
lower than that of SKOV3-DDP and OVCAR3-DDP cells (SKOV3:
IC50 = 3.2 pg/ml; SKOV3-DDP: IC50 = 8.9 ug/ml; OVCAR3: IC50
= 2.6 ng/ml; OVCAR3-DDP: IC50 = 7.4 ug/ml) (Figures 2C, D).
These results confirm that SKOV3-DDP and OVCAR3-DDP cells
exhibit significant cisplatin resistance. Moreover, a cisplatin
concentration of 3.0 pg/ml was determined to be suitable for
subsequent cell function experiments.

TOP2A silencing enhances cisplatin
sensitivity in cisplatin-resistant OC Cells

Stable TOP2A knockdown in cisplatin-resistant SKOV3-DDP
and OVCAR3-DDP cells was achieved through shRNA
transfection. qPCR and WB analyses confirmed significant

10.3389/fimmu.2025.1675373

reductions in TOP2A expression at both mRNA and protein
levels compared to negative controls (Figures 3A-F). CCK-8
assays showed that TOP2A knockdown significantly inhibited the
proliferation of SKOV3-DDP and OVCAR3-DDP cells compared
to the NC group (Figure 3G). After 48-hour treatment with gradient
cisplatin concentrations (0-10 pg/ml), TOP2A-knockdown
SKOV3-DDP and OVCAR3-DDP cells exhibited significantly
enhanced cisplatin sensitivity compared to their parental resistant
counterparts (Figure 3H). Subsequently, TOP2A-knockdown
SKOV3-DDP and OVCAR3-DDP cells were used in experiments
with 3 pg/ml cisplatin treatment.Colony formation assays
confirmed results consistent results with the CCK-8 assay
(Figures 31, J). The invasive and migratory capacities of the cells
were further evaluated using Transwell and wound healing
assays.Results demonstrated that TOP2A-knockdown cells
exhibited significantly decreased invasion and migration rates
(Figures 3K-M). These findings indicate that TOP2A may
contribute to cisplatin resistance in OC cells in vitro.

The TOP2A-TP53-ferroptosis axis
synergistically regulates cisplatin resistance
and prognosis in OC

To clarify the mechanism by which TOP2A induces cisplatin
resistance in OC, RNA-Seq was performed on TOP2A-silenced
SKOV3-DDP cells. Gene Ontology (GO) enrichment analysis
indicated significant enrichment in terms related to lipid metabolism
regulation, oxidative stress response, glutathione metabolic processes,
iron ion binding, positive regulation of oxidative stress-induced cell
death, and regulation of protein serine/threonine kinase activity
(Figure 4A). Furthermore, TOP2A knockdown significantly
downregulated the expression of ferroptosis-related proteins GPX4
and SLC7A11 (Figures 4C, D), suggesting a close association with the

TABLE 1 Relationship between TOP2A protein expression and clinicopathological features of Epithelial ovarian cancer.

Clinicopathological feature High(%)
Age (years) 0.82 0.365
<50 35 13 22
>50 40 19 21
FIGO stage 5.63 0.018*
I-1I 22 14 8
1I-1v 53 18 35
Histological grade 9.74 0.002**
Gl 25 17 8
G2-G3 50 15 35
Lymph node metastasis 4.44 0.035%
- 34 19 15
+ 41 13 28

*p<0.05, **p<0.01.
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TOP2A is highly expressed in cisplatin-resistant OC cells. (A) WB analysis of

TOP2A protein expression in EOC cells (OVCAR3, A2780, SKOV3),

their cisplatin-resistant derivatives (OVCAR3-DDP, A2780-DDP, SKOV3-DDP), and OSE. (B) Quantitative analysis of TOP2A expression levels from (A).

(C) Cisplatin sensitivity curves of SKOV3 and SKOV3-DDP cells, determined

by CCK-8 assay following 48-hour treatment with gradient cisplatin

concentrations (0, 2, 4, 6, 8, 10 pg/ml). IC50 values are indicated: SKOV3 (3.2 pg/ml) and SKOV3-DDP (8.9 ug/ml). (D) Cisplatin sensitivity curves
of OVCAR3 and OVCAR3-DDP cells under the same treatment conditions as in (C), with IC50 values: OVCAR3 (2.6 ng/ml) and OVCAR3-DDP (7.4
ug/ml). All experiments were performed with 3 independent biological replicates (n=3), and each biological replicate included 3 technical repeats.
Data are shown as mean + SD. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001. Not Significant:NS.

ferroptosis pathway and indicating that TOP2A may regulate cisplatin
resistance in OC by suppressing ferroptosis. To further verify the
correlation between gene expression and cisplatin resistance
phenotype, we performed differential gene expression analysis on
cisplatin-sensitive and cisplatin-resistant sample groups via
bioinformatics approaches. The volcano plot of differential gene
expression (Figure 4E) showed a large number of significantly
differentially expressed genes between the two groups. Red dots
represented significantly upregulated genes, blue dots represented
significantly downregulated genes and gray dots represented genes
with no significant difference. This indicated substantial differences in
gene expression profiles between the sensitive and resistant groups.
Specifically, TOP2A, GPX4 and SLC7A11 were upregulated while
TP53 was downregulated in the resistant group. The heatmap of
target gene expression (Figure 4F) clearly showed the expression
clustering characteristics of TOP2A, TP53, GPX4 and SLC7All
across different samples. Based on gene expression patterns, the
samples could be clearly divided into subgroups consistent with the
sensitive/resistant grouping. These target genes exhibited specific
expression differences between the two groups. This suggests a close
correlation between their expression and the cisplatin resistance
phenotype. Results of intergroup difference analysis using gene
expression boxplots (Figure 4G) further confirmed key findings. The
expression levels of TOP2A (P = 0.011), GPX4 (P = 0.013) and
SLC7A11 (P = 0.0092) were significantly higher in the resistant
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group than in the sensitive group. TP53 expression (P = 0.034) was
significantly lower in the resistant group. These results consistently
validated the previous conclusions. From the perspective of clinical
application value, receiver operating characteristic (ROC) curve
analysis (Figure 4H) showed differences in the diagnostic efficacy of
each target gene for cisplatin resistance. SLC7A11 exhibited the
strongest diagnostic ability (AUC = 0.762). TOP2A showed
moderate diagnostic efficacy (AUC = 0.700). GPX4 (AUC = 0.675)
and TP53 (AUC = 0.625) also had discriminative ability (AUC>0.5)
but with lower efficacy than the former two.For survival prognosis
analysis, Kaplan-Meier survival curves (Figure 4I) showed a key result.
The progression-free survival (PFS) curve of ovarian cancer (OV)
patients in the high TOP2A expression group was significantly lower
than that in the low TOP2A expression group. The Log-rank test
confirmed that the difference in PFS between the two groups was
statistically significant (P = 0.012). This suggests a close correlation
between high TOP2A expression and shorter PFS in ovarian

cancer patients.

TOP2A silencing triggers ferroptosis in
cisplatin-resistant OC cells

To explore the relationship between TOP2A and ferroptosis,
ferroptosis was induced using the ferroptosis inducer erastin.
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TOP2A expression levels were detected through qPCR and WB
assays.The results showed a significant decrease in TOP2A
expression during ferroptosis induction (Figures 5A-C). This
further confirms the intimate link between TOP2A and
ferroptosis. Subsequently, SKOV3-DDP and OVCAR3-DDP cells
were treated with the ferroptosis inhibitor Fer-1. The results
revealed that Fer-1 effectively reversed the proliferation inhibition
induced by TOP2A knockdown (Figure 5D), indicating that
TOP2A knockdown promotes ferroptosis in cisplatin-resistant
OC cells.Since reactive oxygen species (ROS) and superoxide
dismutase (SOD) are key markers of oxidative stress (33),
intracellular ROS and SOD levels were further measured in
SKOV3-DDP and OVCAR3-DDP cells. TOP2A knockdown
significantly elevated intracellular ROS levels and reduced SOD
levels, and these effects were effectively reversed by fer-1
(Figures 5E, F). Lipid peroxidation (LPO) is a core driver of
ferroptosis. Its end product malondialdehyde (MDA) was
additionally evaluated (34). TOP2A knockdown significantly
increased LPO and intracellular MDA levels, and these changes
were significantly alleviated by fer-1 (Figures 5G, H). Mitochondrial
membrane potential (MMP) is a key indicator for evaluating
mitochondrial damage during ferroptosis. MMP was detected
using the fluorescent probe JC-1 (35), and results showed that
TOP2A knockdown reduced MMP levels, an effect effectively
reversed by fer-1 (Figure 5I). Morphologically, mitochondria
undergoing ferroptosis typically exhibit significant shrinkage and
cristae loss (36). Transmission electron microscopy showed that
mitochondria in TOP2A-knockdown SKOV3-DDP and OVCAR3-
DDP cells were significantly smaller with reduced cristae, and this
damage was effectively alleviated by fer-1 (Figure 5]). Furthermore,
Furthermore, glutathione (GSH) and lactate dehydrogenase (LDH)
were measured (37, 38). GSH reflects early events of ferroptosis.
LDH reflects late events of ferroptosis. TOP2A knockdown reduced
GSH levels and increased LDH release. These effects were
significantly reversed by fer-1 (Figures 5K, L). Taken together,
these findings demonstrate that silencing TOP2A enhances
ferroptosis in cisplatin-resistant OC cells.

TOP2A silencing promotes ferroptosis via
TP53/GPX4/SLC7A11 and inhibits EMT in
cisplatin-resistant OC cells

To clarify the mechanisms by which TOP2A regulates cisplatin
resistance in OC, GO enrichment analysis of RNA-Seq data
identified strong associations with cell adhesion (Figure 4A).
KEGG enrichment analysis highlighted the P53 signaling
pathway, cell adhesion molecules, focal adhesions, and
extracellular matrix (ECM) interactions (Figure 4B). Furthermore,
TOP2A knockdown was found to reduce GPX4 and SLC7All
expression while increasing TP53 expression (Figures 4C, D). We
validated the expression of TP53,GPX4 and SLC7All, genes in
shTOP2A-knockdown SKOV3-DDP and OVCAR3-DDP cells via
qPCR, and the results were consistent with RNA-seq data
(Figure 6A). Subsequently, we detected the expression levels of
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TP53, GPX4, SLC7A11 proteins, and epithelial-mesenchymal
transition (EMT)-related proteins (E-Cadherin, N-Cadherin,
Vimentin, Snail) in cisplatin-resistant cells after shTOP2A
knockdown using WB.The results showed that after TOP2A
knockdown, the expression of TP53 and E-Cadherin was
significantly upregulated, while the expression of GPX4,
SLC7A11, N-Cadherin, Vimentin, and Snail was significantly
downregulated.After treatment with the ferroptosis inhibitor fer-
1, the aforementioned changes in protein expression were
significantly reversed, but not fully restored to the original levels
(Figure 6B). Transwell invasion assays showed that the invasive
capacity of TOP2A-silenced cisplatin-resistant OC cells was
significantly restored following treatment with the fer-1
(Figure 6C). Furthermore, scratch wound healing assays further
confirmed that fer-1 could restore the migratory ability of these
resistant cells (Figure 6D). These findings indicate that silencing
TOP2A may inhibit the EMT process in OC cells by
inducing ferroptosis.

TP53 is a key target of TOP2A and can
regulate the ferroptosis process in
cisplatin-resistant OC cells

To explore the interaction potential between TOP2A and TP53,
molecular docking was first performed for prediction. The results
showed that the binding free energy between TOP2A and TP53 was
-20.7 kcal/mol, which was much lower than the well-recognized
effective binding threshold of -5.0 kcal/mol (39). This indicated that
the two proteins had extremely strong binding ability and excellent
system stability. They reached an ideal binding state (Figure 7A).
Although the surface area of their interaction region was small, this
phenomenon was associated with the relatively small overall
structure of the proteins. The surfaces of the two proteins formed
contacts through multiple sites. Meanwhile, there were multiple
hydrogen bond interactions between key amino acid residues. These
factors significantly enhanced the stability of the complex. They also
collectively supported the high-intensity binding between TOP2A
and TP53.Co-IP assay further validated the endogenous interaction
between TOP2A and TP53 (Figure 7B). To further investigate the
role of TP53 in cisplatin-resistant OC cells, we knocked out TP53 in
SKOV3-DDP and OVCAR3-DDP cells and verified the knockout
efficiency. Results showed that although the expression of
ferroptosis-related proteins GPX4 and SLC7A11 in SKOV3-DDP
and OVCAR3-DDP cells did not change significantly after TP53
knockdown, their expression levels significantly restored the
abnormal expression patterns of GPX4 and SLC7A11 induced by
TOP2A knockout (Figures 7C, D). As shown in Figures 7E-L, we
further observed that compared with the TOP2A-silenced group,
TP53 silencing significantly attenuated ferroptosis-induced
increases in LPO and MDA levels, elevated MMP levels, and
restored the morphological features (size and number) of
mitochondrial cristae. Additionally, GSH levels were increased,
while LDH levels were decreased. These results indicate that TP53
silencing exerts no significant protective effect on cells in the

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1675373
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

A SKOV3-DDP ovcArsDDP B Cc D
1.5 SKOV3-DDP SKOV3-DDP OVCAR3-DDP SKOV3-DDP OVCAR3-DDP
< <
P4
€ £ @ 2 . -1
< 1.0] < g ° SToPAM A i STOP2AE!
a e a 310 & 10 + Nt i y - Noved
gs e OVCAR3-DDP g N sttt L1y [ s
_g 0.5 o s % 0.5] % 0.5 EM Yz
© ® 2 " 2 P
3 3 g S =
0.0' < ) <& S
€ © AN
S N
& Q\“\ Y S & «
> N & &
O & & <
8 &
9 S
d 2
<& &
F SKOV3-DDP — 15 OVCAR3-DDP
E SKOV3-DDP OVCARS3-DDP 3 ° _—
2 5 . I
< = =3
3 E E 0
i 2 2
8 E s
3 ] H 0.5
3 g £ o
2 2
£ a
8 g
2 @* ® g0
SRS IN
° - X X 5
E oq,‘y' & @
& <
si-TOP2A#1 NC+fer-1  si-TOP2A#1 NC+fer-1  si-TOP2A#1 .\{\o
+er-1 +fer-1 °
G SKOV3-DDP OVCAR3-DDP H

= 4
o °

MDA Level(umol/g prot)
& 5

0Ox.C11/Non-Ox.C11
MDA Level(umolig prot)

e
°

si-TOP2A#1  NC+fer-1 si-TOP2A#1  NC+fer-1

SKOV3-DDP OVCAR3-DDP

- Bag - ER PR [

__ 150
2 - 2
g o
- o
3 100
£
a
]
NC si-TOP2A#1 NC+fer-1  si-TOP2A#1 NC si-TOP2A#1 NC+fer-1  si-TOP2A#1 3 50
+er +er %
o
0
J SKOV3-DDP
SKOV3-DDP
L 2.0

LDH Level(U/L)
LDH Level(U/L)

FIGURE 5
Silencing TOP2A promotes ferroptosis in Cisplatin-Resistant OC Cell. (A, B) TOP2A expression levels in SKOV3-DDP and OVCAR3-DDP cells after
24h treatment with 20uM Erastin were detected by qPCR (A) and WB (B). (C) Quantitative analysis of TOP2A expression levels from (B). (D) The
effects of TOP2A knockout or combined treatment with 1uM fer-1 on the proliferation of SKOV3-DDP and OVCAR3-DDP cells.(E-L)In SKOV3-DDP
and OVCAR3-DDP cells, the effects of TOP2A knockdown or combined treatment with 1uM fer-1 on the following parameters were observed: (E)
ROS levels; (F) SOD levels; (G) LPO levels; (H) MDA levels; (I) MMP levels; (J) mitochondrial morphology; (K) GSH levels; (L) LDH levels.All
experiments were performed with 3 independent biological replicates (n=3), and each biological replicate included 3 technical repeats. Data are
shown as mean + SD. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Immunology 12 frontiersin.org

10.3389/fimmu.2025.1675373


https://doi.org/10.3389/fimmu.2025.1675373
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

10.3389/fimmu.2025.1675373

>

1 ]

Relative mRNA
levels
S

OVCAR3-DDP SKOV3-DDP

SKOV3-DDP

P

1%
I I = NC
shTOP2A#1#2

i ik

TP33 GPX4  SLCTAN

Relative mRNA

shTOP2A

levels

OVCAR3-DDP B
TP53
309
GPX4
. _ SLC7A11
25 h shToP2A#t#2
'I' E-cad
20 N-cad
10 Vimentin
" Snail
05 3
%3  GAPDH
0.0-

P83

GPX4

NC+fer-1

SLCTAN

shTOP2A+fer-1

SKOV3-DDP

OVCAR3-DDP

——— — —

J——

Invaded cells/HPF

SKOV3-DDP

SKOV3-DDP

<
&

1000:
800
600

400

Invaded cells/HPF

200

OVCAR3-DDP

53kDa
17kDa
55kDa
120kDa
140kDa
54kDa
29kDa

36kDa

oh|

ash|

NC

shTOP2A

NC+fer-1

shTOP2A+fer-1

OVCARS3-DD

- -
=] I
1

48h-Migration index (%)
o
o

o
o

P

FIGURE 6

NC

shTOP2A

NC+fer-1

shTOP2A+fer-1

48h-Migration index (%)

TOP2A knockdown Inhibits EMT in Cisplatin-Resistant OC via P53/GPX4/SLC7A11-Mediated Ferroptosis.(A) TP53, GPX4, and SLC7A11 expression
levels in TOP2A-knockdown SKOV3-DDP and OVCAR3-DDP cells were detected by qPCR. (B) Effects of TOP2A knockdown combined with fer-1
treatment on the expression of TP53, GPX4, SLC7A11 and EMT-related proteins (E-Cadherin, N-Cadherin, Vimentin, Snail) in SKOV3-DDP and
OVCAR3-DDP cells. (C, D) Effects of TOP2A knockdown combined with Fer-1 treatment on SKOV3-DDP and OVCAR3-DDP cells: (C) Invasive
capacity detected by Transwell assay; (D) Migratory capacity detected by wound healing assay.All experiments were performed with 3 independent
biological replicates (n=3), and each biological replicate included 3 technical repeats. Data are shown as mean + SD. Statistical significance:

**p < 0.01, ***p < 0.001.

Frontiers in Immunology

13

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1675373
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al. 10.3389/fimmu.2025.1675373
B
SKOV3-DDP OVCAR3-DDP
P P
Input  1gG. TOP2A Input IgG  TOP2A
o IB:TOP2A IB:TOP2A 174kDa
Binding Energy:-20.7kcal/mol
\ Al
c SKOV3-DDP OVCAR3-DDP D SKOV3-DDP OVCAR3-DDP
TP53 | M- - — - - ' 53kDa
orxe| B -GS - _, u17kna
SLCTAN | e . i —| | -~ W - | 55kDa
GAPDH | i aes enss Gl | | WD Gumn oums @S 3G/ Da e ehu sichan e oPxe  sLorat
—_ - - - -
hTOP:i * N B n NC + - - - NC + - — —
s| 0" - + - % -+ - 4 ShTOP2A — + — 4 ShTOP2A  — 4 -+
ShTP53 - - + + - - + + shTP53  —  — + + ShTP53 - - + +
E F
SKOV3-DDP OVCAR3-DDP
SKOV3-DDP
5 g2
E: E 1.5-
5 S0
H E i
s 8 8 oo
H
NC + - — - + — -
si-TOP2A - + - + - + - +
si-TP53 - - + + - - + +
G OVCAR3-DDP
NS
- s
2
oé ’ga‘s
2 D
H 30
(8] a
& = oo
€& EE
g
&
si-TOP2A - + - + - + —_ +
si-TP53 - - + + - - + +
| J
SKOV3-DDP
g g
£ £
8 8
xx"@vf@.f‘?
si-TOP2A  — + - + - + - + T
si-TP53 - - + + - - + + &
K SKOV3-DDP OVCAR3-DDP
g
2 N s
3
o )
£ 10 T,
o & 3
8- E ..
2 oo o0
<
o
>
o
N
si-TOP2A
si-TP53
FIGURE 7

TP53 silencing can reverse ferroptosis induced by TOP2A silencing. (A )Molecular docking analysis of TOP2A and TP53 Proteins

(B) Co-immunoprecipitation of TOP2A and TP53 in SKOV3-DDP and OVCAR3-DDP cells. (C) Silencing TP53 rescued the effects of TOP2A silencing on the
expression of TP53, GPX4, and SLC7A11 in SKOV3-DDP and OVCAR3-DDP cells. (D) Quantitative analysis of the proteins expression levels from (C)

(E-L) Silencing TP53 rescued the effects of TOP2A silencing on the following parameters in SKOV3-DDP and OVCAR3-DDP cells: ROS levels (E); SOD
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3 independent biological replicates (n=3), and each biological replicate included 3 technical repeats. Data are shown as mean + SD. Statistical significance:
*p < 0.05, **p < 0.01, ***p < 0.001. Not Significant:NS

Frontiers in Immunology

14

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1675373
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al. 10.3389/fimmu.2025.1675373

A SKOV3-DDP OVCAR3-DDP B

L 2 Exx

SKOV3-DDP OVCARS3-DDP

235

O = Hkx
: sioo e
———— 08 20 Ns = 7 5
=Tl i 1 Tl S
! é'g 1.0 N o Ui o s

Snail | - -; - 29kDa =:5| " I I } I
. T

E- cad N- cad Vnmentm Snail " Ecad  Ncad Vimentin Snail
GAPDH | —— = 'l W_|3GKD3
- - -

-
NC + - = NC + - —
shTOP2A - + = + shTOP2A - + - +
shTOP2A - + - + - + - + shTP53 - - + + shTP53 - - + +
shTP53  — — + + - - + +
Cc a SKOV3-DDP OVCAR3-DDP
Q
d
3
=
o E E
) E i
©
<
3]
>
)
NC + - - -
shTOP2A - + - +
shTP53 - - + +
D SKOV3-DDP
g
E
]
&
=
=
48h 2
NC
shTOP2A - * - +
shTP53 - - + +
OVCAR3-DDP
g
%
z
= 0.
£
T 04
20
H
_éO.Z
2
0.0
NC + - - =
shTOP2A - + - +
shTP53 - - + +

FIGURE 8

TP53 silencing can reverse EMT induced by TOP2A silencing. (A) Silencing TP53 rescued the effects of TOP2A silencing on the expression of
E-Cadherin, N-Cadherin, Vimentin, Snail in SKOV3-DDP and OVCAR3-DDP cells. (B) Quantitative analysis of the proteins expression levels from
(A). (C, D) Silencing TP53 rescued the effects of TOP2A silencing on the following parameters in SKOV3-DDP and OVCAR3-DDP cells: Invasive
capacity detected by Transwell assay (C); Migratory capacity detected by wound healing assay (D). All experiments were performed with 3
independent biological replicates (n=3), and each biological replicate included 3 technical repeats. Data are shown as mean + SD. Statistical
significance: *p < 0.05, **p < 0.01, ***p < 0.001. Not Significant:NS.

Frontiers in Immunology 15 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1675373
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

absence of ferroptosis.however, it can markedly reverse TOP2A
knockdown-induced ferroptosis in cisplatin-resistant cells.

TP53 is a key target of TOP2A and
regulates EMT in cisplatin-resistant OC
cells

Subsequently, we investigated the association between TP53 and
EMT in SKOV3-DDP and OVCAR3-DDP cells. As shown in
Figures 8A, B, compared with the NC group, TP53 silencing
significantly inhibited the expression of E-Cadherin and promoted
the expression of N-Cadherin, Vimentin, and Snail in cisplatin-
resistant SKOV3-DDP and OVCAR3-DDP cells, suggesting that
TP53 may be closely associated with the EMT process. Furthermore,
compared with the TOP2A-silenced group, TP53 silencing reversed the
changes in the expression of EMT-related proteins induced by TOP2A
silencing. Transwell invasion assays and scratch wound healing assays
further confirmed that TP53 knockdown not only significantly
enhanced the invasive and migratory capacities of cisplatin-resistant
ovarian cancer cells but also reversed the inhibition of the EMT process
induced by TOP2A knockdown (Figures 8C, D). These results indicate
that TP53 plays a crucial role in the TOP2A-mediated EMT process in
cisplatin-resistant OC cells.

The promoting effect of TOP2A on
cisplatin resistance in ovarian cancer in
vivo

Based on in vitro findings, we established a nude mouse xenograft
model of OC-resistant cells with TOP2A and TP53 knockout
(Figures 9A-C). During cisplatin treatment, TOP2A knockdown
significantly inhibited tumor growth and reduced tumor weight,
while TP53 knockdown promoted tumor growth and reversed the
effect of TOP2A knockdown. These results indicate that TOP2A
knockdown can enhance the sensitivity of OC to cisplatin, whereas
TP53 knockdown reduces such sensitivity.Furthermore, through WB
analysis of tumor tissues, we confirmed conclusions consistent with in
vitro experiments: TOP2A silencing can induce ferroptosis by
regulating the expression of TP53/GPX4/SLC7Al1, thereby
inhibiting the EMT process (Figure 9D). Further detection of
ferroptosis-related indicators in tissues revealed that TOP2A
knockdown reduced GSH levels and increased MDA levels in vivo;
in contrast, TP53 knockdown partially restored the decrease in GSH
levels induced by TOP2A knockdown and alleviated the increase in
MDA levels (Figures 9E, F). In summary, these results demonstrate that
TOP2A regulates ferroptosis and the EMT process in cisplatin-resistant
OC through its interaction with TP53 in vivo.

Discussion

OC ranks among the most prevalent malignancies in the female
reproductive system. HGSOC represents its most aggressive
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subtype (40). A critical clinical challenge in HGSOC management
is the development of cisplatin resistance, which frequently leads to
disease relapse, treatment failure, and mortality (41). These findings
underscore an urgent need for novel therapeutic strategies and
molecular targets. Such strategies and targets aim to improve
outcomes in patients with platinum resistance. Accumulating
evidence has highlighted the pivotal role of TOP2A in cancer
progression (42-45). As a validated target for chemotherapeutics
such as doxorubicin, etoposide, and methotrexate (46, 47), the
expression patterns of TOP2A in OC, particularly the differential
expression between primary and recurrent tumors, have been
associated with chemotherapeutic response and resistance (48,
49). Notably, integrating TOP2A inhibitors into platinum-based
regimens has shown promise in enhancing chemosensitivity and
mitigating resistance in recurrent OC, while TOP2A quantification
in both tumor and stromal compartments serves as a prognostic
biomarker for treatment outcomes (49). However, the molecular
pathways through which TOP2A mediates platinum resistance in
OC remain incompletely defined. In this study, we demonstrated
that TOP2A is upregulated in HGSOC tissues, with its expression
levels closely related to tumor grade, stage, and lymph node
metastasis, consistent with previous reports (6, 48,
49).Additionally, TOP2A expression is also significantly
upregulated in platinum-resistant OC cell lines. We conducted
transcriptome analysis of cisplatin-resistant cells. We also
performed bioinformatics analysis on cisplatin-resistant and
cisplatin-sensitive OC populations using the GEO database.
Combined with in vitro and in vivo functional validation, these
analyses further confirmed that high TOP2A expression is
associated with poorer PFS in patients. They also confirmed that
high TOP2A expression serves as an independent prognostic factor
for the diagnosis of cisplatin-resistant OC.Meanwhile, we identified
TOP2A as a therapeutic target for platinum-resistant OC. We also
uncovered a novel mechanism for the first time. Knocking down
TOP2A promotes ferroptosis and EMT in cells. This process occurs
through the TP53 signaling pathway. It further reverses cisplatin
resistance in OC.

Initial experiments revealed that TOP2A knockdown
significantly impaired the proliferative capacity of cisplatin-
resistant OC cells. When combined with cisplatin treatment, sh-
TOP2A-transfected cisplatin-resistant cells exhibited marked
reductions in proliferation, invasion, and migration, indicating a
significant restoration of cisplatin sensitivity. These findings
highlight the critical role of TOP2A in mediating cisplatin
resistance in OC.

RNA-seq analysis revealed differential gene expression patterns
associated with shRNA-mediated TOP2A knockdown in cisplatin-
resistant OC cells. Functional enrichment analysis showed that
these genes were significantly enriched in pathways related to
lipid metabolism regulation, oxidative stress response, glutathione
metabolism, iron ion binding, regulation of oxidative stress-induced
cell death, and protein kinase activity regulation. These enriched
pathways are closely related to ferroptosis.Ferroptosis is a novel
form of cell death, distinct from apoptosis, characterized by the
harmful accumulation of lipid peroxides on the cell membrane,
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FIGURE 9

Inhibiting TOP2A can promote ferroptosis and suppress the EMT process in Cisplatin-Resistant OC in vivo via TP53. (A-C) Measurement of weight
(A, B) and volume (C) of xenografted animals. (D) WB analysis showed the expression levels of TP53, GPX4, SLC7A11, E-cadherin, N-cadherin,
Vimentin, and Snail in xenografted tumors with TOP2A or TP53 knockdown. (E, F) Detection of GSH levels (E) and MDA levels (F) in xenografted
tumors.All experiments were performed with 3—-6 independent biological replicates (n=3-6), and each biological replicate included 3 technical
repeats. Data are shown as mean + SD. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001. Not Significant:NS.

typically activated by oxidative stress caused by glutathione
depletion, hemin accumulation, and/or reactive lipid species.
Ferroptosis holds great potential in cancer therapy by inhibiting
tumor formation and enhancing tumor immune responses (50,
51).The inhibitory network of ferroptosis is coordinately regulated
by multiple pathways, among which the GSH-GPX4 axis, as the
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core pathway, maintains cell membrane homeostasis by scavenging
lipid ROS (52).Notably, inhibiting ferroptosis can enhance
chemoresistance in cancer cells, while activating ferroptosis can
restore their chemosensitivity (53, 54).Previous studies have
identified several key pathways regulating ferroptosis in OC, such
as the USP43-FASN-HIF1a.-SLC7A11 axis (a negative regulator of
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ferroptosis) and the NRF2-FSP1 pathway (a protective barrier
against ferroptosis (55, 56).Beyond these, VIPAS39 has also been
reported to facilitate tumor cells in evading immunogenic
ferroptosis and sustaining proliferative advantages by delivering
ACSLA4 protein via exosomes, which in turn reduces the abundance
of lipid peroxidation substrates (57).Collectively, these studies have
established that systematic intervention in the core regulatory
network of ferroptosis is an effective strategy to overcome
chemotherapy resistance in OC (58).Mitochondria are key
regulatory hubs for ferroptosis, and their metabolic status directly
influences the process of lipid peroxidation (59).Studies have shown
that inhibiting the mitochondrial tricarboxylic acid cycle or electron
transport chain can reduce hyperpolarization of mitochondrial
membrane potential, lipid peroxidation, and ferroptosis
(60).Additionally, under hypoxic conditions, mitochondrial fission
increases ROS levels in ovarian cancer cells, thereby contributing to
cisplatin resistance (61).This “mitochondria-oxidative stress-
resistance” regulatory axis provides a metabolic basis for the
association between TOP2A and ferroptosis. Based on the
aforementioned mechanisms, we further validated the regulatory
relationship between TOP2A and ferroptosis in cisplatin-resistant
OC using multidimensional experiments. First, functional
validation experiments demonstrated that the ferroptosis inducer
Erastin downregulated TOP2A expression. This finding aligns with
the mechanism identified in hepatocellular carcinoma research,
where phillyrin promotes ferroptosis by inhibiting the TOP2A-
JAK2/STAT3 axis (29), suggesting that TOP2A may act as a
conserved molecular node linking ferroptosis regulation and
chemoresistance. To explore the downstream mechanisms, RNA
sequencing analysis showed that the expression of the key
ferroptosis regulators GPX4 and SLC7A11 significantly decreased
following TOP2A knockdown. GPX4 maintains cell membrane
stability by catalyzing the clearance of lipid reactive oxygen
species via GSH; SLC7A11 is responsible for transporting
extracellular cystine to supply the raw materials for GSH
synthesis (62-64). The loss of GPX4 and SLC7A11 expression
leads to an imbalance in lipid peroxidation, ultimately resulting in
the characteristic membrane damage associated with ferroptosis.
This result confirms that TOP2A can influence the ferroptosis
process by regulating the GPX4/SLC7A11 pathway. Subsequently,
we performed functional rescue experiments using the ferroptosis
inhibitor fer-1 (65). The results showed that TOP2A knockdown
significantly increased intracellular ROS levels, induced
mitochondrial contraction, increased membrane density, and
reduced or disappeared cristae, along with decreased GSH and
SOD levels, reduced mitochondrial membrane potential, and
significantly elevated MDA and LPO levels. Fer-1 treatment
partially reversed these morphological changes, including
restoring GSH levels, improving mitochondrial morphology, and
enhancing antioxidant capacity. These findings indicate that
TOP2A promotes cisplatin resistance in OC cells by
inhibiting ferroptosis.
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Notably, TOP2A knockdown significantly enriched pathways
related to cell adhesion molecules and ECM-receptor interactions,
which directly regulate cell migration. EMT, a core process in
ovarian cancer invasion and metastasis, is activated by ECM
remodeling and adhesion molecule rearrangement, contributing
to cisplatin resistance (66-68).In this study, TOP2A knockdown
significantly reduced the invasive capacity of cisplatin-resistant
cells, accompanied by characteristic changes in EMT markers:
increased E-cad protein expression and decreased expression of
N-cad, vimentin, and Snail. These findings indicate that TOP2A
knockdown inhibits the EMT process in resistant cells.
Mechanistically, ferroptosis and EMT are closely interconnected
through a cross-regulatory network, and inhibiting ferroptosis can
promote the EMT process (69). Fer-1 can reverse drug-induced
EMT in esophageal cancer cells (70). Consistent with the
aforementioned findings, our study demonstrated that the
ferroptosis inhibitor fer-1 significantly reversed the inhibitory
effects of TOP2A knockdown on EMT, confirming that
promoting ferroptosis is a necessary intermediate step for TOP2A
to inhibit EMT. This regulatory pattern is supported by the
enrichment of the TP53 pathway in transcriptome analysis.
Although TP53 is not a canonical regulator of EMT, it can act as
a shared regulator of ferroptosis and EMT. TP53 activation can
block EMT by inhibiting Snail transcription (71),and TOP2A
knockdown enhances TP53 activity via the TP53 signaling axis.

TP53 is the most frequently mutated tumor suppressor gene in
cancers, and its wild-type form can inhibit tumor growth through
multiple mechanisms (72).In the context of cisplatin resistance,
TP53 mutations exert dual regulatory effects: on one hand, TP53
mutations can promote resistance phenotypes in mediastinal germ
cell tumors (73)and high-grade serous ovarian cancer (74), patients
harboring functional TP53 mutations exhibit the lowest cisplatin
sensitivity and the poorest platinum-free survival prognosis (75).
On the other hand, nanoparticles targeting mutant TP53 can
degrade mutant p53 and induce endoplasmic reticulum stress,
thereby restoring cisplatin sensitivity in non-small cell lung
cancer (NSCLC) (76). These findings indicate that TP53 status is
closely associated with platinum-based chemotherapy sensitivity.In
the regulation of ferroptosis, TP53 transcriptionally represses the
expression of SLC7A1ll (a subunit of the cystine/glutamate
antiporter), reducing extracellular cystine uptake and disrupting
the supply of raw materials for GSH synthesis, ultimately inducing
lipid peroxidation and increasing cellular sensitivity to ferroptosis
(36, 77, 78). Notably, our bioinformatics analysis of cisplatin-
resistant and cisplatin-sensitive OC samples from the GEO
database confirmed previous findings. Specifically, in the
cisplatin-resistant group, the expression levels of TOP2A, GPX4,
and SLC7A11 were significantly increased, while the expression of
TP53 was significantly decreased. Moreover, TOP2A could serve as
an effective diagnostic and prognostic gene, and its high expression
was associated with poorer PFS. Subsequently, this mechanism was
verified through molecular docking combined with in vitro
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experiments. TOP2A knockdown downregulates SLC7A11 and
GPX4 expression via the TP53 signaling axis, triggering
ferroptosis-associated characteristic membrane damage. In EMT
regulation, p53 can target EMT master regulators through miRNA-
dependent mechanisms. For instance, p53 activation upregulates
miR-34a, which inhibits EMT by targeting Zebl (71).MCOLN1/
TRPMLI-induced autophagy inhibition suppresses cancer
metastasis by activating the ROS-mediated TP53/p53 pathway
(79).These findings provide a theoretical basis for TP53 acting as
a hub in the crosstalk between ferroptosis and EMT. In cisplatin-
resistant cells, simultaneous knockdown of TOP2A and TP53
revealed that TP53 deficiency not only reversed TOP2A
knockdown-induced changes in GPX4 and SLC7A11 expression
and ferroptosis-related phenotypes but also reversed the cells’
invasive/migratory capabilities and EMT-related protein
expression. This confirms that TOP2A mediates ferroptosis via
the TP53/GPX4/SLC7A11 axis, thereby inhibiting EMT and
reversing cisplatin resistance. Finally, we established a nude
mouse subcutaneous xenograft model, which further confirmed
that TOP2A knockdown enhances the sensitivity of resistant cells to
cisplatin, likely through the TP53/GPX4/SLC7A11 axis. These
results provide more comprehensive evidence for targeting
TOP2A in the treatment of cisplatin-resistant OC.

This study still has two limitations that require further
improvement. First, although the analysis was conducted using a
drug-resistant population database, validation with an independent
cohort of clinical drug-resistant samples is lacking. The existing
data cannot fully support details such as the expression
heterogeneity of TOP2A in drug-resistant patients and the
dynamic changes in pathway activity. Additional clinical samples
will be needed for validation in subsequent studies.Second,
mechanism validation was performed only using TP53 mutant
cell lines. TP53 wild-type ovarian cancer cells were not included
in the analysis. This makes it impossible to clarify whether the role
of TOP2A is associated with the TP53 mutation background.
Validation with wild-type models will be required in future studies.

In conclusion, this study clarified the regulatory role of TOP2A
in cisplatin resistance of ovarian cancer. It also elucidated the
specific mechanism by which TOP2A affects cellular ferroptosis
through the TP53 signaling pathway, thereby inhibiting EMT.
Specifically, TOP2A is significantly overexpressed in cisplatin-
resistant tissue cells. Its high expression level is closely associated
with poor prognosis in patients and can serve as an effective
diagnostic gene. At the mechanistic level, knocking down TOP2A
can upregulate the expression of the tumor suppressor gene TP53. It
can simultaneously downregulate the expression of GPX4 and
SLC7A11. This further induces ferroptosis in cisplatin-resistant
cells. Ultimately, it inhibits the EMT process and the malignant
phenotype of tumor cells.Based on these findings, intervention
strategies targeting TOP2A or combining with TP53 agonists
provide a potential direction for the treatment of cisplatin-
resistant ovarian cancer and the improvement of patient prognosis.
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